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ABSTRACT

Domains in previous Domain Generalization (DG) benchmarks have been sam-
pled from various image collections of different styles such as photographs,
sketches, cartoons, paintings, product images, and etc. However, from these ex-
isting DG datasets, it is still difficult to quantify the magnitude of domain shift
between different domains and relate that to the performance gap across domains.
It is also unclear how to measure the overlap between different domains. There-
fore, we present a new DG dataset, SuperMarioDomains, containing four domains
that are derived from four chronological titles in the Mario video game franchise
on four generations of video game hardware. The discrepancy between our do-
mains is quantified in terms of image representation complexity that reflect the
hardware evolution in image resolution, color palette, and presence of 3D render-
ing. We benchmark state-of-the-art DG algorithms under both Multi-Source and
Single-Source DG settings on our dataset and find that they can only surpass the
random average baseline in our dataset by at most 18.0% and 10.4% respectively.
In addition, we show that adding our dataset as part of the pre-training process
improves performance of existing DG algorithms on the PACS benchmark.

1 INTRODUCTION

Domain Generalization (DG) is a crucial task in deep learning that remains challenging despite
the recent fast development and the mass effort poured into the field. Fundamentally, a robust
DG approach must be capable of both capturing invariant representations from the known training
environments and adapting to the unknown test environments. Ideally, having a strong DG model
can bring huge improvement to practical applications. For example, a self-driving software would
be able to seamlessly transfer what it learns in computer generated simulation scenarios onto real
life situations with little risk of causing traffic accidents.

Researchers have long identified one of the biggest challenges in the DG task is the problem of
domain shift, handling the representation gaps between the known training domains and the un-
known test domains (Pan & Yang, 2009). To tackle this problem, many have created specific image
DG datasets and benchmarks, from those as early as VLCS (Khosla et al., 2012) and RotatedM-
NIST Ghifary et al. (2015), to the more recent and larger-sized PACS (Li et al., 2017), Office-Home
(Venkateswara et al., 2017), SVIRO (Cruz et al., 2020), and DomainNet (Peng et al., 2019). The
domains featured in these DG datasets often collect samples from pre-existing image datasets cat-
egorized by image style, such as photographs, cartoons, paintings, hand sketches, infographs, and
so on. These DG datasets also feature distinguishable image classes that span over their domains
of choice, such as dogs and cats in forms of photograph, cartoon, painting, and such. Thanks to
such increased availability of resources, state-of-the-art DG algorithms have been discovered and
developed based on these datasets over the years, including ERM (Vapnik, 1991), DANN (Ganin
et al., 2016), CDANN (Li et al., 2018b), SagNet (Nam et al., 2021), RandConv (Xu et al., 2020),
and SWAD (Cha et al., 2021).

Despite the fast evolution of methods, there is still a lack of quantified understanding of the mag-
nitude of domain shift. For human beings, after observing realistic photos of dogs, one takes little
effort to identify dogs in oil paintings, while they would struggle tell dogs apart in highly abstracted
hand sketches. However, we do not have a quantitative measure to implicate whether the domain
shift gap from photos to sketches is many times larger than the gap from photos to paintings. We
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Figure 1: An overview of our dataset. Each column from left to right features actual gameplay
footage from a certain Mario game released on a specific Nintendo game console in chronological
order. We name our domains after these four consoles. On the other hand, each row shows how a
certain class of in-game scenes is rendered in increasingly sophisticated graphics thanks to the hard-
ware improvement over time. The scene classes, from top to bottom, are Overworld, Underground,
Aquatic, and Castle, which we discuss in detail in Chapter 3.1.

also do not know a quantitative scale of the similarity between the domains, as naturally we need to
learn to capture the common features so as to develop domain-invariant representations.

In this paper, we create and compile a new multi-domain DG dataset for classification benchmarks,
dubbed as SuperMarioDomains, inspired by the evolving technology of video game graphics. We
name our domains after the game consoles we sample from - NES, SNES, N64, and Wii. The
domains in our dataset are dissimilar to each other following a chronological order, indicating the
enhancement of video game graphics rendered on increasingly capable hardware. The first domain in
order, NES, consists of gameplay images rendered in the lowest resolution, in 8-bit color palette, and
in 2D only. In the following domains, we gradually add up the the resolution, the color complexity,
and the presence of 3D graphics. As for the image contents, each domain features a game from the
Mario franchise, which employs a consistent graphic level design over the generations. We can thus
classify the gameplay images in the Mario games using a consistent set of labels that describe the
scenes.

We then quantitatively explore the image style domain shift by introducing the JPEG compression
rate metric onto our dataset, as well as the two most commonly used PACS and VLCS datasets. With
this metric, we show that the domains of the same style remain nearly identical to each other. We
also discover that a large domain style deviation exists in PACS’s domains that adds to its diversity,
while the domains in our dataset maintain a smaller domain style discrepancy in between.

For baseline evaluation, we showcase the performances from current state-of-the-ark DG methods
on our dataset. The experiments show that our dataset, although with a built-in similarity in between
domains by design, poses a decent challenge to existing approaches both in Multi-Source DG and
Single-Source DG settings, where the best performances top at around 40%. We also find that by
adding our dataset to the pretraining process, we can further improve the overall DG performance
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on PACS induced by its large domain diversity without changing the method. We hope our work
can serve as a good test bed to encourage better approaches for improving domain generalization.

2 RELATED WORKS

Image Domain Generalization Benchmarks. Early DG benchmarks such as Office (Saenko et al.,
2010) or VLCS (Khosla et al., 2012) focus solely on photorealistic images. Since the single-style
bias is first exposed by DeCAF (Donahue et al., 2014), more image styles have been introduced to the
mix of image domains, and we have seen a steady increase in scale for DG datasets. Office-Home
(Venkateswara et al., 2017) and PACS (Li et al., 2017) first introduce clipart, painting, and hand
sketches, while both maintaining a modest size of around 10K samples and 4 categories. We also
see the introductions of much specialized domains such as digital single lens reflex (DSLR) camera
configurations by TerraIncognita (Beery et al., 2018), various car driving simulation environments
by SVIRO (Cruz et al., 2020), or medical imaging of different tumor types by WILDS (Koh et al.,
2021) and Camelyon17 (Bandi et al., 2018). As of now, the DomainNet dataset (Peng et al., 2019)
tops at incorporating 569K images, featuring 6 image style domains and 345 categories.

Domain Generalization Approaches. Techniques to tackle the problem of domain shift in Domain
Generalization have been rapidly developed over the years. Researchers are no longer restricted to
straightforward approaches such as finding linear alignment (Hoffman et al., 2013) or non-linear
alignment (Duan et al., 2012) in between domains. Current popular approaches on Domain Gener-
alization can involve in adaptation and combination of deep neural network models by Ganin et al.
(2016) and Li et al. (2018b), leveraging Meta-Learning (Li et al., 2018a) or Adversarial-Learning
(Volpi et al., 2018; Qiao et al., 2020; Gokhale et al., 2023) to transfer models parameters, finding
causality information in between domains, or using regularization methods to achieve optimized
generalizability (Cha et al., 2021). Still, in many occasions, simple methods such as ERM (Vap-
nik, 1991) can yield high performance in popular Domain Generalization benchmarks Gulrajani &
Lopez-Paz (2021).

3 THE MARIO DATASET

3.1 DESIGN CHOICES

We build our SuperMarioDomains dataset (hence referred to as the Mario dataset) featuring do-
mains where synthesized scenes are rendered in an evolving manner. Unlike previous Domain
Generalization datasets, we incorporate images starting from pixelated mosaic 2D graphics, then
gradually transition towards high polygon 3D graphics via multiple stages. Our domains of choice
are video game footage captured on 4 chronological generations of video game consoles, all man-
ufactured by Nintendo: The Nintendo Entertainment System (NES) released in 1985, the Super
Nintendo Entertainment System (SNES) in 1990, the Nintendo 64 (N64) in 1996, and the Wii in
2006. Game scenes performed on the older generations of consoles demonstrate more limited ren-
dering capabilities at its time, while the newer games enjoy stronger graphics hardware and better
ability to mimic complex real-life scenes.

Table 1 lists down the hardware specifications of the game consoles as our domains of choice. In
general, the later hardware feature faster processing speed, dedicated GPUs, larger memory, higher
output resolution, and more vibrant colors. Previous datasets for image Domain Generalization
ignore such transitional graphic quality improvements, oftentimes addressing solely the overall do-
main shift such as synthetic versus photorealistic. Our dataset features a much fine-grained visual
domain shift design that challenges the robustness of current high performing DG approaches.

The sources of data. For the actual image contents, we choose gameplay footages entirely from
the Mario franchise, one title per our featured game consoles. The reason we decide to use the
Mario games is that the Mario franchise employs similar level and scenery design shared across the
generations, so that we may have consistent scene labels throughout the evolution of visual quality.
Respectively, our dataset incorporates gameplay footage from Super Mario Bros on NES, Super
Mario World on SNES, Mario 64 on N64, and Super Mario Galaxy on Wii - the older two games
rendered in 2D graphics while the latter two in 3D.
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Table 1: The graphic hardware specifications of the consoles we feature as the domains in our
dataset. These figures are of the products released in North America.

Console Release Year CPU Freq. GPU Freq. Video RAM Max Resolution Color Palette 3D Rendering

NES 1985 1.79 MHz - 2 KB 256×240 8-bit No
SNES 1990 3.58 MHz - 64 KB 512x478 16-bit No
N64 1996 93.75 MHz 62.5 MHz 8 MB 704×480 24-bit Yes
Wii 2006 729 MHz 243 MHz 88 MB 854x480 32-bit Yes

The annotation procedure. We sample our images from multiple full walkthrough gameplay
videos uploaded to YouTube and Twitch.tv, using video recordings that cover all the levels in games
from start to end, so that we can cover as many diverse in-game scenes as possible. We then manu-
ally label video segments from the chosen gameplay footages using timestamps, so that all the video
frames within one segment share one scene label. During labeling, we skip the segments that do not
depict any level designs, such as those when narrative stories are played, the scoreboard is displayed,
or the whole screen is blackened out for level transition. Since earlier games on NES or SNES in
general take shorter time complete, we sample the frames from the NES and the SNES video games
at a higher 10 fps, while the NES and the Wii videos at 3 fps. We also crop out the on-screen text, the
user interface, and the level floor regions, so that our samples in the dataset introduce as few biases
from scene-specific artifacts as possible. Example scenes from our domains are shown in Figure 2.

The scene classes. We feature 4 types of distinct but universal Mario scenes inspired by entries on
the open-source Mario Wiki:

• Overworld scenes cover a wide range of outdoors levels with an open bright background and
natural green vegetation, such as grassland or forest.

• Underground scenes feature closed-off dark interior background with sporadic weak lighting and
mountain cave-like or sewage textures.

• Aquatic scenes appear with watery textures surrounded by aquatic creatures such as fish or squid,
and oftentimes with swimming movements by the player controlled character.

• Castle or ‘Boss Fight’ scenes are stages within dungeon-like environments, normally indoors
and/or with an architectural texture and man-made obstacles such as traps and spikes.

Table 2: The in-domain test accuracy using basic
classification models from scratch.

Model NES SNES N64 Wii

Resnet18 99.1 96.3 97.9 98.9
Resnet50 99.0 96.2 98.3 98.6

The samples in our dataset labeled in the above
4 classes are separable in-domain. As is shown
in Table 2, when learning only the in-domain
samples using basic image classification mod-
els, the trainings easily converge with regard to
each individual domain and the test accuracies
all reach above 90%.

3.2 STATISTICS

Table 3: The 4 classes of labeled scenes back in the original gameplay videos are distributed
disproportionately. So we further down-sample them evenly and make sure each domain shares the
same number of the samples per label.

Domain Overworld Underground Aquatic Castle Raw Footage Length Dataset Size

NES 10K 3.4K 5K 3.6K 33 min 7K
SNES 17K 8K 4K 6K 2 hr 38 min 20K
N64 30K 7K 6K 7K 4 hr 55 min 25K
Wii 61K 19K 23K 18K 9 hr 25 min 30K

Our dataset consists of debiased gameplay video frames of 4 domains and 4 scene classes. Within
each domain, each class has the same number of samples. The source video length for each domain
increases by generation: the most aged NES domain has the fewest possible unique frames from less
than 1 hour of gameplay, while the latest Wii domain are down-sampled from 10 hours of recordings.
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Since we label an entire video segment with one label during annotation, we further select evenly
spaced frames for every video segment, so as to ensure all variable scenes even under the same
scene class are considered. After further manual inspection by removing any mislabeled, duplicate,
or pure-color images, we eventually yield 7K samples for NES, 20K for SNES, 25K for N64, and
30K for Wii as are shown in Table 3.

4 QUANTITATIVE ANALYSES OF DOMAIN STYLE SHIFTS

Figure 2: A qualitative overview of image domain shift under a certain class in multiple DG datasets.
Our Mario domains are stratified by the evolving hardware capabilities of multiple game consoles
referred in Table 1 over time. In PACS, the domains are differed by image styles: Photo, Art
painting, Cartoon, and Sketch. In VLCS, all images are real life photographs and the domains are
simply the names of its 4 source collections: VOC2007 (Everingham et al., 2010), LabelMe (Russell
et al., 2008), Caltech101 (Fei-Fei et al., 2004), and SUN09 (Choi et al., 2010).

The purpose of Domain Generalization task is to encourage better methods at learning about do-
main invariant representations via the designated DG datasets. In theory, the domains need to be
similar enough that common features can be learned. However, previous DG datasets adopted as
benchmarks on this task often resort to measuring the domain shift by feature space distances using
metrics such as KL-Divergence or t-SNE (Li et al., 2017). Such metrics do not provide quantified
magnitude of domain shift in between the domains and does not show potential domain overlaps. In-
stead, it only shows that the domains are separable somehow, reflected in the performance difference
across the domains.

The domains in our dataset, on the other hand, represent the chronological improvement of hardware
rendering capabilities spanning from 1980s to 2000s. As is specified in Table 1, early video game
consoles such as NES and SNES are only capable of rendering 2D pixelated spirits that are composed
of highly regular color trunks and shapes, whereas the later generations of consoles obtain the power
to render more complex 3D graphics and show higher volumes of simultaneous polygons on screen
and thus can generate more realistic-looking scenes.

The compression metric for domain style shift. Therefore, to better quantify the shift in domain
style complexity in Domain Generalization datasets, we choose to calculate the averaged JPEG
compression rates with regard to individual domains. First proposed by Wallace (1992), the lossy
JPEG compression algorithm leverages Discrete Cosine Transform and quantization to reduce the
file size of an image. We specifically leverage the characteristic of JPEG compression that, given
the same compression parameters, the more diverse irregular patterns and more vibrant colors the
input image has, the smaller output file size JPEG compression may yield. The compression rate is
also controllable by a pre-set quality parameter Q ranging from 1 to 100. Compressing an image at
a lower Q value or lower JPEG quality produces more artifact patterns in the final output and results
in a smaller file size in return.

For the domain shift analyses, we set up our experiments on the domains in our Mario dataset, PACS,
and VLCS in the following steps. We first unify the sizes of all involved images into 224 by 224
pixels and convert all of them into the PNG lossless format to retain their as-is color information.
Then, from the lossless format, we use 3 different levels of lossy JPEG compression qualities -
Best (Q=95), Medium (Q=50), and Low (Q=10) - to compress all images of all three datasets. We
calculate the means and the standard deviations of the lossless-to-lossy file size rate per dataset
domain. We also take the average of the means and standard deviations across all the domains in
each dataset at a certain compression quality setting.
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Table 4: The means and the standard deviations of JPEG compression rates per dataset domain in 3
different qualities. For example, a compression rate of 5 means the size of the output JPEG image is
one fifth of the original image. PACS is shown to possess the highest deviations in the compression
metric largely thanks to its Sketch domain.

Mario (Ours) NES SNES N64 Wii Average

JPEG Best 2.54±0.21 3.08 ±0.45 3.81 ±0.24 3.52 ±0.33 3.24 ±0.55
JPEG Medium 6.99 ±1.11 9.41 ±1.84 12.04 ±1.04 11.65 ±1.62 10.02 ±2.33
JPEG Low 12.96 ±3.21 20.50 ±5.77 25.72 ±2.99 25.10 ±4.12 21.07 ±5.89

PACS Photo Art painting Cartoon Sketch Average

JPEG Best 3.49 ±0.24 3.43 ±0.31 3.09 ±0.34 1.36 ±0.15 2.84 ±1.00
JPEG Medium 12.18 ±1.26 11.48 ±1.17 9.23 ±1.72 2.93 ±0.40 8.96 ±4.21
JPEG Low 28.98 ±3.76 27.67 ±3.43 18.75 ±3.90 4.78 ±0.82 20.05 ±11.15

VLCS VOC2007 LabelMe Caltech101 SUN09 Average

JPEG Best 3.52 ±0.37 3.97 ±0.47 3.42 ±0.65 3.47 ±0.41 3.60 ±0.48
JPEG Medium 12.11 ±1.75 13.41 ±1.89 11.31±2.38 11.51±1.79 12.09 ±1.95
JPEG Low 29.68 ±4.14 32.33 ±3.39 26.87 ±5.88 27.87±3.85 29.19 ±4.32

Table 4 reveals several observations of domain style shifts out of the three datasets. Since all four
domains in VLCS consist of real-life photos only, they share consistent compression rates with
small deviations altogether with the Photo domain in PACS under the same JPEG compression
quality. However, the Sketch domain in PACS deviates far from its other three peers in the dataset
in terms of our compression rate metric; the gap starts at from 1.36 to 3.49 in the Best setting,
then jumps all the way to a wider range from 4.78 to 28.98 in the Low setting. As is indicated in
the qualitative overview Figure 2, the Sketch domain contains way less complex patterns and can
be hardly compressed. This low rate of compression about the Sketch domain also contributes to
PACS’s overall highest compression rate deviations amongst the three datasets considered.

Table 4 also shows that our Mario domains provides a smoother domain shift with smaller gaps in
between the domains. The image styles out of the Mario domains shift not as volatilely as those of
PACS do, but still provide a higher diversity compared to the single-style VLCS. Most specifically,
the least diverse NES domain in our dataset is still more vibrant than the Sketch domain in PACS.
In the following experiment Chapter 5.2, based on our observation, we argue that it is possible that
training on more diverse styles representing on the same concept (such as in PACS) is not the best
approach for improving domain generalization. Our dataset thus is a good test bed for this concept.

5 BASELINE EVALUATION

In this baseline evaluation section, we show experiments that demonstrate the unique challenges
within our new dataset as means to analyze the robustness of common Domain Generalization /
Domain Adaptation methods on evolving video game image domains. We show the performances
from widely used models and approaches under the Out-of-domain classification metrics, where the
domains selected for training do not overlap with the unseen domains for testing. Specifically, we
show that the current top-ranking methods can only generalize modestly across our evolving video
game domains.

For the experiments mentioned in the section, we convert all images into grayscale to minimize the
difference of color variations across the video game domains. We resize all images to 224 by 224 in
pixels. We randomly partition the domains in our dataset by 9:1 for training and testing, while within
the test set each domain has the same number of samples per class. We also apply random horizontal
flipping to all training samples as data augmentation. All the deep learning methods are implemented
using PyTorch 1.11 and Torchvision 0.12.0, as well as the DomainBed code framework by Gulrajani
& Lopez-Paz (2020). The backbone models are using pretrained weights from ImageNet1K (Deng
et al., 2009). The experiments are conducted using a single Nvidia Tesla V100 GPU cluster.
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Table 5: Multi-Source Domain Generation on our Mario dataset. Each domain column e.g. NES,
means this domain is the one target domain unknown to the training samples.

Algorithm Backbone NES SNES N64 Wii Average

Random - 25.0 25.0 25.0 25.0 25.0
ERM Resnet18 50.8 41.2 28.6 29.5 37.5

Resnet50 46.7 36.4 23.5 26.0 33.2
AlexNet 46.7 44.7 26.2 29.9 36.9
VGG11 43.1 37.4 25.0 25.2 32.7
ViT 44.7 44.9 32.4 30.1 38.0
RegNetY 44.3 48.4 34.4 25.2 38.1

RandConv Resnet18 36.2 34.8 26.0 25.8 30.7
Resnet50 40.5 34.0 22.2 25.0 30.4

SWAD Resnet18 43.0 36.6 21.4 32.6 33.4
Resnet50 43.8 40.7 21.5 28.3 33.6

SWAD+Dither Resnet18 57.8 44.4 21.4 24.1 37.0
Resnet50 58.4 53.9 23.9 27.9 41.0

Table 6: Single-Source Domain Generation on our Mario dataset. Domain-wise, we use N for NES,
S for SNES, 64 for N64, and W for Wii. N→S denotes the source domain is NES and the target
domain is SNES.

Algorithm Backbone N→S N→64 N→W S→N S→64 S→W 64→N 64→S 64→W W→N W→S W→64 Ave.

Random - 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
ERM Resnet18 51.5 36.1 32.6 44.6 40.9 30.4 35.8 29.4 26.5 25.6 30.5 34.2 34.8

Resnet50 42.7 29.7 35.2 41.7 44.2 28.4 32.8 30.1 25.3 25.4 31.2 25.7 32.7
AlexNet 56.2 32.6 40.0 34.5 33.5 37.5 34.4 30.7 30.0 29.3 33.5 34.3 35.5
VGG11 57.0 39.8 39.0 42.8 44.2 29.0 34.1 32.5 24.9 21.5 30.8 29.7 35.4
ViT 67.6 46.4 25.0 45.2 43.4 33.4 28.5 35.0 25.8 29.4 31.4 35.1 37.2

RandConv Resnet18 33.2 25.0 25.9 25.0 25.5 30.3 24.6 26.5 21.9 25.3 30.0 25.0 26.5
Resnet50 30.7 24.8 27.3 27.3 26.8 29.7 23.6 29.7 23.5 25.4 29.7 23.6 26.8

SWAD Resnet18 39.9 28.6 25.8 49.9 28.5 29.6 28.3 25.2 26.1 19.1 35.8 30.4 30.6
Resnet50 33.2 29.3 25.6 59.5 32.1 31.5 34.5 30.3 27.1 18.7 34.6 21.1 31.5

SWAD+Dither Resnet18 38.9 28.9 24.2 64.0 29.4 27.7 54.4 47.4 24.4 23.5 38.9 21.0 35.2
Resnet50 41.7 32.6 25.1 60.4 28.1 27.6 50.2 44.7 26.2 27.2 37.2 25.1 35.5

5.1 OUT-OF-DOMAIN CLASSIFICATION

We evaluate existing Domain Generalization approaches on our Mario domains in out-of-domain
classification accuracy. We set up the experiments in two major configurations - Multi-Source
Domain Generalization (MSDG) where we train our model with all-but-one domains and test on
the remaining one domain, and Single-Source Domain Generalization (SSDG) where we train our
model using one domain and then test the accuracy with every other domains individually.

To guarantee a fair comparison, we follow the same domain generalization protocols by Gulrajani
& Lopez-Paz (2020), and we report the highest performances per algorithm-backbone model com-
bination out of its best hyper-parameter configuration. For each method, we apply sufficient training
iterations to make sure the out-of-domain evaluation is performed on a converged model. We run
each method 3 times with different random seeds and take the average accuracy per source-target
domain setting.

As for the training details, we use the following configurations. We use 40 epochs for Resnet18
and Resnet50 backbones (He et al., 2016), while we use 20 epochs for all other backbones such as
AlexNet (Krizhevsky et al., 2017) and VGG11 (Simonyan & Zisserman, 2014). We use a mini-batch
size of 8 for large-scale backbone architectures Vision Transformer (ViT) (Dosovitskiy et al., 2020)
and RegNetY (Xu et al., 2022), while for all other backbones we use 32. While under the ERM
algorithm (Vapnik, 1991) we have more options to substitute various vision processing network as
backbone, we use Resnet18 and Resnet50 since the more advanced RandConv (Xu et al., 2020)
and SWAD (Cha et al., 2021) algorithms currently only support Resnet variants as backbone. For
our experiments, the RandConv algorithm uses MultiAug, RCmix with consistency loss, and λ=10.
The SWAD algorithm uses a tolerence ratio of 0.3. We also add Floyd–Steinberg color dithering
(Wellner, 1993) on top of SWAD as additional initial random noises, denoted as the SWAD+Dither
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Table 7: Muti-Source Domain Generation on PACS with and without adding the Mario dataset
samples to the pre-training process. ∆rel denotes the relative improvement in the Average metric
under the same algorithm-backbone setting.

Algorithm Backbone Pre-Training Set Photo Art Cartoon Sketch Average ∆rel

(PACS baseline) CNN N/A 89.5 62.9 67.0 57.2 69.2 -
ERM Resnet18 ImageNet1K 94.5 78.8 72.0 67.7 78.2 -

Resnet50 ImageNet1K 95.4 83.5 79.8 76.7 83.8 -
RandConv Resnet18 ImageNet1K 93.4 67.4 72.6 70.3 75.9 -

Resnet50 ImageNet1K 92.8 65.6 75.7 73.1 76.8 -
SWAD Resnet18 ImageNet1K 93.9 84.2 75.2 70.3 80.9 -

Resnet50 ImageNet1K 96.0 86.4 78.9 76.5 84.5 -

ERM Resnet18 ImageNet1K + Mario 93.4 77.1 72.6 70.3 78.3 +0.2
Resnet50 ImageNet1K + Mario 96.3 82.3 80.1 77.3 84.0 +0.2

RandConv Resnet18 ImageNet1K + Mario 89.7 75.1 75.3 73.0 78.3 +2.4
Resnet50 ImageNet1K + Mario 92.0 75.9 77.0 73.1 79.5 +2.7

SWAD Resnet18 ImageNet1K + Mario 93.5 81.2 76.9 72.8 81.0 +0.1
Resnet50 ImageNet1K + Mario 97.8 88.1 80.7 76.9 85.9 +1.4

method. Universally, we deploy Adam (Kingma & Ba, 2014) as the optimizer and a learning rate of
5e−5.

Our results show that our dataset presents a challenge to current top performing DG approaches. In
the MSDG setting in Table 5 where we use 3 source domains and 1 target domain, sophisticated
backbones such as ViT or RegNetY can only surpass the random baseline by at most 13.1% in
average. Also, generalizing towards the more complex 3D domains such as N64 and Wii is shown
to be more difficult, where the best improvements are topped at 9.4% and 5.1% for N64 and Wii
respectively. Algorithms such as RandConv or SWAD built with domain agnostic designs perform
in average even lower than the basic ERM algorithm under the same backbone models. While color
dithering provides a big boost on generalizing towards the 2D domains of simpler graphic styles,
increasing up to 33.4% and 28.9% respectively for targeting NES and SNES, it often comes at a
sacrifice of lowering the performances even below the random baseline when targeting 3D domains.

In the SSDG experiments, from Table 6, we likewise observe similar improvements over the random
baseline, the best of all coming from ERM+ViT at in average +12.2%. Individually, the use of
advanced backbones or advanced algorithm may achieve well above others in single categories, such
as ERM+ViT’s +42.6% at NES→SNES or SWAD+Dither+Resnet18’s +39.0% at SNES→NES.
Still, there is no dominant method that generalizes universally well in between any two domains in
our dataset. We also notice that targeting the more complex 3D domains such as N64 and Wii in the
SSDG setting is generally harder than targeting 2D domains.

5.2 USING MARIO DOMAINS AS ADDITIONAL PRE-TRAINING SAMPLES FOR PACS

In this section, we further show the merits of using our dataset to help improving DG performance
on existing tasks. We demonstrate that by incorporating the samples from our dataset as part of train-
ing data alone, without changing the underlying algorithm or backbone model, the out-of-domain
classification performances on PACS can be further improved. Under the same multi-source out-of-
domain experiment settings, we conduct comparisons with a selected set of existing DG approaches,
where per approach we only differentiate the involved pre-training data. The baselines only use
ImageNet1K, while ours pre-train with ImageNet1K combined with our domains of different gener-
ations of video game graphics. We choose Resnet18 and Resnet50 as the backbones to study since
they serve the best performances on PACS across multiple DG methods universally.

The results in Table 7 shows that using additional data from our Mario dataset to the pre-training
part generically improves the Multi-Source Domain Generalization performance on PACS. Most
noticeably, the Mario additive oftentimes contributes to larger improvement in generalizing over the
Sketch domain, improving as far as 2.7% in the RandConv+Resnet18 method. The Sketch domain,
as has been discussed in Chapter 4, has the largest domain shift in representation complexity in
PACS.
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Table 8: Ablation study of how the size of the Mario addition may contribute to the performance on
PACS. The entries in bold text are the ones we report in the lower half of Table 7.

Algorithm Backbone Pre-Training Set Photo Art Cartoon Sketch Average ∆rel

ERM Resnet18 ImageNet1K + Mario (Full) 93.1 75.0 72.2 72.9 78.3 +0.1
Resnet18 ImageNet1K + Mario (Fair) 93.4 77.1 72.6 70.3 78.3 +0.2
Resnet50 ImageNet1K + Mario (Full) 96.3 82.3 80.1 77.3 84.0 +0.2
Resnet50 ImageNet1K + Mario (Fair) 96.2 82.0 79.9 76.4 83.6 -0.2

RandConv Resnet18 ImageNet1K + Mario (Full) 89.7 75.1 75.3 73.0 78.3 +2.4
Resnet18 ImageNet1K + Mario (Fair) 87.7 76.4 73.8 73.0 77.7 +1.8
Resnet50 ImageNet1K + Mario (Full) 91.1 77.2 75.7 73.1 79.3 +2.5
Resnet50 ImageNet1K + Mario (Fair) 92.0 75.9 77.0 73.1 79.5 +2.7

SWAD Resnet18 ImageNet1K + Mario (Full) 94.3 82.1 77.2 70.3 81.0 +0.1
Resnet18 ImageNet1K + Mario (Fair) 93.5 81.2 76.9 72.8 81.0 +0.1
Resnet50 ImageNet1K + Mario (Full) 97.7 88.4 80.8 76.1 85.7 +1.2
Resnet50 ImageNet1K + Mario (Fair) 97.8 88.1 80.7 76.9 85.9 +1.4

As an ablation study, we also explore if the volume of the additional Mario samples to pretraining
makes any difference to the performance on PACS. We test with two settings: Mario (Full) where
we pre-train with the original unbalanced sizes of our Mario domains; Mario (Fair) where we
evenly downsample the SNES, N64, and Wii domains to the same size of the NES domain of 7K,
then we feed this downsampled balanced Mario dataset to the pre-training process. Table 8 shows
that the size of the Mario addition makes only minor difference to the final results, up to a gap of
0.6% in the average Multi-Source performance.

6 CONCLUSION

We present the SuperMarioDomains dataset, a novel benchmark for Domain Generalization com-
posed of multiple chronological domains of video game graphics. We construct our dataset by
sampling gameplay video recordings, and make sure that the magnitude of domain shift in between
our domains is in a much quantified manner compared to existing datasets. Through experiments
in Multi-Source and Single-Source Domain Generalization, we show that state-of-the-art Domain
Generalization approaches can only perform modestly on our dataset. We further demonstrate that
by adding our dataset to pre-training, we may help Domain Generalization methods perform better
on the existing PACS benchmark. We sincerely hope this work offers a new angle to invite more
robust approaches in the Domain Generalization field.
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