
Under review as a conference paper at ICLR 2024

C-MCTS:
SAFE PLANNING WITH MONTE CARLO TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The Constrained Markov Decision Process (CMDP) formulation allows to solve
safety-critical decision making tasks that are subject to constraints. While CMDPs
have been extensively studied in the Reinforcement Learning literature, little
attention has been given to sampling-based planning algorithms such as MCTS
for solving them. Previous approaches perform conservatively with respect to
costs as they avoid constraint violations by using Monte Carlo cost estimates that
suffer from high variance. We propose Constrained MCTS (C-MCTS), which
estimates cost using a safety critic that is trained with Temporal Difference learning
in an offline phase prior to agent deployment. The critic limits exploration by
pruning unsafe trajectories within MCTS during deployment. C-MCTS satisfies
cost constraints but operates closer to the constraint boundary, achieving higher
rewards than previous work. As a nice byproduct, the planner is more efficient w.r.t.
planning steps. Most importantly, under model mismatch between the planner and
the real world, C-MCTS is less susceptible to cost violations than previous work.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) is a decision-making algorithm that employs Monte Carlo methods
across the decision space, evaluates their outcome with respect to a given reward/objective, and
constructs a search tree focusing on the most promising sequences of decisions (Browne et al., 2012;
Świechowski et al., 2022). The success of MCTS can be attributed to the asymmetry of the trees
constructed, which ensures better exploration of promising parts of the search space. Also, the
possibility of using neural networks as heuristics to guide the search tree has helped tackle complex
and high-dimensional problems with large state and action spaces (Schrittwieser et al., 2020a).

In spite of its successful application in several diverse domains, the standard, single-objective MCTS
algorithm is unsuitable for a large class of real-world problems that apart from optimizing an objective
function, also require a set of constraints to be fulfilled. These types of problems are usually modeled
as Constrained Markov Decision Processes (CMDPs) (Altman, 1999) and specialized algorithms are
used to solve the underlying constrained optimization problem.

Typical examples of such algorithms include approaches that rely on an expert knowledge base to
create a safe action set (Hoel et al., 2020; Mohammadhasani et al., 2021; Mirchevska et al., 2018),
Lagrangian relaxation methods that update primal and dual variables incrementally online and learn
safe policies (Ding et al., 2020; Paternain et al., 2019), approaches that learn separate reward and
cost/constraint signals to train a safe-aware policy both in Markov Decision Process (MDP) (Bharad-
hwaj et al., 2020; Srinivasan et al., 2020; Yang et al., 2022) and Robust Markov Decision Pro-
cess (RMDP) environments (Tamar et al., 2014; Mankowitz et al., 2020), as well as methods that
utilize uncertainty-aware estimators like Gaussian Processes to balance the exploration/exploitation
risk (Wachi et al., 2018; Hewing et al., 2019). Finally, a notably different way is to model problems
with constraints using temporal logic specifications (Demri & Gastin, 2012), and incorporating them
as soft constraints to solve a CMDP (Guo & Zavlanos, 2018; Kalagarla et al., 2022).

We propose Constrained MCTS (C-MCTS)1, a novel MCTS-based approach for solving Constrained
Markov Decision Process (CMDP) problems, see Fig. 1. We utilize a high-fidelity simulator to collect
different sets of trajectories under different safety constraint satisfaction levels. Utilizing a simulator
has several benefits, since violating cost-constraints has no real-world implications. Also, we can

1Our implementation will be publicly available after acceptance. Please find it in the supplementary material

1

Under review as a conference paper at ICLR 2024

Solve MDP:
Collect training
samples using

MCTS from a high-
fidelity simulator.

Evaluate Policy:
Compute

discounted costs
of current episode.

No, reset environment

Generated 'n'
transitions?

No, collect more
training samples

Costs
are optimal i.e.
just within the
 constraints?.

Training:
(Re)-train

safety
critic.

Solve CMDP:
Update safety critic
and deploy CMCTS

on a high-fidelity
simulator.

No, collect more
training samples

Is it safe? End Training

Update MDP solver: Use
latest safety critic to guide

action selection.

Initialize: Set
Lagrange

multiplier to 0.

Start
Training

Data Gathering Model Training Safety Evaluation

Update Lagrange
multiplier

Yes, add collected
samples to the
training set.

Yes, deploy CMCTS
to the target
environment.

Figure 1: Simplified flow of training phase in C-MCTS.

construct scenarios with high safety implications that have rare real world occurrences. The samples
collected are used to train a safety critic offline, which is used during deployment within MCTS to
make cost predictions and avoid tree expansion to unsafe states. The proposed method manages to
construct a deeper search tree with fewer planning iterations compared to the state of the art, while
discovering solutions that operate safely closer to the cost-constraint, thus leading to higher rewards.

2 CONSTRAINED MARKOV DECISION PROCESSES

2.1 METHODS WITH LAGRANGE MULTIPLIERS

A CMDP can be defined by the tuple ⟨S,A, P,R,C, ĉ, γ, s0⟩ where S is the set of states s, A is
the set of actions a, P defines the probability of transitioning from s ∈ S to s′ ∈ S for action
a ∈ A executed at s, R is a reward function that returns a one-step reward for a given action a at a
state s, γ ∈ [0, 1) is the discount factor, and s0 ∈ S is the initial state distribution. Following the
notation convention of Lee et al. (2018), C = {Cm}1...M is a set of M non-negative cost functions,
with ĉ = {cm}1...M ∈ [0, 1] their respective thresholds. For the remainder of the text, we assume
only one constraint function C with its respective threshold ĉ, to simplify the notation. The optimal
policy π∗ ∈ Π in such a framework is a policy that belongs to a (parametric) policy class Π that
maximizes the expected discounted cumulative reward V π

R (s0), while satisfying all the constraints on
the expected discounted cumulative cost V π

C (s0), as follows:

max
π∈Π

V π
R (s0) = Eπ

[∞∑
t=0

γtR(st, at)|s0

]
s.t. V π

C (s0) = Eπ

[∞∑
t=0

γtC(st, at)|s0

]
≤ ĉ. (1)

Note that depending on the context we will use the definitions of (1) or the notion of the state-action
expected discounted cumulative reward/cost (also known as the state-action value function), defined
(for cost) as follows:

Qπ
C(s, π(s)) = Eπ

[∞∑
t=0

γtC(st, at)|s0 = s

]
≜ V π

C (s|s0 = s). (2)

Similar to assumptions of previous work (see e.g., Tessler et al. (2018) and the robust constraint
objective (Eq. 2) from Mankowitz et al. (2020)), we prioritize the constraint satisfaction part of (1).

Definition 1. (Tessler et al., 2018) A feasible solution of the constrained optimization problem defined
in (1) is a solution that satisfies V π

C (s0) ≤ ĉ.

One approach to address the problem in (1) is using the Lagrange multiplier technique (see Bertsekas
(2014)), which transforms the posed problem into an unconstrained one:

min
λ≥0

max
π∈Π

L(λ, π) = min
λ≥0

max
π∈Π

[V π
R (s0)− λ (V π

C (s0)− ĉ)] . (3)

For solving the Lagrangian, we can define the following:

Definition 2. (Tessler et al., 2018) The penalized reward function is defined as r(λ, s, a) = r(s, a)−
λ c(s, a). The penalized expected discounted cumulative reward function is defined as V π

R (λ, s) =
V π
R (s)− λV π

C (s).

Many approaches (e.g., Tessler et al. (2018); Ding et al. (2020)) parameterize the policy with
parameters θ (e.g., a neural network policy) and directly apply consecutive steps of policy optimization

2

Under review as a conference paper at ICLR 2024

(e.g., using actor-critic algorithms) and adaptations of the value of λ, until the solution converges to a
policy that respects the constraints. Others (e.g., Srinivasan et al. (2020); Yang et al. (2022)), learn a
“safety” critic separately and try to maximize the expected reward without violating the constraints.

2.2 MONTE CARLO TREE SEARCH FOR CMDPS

MCTS is a decision-making algorithm that can search large combinatorial spaces represented by
trees. The search tree consists of nodes representing each state uniquely, and edges representing
actions that connect these nodes. The algorithm is used iteratively to explore the state space and build
statistical evidence about different decision paths. Based on the gathered statistics, an optimal set of
actions is taken such that the expected cumulative reward is maximized. Each iteration of MCTS
consists of four phases: (i) selection, (ii) expansion, (iii) simulation, and (iv) backpropagation.

MCTS for discrete-action CMDPs has only been little explored. To our knowledge, apart from the
seminal work of Lee et al. (2018), previous work extended MCTS to multi-objective variants (Hayes
et al., 2023) that attempt to construct local (Chen & Liu, 2019) or global (Wang & Sebag, 2012)
Pareto fronts and determine the Pareto-optimal solution. These approaches report good results at the
expense of higher computational costs, due to the need to compute a set of Pareto-optimal solutions.
Lee et al. (2018) proposed Cost-Constrained Partially Observable Monte Carlo Planning, an MCTS
algorithm to solve Constrained Partially Observable Markov Decision Process problems, which
can be used to solve CMDP settings also – we will refer to this variation of the algorithm as Cost-
Constrained Monte Carlo Planning (CC-MCP). CC-MCP uses a Lagrange formulation and updates
the Lagrange multiplier while constructing the search tree based on accumulated cost statistics. The
CMDP problem is formulated as an Linear Program (LP), and then the dual formulation is solved:

min
λ≥0

[V ∗
R(λ, s) + λĉ] (4)

Here, V ∗
R(λ, s) is the optimal penalized expected discounted cumulative reward function, and ĉ are

the cost constraints. As the objective function in Eq. 4 is piecewise-linear and convex over λ (Lee
et al., 2018), λ can be updated using the gradient information V ∗

C − ĉ, where V ∗
C are the costs incurred

for an optimal policy with a fixed λ. Hence, the CMDP can be solved by iterating the following three
steps: (i) Solve MDP with a penalized reward function (see Definition 2), (ii) evaluate V ∗

C for this
policy, and (iii) update λ using the gradient information. Steps (i) and (ii) can also be interleaved at a
finer granularity, and this is the idea behind CC-MCP, where λ is updated at every MCTS iteration
based on the Monte Carlo cost estimate V̂C at the root node of the search tree.

3 METHOD

CC-MCP has two major shortcomings: (1) it requires a large number of planning iterations for
the tuning of the Lagrange multiplier (as it is tuned online and thus explores both unsafe and safe
trajectories in the search tree), and (2) the performance is sub-optimal w.r.t costs, i.e., the agent acts
conservatively. Moreover, the algorithm also relies on the planning model to calculate cost estimates,
making it error-prone to use approximate planning models for fast planning at deployment.

In our approach, the training phase (see Fig. 1) consists of approximating a safety critic that is utilized
by the MCTS policy during the deployment phase (without a Lagrange multiplier) for pruning unsafe
trajectories/sub-trees. We define two simulators: a low-fidelity simulator, which is not accurate, but
its low complexity allows for utilization in the online planning/rollout phase of the MCTS algorithm;
and a high-fidelity one, utilized for data collection and evaluation of the safety critic training.

3.1 SAFETY CRITIC TRAINING

Instead of tuning the Lagrange multiplier online, C-MCTS varies this parameter in a pre-training
phase (in simulation) to obtain different sets of trajectories with different safety levels (“data gathering”
in Fig. 1). Here, following the standard training process in Lagrangian relaxation/augmentation
settings (Bertsekas, 2014), training iterates between calculating a new value λk in each k-th iteration
of the data gathering loop and solving the k-th MDP (using MCTS) with the penalized reward function
r(s, a)−λk c(s, a). The new value for λk in each iteration is λk=λk−1+

α0

k

(
V k,∗
C − ĉ

)
, with V k,∗

C

being the optimal VC for the optimal policy with a fixed λk at data gathering iteration k. The data
gathering loop is terminated when ĉ−ϵ ≤ V k,∗

C ≤ ĉ. Here, α0 and ϵ are tunable hyper-parameters.

Proposition 1. This iterative optimization process converges to the optimal λ∗.

3

Under review as a conference paper at ICLR 2024

Proof. Previous work (Kocsis & Szepesvári, 2006; Silver et al., 2016) shows that the MCTS policy
converges to the optimal policy as the number of simulations increases, meaning that in each iteration
k we are (asymptotically) guaranteed to find the optimal solution in the k-th MDP. Based on this,
and on the fact that λ is updated following the gradient direction of V k,∗

C − ĉ, convergence to the
optimal λ∗ is achieved (Lee et al., 2018; Tessler et al., 2018; Mankowitz et al., 2020).

As MCTS with upper confidence bounds converges asymptotically to the optimal policy (Kocsis &
Szepesvári, 2006), usually a time- or computational budget-limit is used to terminate learning (Silver
et al., 2016; Schrittwieser et al., 2020a). As we are interested in a feasible solution, we terminate the
training process (search for λ∗ effectively) in the data gathering phase only when enough data has
been gathered and the cost constraints are satisfied (see “data gathering” phase in Fig. 1).

3.1.1 TRAINING DATA COLLECTION

At this point, we could utilize the available trajectory data collected from applying the optimal policy
on the MDP defined by each λk to train a safety critic and then deploy it in the environment. For the
training, we use State–action–reward–state–action (SARSA)(0) algorithm (Sutton & Barto, 2018)
(a Temporal Difference (TD) Learning-like method (Sutton, 1988)). Of course, there is always the
risk that the resulting critic (thus also the MCTS policy that utilizes it) does not generalize well
far from the collected training data (Ross et al., 2011). Ideally, the training data covers the entire
state-action space, but with a higher focus on states where selecting a specific action (over others) has
a high effect on expected future performance (Rexakis & Lagoudakis, 2012; Kumar et al., 2022) or
cost violations/feasibility in our case.

Definition 3. A state s is said to be cost-non-critical if

∀a ∈ A, min
a′

Qπ
c (s, a

′) ≤ Qπ
c (s, a) ≤ ĉ or ĉ ≤ min

a′
Qπ

c (s, a
′) ≤ Qπ

c (s, a) (5)

In other words, in cost-non-critical states, selecting any action under the applied policy π does not
lead (in expectation) to a change in the constraint/threshold violation (positive or negative).2 Even
though having more training data from cost-critical states is desirable, these do not frequently occur
in trajectories generated by any policy π (see also the discussion in Kumar et al. (2022)).

In our case though, as the value of λ is iteratively adapted in the “data gathering” phase shown in
Fig. 1, state-action pairs around the constraint-switching hypersurface are collected. The use of
all available data (generated by different policies πk as a result of all values of λk) for the safety
critic training (“model training” phase in Fig. 1), thus ensures that a large collection of state-action
pairs from both critical and non-critical states are available.3 This safety critic is in turn re-used in
the MCTS planner of a new λ-tuning cycle, until a robust safety critic leading to a feasible solution is
produced (as evaluated in the last phase shown in Fig. 1).

Assumption 1. SARSA(0) estimates with sufficient accuracy the true state-action value function for
any given policy π.

There have been various formal results on the convergence properties of SARSA-like algorithms
both for tabular (Singh et al., 2000) and linear function (Zhang et al., 2023) representations, as well
as successful implementations using neural networks as approximators (Elfwing et al., 2018). It is
therefore safe to assume that given representative training samples, Assumption 1 holds.

Proposition 2. Let B = {(s, a)|s ∈ S and a ∈ A} be the set of all state-action pairs for a
given MDP. Then, there exist Bp ⊆ B, a set of state-action pairs for which the trained safety critic
would over-estimate the expected discounted cumulative cost and Bn ⊆ B, a set of state-action pairs
for which the trained safety critic would under-estimate it.

What Proposition 2 indicates is that the trained safety critic will under-estimate or over-estimate the
expected cost of every state-action pair defined in the underlying MDP of the high-fidelity simulator.
If this was not true, this would imply that the safety critic provides the perfect prediction at least

2Note that a similar discussion, under the concept of ϵ-reducible datasets (or parts of datasets), also exists in
safe/constrained offline reinforcement learning approaches (Liu et al., 2023).

3With this data mixture we train the safety critic using (s, a) samples that have different cost-targets (due to
different λ’s), some of them over- or under-estimating the “true” cost. We could e.g. give higher weight to data
from trajectories where the value of λ was close to λ∗, but we observed that using an ensemble of safety critics
(see Sec. 3.1.2) combined with using the latest safety critic in each “data gathering” outer loop, leads to “correct”
cost data being predominant and thus to a robust final safety critic, possibly at the cost of collecting more data.

4

Under review as a conference paper at ICLR 2024

for all state-action pairs. This is rarely the case, both due to numerical precision issues, as well as
due to the utilization of the low-fidelity simulator in the MCTS planner, which potentially predicts
sequences of safe or unsafe next states that are different compared to the actual ones, especially for
state-action pairs that are far from the terminal states.

Corollary 1. The overall training process of the safety critic, illustrated in Fig. 1, converges to a
feasible solution of the constrained optimization problem defined in (1).

Proof sketch. As discussed before, the inner training loop will always converge to the optimal
solution for the k−th MDP. In case the safety critic over-estimates the expected cost, it prunes
the corresponding branch in the MCTS tree. This leads to a safe, but potentially conservative (i.e.,
non-optimal) behavior. In case of under-estimation, the respective branch can be traversed and a
non-safe trajectory is performed at the high-fidelity simulator. Since these data are used in subsequent
safety critic training iterations, the new versions of the safety critic will no longer under-estimate the
cost, progressively for all the (s, a) ∈ Bn pairs (as defined in Proposition 2) that are visited in the
high-fidelity simulator and there will be no constraint violations, i.e., we will have a feasible solution.

3.1.2 ROBUSTNESS TO MODEL MISMATCH

Even if the safety critic has been evaluated as safe during training, there is a chance that subpar
performance is observed at deployment as environment dynamics are likely different between
the training (source) and the deployment (target) domain. Since MCTS explores the state space
exhaustively during the online planning phase, some state-action pairs encountered during planning
are likely to be out-of-distribution, i.e., differ compared to the trajectories encountered during training.

More formally, we have two main sources of inaccurate safety critic predictions: the aleatoric and
the epistemic uncertainty. The former is inherent in the training data (e.g., due to the stochastic nature
of the transition model) and the latter is due to the lack of training data (e.g., it could appear as
extrapolation error) – see for example (Chua et al., 2018) for a more formal discussion.

To mitigate the effect of both uncertainty sources, instead of training a single safety critic, we
train an ensemble. The individual members of the ensemble have the form of neural networks and
approximate the state-action cost function. We denote this ensemble safety critic as Q̂∗

sc(s, a). The
trainable parameters of each member of the ensemble are optimized to minimize the mean-squared
Bellman error which uses a low variance one-step TD-target. The aggregated ensemble output (µ̂, σ̂)
provides a mean and a standard deviation computed from the individual member’s outputs, which we
then use within MCTS. Hence, the safety critic output with an ensemble standard deviation greater
than a set threshold σ̂ > σmax can be used to identify and ignore those samples and predictions.

Algorithm 1: C-MCTS | Using a learned safety critic in MCTS.
1 Nroot : Root node representing the current state, s0.
2 Nleaf : Selected leaf node with state st.
3 P : Traversed path from the root node to the leaf node (s0, a0, s1, a1, ..., at−1, st).
4 repeat

// SELECTION
5 P,Nleaf ← SELECT(Nroot) // selection using UCT algorithm.

// EXPANSION
6 i. Get safety critic outputs (µ̂, σ̂) for all actions at ∈ A from Nleaf .
7 ii. Identify feasible actions i.e. Afeasible = {at : σ̂at

≤ σmax}.
8 iii. Calculate the cost estimate Q̂∗

sc(st, at) for actions at ∈ Afeasible.
9 iv. Define: Cpath = c(s0, a0) + γ · c(s1, a1) + ...+ γt−1 · c(st−1, at−1)

10 v. Identify unsafe actions i.e. Aunsafe = {at ∈ Afeasible : Cpath + γt · Q̂∗
sc(st, at) > ĉ}.

11 vi. Expand tree for branches with safe actions, at ∈ A \Aunsafe.
// SIMULATION

12 V̂R ← ROLLOUT(Nleaf) // Get Monte Carlo reward estimate.
// BACKPROPAGATION

13 BACKUP(V̂R,P) // Update tree statistics.
14 until maximum number of planning iterations is reached

5

Under review as a conference paper at ICLR 2024

3.2 DEPLOYMENT

The trained safety critic is used during the expansion phase in MCTS, see Alg. 1 – the other phases
(selection, simulation, backpropagation) are identical to vanilla MCTS. At the expansion phase,
we try to expand the search tree from the leaf node along different branches corresponding to
different actions. First, based on the safety critic’s output we filter out predictions that we cannot
trust (corresponding to high ensemble variance) and create a reduced action set (lines 6-7). The
safety of each action from this set is evaluated based on the safety critic’s output predicting expected
cumulative costs from the leaf. This is summed up with the one-step costs stored in the tree from
the root node to the leaf node. If this total cost estimate is greater than the cost constraints (ĉ), then
we prune the corresponding branches, while other branches are expanded (lines 8-11). These steps,
when repeated over multiple planning iterations create a search tree exploring a safe search space. As
exploration is mostly limited to a safe search space, C-MCTS manages to construct a deeper search
tree with fewer planning iterations compared to CC-MCP. We have systematically observed in our
results that C-MCTS operates safely closer to the cost-constraint and collects higher rewards with
fewer planning iterations as compared to CC-MCP.

4 EVALUATION

We evaluate our method by comparing its performance with our baseline CC-MCP (Lee et al., 2018)
on Rocksample and Safe Gridworld environments (see Sec. A.1). We also present insights on the
planning efficiency of the proposed algorithm, as well as its sensitivity to different design options,
such as the length of planning iterations during training and the values of the ensemble threshold
during deployment. We also provide insights on its robustness to model mismatch.

A detailed description of the environments can be found in A.1. Previous work using MCTS (or
tree-based planners in general), has been able to address problems with extremely large state (e.g.,
Atari, Go, Chess and Sogi in Schrittwieser et al. (2020b)) and action spaces (e.g., see representative
references in Afsar et al. (2022) for approaches that facilitate some form of clustering of potential
actions). Considering that scalability of MCTS has already been addressed, we have tried – following
relevant recent discussions in the community (Togelius & Yannakakis, 2023) – to define environments
that are computationally manageable while still providing insights on properties and the quality of
the final, feasible solution of our algorithm, with respect to the constraint formulation. This not only
enables the reproducibility of our work, but also strengthens the statistical significance of our results,
as we evaluate with a large number of seeds for the trained safety critic (Henderson et al., 2018).

We measure the performance of the agent on different sizes and complexities of Rocksample envi-
ronments (Sec. A.1.1), with C-MCTS, CC-MCP, and vanilla MCTS (for penalized reward function
with known λ∗). C-MCTS obtains higher rewards than CC-MCP (see Fig. 2, top row). The reward
for C-MCTS increases with the number of planning iterations. Also, the agent operates consistently
below the cost-constraint (see Fig. 2, middle row), close to the safety boundary while CC-MCP acts
conservatively w.r.t costs and performs sub-optimally w.r.t. rewards. Also, costs incurred in each
episode vary greatly with different environment initializations. This is mitigated with C-MCTS since
cost estimates with TD learning have a lower variance than Monte Carlo cost estimates. Hence, the
total number of cost violations is lower for C-MCTS compared to the other methods, in spite of
operating closest to the safety constraint (see Fig. 2, bottom row). Vanilla MCTS obtains higher
rewards than CC-MCP. This is because λ∗ is known, and unlike CC-MCP, doesn’t require tuning
online. MCTS operates close to the cost-constraint but has a high number of cost violations. C-MCTS,
when compared to vanilla MCTS, is safer and obtains equally high rewards or in some cases even
acts better (e.g., Rocksample(11, 11)).

Planning efficiency. We compare the planning efficiency of the three methods for the same set of
experiments addressed previously. The comparison is done based on the depth of the search tree,
given a specific computational budget (i.e., a fixed number of planning iterations). This comparison
is qualitative and is used to evaluate the effectiveness of different planning algorithms.

Fig. 3 shows that C-MCTS performs a more narrow search for the same number of planning
iterations. The peak tree depth when averaged over 100 episodes is the highest for C-MCTS.
In C-MCTS the exploration space is restricted using the safety critic, and this helps in efficient
planning. In Rocksample(11, 11) the peak tree depth of CC-MCP is high in spite of having a sub-
optimal performance. This is probably because the Lagrange multiplier in CC-MCP gets stuck in a
local maximum and is unable to find a globally optimal solution.

6

Under review as a conference paper at ICLR 2024

28 210 212
5

10

15

A
ve

ra
ge

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d Rocksample(5,7)

28 210 212
5

10

15

Rocksample(7,8)

28 210 212
0

2

4

6

8

10

Rocksample(11,11)

28 210 212
0

0.2

0.4

0.6

0.8

1
ĉ = 1

A
ve

ra
ge

D
is

co
un

te
d

C
um

ul
at

iv
e

C
os

t

28 210 212
0

0.2

0.4

0.6

0.8

1
ĉ = 1

28 210 212
0

0.5

1
ĉ = 1

28 210 212
0

20

40

60

Planning Iterations

E
pi

so
de

s
W

ith
C

os
t

V
io

la
tio

ns
[%

]

28 210 212
0

20

40

60

Planning Iterations
28 210 212

0

20

40

60

80

Planning Iterations

CC-MCP MCTS C-MCTS

Figure 2: Comparing performance of C-MCTS, MCTS, and CC-MCP on different configurations of
Rocksample environments evaluated on 100 episodes.

28 210 212
0

2

4

6

8

Planning Iterations

A
ve

ra
ge

Pe
ak

Tr
ee

D
ep

th

Rocksample(5,7)

28 210 212
0

5

10

Planning Iterations

Rocksample(7,8)

28 210 212
0

5

10

15

20

Planning Iterations

Rocksample(11,11)

CC-MCP MCTS C-MCTS

Figure 3: Maximum depth of the search tree for C-MCTS, MCTS and CC-MCP on different rock-
sample configurations averaged over 100 episodes.

4.1 ROBUSTNESS TO MODEL MISMATCH

MCTS planner model. Online planners often resort to approximate models of the real world for fast
planning and to account for real-time decision requirements. Those model imperfections can lead to
safety violations while a high-fidelity model during deployment is infeasible due to computational
constraints. We resolve this dilemma by learning safety constraints before deployment from a
simulator that has a higher fidelity compared to the planning model. The benefit of such an approach
is shown using a synthetically constructed Safe Gridworld scenario (see Sec. A.1.2).

7

Under review as a conference paper at ICLR 2024

30 79 81 21 86 0 0 0

29 21 19 79 14 100 0 0

0 0 0 0 0 -1 100 0

0 0 0 0 0 -1 0 100

0 0 0 0 0 -1 0 100

0 0 -1 -1 -1 -1 0 100

0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 -2

(a) C-MCTS with 0% cost violations.

27 27 50 51 76 0 0 0

24 49 3 25 0 76 0 0

24 0 23 0 0 -1 76 0

22 2 0 0 0 -1 1 75

24 0 0 0 0 -1 0 76

0 24 -1 -1 -1 -1 0 76

0 0 24 14 9 10 2 76

0 0 0 15 18 23 22 -2

(b) CC-MCP with 11% cost violations.

Figure 4: State visitations aggregated over 100 episodes. The length of the arrows is proportional to
the number of action selections. Values of -1 and -2 denote unsafe cells and the goal cell, respectively.

In this setup, we use a planning simulator that models the dynamics approximately, and a training
simulator (for the safety critic) that captures the dynamics more accurately. In the planning simulator,
all transition dynamics are accurately modeled, except the blue squares with winds (Fig. 6 right). The
transitions here are determined by the action selection (stochasticity due to wind is not considered).
The training simulator models the transitions in these regions more accurately, but with some errors.
The agent in the blue squares moves down with a probability of 0.25, as compared to the real-world
configuration where the probability is 0.3. We trained and evaluated C-MCTS for 29 and CC-MCP
for 220 planning iterations. The latter was set to a higher planning budget to let it converge.

Fig. 4 shows the number of state visitations of C-MCTS (left) and CC-MCP (right). The acCC-MCP
agent takes both of the possible paths (going to the top and to the right), avoiding the unsafe region (in
pink) to reach the goal state, which is optimal in the absence of the windy squares, but here it leads to
cost violations due to inaccurate cost estimates.4 C-MCTS on the other hand only traverses through
the two right-most columns to avoid the unsafe region, as the safety critic being trained using the
high-fidelity simulator identifies the path from the top as unsafe, which leads to zero cost violations.

Accuracy of the training simulator. We study the performance of C-MCTS when trained on
imperfect simulators. On the Rocksample environment, the sensor characteristics measuring the
quality of the rock are defined by the constant d0 (see Sec. A.1.1). We overestimate the sensor
accuracy in our training simulator by choosing dsim0 with error ∆d0 and observe the safety of the
agent in the real world when trained on simulators with different values of ∆d0.

Fig. 5 (right column) shows the results. The values of ∆d0 set to 10 and 40 correspond to a maximum
prediction error of 11.7% and 32.5%, respectively. When ∆d0 = 40 the agent operates at a greater
distance from the cost-constraint. The reason for cost violations is that the safety critic has been
trained to place too much trust in the sensor measurements due to the simulation-to-reality gap. With
a smaller gap (∆d0 = 10) the agent performs safer.

4.2 EFFECT OF HYPER-PARAMETER SELECTION ON SAFE BEHAVIOR

We vary hyper-parameters in the training and deployment of a safety critic and identify key parameters
for safety. We conducted our experiments on Rocksample(7, 8) and averaged the results over 100
runs. We observed that C-MCTS is sensitive to the length of the planning horizon during training and
the ensemble threshold used during deployment. To study the effect of these parameters we optimized
the other algorithmic parameters, i.e., α0 (initial step size to update λ) and ϵ (termination criterion
for training loop), with a grid search. For each of the experiments we then selected a reasonably
performing configuration (i.e., Sec. 4.2: α0=4, ϵ=0.1; Sec. 4.2: α0=8, ϵ=0.3; Sec. 4.1: α0=1, ϵ=0.1)
and ablated the respective hyperparameters, i.e., planning horizon in training, σ, and d0.

Length of planning horizon during training. We conduct experiments with different sets of
hyper-parameters to study the effect of using different planning iterations during the safety critic
training, and evaluate the performance of the agent during deployment. From Fig. 5 (left column)

4Of course also the variance could play a minor role but we designed the setup to focus on the dynamics
mismatch between the planner and the actual environment, which is much more prevalent here.

8

Under review as a conference paper at ICLR 2024

28 210 212

1

1.5

2

Planning Iterations

A
ve

ra
ge

D
is

co
un

te
d

C
um

ul
at

iv
e

C
os

t

Planning Horizon

28 210 212

0.8

1

1.2

1.4

Planning Iterations

Ensemble Threshold

28 210 212

1

1.5

2

2.5

Planning Iterations

Simulator Accuracy

28 210 212
0

5

10

15

E
pi

so
de

s
W

ith
C

os
t

V
io

la
tio

ns
[%

]

28 210 212
0

5

10

15

20

28 210 212
0

10

20

30

128 planning iterations (training) 1024 planning iterations (training)

σmax = 0.1 σmax = 0.5 ∆d0 = 40 ∆d0 = 10

Figure 5: Comparing safety for different training/deployment strategies, i.e., using different planning
horizons during training (left), deploying with different ensemble thresholds (middle), and collecting
training samples from simulators of different accuracies (right).

we can observe that the safety critic trained with a longer planning horizon operates closer to the
safety boundary. This is because the safety critic predicts costs for a near-optimal policy and hence
discerns the safety boundary more accurately. The safety critic trained with a smaller planning
horizon estimates costs from a sub-optimal policy leading to cost violations during deployment.

Ensemble threshold during deployment. We study the effect of using different standard deviation
thresholds (σmax = 0.1 and σmax = 0.5) in the neural network ensemble during deployment. Fig. 5
(middle column) shows that the cost incurred exceeds the cost-constraint if σmax = 0.1, but the agent
performs safely within the cost-constraint with a far lesser number of cost violations if σmax = 0.5.
We prune unsafe branches during planning only when the predictions between the individual members
of the ensemble align with each other. Setting σmax = 0.1 is a tight bound resulting in most of the
predictions of the safety critic being ignored. Using a higher threshold with σmax = 0.5 ensures
that only large mismatches between the predictions of the individual members (corresponding to
out-of-distribution inputs) are ignored, and the rest are used during planning. This results in the agent
performing safely within the cost-constraint, but not too conservatively.

5 CONCLUSION

We presented an MCTS-based approach to solving CMDPs that learns the cost-estimates in a
pre-training phase from simulated data and that prunes unsafe branches of the search tree during
deployment. In contrast to previous work, C-MCTS does not need to tune a Lagrange multiplier online,
which leads to better planning efficiency and higher rewards. In our experiments on Rocksample
environments, C-MCTS achieved maximum rewards surpassing previous work for small, medium,
and large-sized grids with increasing complexity, while maintaining safer performance. As cost is
estimated from a lower variance TD target the agent can operate close to the safety boundary with
minimal constraint violations. C-MCTS is also suited for problems using approximate planning
models for fast inference, but having to adhere to stringent safety norms. Our Safe Gridworld setup
demonstrates that even with an approximate planning model, the notion of safety can be learned
separately using a more realistic simulator, resulting in zero constraint violations and improved safety.

9

Under review as a conference paper at ICLR 2024

REFERENCES

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1–38, 2022.

E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton. A
survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4:1:1–43, 03 2012. doi: 10.1109/TCIAIG.2012.2186810.

Weizhe Chen and Lantao Liu. Pareto monte carlo tree search for multi-objective informative planning.
In Proceedings of Robotics: Science and Systems, FreiburgimBreisgau, Germany, June 2019. doi:
10.15607/RSS.2019.XV.072.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Stéphane Demri and Paul Gastin. Specification and verification using temporal logics. In Modern
Applications of Automata Theory, pp. 457–493. Co-Published with Indian Institute of Science
(IISc), Bangalore, India, July 2012. doi: 10.1142/9789814271059_0015. URL https://doi.
org/10.1142/9789814271059_0015.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo R. Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Meng Guo and Michael M. Zavlanos. Probabilistic motion planning under temporal tasks and soft
constraints. IEEE Transactions on Automatic Control, 63(12):4051–4066, 2018. doi: 10.1109/
TAC.2018.2799561.

Conor F. Hayes, Mathieu Reymond, Diederik M. Roijers, Enda Howley, and Patrick Mannion. Monte
carlo tree search algorithms for risk-aware and multi-objective reinforcement learning. Autonomous
Agents and Multi-Agent Systems, 37(2), April 2023. doi: 10.1007/s10458-022-09596-0. URL
https://doi.org/10.1007/s10458-022-09596-0.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. Cautious model predictive control using
gaussian process regression. IEEE Transactions on Control Systems Technology, 28(6):2736–2743,
2019.

Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J. Kochenderfer.
Combining planning and deep reinforcement learning in tactical decision making for autonomous
driving. IEEE Transactions on Intelligent Vehicles, 5(2):294–305, 2020. doi: 10.1109/TIV.2019.
2955905.

10

https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1142/9789814271059_0015
https://doi.org/10.1007/s10458-022-09596-0

Under review as a conference paper at ICLR 2024

Krishna C. Kalagarla, Kartik Dhruva, Dongming Shen, Rahul Jain, Ashutosh Nayyar, and Pierluigi
Nuzzo. Optimal control of partially observable markov decision processes with finite linear
temporal logic constraints. In James Cussens and Kun Zhang (eds.), Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine
Learning Research, pp. 949–958. PMLR, 01–05 Aug 2022. URL https://proceedings.
mlr.press/v180/kalagarla22a.html.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

Jongmin Lee, Geon-Hyeong Kim, Pascal Poupart, and Kee-Eung Kim. Monte-carlo tree search for
constrained pomdps. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 7934–7943, Red Hook, NY, USA, 2018. Curran Associates Inc.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding
Zhao. Constrained decision transformer for offline safe reinforcement learning. arXiv preprint
arXiv:2302.07351, 2023.

Daniel J Mankowitz, Dan A Calian, Rae Jeong, Cosmin Paduraru, Nicolas Heess, Sumanth Dathathri,
Martin Riedmiller, and Timothy Mann. Robust constrained reinforcement learning for continuous
control with model misspecification. arXiv preprint arXiv:2010.10644, 2020.

Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka Boedecker. High-
level decision making for safe and reasonable autonomous lane changing using reinforcement
learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp.
2156–2162. IEEE, 2018.

Arash Mohammadhasani, Hamed Mehrivash, Alan Lynch, and Zhan Shu. Reinforcement learning
based safe decision making for highway autonomous driving. arXiv preprint arXiv:2105.06517,
2021.

Santiago Paternain, Miguel Calvo-Fullana, Luiz F. O. Chamon, and Alejandro Ribeiro. Learning
safe policies via primal-dual methods. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 6491–6497. IEEE Press, 2019. doi: 10.1109/CDC40024.2019.9029423. URL https:
//doi.org/10.1109/CDC40024.2019.9029423.

Ioannis Rexakis and Michail G Lagoudakis. Directed policy search using relevance vector machines.
In 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, volume 1, pp.
25–32. IEEE, 2012.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588:
604–609, 12 2020a. doi: 10.1038/s41586-020-03051-4.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020b.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

11

https://proceedings.mlr.press/v180/kalagarla22a.html
https://proceedings.mlr.press/v180/kalagarla22a.html
https://doi.org/10.1109/CDC40024.2019.9029423
https://doi.org/10.1109/CDC40024.2019.9029423

Under review as a conference paper at ICLR 2024

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn., 3(1):
9–44, aug 1988. ISSN 0885-6125. doi: 10.1023/A:1022633531479. URL https://doi.org/
10.1023/A:1022633531479.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo
tree search: a review of recent modifications and applications. Artificial Intelligence Re-
view, July 2022. doi: 10.1007/s10462-022-10228-y. URL https://doi.org/10.1007/
s10462-022-10228-y.

Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust mdps using function approximation. In
International conference on machine learning, pp. 181–189. PMLR, 2014.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Julian Togelius and Georgios N Yannakakis. Choose your weapon: Survival strategies for depressed
ai academics. arXiv preprint arXiv:2304.06035, 2023.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of
constrained MDPs using gaussian processes. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), April 2018. doi: 10.1609/aaai.v32i1.12103. URL https://doi.org/10.
1609/aaai.v32i1.12103.

Weijia Wang and Michèle Sebag. Multi-objective Monte-Carlo tree search. In Steven C. H. Hoi
and Wray Buntine (eds.), Proceedings of the Asian Conference on Machine Learning, volume 25
of Proceedings of Machine Learning Research, pp. 507–522, Singapore Management University,
Singapore, 04–06 Nov 2012. PMLR. URL https://proceedings.mlr.press/v25/
wang12b.html.

Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. Safety-constrained
reinforcement learning with a distributional safety critic. Machine Learning, 112(3):859–
887, June 2022. doi: 10.1007/s10994-022-06187-8. URL https://doi.org/10.1007/
s10994-022-06187-8.

Shangtong Zhang, Remi Tachet Des Combes, and Romain Laroche. On the convergence of sarsa
with linear function approximation. In International Conference on Machine Learning, pp. 41613–
41646. PMLR, 2023.

12

https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1609/aaai.v32i1.12103
https://doi.org/10.1609/aaai.v32i1.12103
https://proceedings.mlr.press/v25/wang12b.html
https://proceedings.mlr.press/v25/wang12b.html
https://doi.org/10.1007/s10994-022-06187-8
https://doi.org/10.1007/s10994-022-06187-8

Under review as a conference paper at ICLR 2024

A SUPPLEMENTARY MATERIAL

A.1 ENVIRONMENTS

A.1.1 ROCKSAMPLE

The environment is defined as a grid with n× n squares with m rocks randomly placed, some being
good and others bad (see Fig. 6, left). A specific Rocksample setup is defined by the nomenclature
Rocksample(n,m). A rover (agent) starting from the left is tasked to collect as many good rocks
as possible and exit the grid to the right. The positions of the rocks are known in advance, but the
quality of the rocks is unknown. The agent can move up, down, right, and left, sample a rock, or make
measurements to sense the quality of a rock. The total number of possible actions is hence 5 +m.
The agent is equipped with a noisy sensor to measure the quality of a rock with a probability of
accuracy (2−d/d0 +1)/2, where d is the Euclidean distance of the agent from the corresponding rock
and d0 is a constant. The number of measurements that the agent can perform is constrained. Trying
to maximize rewards (collecting good rocks) with constraints (number of sensor measurements)
encourages the agent to use a limited number of measurements at a reasonable proximity to the rocks,
wherein the sensor readings can be trusted. At each time step the agent observes its own position and
the positions of the rocks with the updated probabilities.

We formulate the task within the CMDP framework by additionally defining a reward structure, cost
function, and a cost-constraint. The agent is rewarded a +10 reward for exiting the grid from the
right or for collecting a good rock. A -10 penalty is received for each bad rock collected, and a -100
penalty is given when the agent exits the grid to the other sides or if the agent tries to sample a rock
from an empty grid location. The agent incurs a +1 cost when measuring the quality of a single rock.
The discounted cost over an episode cannot exceed 1, and this is the cost-constraint. The discount
factor γ is set to 0.95.

A.1.2 SAFE GRIDWORLD

We additionally propose a new problem: Safe Gridworld. The environment is defined as 8× 8 grid
where an agent from the bottom left region is tasked to find the shortest path to reach the top right
square avoiding unsafe squares on the way (see Fig. 6, right). The agent can move to the neighboring
squares and has a total of 9 action choices. The transition dynamics in all squares are deterministic
except the 8 squares at the top which are stochastic. These squares have winds blowing from the top
to the bottom forcefully pushing the agent down by one square with a probability of 0.3, independent
of the action chosen by the agent (we vary this probability to account for simulator mismatch in the
experiment in Sec. 4.1). Otherwise, the transition is guided by the agent’s action.

The agent receives a reward of +100 on reaching the goal state, a -1000 penalty for exiting the grid,
and a -1 penalty otherwise until the terminal state is reached. Entering an unsafe square incurs a cost
of +1. The agent should only traverse safe squares, and the discounted cost over an episode is 0. The
cost-constraint imposes this as a constraint and is set to 0. The discount factor γ is set to 0.95.

E
X
IT

Agent GoodRock BadRock

Figure 6: Environments: (left) exemplary Rocksample(7, 8) environment, i.e., a 7× 7 rocksample
environment with 8 rocks randomly placed; (right) exemplary Safe Gridworld environment, where
the colors denote start cells (yellow), the goal cell (green), unsafe cells (pink), and windy cells (blue).

13

Under review as a conference paper at ICLR 2024

A.2 TRAINING DETAILS & COMPUTE

The training and evaluation were conducted on a single Intel Xeon E3-1240 v6 CPU. The CPU
specifications are listed below.

Component Specification
Generation Kaby Lake

Number of Cores 4
Hyper-Threading (HT) Disabled

Base Frequency 3.70 GHz
RAM 32 GB
SSD 960 GB

Table 1: Specifications of Intel Xeon E3-1240 v6

No GPU accelerators were used as the C-MCTS implementation was not optimized for efficient GPU
resource utilization. The hyperparameters chosen for training the safety critic in the primary results
(Fig. 2) are summarized in Table 2.

Environment α0 ϵ σmax Planning Iterations
Rocksample(5, 7) 8 0.1 0.5 1024
Rocksample(7, 8) 4 0.1 0.5 1024
Rocksample(11, 11) 12 0.1 0.5 512
Safe Gridworld 10 0.1 0.2 512

Table 2: Key hyperparameters to train the safety critic.

A.3 PLANNING COST TO ACHIEVE HIGH REWARDS: C-MCTS VS CC-MCP

N/A: Performance not achieved (*): Additional evaluation environment
Environment Method Performance

Number of planning iterations Discounted Reward

Rocksample(5,7) CC-MCP 220 13.72
C-MCTS 210 13.93

Rocksample(7,8) CC-MCP 220 9.83
C-MCTS 210 11.0

Rocksample(11,11) CC-MCP 220 5.26
C-MCTS 210 7.14

Rocksample(15,15)∗ CC-MCP N/A N/A
C-MCTS 28 14.29

Table 1: Comparing planning iterations of C-MCTS and CC-MCP at equivalent reward levels.

A.4 COMPUTATIONAL COST COMPARISON

In terms of computational cost per simulation across the different algorithmic phases:

• Selection: CC-MCP is the most computationally expensive, requiring more operations to
select the best child node. MCTS and C-MCTS have identical operation counts.

• Expansion: C-MCTS incurs additional costs due to the safety critic’s prediction. MCTS and
CC-MCP require no additional computation during expansion.

• Backpropagation: CC-MCP backs up Q-values for both reward and cost, while MCTS and
C-MCTS back up only Q-values for reward.

• Rollout: Computational cost is identical for C-MCTS, MCTS, and CC-MCP.

C-MCTS and MCTS algorithms were implemented in Python, while the benchmark CC-MCP uses a
C++ implementation. Comparing actual execution times was unfair since our implementation was not
optimized for hardware efficiency. Also, such an optimization would highly depend on the hardware
platform (e.g. CPUs vs GPUs). For instance, added cost in C-MCTS’s expansion phase is highly
parallelizable, with good potential for effective GPU utilization. So, for our analysis we instead

14

Under review as a conference paper at ICLR 2024

compare the number of simulations (planning iterations) required by each algorithm as a performance
metric.

A.5 BROADER IMPACT

While C-MCTS mitigates the reliance on the planning model to meet cost constraints through pre-
training in a high-fidelity simulator, there may still be sim-to-reality gaps when learning cost estimates.
This introduces the possibility of encountering unforeseen consequences in real-world scenarios. In
the context of using C-MCTS in a human-AI interaction task, if minority groups are not adequately
represented in the training simulator, inaccurate cost estimates might lead to potential harm to humans.
However, C-MCTS addresses these gaps more effectively than previous methods by leveraging a
more relaxed computational budget during the training phase (fast inference is only required during
deployment). This allows more accurate modeling of the real world to include rare edge scenarios.

15

	Introduction
	Constrained markov decision processes
	Methods with Lagrange multipliers
	Monte Carlo tree search for CMDPs

	Method
	Safety critic training
	Training data collection
	Robustness to model mismatch

	Deployment

	Evaluation
	Robustness to model mismatch
	Effect of hyper-parameter selection on safe behavior

	Conclusion
	Supplementary Material
	Environments
	Rocksample
	Safe Gridworld

	Training Details & Compute
	Planning cost to achieve high rewards: C-MCTS vs CC-MCP
	Computational cost comparison
	Broader Impact

