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Abstract
We address the problem of reward hacking, where
maximising a proxy reward does not necessarily
increase the true reward. This is a key concern
for Large Language Models (LLMs), as they are
often fine-tuned on human preferences that may
not accurately reflect a true objective. Existing
work uses various tricks such as regularisation,
tweaks to the reward model, and reward hacking
detectors, to limit the influence that such proxy
preferences have on a model. Luckily, in many
contexts such as medicine, education, and law, a
sparse amount of expert data is often available. In
these cases, it is often unclear whether the addi-
tion of proxy data can improve policy learning.
We outline a set of sufficient conditions on proxy
feedback that, if satisfied, indicate that proxy data
can provably improve the sample complexity of
learning the ground truth policy. These condi-
tions can inform the data collection process for
specific tasks. The result implies a parameterisa-
tion for LLMs that achieves this improved sample
complexity. We detail how one can adapt exist-
ing architectures to yield this improved sample
complexity.

1. Introduction
Large Language Models (LLMs) have revolutionised ma-
chine learning with their surprising capabilities, surpassing
human-level performance in law, medicine, and other exam-
inations (Achiam et al., 2023; Amin et al., 2023). A large
part of their success is their ability to incorporate human
preferences to learn complex objectives such as trustworthi-
ness (Yu et al., 2024), sentiment preferences (Chakraborty
et al., 2024), and value alignment (Ji et al., 2023).
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In many cases, this preference data is a proxy for the ground
truth. For example, humans raters tend to prefer longer
answers to a question, even if the answer is less informative
(Zhou et al., 2024). In this case, ‘response length’ is a proxy
for the true helpfulness of an answer. If an LLM is trained
on this proxy data alone it leads to a ‘length-bias’ (Shen
et al., 2023; Singhal et al., 2023), as LLMs fine-tuned with
this preference data generate longer and better formatted
responses to appear more helpful (Chen et al., 2024). This
is an example of the well-known phenomenon of reward
hacking1: a model optimised to perform well with respect to
a proxy reward function, performs poorly with respect to a
ground truth reward function (Casper et al., 2023). Reward
hacking is a fundamental problem in learning that has been
observed in optimised circuits listening in on the oscilla-
tors of other computers when instead tasked to build their
own (Bird & Layzell, 2002), universities rejecting the most
qualified applicants to boost their ratings (Golden, 2001),
and many other cases in game playing (Clark & Amodei,
2016), autonomous driving (Knox et al., 2023), and text
summarisation (Paulus et al., 2018).

To address reward hacking in LLMs, prior work largely de-
signs tweaks to the model, data, and optimization procedure.
This includes regularisation towards an initial policy (Schul-
man et al., 2017; Rafailov et al., 2023; Huang et al., 2024),
changing properties of the reward model (Gao et al., 2023;
Coste et al., 2024), using soft labels (Zhu et al., 2024), ad-
justing optimization hyperparameters (Singhal et al., 2023),
reward hacking detection mechanisms (Pan et al., 2022;
Miao et al., 2024), and introducing additional tools spe-
cialised to counteract length bias (Chen et al., 2024). The
reasoning behind this comes from the makeup of proxy data.
We can think of proxy data as having two parts: (i) a true
part that brings a policy closer to the ground truth policy
during learning and (ii) a false part that moves it farther
away. Prior work limits learning to reduce the impact that
the false part has on the final model.

Without any further information on proxy preferences or
the ground truth, we are restricted to methods such as
these, i.e., methods that are blind to the true and false
parts of proxy data, to reduce the impact of reward hack-

1This is also sometimes referred to as reward over-optimisation.
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Age: 25              

Lifestyle: 
PhD student       

Symptom:
Morning headache

Age: 23              

Lifestyle: 
MSc student       

Symptom:
Morning headache

Proxy policy 
(e.g. student doctor)
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"Headache after lying down could be
serious, I prescribe blood test."
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"Headache with your job is caused by
stress, I prescribe painkillers."

"Rest well, healthy diet, and do exercise."

Age: 40                               

Lifestyle: Teacher                  

Symptom:
Fever, nausea, back pain         
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"Let's run ECG; it could be heart-related."

 

Figure 1. A condition
for useful proxy feed-
back. (Illustrative
purposes only. Not med-
ical advice.) An expert
(ground truth) doctor
prescribes a different
treatment compared with
a student (proxy) doctor.
However, Patients 1 and
2 are identified as lying
within the same level
set of patients by both
doctors, based on their
key characteristics - age,
lifestyle and symptoms.
Patient 3 has sufficiently
different characteristics
from Patient 1 and 2, and
is identified to lie within
a different level set by
both doctors.

ing (Pan et al., 2022). Luckily, in many settings, we also
have access to sparse observations of high-quality prefer-
ences (Daniels-Koch & Freedman, 2022). For instance, in
demonstration-guided reinforcement learning, expert data
is added to improve sample efficiency (Rajeswaran et al.,
2017) and to guide exploration (Nair et al., 2018). Recent
work has shown that including such expert information can
help counter reward hacking in LLMs (Rita et al., 2024).

Consider the following medical example depicted in Fig-
ure 1. Patient 1 and Patient 2 consult the expert doctor and
the student doctor about a condition they have. They have
similar characteristics and essentially the same problem: a
recurring morning headache that lasted a few days, but their
exact phrasings can be different. Meanwhile, Patient 3 has
different characteristics and a different condition to Patient
1 and 2. We think of the experienced doctor as representing
a true policy and the student as a proxy policy. The two
doctors both assign Patient 1 and 2 to the same group and
Patient 3 to a different group, but the two doctors’ recom-
mendations for a given group are different, since the expert
doctor can correctly recognised some easily misdiagnosed
symptoms while the student doctor cannot.

We assume access to sparse prescriptions from an experi-
enced doctor (ground truth) and plentiful prescriptions from
less experienced student doctors (proxy). Even with ground
truth data, If we naively learn a policy on the union of the
dataset, we will learn a policy close to the proxy policy,
as this data is more abundant. However, given the success
of preference learning methods for LLMs, there is often

useful information to extract from the prolific proxy data.
A natural question is: When can proxy data ever provably
improve preference learning?

In this paper we outline a set of sufficient conditions on
proxy feedback that, if satisfied, indicate that the proxy can
provably improve the sample complexity of learning the
ground truth policy. As not all proxies will satisfy these
conditions, they can be used to guide a data collection pro-
cess for a specific task. We show that as long as the col-
lected proxy feedback shares certain properties with the
true feedback, the sample complexity of learning with true
preference data is provably improved by first training on
large amounts of proxy preference data. The key idea be-
hind this is that if the proxy and true policies share a certain
structure, characterised in Condition 2-1, then it is possible
to express the true policy as a low-dimensional adaptation
of the proxy policy (Theorem 3). This relationship implies
that certain parameters of the ground truth policy can be
identified solely from proxy data, reducing the number of
ground truth samples needed to learn the ground truth policy
(Theorem 5, 6). This result immediately implies a parametri-
sation for LLMs that achieves improved sample complexity.
Our contributions are:

• We characterise a set of sufficient conditions on proxy
feedback such that the sample complexity of learning the
true policy is reduced through learning on the proxy.

• We show that if proxy feedback satisfies the sufficient
conditions, it implies a specific model parametrisation
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and learning procedure to extract information from the
proxies. We detail these and describe how one can adapt
existing architectures to improve sample complexity.

2. Preliminaries
Consider the set of all prompts X and completions Y , the
elements of these sets are discrete sequences of tokens with
arbitrary length, e.g. x = [x1, . . . , xNx ]. By considering an
enumeration of all completions Y , the space of distributions
PY is equivalent to the subset of non-negative and unit norm
sequences in the sequence space ℓ1. 2

We think about a policy π as a map from prompt space
X to the distribution space PY . Starting from an initial
policy πref

3, we want to find a target policy π† : X → PY
which aligns with the preferences of an ideal actor in a
given scenario. To learn this policy, we have preference
data directly from the ideal actor, denoted D†, as well as
preference data from a proxy actor, D̃. The central question
we consider is: under what assumptions can D̃ improve the
sample complexity of learning π†?

Human preference feedback. We aim to align πref using
preference data of the form {(x,yw,yl)}, where yw and yl

are candidate completions for prompt x, and where yw is
preferred to yl. We assume these preferences are generated
from a underlying scalar reward function r(x,y) according
to Bradley & Terry (1952):

x ∼ pX ; y1,y2 ∼
i.i.d.

πref(· | x);

b ∼ Bern[σ(r(x,y1)− r(x,y2))];

(yw,yl) =

{
(y1,y2) if b = 1,
(y2,y1) if b = 0.

,

where σ(·) is the sigmoid logistic function. We assume that
y1 and y2 are sampled from πref for simplicity, whereas
in practice they can be sampled from other distributions
over PY . In this model, higher relative rewards increase the
chance of a completion being picked as the winner yw.

We assume that the true and proxy preference data, D† and
D̃, are generated by distinct reward functions r† and r̃.

Bandit problem setting. Given a data-generating process
G = (r, πref, pX ) with reward function r, a reference policy
πref, and a distribution of prompts pX , the optimal KL-
regularised policy πG for the data generating process G is

2ℓ1 is the space of sequences {yi}i such that
∑∞

i=1|yi| < ∞.
The subset we consider is the subset of such sequences where all
yi are non-negative and

∑∞
i=1|yi| = 1.

3In practice, πref is obtained from the supervised finetuning
stage of language model training (Rafailov et al., 2023).

the one that maximises the following optimisation objective:

argmaxπ Ex∼pX , y∼π(· | x)[r(x,y)]− βKL(π(y | x) ∥ πref(y | x)),

(1)

where the regularisation parameter β controls how close to
the reference the optimum should be. Under this objective,
the optimal policy is given by:

πG(y | x) ∝ πref(y | x) exp
(
1

β
r(x,y)

)
. (2)

The target policy we aim to learn is thus denoted π† satisfy-
ing (2) with respect to G† =

(
r†, πref,PX

)
.

Direct preference optimisation (DPO) and implicit re-
wards. Following Rafailov et al. (2023), by optimising
the following objective:

argmaxπ E(x,yw,yl)∼G

[
log σ

(
β log π(yw | x)

πref(yw | x) − β log π(yl | x)
πref(yl | x)

)]
,

(3)

we recover the same optimal policy as described in Equa-
tion 2 without directly using any reward function. Thus,
DPO avoids the need for reward modelling.

We note that the policy implicitly defines a reward function,

r(x,y) = β log
π(y | x)
πref(y | x)

.

We can therefore define π†, π̃ as the policies that (implicitly)
define r† and r̃, respectively.

True and proxy preference data For many interesting
tasks, sampling a dataset D†

n† := {(xi,yw,i,yl,i)}n
†

i=1

from G† = (r†, πref, pX ) can be costly; therefore, the size
n† of the dataset might not be large enough for adequate
training. In these cases, it is common to use a larger proxy
dataset D̃ñ := {(x̃i, ỹw,i, ỹl,i)}ñi=1, where each data point
is sampled i.i.d. from a proxy data-generating distribution
G̃ = (r̃, πref, pX ), where G̃ andG† only differ in the reward.

Nonetheless, if we do not have data from G†, then even if
we have access to infinitely many data samples from G̃, and
even if it allows us to learn the perfect reward model r̃4,
we can at best only learn the optimal proxy policy π̃, which
differs from the optimal true policy in π†, by construction
due to the difference in rewards.

3. Sufficient Conditions for Proxy Feedback
Theory and survey papers point out the difficulty of align-
ment under mismatch between the true reward function and

4The technical condition for this to be possible is to be provided
PX and πref have full support.
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the one reflected by the human labelers (Skalse et al., 2022;
Casper et al., 2023). In other related fields such as vision,
(Chi et al., 2022) shows the impossibility of leveraging
pre-training data for unseen tasks unless some similarity
between the two tasks is given.

From these observations we can draw two conclusions. (i)
We must have at least some data from G† to learn π†; this
motivates the need for both D†

n and D̃ñ. (ii) In order for
π̃ to inform us something about π†, they must share some
similarities. Thus, we ask the following research question:

What conditions allow for improved G†-sample efficiency in
learning π† after first training on D̃? By how much?

With the following conditions, we show that, when we have
access to large amounts of proxy data, π† can be expressed
as a low-dimension adaptation of π̃, and hence the sample
complexity of learning π† is drastically improved, superex-
ponential in the data manifold dimension.

In practice, these conditions can be helpful in guiding the
design of the proxy data collection procedure. In particular,
the conditions correspond to the expertise we might require
proxy raters and true raters to share.

Our first technical condition concerns the similarity between
the policy functions π† and π̃.

Condition 1. For a given metric dPY on the space of dis-
tributions on Y , there is some positive scaler L such that
dPY (π

†(·|x1), π†(·|x2)) ≤ LdPY (π̃(·|x1), π̃(·|x2)).

Informally, this says that if two prompts are mapped to very
similar completion distributions by π̃, then they cannot get
mapped to very different completion distributions by π†; for
a unit difference of the former, the difference for the latter
must not exceed L for some positive scaler L.

This condition applies to situations where the proxy rater is
within reasonable ballpark from the true rater: for example,
for some medicines the correct dosage can vary by a large
amount depending on the patient; if the expert doctor pre-
scribes a certain dosage, and the student doctor prescribes
a dosage different but close to that, then the condition can
be considered satisfied. The condition also generalises to
a broader situation: if the expert doctor’s change in pre-
scription, for instance, after observing some improvements
in a patient, is similar to the change in prescription of a
student doctor, then the condition can also be considered
satisfied. However, in situations of crowdsourcing human
preference from general populations, such as with Amazon
Mechanical Turk, we cannot consider this condition to be
satisfied; likewise, if we suspect that some proxy raters are
adversarial, then we also cannot expect it satisfied.

Condition 1 implies another, easier-to-visualise, condition:

Condition 2 (Shared level sets). Given x1,x2 ∈ X , we

have: π†(· | x1) = π†(· | x2) if π̃(· | x1) = π̃(· | x2).

Proof that Condition 1 implies Condition 2. π̃(· | x1) =
π̃(· | x2) implies that dPY (π̃(·|x1), π̃(·|x2)) = 0. Then no-
tice 0 ≥ dPY (π

†(·|x1), π†(·|x2)) ≥ 0, which then implies
π†(·|x1) = π†(·|x2).

Condition 2 says that two distinct prompts are mapped to the
same response distribution under the true policy whenever
they are under the proxy policy, and vice versa; mathemati-
cally, the two policies share level sets (Figure 2, left).

In the context of the running example (Figure 1), Condi-
tion 2 corresponds to the experienced doctor and the student
doctor classifying the symptoms of patients in the same way.
We could reasonably expect this because comprehending the
relevant details of a patient’s query is part of the basic train-
ing for a doctor. On the other hand, if the proxy preferences
were sourced from generic crowd workers with no medi-
cal background, we would not expect this condition to be
satisfied. Practically, survey instruments could be designed
to directly assess this assumption, for example, by asking
raters to rate the equivalence between different prompts.

Since π̃ and π† share the same level sets, as supposed in
Condition 2, it can be shown that π† ◦ π̃−1|π̃(X ) is a well-
defined function, where it should be noted that π̃−1|π̃(X )(p)
maps a point p ∈ π̃(X ) to its pre-image under π̃. The proof
is provided in Appendix B.

Lemma 1. Suppose Condition 2 is satisfied, π† ◦ π̃−1|π̃(X )

is a well-defined function, where ◦ denotes function compo-
sition.

Lemma 1 allows us to describe the ‘difference’ between the
proxy and true policy as a function: given a distribution of
completions p, π† ◦ π̃−1|π̃(X ) maps all input prompts which
share the response distribution p by π̃ to a distinct response
distribution, say p′, assigned by π†. This justifies learning
an ‘adapter’ function which reassigns p to the correct value
p′. Had Condition 2 not held, then attempting to learn a
function which assigns p to p′ no longer makes sense since
there could be some values of p for which the corresponding
p′ aren’t unique.

Our next condition says that the set of expert response dis-
tributions is contained within the set of proxy response
distributions (Figure 2, middle):

Condition 3 (Image inclusion). π†(X ) ⊆ π̃(X ).

In the context of the running example (Figure 1), Condi-
tion 3 says that the student doctor could, in principle, express
any valid medical advice distribution, even if the student
doctor may not know how to assign them to appropriate
symptoms with high accuracy. This is again a reasonable
assumption when the proxy feedback comes from a student
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Figure 2. Illustrations of Conditions 2-4. Left, middle, right: Condition 2, 3, 4, respectively.

doctor, but is less plausible if the proxy feedback comes
from a rater without general knowledge of core concepts
that underlie medical advice. Practically, surveys could in-
clude questions to test the breadth of the rater’s knowledge,
or to gauge their educational background.

Finally, we need a technical condition similar to a common
assumption underpinning many modern deep learning ar-
chitectures: that data lie on a lower-dimensional manifold
(Figure 2, right).

Condition 4 (Finite-dimensional encoding of π̃(X )). There
exists an injective function ϕ : V → PY , where V ⊂ RD is
a bounded convex polytope with D + 1 vertices, such that:

1. The image ϕ(V) contains the image of the policies:
π†(X ) ⊆ π̃(X ) ⊆ ϕ(V);

2. It is (Lϕ, Lϕ−1)-bi-Lipschitz with its left inverse
ϕ−1 : PY → V: (1/Lϕ−1)∥v1 − v2∥p ≤
d(ϕ(v1), ϕ(v2)) ≤ Lϕ∥v1 − v2∥p, where d is a metric
on PY , discussed later in Section 5.

Note that the condition that V is a convex polytope is be-
nign, since we can extend any bi-Lipschitz function which
bijects a compact subset of RN with π̃(X ) to a bi-Lipschitz
function from a bounded convex polytope with the same
Lipschitz constants to a set containing π̃(X ).

Condition 4 says that although the topological dimension of
PY can be extremely large, the image of π̃ is identified with
a Euclidean subset only of dimension D ≪ dim[PY ]. In
particular, we provide a proof that the topological dimension
of PY can be as large as ∞; since any finite n-dimensional
Euclidean space has topological dimension n, this shows
that PY is not a finite-dimensional Euclidean space.

Proposition 2 (Topological dimension of PY is ∞). Let
K = {1, · · · , k} denote a set of k tokens. Let Y be the set
of all finite length token sequences with tokens from K, and
PY the set of probability mass functions over Y , then the
topological dimension of PY = ∞. If Y is instead the set of
token sequences with length ≤ l, then dim[PY ] = O

(
kl
)
.

Proof. Proof in Appendix A.

In practical LLM training regimes, a maximum sequence
length is implemented, but the dimension of PY grows ex-
ponentially with l. In situations where the true and proxy
policies generate responses from a small subset of all token
sequences, it could be reasonable to expect Condition 4
to hold - for example, only a small subset of all token se-
quences form valid sentences, and an even smaller subset of
those form valid medical advice, so we expect that for med-
ical question-answering tasks the responses distributions
can be encoded with fewer dimensions than for general
question-answering tasks. The low-dimensional encoding
can be viewed as some intermediate representation of the
prompt that is sufficient for determining the response distri-
bution. We can thus think of ϕ as a policy decoder.

4. Adapting π̃ to π†

Now, we derive an algorithm for learning π† leveraging
conditions 2-1. The algorithm hinges on a decompositon
of the policy π̃ into an encoder π̃, a linear layer Θ̃, and
a decoder ϕ̃, respectively. Importantly, we show that π†

can be expressed reusing these components from learning
π̃ using D̃, with the addition of a low-dimensional adapter
function between known spaces. This reduction to learning
an adapter function allows us to derive a drastic sample
complexity improvement (Theorem 5).

We outline the main steps of the derivation now:

1. First, from Condition 3 and 4, we can show that both π̃
and π† map prompts into a common lower-dimensional
space before decoding into response distributions.

2. Then, by Condition 2 and 1, it can be shown that π̃
and π† differ only by a Lipschitz continuous function
mapping ∆D → ∆D.

4.1. Factorising π† and π̃ through V .

Notation. In this section, we make heavy use of the math-
ematical concept of function composition; f ◦ g denotes ‘f
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composes g’, and is a function which first maps an input x
through g, and then maps g(x) through f to f(g(x)).

By Condition 4, the proxy policy π̃ factors through V: that
is, π̃ maps from the space of prompts to the space of re-
sponse distributions via some intermediate representation of
the prompt (i.e., V) sufficient for determining the response
distribution. Specifically, there is a bi-Lipschitz injective
decoder ϕ from V to the image of the proxy policy π̃(X ).
Additionally, Condition 3 says that the image of π† is in-
cluded in the image of π̃.

Therefore, we can view π† as a function composition of
some decoder ϕ : V → π̃(X )5 and some encoder function
X → V , such that

π† : X ϕ−1◦π†

−−−−−→ V ϕ−→ π̃(X ) (4)

Analogously, π̃ can be viewed also as

π̃ : X ϕ−1◦π̃−−−−→ V ϕ−→ π̃(X ) (5)

Next, we show that π† can be expressed by inserting a
transformation into a function decomposition of π̃. This
transformation can be shown to be a Lipschitz map between
two known D-dimensional spaces. We can thus think of
this transformation as an ‘adapter’ function.

4.2. π† and π̃ differ by a function between D-simplices.

It is now possible to show that π† and π̃ differ only by a
transformation on the representation space V . However, for
the sample complexity arguments that follow, it is conve-
nient to map V to a D-simplex ∆D, then to show that π†

and π̃ differ only by a transformation on ∆D.

To this end, since V is a D-polytope with D + 1 vertices,
every point in V can be expressed as a convex combination
of the vertices. Then, it can be shown that π̃ and π† can
be further factored through a D-simplex, ∆D. With this
formalism in hand, we now state our result. The proof is
provided in Appendix B.

Theorem 3. We work under Conditions 2, 3, 4 and 1. For
some D, there exists a Lipschitz invertible function ϕ̃ : V →
π̃(X ) satisfying Condition 4, Θ̃ ∈ RN×(D+1) and τ̃◦ :
X → ∆D s.t. π̃ = ϕ̃ ◦ Θ̃τ̃◦.

Moreover, for any
(
ϕ̃, Θ̃, τ̃◦

)
such that π̃ = ϕ̃ ◦ Θ̃τ̃◦, there

exists a Lipschitz continuous function π̄† : ∆D → ∆D s.t.
π† = ϕ̃ ◦ Θ̃π̄† ◦ τ̃◦.

Theorem 3 has two important implications for learning. 1.
It establishes that there exists a decomposition of π̃ with

5Strictly, after ϕ† we still need to go through an inclusion to
land in PY , but to simplify notation we omit this technicality.

modules that can be reused to express π†. 2. It further
establishes that for any satisfactory decomposition, there
exists an adapter π̄†. This suggests that in practice we can
first find a suitable triplet

(
ϕ̃, Θ̃, τ̃◦

)
, then learn an adapter.

4.3. Model Parametrisation and Learning

We now sketch our learning algorithm. Theorem 3 gives rise
to a two-step procedure to learn the true policy π†, firstly
we recover the functional components using a large proxy
dataset D̃ñ and then, secondly, we use a small true dataset
D†

n† to learn the low-dimensional adapter.

Stage 1 Based on Theorem 3, we model the proxy policy
π̃ with a parametric model composed of three functions:
(i) τ̃◦θ , an embedding function from the prompts X to the
D-simplex ∆D, (ii) Θ̃ ∈ RD×(D+1), a linear map from
the simplex to a convex polytope V , and (iii) ϕ̃θ, an injec-
tive function from the latent space V to a distribution of
completions PY . Therefore, our model is expressed as:

π̃θ = ϕ̃θ ◦ Θ̃τ̃◦θ . (6)

Based on the DPO loss (Eq. 3), ϕ̃θ, Θ̃, and τ̃◦θ are learned
using the empirical preference learning objective with the
proxy dataset D̃ñ:

L̃ñ(π̃θ) = − 1
ñ

∑ñ
i=1 log σ

(
β log

π̃θ(ỹw,i | x̃i)
πref(ỹw,i | x̃i)

− β log
π̃θ(ỹl,i | x̃i)
πref(ỹl,i | x̃i)

)
.

(7)
In the large sample limit, the optimal parametrised model
ϕ̃∗θ ◦ Θ̃∗τ̃◦,∗θ minimises the population proxy preference
loss, and due to Theorem 3, we know that the optimal KL-
regularised proxy policy π̃ = ϕ̃∗θ ◦ Θ̃∗τ̃◦,∗θ , thus, justifying
our parametrization.

Stage 2 Following this, we then model the true policy π†

using the same pre-trained components from our model of
the proxy policy π̃θ with the addition of a low-dimensional
adapter function π̄†

θ which maps a latent representation in
the simplex ∆D to another ∆D as follows:

π†
θ = ϕ̃θ ◦ Θ̃π̄†

θ ◦ τ̃
◦
θ . (8)

The adapter π̄†
θ is learned by optimization of the empiri-

cal preference learning objective with the true dataset D†
n† ,

while keeping ϕ̃θ, Θ̃, and τ̃◦θ fixed based on their previously
optimised values:

L†
n†

(
π̄†
θ

)
= − 1

n†

∑n†

i=1 log σ

(
β log

ϕ̃θ(Θ̃π̄†
θ(τ̃

◦
θ (xi)))[yw,i]

πref(yw,i | xi)
− β log

ϕ̃θ(Θ̃π̄†
θ(τ̃

◦
θ (xi)))[yl,i]

πref(yl,i | xi)

)
.

(9)

There may be more efficient algorithms which learn the
triplet

(
ϕ̃, Θ̃, τ̃◦

)
by using the proxy and true data simul-

taneously. Nonetheless, by splitting the learning into two
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stages, the first using only proxy data, and the second using
only true data, we can make a direct sample complexity
comparison between learning π† from scratch, and learning
the adapter π̄† in Stage 2, in terms of the size of the true
data D†

n† .

5. Convergence Rates Analysis
To illustrate the benefit of learning π† using the outlined
algorithm, we analyse its soundness by showing the sample
complexity improvement given that we have identified the
true ϕ̃, Θ̃ and τ̃◦ from the proxy dataset in the first stage.
This can be a reasonable approximation of the properties of
the learning procedure in cases where the proxy dataset is
much larger than the true dataset. To this end, we analyse the
generalisation error bound for the second stage given access
to true ϕ̃, Θ̃ and τ̃◦. Following the approaches of Elesedy
(2022), Mohri et al. (2012, Exercise 3.31), the generalisation
error can be shown to be linear in the covering number of the
hypothesis class. Our insight here is that the hypothesis class
of π† is made smaller by having knowledge of ϕ̃, Θ̃ and τ̃◦,
hence the covering number is also smaller. In order to define
covering numbers, we first define a notion of metric on all
relevant spaces and the hypothesis classes we consider.

5.1. Metrics and Hypothesis Classes

Metric on finite-dimensional spaces. For any subset of
the Euclidean space, we use the p-norm-induced metric; for
a simplex ∆D we denote its metric by d∆ and for any other
finite dimensional space U we use dU .

Metric on the prompt space. The prompt space X , is a
discrete and unstructured space, so we define a metric, dX
based on some fixed embedding function f , which maps a
prompt to a vector space with finite but high dimensions:
dX (x, x′) = df(X )(f(x), f(x

′)) = ∥f(x)− f(x′)∥p.

Intuitively, we can think about f as some general-purpose
embedding, such as one obtained by retrieving some in-
termediate layer from a large model such as CLIP (Rad-
ford et al., 2021). Importantly, this metric is only relevant
when considering the complexity of the hypothesis class
when we learn the target policy without proxy data, which
one expects to be large; this intuition is confirmed since a
general-purpose embedding may not work well across all
tasks, and can result in a large Lipschitz constant for the
target function.

Metric on a policy space. Defining a metric on a space of
policies is more involved, and we begin by relating a policy
and the reward function under which it is the KL-regularised
optimal policy. Given a policy π : X → PY , define the

implicit reward as:

rπ(x,y) = β log
π(y | x)
πref(y | x)

(10)

Using rπ , we can define a metric on the set of policies, and
we express in the next lemma. The proof is in Appendix C.
Lemma 4 (Metric on policies through rπ). For any policies
π, π′ : X → PY , so that

∑
Y π(y | x) =

∑
Y π

′(y | x) = 1
for any x ∈ X , define the function

dr(π, π
′) = ∥rπ − rπ′∥∞ (11)

Then, if the rewards are bounded, ∥rπ∥∞ < ∞ and
∥rπ′∥∞ <∞, it is a metric in the space of policies.

Metric on the completion distribution space. Addition-
ally, we define a metric on the space of distributions of com-
pletions, PY . Motivated by the metric on policies through
the rewards, we define the function dPY : PY × PY →
R ∪ {∞}:

dPY (p, q) =

∥∥∥∥β log p(·y)q(·y)

∥∥∥∥
∞

(12)

Now define the hypothesis class of π† as:
Definition 1 (Hypothesis class Π̊). Let Π̊ be a set of policies
π : X → PY , so that, for all x,

∑
y π(y|x) = 1, and have

reward at most C, meaning that ∥rπ∥∞ ≤ C.

From Lemma 4, Π̊ and all its subsets are metric spaces when
endowed with dr. Later on, we will show that the cover-
ing number of a hypothesis class depends on the smallest
Lipschitz constant of the class.

Meanwhile, based on the exitance of ϕ̃, Θ̃, τ̃◦, we define a
subset of Π̊:
Definition 2 (Hypothesis class fixing ϕ̃, Θ̃, τ̃◦ and Lipschitz–
constant Lπ̄). Fix ϕ̃, Θ̃, τ̃◦. Let Π

(
ϕ̃, Θ̃, τ̃◦, Lπ̄

)
⊆ Π̊ the

set containing all π ∈ Π̊ which can be written as

π(·|x) = ϕ̃ ◦ Θ̃π̄ ◦ τ̃◦(x) (13)

for some Lπ̄-Lipschitz π̄, with respect to d∆.

Finally, we define the loss functions of our setup as
Definition 3 (True and empirical DPO risks). Following
Rafailov et al. (2023), we define the true risk as

RG†(π) = EG†

[
log σ

(
β log π(Yw|X)

πref(Yw|X) − β log π(Yl|X)
πref(Yl|X)

)]
(14)

whereG†=(r†, πref, pX ) is the true data generating process.

The empirical risk is the Monte Carlo estimate of RG†(π),

RD†
n† (π) =

1
n†

∑n†

i=1

[
log σ

(
β log

π(yw,i|xi)
πref(yw,i|xi)

− β log
π(yl,i|xi)
πref(yl,i|xi)

)]
(15)
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5.2. Main Results

Now we are ready to state our main sample complexity
result. The proof is given in Appendix C.1.
Theorem 5 (Sample complexity of learning with proxy).
The covering number of the class of adapted policies Π is
bounded by a function of the latent space’s dimension D:

Cov
(
Π
(
ϕ̃, Θ̃, τ̃◦, Lπ̄

)
, dr, 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ

)
≤

(
2Lϕ∥Θ̃∥p

√
D

κ

)D
(

2
√

D
δ

)D

(16)

where κ is a free parameter. If we set κ = ϵ
48 , then we need

n(ϵ, ω) = Ω

(
D
ϵ2

(
96Lϕ∥Θ̃∥pLπ̄

√
D

ϵ

)D
log
(

96Lϕ∥Θ̃∥p

√
D

ϵ

)
− logω

)
samples to generalise. That is, whenever n′ ≥ n(ϵ, ω),

P

(
sup

π∈Π(ϕ̃,Θ̃,τ̃◦,Lπ̄)
|RG†(π)−RD†

n† (π)| ≥ ϵ

)
≤ ω

(17)

So, with probability at most ω, the worse gap between the
true and empirical risks is at least ϵ.

For comparison, we also state the sample complexity result
for learning without adapting a proxy policy. The proof is
in Appendix C.2.
Theorem 6 (Sample complexity of learning without proxy).
Let D′ be the dimension of a given embedding function f of
X , and let Π̊

(
Lϕ∥Θ̃∥pLπ̄

)
be the subset of Π̊ where π is

Lϕ∥Θ̃∥pLπ̄-Lipschitz. We need

n(ϵ, ω) = Ω

(
D′

ϵ2

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)D′

log

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)
− logω

)

samples to generalise, where D′ ≫ D , and E′(p,D′) ≫ 1.
That is, whenever n′ ≥ n(ϵ, ω), we have

P

(
sup

π∈Π̊(Lϕ∥Θ̃∥pLπ̄)
|RG†(π)−RD†

n† (π)| ≥ ϵ

)
≤ δ

(18)

So, with probability at most ω, the worse gap between the
true and empirical risks is at least ϵ.

Discussion. Theorem 6 says that if we learn π† directly
from expensive samples of G†, then the sample complex-
ity scales with D′, which is the dimension of the embed-
ding space ; this can be extremely large. However, if we
parametrise π† using ϕ̃, Θ̃, τ̃◦ which compose to be π̃, and
can be learned from cheap samples of G̃, then Theorem 5
asserts that the number of expensive samples we need from
G† scale with the latent space dimension D which can be
much smaller than the embedding dimension D′.

Experiments. While this work focuses on theory and ver-
ifies the claims through mathematical proofs, we provide in
Appendix D a small-scale experiment on over-smoothing
in reward learning, as well as an empirical validation of
Theorem 5 and Theorem 6.

6. Related Work
Reward hacking theory. Initial work on the theory of re-
ward hacking considered the setting where the proxy reward
was a function of a subset of true reward features (Zhuang
& Hadfield-Menell, 2020). This work demonstrates that
optimising the proxy can lead to arbitrarily low true reward.
Similarly, Tien et al. (2022) give theoretical results for re-
ward hacking when a learned reward uses nuisance variables
that correlate with true causal variables. These ideas were
extended to arbitrary MDPs by (Skalse et al., 2022) who
define a proxy reward as hackable if it prefers policy π1 over
π2 when the true reward has the opposite preference. Recent
work has sought to develop scaling laws for reward hacking
that describe how the true reward changes as the proxy re-
ward is optimised (Gao et al., 2023). Rafailov et al. (2024)
show similar over-optimisation patterns in DPO at higher
KL-divergence budgets, even without an explicit reward
model. In contrast to these works, our theoretical results
suggest a new model parametrisation and training scheme
which achieves improved sample complexity for learning
the true policy; hence, our results are constructive.

Addressing reward hacking in LLMs. One of the classic
examples of reward hacking in LLMs is their propensity for
verbose responses that are not more helpful, often called the
‘length bias’, or ‘length hacking’ of LLMs (Singhal et al.,
2023). To address this, Singhal et al. (2023) modified vari-
ous aspects of PPO (increasing KL regularisation, omitting
outputs beyond a certain length, and reward scaling), as well
as the training data, with mixed success. Chen et al. (2024)
conducted a large-scale evaluation of the impact of hyper-
parameters and the above modifications on reward hacking.
They further introduce a model that decorrelates preference
predictions with length. Miao et al. (2024) formulate reward
modelling as optimising a variational information bottle-
neck and then use this to filter out less important features
in latent space. Huang et al. (2024) mitigates reward over-
optimisation by replacing the KL regularisation with an
alternative term which implicitly implements the principle
of pessimism in the face of uncertainty. Yang et al. (2024)
addresses a form of reward misalignment due to distribution
shift of the prompts and responses seen in training versus
test time. To the best of our knowledge, reward hacking due
to a difference in the reward functions in training and test
time is not discussed explicitly in existing work. More im-
portantly, the impossibility of target policy recovery without
some data from the target reward, is not yet acknowledged.
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RLHF with expert feedback. Human feedback often
varies in quality, and one key challenge is how to incorpo-
rate these different feedbacks into learning (Daniels-Koch
& Freedman, 2022). Freedman et al. (2023) formulate se-
lecting which human to query for feedback as a bandit prob-
lem. Yamagata et al. (2024) uses the Boltzmann-rational
model to account for varying levels of expertise. Our model
parametrisation leverages certain invariances between proxy
and expert/true feedback, allowing identification of the true
policy as a low-dimensional adaptation of the proxy policy.

Domain adaptation in the wider transfer learning and
domain adaptation literature. Reward hacking describes
the general problem of adapting to a new domain from
what’s represented by training data, and appears in many
sub-fields of transfer learning and domain adaptation. For
instance, poisoning attacks in RL often consider data dis-
tributions polluted by an adversary, meaning that the data
distribution represented by adversary is chosen in order
to minimise rewards obtained by the targeted agent (Pinto
et al., 2017), but this differs from our setup since we do
not consider the adversarial aspect. Close to us is a class
of subspace methods, where a common subspace between
target and training environments is learned (Gopalan et al.,
2011; Gong et al., 2012; Fernando et al., 2013), but this line
of works do not analyse sample complexity of the target
environment, and can be computationally expensive. A line
of research directly considering how regrets scale with the
number of samples seen considers multi-fidelity bandits.
Analysis in this case assumes that the absolute difference in
rewards between the low and high fidelity bandits is bounded
by a known quantity (Kandasamy et al., 2016), whereas in
our work the difference between the proxy and true rewards
need not be bounded at all, let alone by a known quantity.

7. Conclusion
We study the problem of reward hacking due to distribution
shifts. Specifically, an abundance of preference rankings is
generated by a proxy reward function, different from the true
reward function, which is costly to query. We thus consider
the setting where we have a large proxy dataset and a small
true dataset; to the best of our knowledge, we are the first to
consider this setting. We formulate conditions motivated by
a real-world example, under which we prove that the optimal
proxy policy can be decomposed into component functions
shared with the optimal true policy, and that the true policy
is only one low-dimensional adapter function away from
the proxy policy given the shared component functions.
We then observe that in the large sample limit of proxy
data, one set of such component functions can be identified
from minimising the preference loss. Leveraging this, we
provide a characterisation of the sample complexity bound
for learning the hypothesis class both with and without

knowledge of the shared component functions; in particular,
it is seen that under knowledge of the shared component
functions the sample complexity bound is much lower than
without such knowledge. In future work we aim to further
investigate these findings empirically, as well as investigate
relaxations of the conditions above.
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A. Proof of Proposition 2
Proposition 2 Let K = {1, · · · , k} denote a set of k tokens. Let Y be the set of all finite length token sequences whose
tokens all come from K. Then Y has a one-to-one identification with the natural numbers. Let PY be the set of probability
mass functions over Y , then the topological dimension dim(PY) = ∞. If Y is instead the set of token sequences with length
≤ l, then dim(PY) = O

(
kl
)
.

Proof of Proposition 2. We can identify Y with the natural numbers as follows. Let l denote the length of a token sequence.
Since for each token in the sequence there are k options, there are kl distinct sequences of length l.

We can define a bijective mapping from the set of kl sequences to the subset of natural numbers Sl :={(∑l−1
i=1 k

i
)
, · · · ,

(∑l
i=1 k

i
)
− 1
}

for l ≥ 2 and S1 := {0, · · · , k − 1}. This is possible since the number of ele-

ments in Sl is
(∑l

i=1 k
i
)
− 1−

(∑l−1
i=1 k

i
)
+ 1 = kl. Denote one such mapping fl. Then define f : Y → N:

f(y) = fl(y) if length of y = l (19)

f is well-defined because every y has a unique length l. f is invertible because fl is invertible for every l and Sl ∩ Sl′ = ∅
and

⋃∞
l=1 Sl = N.

Thus, PY is the set of probability mass functions whose sample space is ∼= N. That is, an element PY ∈ PY is an infinite
positive sequence which sums to 1.

Let ∆d be the d-dimensional simplex. Note that PY =
⋃∞

d=1 ∆
d, where ∆d is viewed as a subset of ∆d+1 via the inclusion

∆d ↪→ ∆d+1 : (p1, · · · , pd+1) 7→ (p1, · · · , pd+1, 0, · · · ).

For each d, the topological dimension of the d-simplex ∆d is d 6; this is to say, d is the smallest number such that every open
cover of ∆d has an open refinement of order d+1. Therefore, the smallest number n such that every open cover of

⋃D
d=1 ∆

d

has an open refinement of order n+ 1 is D. Hence, there is no finite N such that the any open cover of PY :=
⋃∞

d=1 ∆
d

has an open refinement with order N + 1. Therefore the topological dimension of PY is ∞.

When the maximum sequence length is l the cardinality of Y is finite and equal to
∑l

i=1 k
i = k(1−kl)

1−k . PY thus contains

the set of positive sequences of length k(1−kl)
1−k which sum to 1, so PY is a k(1−kl)

1−k − 1-dimensional simplex, and therefore

the topological dimension of PY is k(1−kl)
1−k − 1 = O

(
kl
)
.

B. Proof of Theorem 3
Lemma 1 Under Condition 2, π† ◦ π̃−1|π̃(X ) is a well-defined function.

Proof.

Inverse of non-injective functions. In general, unless a function is injective 7 , its inverse is not a function, but only a set
map. For instance, since π̃ is many-to-one, so not injective, π̃−1 would take an element from PY and return a subset of X ,
rather than a single element. Let π̃−1|π̃(X ) denote the inverse of π̃−1 restricted to its image π̃(X ).

π† ◦ π̃−1|π̃(X ) is a well-defined function. It follows that π† ◦ π̃−1|π̃(X ) takes a point PY in the image of π̃, π̃(X ), map
it to its preimage π̃−1(PY ), and map all points in the preimage π̃−1(PY ) through π† to π†(π̃−1(PY )

)
. For any two

points x1, x2 ∈ π̃−1(PY ), we have π̃(x1) = π̃(x2), and then Condition 2 implies π†(x1) = π†(x2). Therefore, for any
PY ∈ PY , π†(π̃−1(PY )

)
is a set containing exactly one element, so π† ◦ π̃−1|π̃(X ) is a well-defined function.

Theorem 3 We work under Assumptions 2, 3, 4 and 1. For someD, there exists a Lipschitz invertible function ϕ̃ : V → π̃(X ),
Θ̃ ∈ RN×(D+1) and τ̃◦ : X → ∆D s.t. π̃ = ϕ̃ ◦ Θ̃τ̃◦, and there is a Lipschitz continuous function π̄† : ∆D → ∆D s.t.
π† = ϕ̃ ◦ Θ̃π̄† ◦ τ̃ .

6Theorem 5, https://personal.colby.edu/ sataylor/teaching/F14/MA331/TopologicalDimension.pdf
7Injective essentially means one-to-one. Formally, a function f is injective if f(x1) ̸= f(x2) whenever x1 ̸= x2.
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Proof of Proposition 3. Step 1. Show that there exists Θ̃, τ̃◦ and Lipschitz ϕ̃ such that π̃ = ϕ̃ ◦ Θ̃τ̃◦.

By Condition 4, there is some invertible Lϕ-Lipschitz function ϕ̃ : V → π̃(X ), where V is some convex polygon. Therefore,
there is a finite set VD+1 = {vd}D+1

d=1 such that every v ∈ V can be expressed as v =
∑D+1

d=1 pdvd for some p ∈ ∆D. Let
Θ̃ ∈ RN×(D+1) be the matrix such that its d-th column, Θ̃:,d, is equal to vd. Then every v ∈ V can be written as v := Θ̃p
for some p ∈ ∆D.

Since ϕ̃−1 ◦ π̃ is a function X → V , then for every x, ϕ̃−1 ◦ π̃(x) is in V . Therefore, there exists some px ∈ ∆D such that

ϕ̃−1 ◦ π̃(x) = Θ̃px (20)

Let τ̃◦ : X → ∆D be s.t.

τ̃◦(x) = px (21)

then

ϕ̃−1 ◦ π̃(x) = Θ̃τ̃◦(x) (22)

π̃(x) = ϕ̃ ◦ Θ̃τ̃◦(x) (23)

Step 2. Let τ̃(x) = Θ̃τ̃◦(x). We show that under the shared-level-sets assumption, π† ◦ τ̃−1|τ̃(X ) is well-defined. We
have the following equalities:

π̃−1|π̃(X ) =
(
ϕ̃ ◦ τ̃

)−1

|π̃(X ) (24)

= τ̃−1|V ◦ ϕ̃−1 (25)

π̃−1|π̃(X ) ◦ ϕ̃ = τ̃−1|V (26)

= τ̃−1|ϕ̃−1(π̃(X )) (27)

= τ̃−1|τ̃(X ) (28)

Therefore,

π̃−1|π̃(X ) ◦ ϕ̃ = τ̃−1|τ̃(X ) (29)

π† ◦ π̃−1|π̃(X ) ◦ ϕ̃ = π† ◦ τ̃−1|τ̃(X ) (30)
(31)

By Condition 2 and Lemma 1, π† ◦ π̃−1|π̃(X ) is well-defined. Since π† ◦ π̃−1|π̃(X ) is well-defined, so is π† ◦ τ̃−1|τ̃(X ).

Step 3. Show that under Assumptions 3, 4 and 1, π† can be decomposed as ϕ̃ ◦ ψ ◦ τ̃ for some Lipschitz function
ψ : τ̃(X ) → ϕ̃−1

(
π†(X )

)
. Note that 1. ϕ̃ is invertible restricted to its image, 2. by Condition 3 and 4 ϕ̃−1 is defined on

the image of π†, and 3. π† ◦ τ̃−1|τ̃(X ) is well-defined. Therefore, we can factor π† as

π† = ϕ̃ ◦ ϕ̃−1 ◦ π† ◦ τ̃−1|τ̃(X ) ◦ τ̃ (32)

Therefore, define:

ψ : τ̃(X ) → ϕ̃−1
(
π†(X )

)
⊂ τ̃(X) (33)

ψ := ϕ̃−1 ◦ π† ◦ τ̃−1|τ̃(X ) (34)

= ϕ̃−1 ◦ π† ◦ π̃−1|π̃(X ) ◦ ϕ̃ (35)

is a composition of Lipschitz functions (by Assumptions 4 and 1) so is Lipschitz.

13
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Step 4. Finally show the assertion, that π† = ϕ̃ ◦ Θ̃π̄† ◦ τ̃◦ for some Lipschitz π̄† : ∆D → ∆D. Substituting in
τ̃(x) = Θ̃τ̃◦(x), we obtain:

π†(x) = ϕ̃ ◦ ψ ◦ Θ̃τ̃◦(x) (36)

Let px = τ◦(x) ∈ ∆D. We want to show that there is a Lipschitz continuous function π̄† : ∆D → ∆D such that

ψ
(
Θ̃px

)
= Θ̃π̄†(px

)
(37)

For a given px, we can try to solve the linear system in terms of π̄†(p). We know that it must be an element of the set:

Θ̃+ψ
(
Θ̃px

)
+Ker

(
Θ̃
)
, (38)

where Θ̃+ denotes the pseudoinverse.

Take the intersection between this set and ∆D; the intersection is non-empty because ψ lands in V . Now we describe a
procedure to choose a point in this intersection that is Lipschitz continuous wrt px: we let π̄† map px to the centroid of the
intersection between ∆D and Θ̃+ψ

(
Θ̃px

)
+Ker

(
Θ̃
)
. The intersection is one of two convex sets, so it is convex; so the

centroid lie in this set.

We now proceed to show that π̄† is Lipschitz continuous, in two steps. 1. First we show that the centroid of the intersection
is a smooth function of the location of its vertices. 2. Then we show that the location of the vertices is a piecewise smooth
function of px.

We show the centroid of the intersection is a generically smooth function of the location of its vertices. Note that the
intersection of ∆D and Θ̃ψ

(
Θ̃px

)
+Ker

(
Θ̃
)

is a convex high-dimensional polyhedron, denote it S(px).

The centroid of a convex high-dimensional polyhedron can be computed as follows: every convex polyhedron admits a
triangulation. Let the triangulation of S(px), denote it by T(S(px)). For the ith simplex in T(S(px)), take its vertices
{vi0, · · · ,xin} where n is the dimension of the polyhedron. The centroid of the simplex is given by C(i) = vi0+···+vin

n+1 , and

the volume Vol(i) is given by 1
n!

∣∣∣∣(v0 · · · vn

1 · · · 1

)∣∣∣∣. The centroid of S(px), denoted C(S(px)) is given by
∑

i C(i)Vol(i);

since the determinant function is a polynomial in the matrix entries, this is a vector field where each entry is a polynomial.
Moreover, every vertex in the triangulation but is not on S(px) is in the interior of S(px). There is some ϵ small enough
such that we can draw an ϵ-ball around each such vertex such that the closure of the balls are all disjoint and still lie in
the polyhedron. So, perturb move each vertex to a point on the boundary of its ball; this gives a new triangulation, but
the centroid is not changed. Since we can do it for any ϵ′ ≤ ϵ, C(S(px)) is constant in the interior vertices. Therefore,
C(S(px)) is a polynomial of its vertices.

The limiting case is when two vertices overlap; in this case, at least one element in the triangulation will collapse onto a face,
which has volume zero, so its centroid will not contribute to the calculation of C(S(px)) through the formula. Therefore,
the centroid of a polyhedron is a polynomial of its vertices, including when two or more vertices overlap.

We show that the location of the vertices is a piecewise-smooth function of px. Note that the set of points in S(px) is
described as follows: Suppose dim(S(p)) = J ≤ D, and choose an orthonormal basis in RD+1 whose span contains the
direction vectors in S(p):

b1, · · · , bJ (39)

Extend this to an orthonormal basis whose span contains ∆D:

b1, · · · , bJ , bJ+1, · · · , bD (40)

And finally extend this to RD:

b1, · · · , bJ , bJ+1, · · · , bD, bD+1 (41)

14
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So we can express

S(px) =

{
s ∈ RD+1

∣∣∣∣ si ≥ 0,
∑
i

si = 1,As = A
(
Θ̃+ψ

(
Θ̃p
))}

, (42)

where A =
(
ID+1 −BJB

⊤
J

)
, B is the matrix whose rows are the D + 1 basis vectors, and BJ is the one taking its first J

rows.

Note that ID+1 −BJB
⊤
J = B−JB

⊤
−J where B−J is the matrix containing bJ+1, · · · , bD+1 as rows. But 1 is orthogonal

to the row space of B⊤
J , so it is contained in the row space of B⊤

−J , and hence B−JB
⊤
−J . Therefore, we can remove∑

i si = 1 from the set of conditions.

Therefore, the set of conditions contains D + 1− J linearly independent conditions and D + 1 inequalities.

An extrema, i.e. a vertex, is the solution of D + 1 linearly independent equations where all D + 1− J linearly independent
equality constraints are included, together with J equations from saturating the inequality constraints. Since ID+1−BJB

⊤
J

has rank D + 1− J , there is a subset of D + 1− J rows, call the new matrix constructed from these rows B̄D+1−J . Select
J vectors from the standard basis which are linearly independent of the rows of B̄D+1−J , and stack them into an invertible
matrix C. Then any vertex is a solution of one such equation

v∗ = C−1

(
B̄D+1−J

(
Θ̃+ψ

(
Θ̃px

))
0

)
(43)

provided it still satisfies the remaining inequality constraints. Here it is clear that any v∗ varies smoothly with px. When all
vertices of S(px) are in the interior of a 1-dimensional face of ∆D, they vary locally smoothly with px. Since the centroid
of S(px) varies smoothly with its vertices, whenever its vertices vary smoothly with px, the centroid also vary locally
smoothly with px. The only non-differentiability happens when one vertex moves out of ∆D and another moves in. But
around those points of px the centroid is still continuous wrt px , so π̄† is piecewise differentiable function on a compact
domain, and therefore is Lipschitz continuous.

C. Convergence rates proofs

Lemma 4. (Metric on policies through rπ) Define rπ(x,y) = β log π(y | x)
πref(y | x) for some fixed constant β > 0, and let

dr(π, π
′) = ∥rπ − rπ′∥∞ (44)

Then dr(·, ·) defines a metric over any set Π of functions X × Y → [0, 1] s.t. ∀x
∑

Y π(y | x) = 1, and satisfies
|rπ(x,y)| ≤ C over X and Y .

Proof of Lemma 4. dr is well-defined on Π since for any π, π′ ∈ Π, dr(π, π′) ≤ ∥rπ∥∞ + ∥rπ′∥∞ ≤ 2C <∞.

We can verify that d is a metric on Π. Clearly, symmetry and positivity holds, and d(π, π′) = 0 ⇐⇒ π = π′, so we just
need to check triangle inequality. Fix π′′ ∈ Π,

dr(π, π
′′) + dr(π

′, π′′) = ∥rπ − rπ′′∥∞ + ∥rπ′ − rπ′′∥∞ (45)
≥ ∥rπ − rπ′′ − rπ′ + rπ′′∥∞ (46)
= ∥rπ − rπ′∥∞ (47)
= dr(π, π

′) (48)

Proposition 7 (Concentration bound). Let G be a measure on (X,Yw, Yl) and for any π ∈ Π ⊆ Π̊ (Def. 1) let

RG(π) = EG

[
log σ

(
β log

π(Yw|X)

πref(Yw|X)
− β log

π(Yl|X)

πref(Yl|X)

)]
(49)
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be the preference loss. Further, let (Xi, Yw,i, Yl,i)
n
i=1 be i.i.d. samples from G, and let Ĝn denote the empirical measure

given by the samples, then

P

(
sup
π∈Π

|RG(π)−RĜn
(π)| ≥ ϵ

)
≤ 2 inf

α∈(0,1)
Cov

(
Π, dr(·, ·),

αϵ

4

)
e−

2(1−α)2nϵ2

4C2 (50)

where dr(π, π′) = ∥rπ − rπ′∥∞.

Proof of Proposition 7. Adapted from Elesedy (2022).

Fix π, π′ ∈ Π.

|RG(π)−RG(π
′)| =

∣∣∣∣EG

[
log σ

(
β log

π(Yw|X)

πref(Yw|X)
− β log

π(Yl|X)

πref(Yl|X)

)
− log σ

(
β log

π′(Yw|X)

πref(Yw|X)
− β log

π′(Yl|X)

πref(Yl|X)

)]∣∣∣∣ (51)

≤ EG

[∣∣∣∣ log σ(β log π(Yw|X)

πref(Yw|X)
− β log

π(Yl|X)

πref(Yl|X)

)
− log σ

(
β log

π′(Yw|X)

πref(Yw|X)
− β log

π′(Yl|X)

πref(Yl|X)

)∣∣∣∣] (52)

When σ is the sigmoid, log σ is concave, so the above is upper bounded:

≤ EG

[∣∣∣∣(β log π(Yw|X)

πref(Yw|X)
− β log

π(Yl|X)

πref(Yl|X)

)
−
(
β log

π′(Yw|X)

πref(Yw|X)
− β log

π′(Yl|X)

πref(Yl|X)

)∣∣∣∣] (53)

≤ EG

[∣∣∣∣(β log π(Yw|X)

πref(Yw|X)
− β log

π′(Yw|X)

πref(Yw|X)

)
−
(
β log

π(Yl|X)

πref(Yl|X)
− β log

π′(Yl|X)

πref(Yl|X)

)∣∣∣∣] (54)

≤ EG[|(rπ(X,Yw)− rπ′(X,Yw))− (rπ(X,Yl)− rπ′(X,Yl))|] (55)
≤ EG[|(rπ(X,Yw)− rπ′(X,Yw))|] + EG[|(rπ(X,Yl)− rπ′(X,Yl))|] (56)
≤ 2∥rπ − rπ′∥∞ (57)

Now let Ĝn be the empirical measure of (X,Yw, Yl) with n samples. And define

LĜn
(π) = RĜn

(π)−RG(π) (58)

Then

∣∣∣LĜn
(π)− LĜn

(π′)
∣∣∣ = ∣∣∣RĜn

(π)−RG(π)−RĜn
(π′) +RG(π

′)
∣∣∣ (59)

≤
∣∣∣RĜn

(π)−RĜn
(π′) +RG(π

′)−RG(π)
∣∣∣ (60)

≤
∣∣∣RĜn

(π)−RĜn
(π′)

∣∣∣+ |RG(π
′)−RG(π)| (61)

≤ 4∥rπ − rπ′∥∞ (62)

So now let K be a κ-cover of Π in dr(·, ·). Define the sets D(πk) = {π ∈ Π : dr(πk, π) ≤ κ}. Then
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P

(
sup
π∈Π

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

)
= P

( ⋃
πk∈K

{
sup

π∈D(πk)

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

})
(63)

≤
∑
πk∈K

P

(
sup

π∈D(πk)

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

)
(64)

Set κ = αϵ
4 for 0 < α < 1. Using the above, for any π ∈ D(πk) we have

∣∣∣LĜn
(π)− LĜn

(πk)
∣∣∣ ≤ 4∥rπ − rπk

∥∞ (65)

= 4dr(πk, π) (66)
≤ 4κ (67)

By triangle inequality: ∣∣∣LĜn
(π)
∣∣∣− ∣∣∣LĜn

(πk)
∣∣∣ ≤ ∣∣∣LĜn

(π)− LĜn
(πk)

∣∣∣ (68)

So ∣∣∣LĜn
(π)
∣∣∣ ≤ 4κ+

∣∣∣LĜn
(πk)

∣∣∣∣∣∣LĜn
(π)
∣∣∣ ≤ αϵ+

∣∣∣LĜn
(πk)

∣∣∣ (69)

Since the probability of the supremum of over a cover is greater than ϵ implies that the upper bound over the cover is greater
than ϵ, we have that the probability of the latter is at least the probability of the former:

P

(
sup
π∈Π

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

)
≤
∑
πk∈K

P

(
sup

π∈D(πk)

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

)
(70)

≤
∑
πk∈K

P
(
αϵ+

∣∣∣LĜn
(πk)

∣∣∣ ≥ ϵ
)

(71)

≤
∑
πk∈K

P
(∣∣∣LĜn

(πk)
∣∣∣ ≥ ϵ(1− α)

)
(72)

(73)

Then Hoeffding’s inequality gives

P

(
sup
π∈Π

∣∣∣LĜn
(π)
∣∣∣ ≥ ϵ

)
≤
∑
πk∈K

P
(∣∣∣LĜn

(πk)
∣∣∣ ≥ ϵ(1− α)

)
(74)

≤ 2|K| exp

(
−2(1− α)2nϵ2

|2C|2

)
(75)

Proposition 8 (Covering number in terms of that of domain and range). Fix ϕ̃, Θ̃, τ̃◦ and Lπ̄ . For p ∈ τ̃◦(X ), let

Π̄p :=

{
g(·y) = ϕ̃

(
Θ̃π̄(p)

)
[·y]

∣∣∣∣ ϕ̃ ◦ Θ̃π̄ ◦ τ̃◦(·x)[·y] ∈ Π
(
ϕ̃, Θ̃, τ̃◦, Lπ̄

)}
⊆ PY (76)
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and recall the metric on PY :

dPY (p, q) :=

∥∥∥∥β log p(·y)q(·y)

∥∥∥∥
∞

(77)

Then for κ, δ > 0, denoting as ∆D
δ the δ-cover of ∆D under metric d∆D :

Cov
(
Π
(
ϕ̃, Θ̃, τ̃◦, Lπ̄

)
, dr, 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ

)
(78)

≤ sup
p′∈∆D

δ

Cov
(
Π̄p′ , dPY , κ

)Cov(∆D,d∆,δ) (79)

Proof of Proposition 8. We wish to find the covering number of Π with the metric dr.

Take covers of the domain and range of π̄. Take a δ-cover of τ̃◦(X ) with metric d∆, denote it ∆D
δ . For every p′ ∈ ∆D

δ ,
take a κ-cover of Π̄p′ with metric dPY . Denote it by Π̄p′,κ.

Construct a set of maps from the domain of π̄ to the range of π̄, via the covers. Let h̄∆D
δ

be a map from ∆D
δ s.t. for

every p′, h̄∆D
δ
(p′) ∈ Π̄p′,κ. For every such h̄∆D

δ
, extend it to h̄, a function whose domain is ∆D as follows: for p ∈ ∆D,

let:

h̄(p) =

{
h̄∆D

δ
(p), if p ∈ ∆D

δ

h̄∆D
δ
(p′) where p′ is selected randomly from A(p), if p ̸∈ ∆D

δ

, (80)

A(p) =

{
p′ ∈ ∆D

δ

∣∣∣∣∣ d∆D (p,p′) = min
p′′∈∆D

δ

d∆d(p,p′′)

}
. (81)

Construct a set of maps X × Y → [0, 1], denoted by Hδ,κ. This set will be proved to cover Π. For every h̄, define
h : X × Y → [0, 1]:

h(x, y) = h̄(τ̃◦(x))[y] (82)

Let Hδ,κ denote all such h. It can be checked that Hδ,κ ⊂ Π:

1. h̄(τ̃◦(x)) ∈ Π̄p′ for some p′ so is in PY ; therefore,
∑

y h̄(τ̃
◦(x))[y] = 1.

2. Since p′ ∈ τ̃◦(X ), take x′ so that p′ = τ̃◦(x′). Then wlog for every x, there is some p′ and x′ such that,

h̄(τ̃◦(x))[y] = h̄(p′)[y] (83)
= h̄∆D

δ
(p′)[y] (84)

= ϕ̃ ◦ Θ̃π̄(p′)[y] (85)

= ϕ̃ ◦ Θ̃π̄(τ̃◦(x′))[y], (86)

where the third equality holds since h̄∆D
δ
(p′)[y] ∈ Π̄p′ . Therefore for every x′,

∣∣∣β log h̄(τ̃◦(x))[y]
πref (y|x)

∣∣∣ ≤ C.

3. Now let us show that for some π̄h, h = ϕ̃ ◦ Θ̃π̄h ◦ τ̃◦ ∈ Π̊. For every p ∈ τ̃◦(X ), h̄(p) ∈ Π̄p′,κ for some p′, i.e. there

is some π̄p s.t. h̄(p) = ϕ̃
(
Θ̃π̄(p′)

)
. Construct π̄h(p) := π̄p(p

′).

We need to show that Hδ,κ covers Π with metric dr. To this end we need to show that for every π ∈ Π, there is a hπ ∈ Hδ,κ,
such that dr(π, hπ) < ϵ(δ, κ) for some small value ϵ which depends monotonically on δ and κ, and ϵ(0, 0) = 0.
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So consider dr(π, h) for some π ∈ Π and h ∈ Hδ,κ:

dr(π, h) = ∥rπ − rh∥∞ (87)
= sup

x∈X ,y∈Y
|rπ(x, y)− rh(x, y)| (88)

= sup
x∈X ,y∈Y

∣∣∣∣β log π

πref
(x, y)− β log

h

πref
(x, y)

∣∣∣∣ (89)

= sup
x∈X

{
sup
y∈Y

{∣∣∣∣β log π

πref
(x, y)− β log

h

πref
(x, y)

∣∣∣∣}} (90)

= sup
x∈X

{
sup
y∈Y

{|β log π(x, y)− β log h(x, y)|}
}

(91)

So it is sufficient to show that for every π there is some hπ such that for every x,

sup
y∈Y

{|β log π(x, y)− β log hπ(x, y)|} (92)

= ∥β log π(x, ·y)− β log hπ(x, ·y)∥∞ (93)
≤ ϵ(δ, κ) (94)

Decompose the distance between a general π ∈ Π and h ∈ Hδ,κ for a fixed x. This helps us later choose the hπ which
makes the bound small enough. Let π ∈ Π, h ∈ Hδ,κ, x ∈ X and x′ ∈ X s.t. p′ := τ̃◦(x′) ∈ A(τ̃◦(x)).

∥β log π(x, ·y)− β log h(x, ·y)∥∞ (95)
≤ ∥β log π(x, ·y)− β log π(x′, ·y)∥∞ (96)
+ ∥β log π(x′, ·y)− β log h(x′, ·y)∥∞ (97)
+ ∥β log h(x′, ·y)− β log h(x, ·y)∥∞ (98)

Consider ∥β log π(x, ·y)− β log π(x′, ·y)∥∞. We can show this term is bounded by Lδ.

Let x′ ∈ τ̃◦,−1(p′) be s.t.

∥β log π(x, ·y)− β log π(x′, ·y)∥∞ (99)

≤
∥∥∥∥β log π(x, ·y)

π(x′, ·y)

∥∥∥∥
∞

(100)

≤ dPY (π(x, ·y), π(x′, ·y)) (101)

≤ Lϕ∥Θ̃∥pLπ̄d∆(τ̃
◦(x), τ̃◦(x′)) (102)

≤ Lϕ∥Θ̃∥pLπ̄δ (103)

Consider ∥β log π(x′, ·y)− β log h(x′, ·y)∥∞; we show that we can choose hπ to make this be upper bounded by κ.
Since π ∈ Π, it can be written as π(·x, ·y) = ϕ̃ ◦ Θ̃π̄ ◦ τ̃◦(·x)[·y] for some π̄ : ∆D → ∆D.

Note that π(x′, ·y) ∈ Π̄τ̃(x′). And since τ̃◦(x′) ∈ ∆D
δ , there is some h̄π̄ ∈ Π̄τ̃◦(x′),κ s.t. dPY

(
π(x′, ·y), h̄π̄(τ̃◦(x′))

)
≤ κ.

But expanding this,

κ ≥ dPY

(
π(x′, ·y), h̄π̄(τ̃◦(x′))

)
(104)

=

∥∥∥∥β log π(x′, ·y)
h̄π̄(τ̃◦(x′))[·y]

∥∥∥∥
∞

(105)

=
∥∥β log π(x′, ·y)− h̄π̄ ◦ τ̃◦(x′, ·y)

∥∥
∞ (106)

So choose hπ := h̄π̄ ◦ τ̃◦.

From now on replace h by hπ .
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Consider ∥β log hπ(x′, ·y)− β log hπ(x, ·y)∥∞. We show that this is bounded above by 2κ + 2Lδ. Let p′
1,p

′
2 ∈

A(τ̃◦(x)), then let x′i ∈ τ̃◦,−1(p′
i).

∥β log hπ(x′1, ·y)− β log hπ(x
′
2, ·y)∥∞

≤ ∥β log hπ(x′1, ·y)− β log π(x′1, ·y)∥∞ +

∥β log π(x′1, ·y)− β log π(x′2, ·y)∥∞ +

∥β log π(x′2, ·y)− β log hπ(x
′
2, ·y)∥∞ (107)

≤ κ+ ∥β log π(x′1, ·y)− β log π(x′2, ·y)∥∞ + κ (108)

= 2κ+ β

∥∥∥∥log π(x′1, ·y)π(x′2, ·y)

∥∥∥∥
∞

(109)

≤ 2κ+ Lϕ∥Θ̃∥pLπ̄d∆(τ̃
◦(x1), τ̃

◦(x2)) (110)

≤ 2κ+ Lϕ∥Θ̃∥pLπ̄d∆(τ̃
◦(x1), τ̃

◦(x)) + Lϕ∥Θ̃∥pLπ̄d∆(τ̃
◦(x), τ̃◦(x2)) (111)

≤ 2κ+ 2Lϕ∥Θ̃∥pLπ̄δ (112)

If τ̃(x) ̸∈ ∆D
δ , h(x) = h̄(τ̃◦(x)) = h̄∆δ

(p′′) = h(x′′) with some p′′ ∈ A(τ̃◦(x)) and τ̃◦(x′′) = p′′, therefore

∥β log hπ(x′, ·y)− β log hπ(x, ·y)∥∞ = ∥β log hπ(x′, ·y)− rhπ (x
′′, ·y)∥∞ (113)

≤ 2κ+ 2Lϕ∥Θ̃∥pLπ̄δ (114)

Therefore,

∥rπ(x, ·y)− β log hπ(x, ·y)∥∞ ≤ 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ (115)

Since the upper bound is constant in x, we can conclude that dr(π, hπ) ≤ 3κ+3Lϕ∥Θ̃∥pLπ̄δ. So Hδ,κ covers Π in dr with
radius 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ.

Therefore, we have that

Cov
(
Π, dr, 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ

)
≤ |Hδ,κ| (116)

≤
∏

p′∈∆D
δ

∣∣Π̄p′,κ

∣∣ (117)

≤ sup
p′∈∆D

δ

Cov
(
Π̄p′ , dPY , κ

)Cov(∆D
δ ,d∆D ,δ) (118)

C.1. Proof of Theorem 5

Theorem 5(Bounding sample complexity in terms of dimension) We remain in the set up of Proposition 8. The covering
number of Π is bounded above by a function of D:

Cov
(
Π, dr, 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ

)
≤

(
2Lϕ∥Θ̃∥p

√
D

κ

)D
(

2
√

D
δ

)D

(119)

Set κ = ϵ
48 , we need

n(ϵ, ω) = Ω

D
ϵ2

(
96Lϕ∥Θ̃∥pLπ̄

√
D

ϵ

)D

log

(
96Lϕ∥Θ̃∥p

√
D

ϵ

)
− logω

 (120)
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samples to generalise. That is, whenever n′ ≥ n(ϵ, ω), we have

P

(
sup
π∈Π

|RG(π)−RĜn′
(π)| ≥ ϵ

)
≤ ω (121)

Proof of Theorem 5. We will bound both Cov
(
Π̄p′ , dPY , κ

)
and Cov

(
∆D, d∆, δ

)
in terms of D.

First consider Cov
(
Π̄p′ , dPY , κ

)
. Recall Π̄p′ :

Π̄p′ =
{
g(·y) = ϕ̃ ◦ Θ̃π̄(p′)[·y]

∣∣∣ ϕ̃ ◦ Θ̃π̄ ◦ τ̃◦(·x)[·y] ∈ Π
}

(122)

Now we create a Lipschitz function such that the image is Π̄p′ : note that ϕ̃ ◦ Θ̃ is Lϕ∥Θ̃∥p-Lipschitz, where we recall
that Lϕ is the Lipschitz constant for ϕ̃ and ∥Θ̃∥p is the operator-p-norm of Θ̃ on ∆D. For a given p′, let K(p′) ={
π̄(p′)

∣∣∣ ϕ̃ ◦ Θ̃π̄ ◦ τ̃◦(·x)[·y] ∈ Π
}
⊆ ∆D. Then ϕ̃ ◦ Θ̃ : K(p′) → Π̄p′ .

Now use the covering number of K(p′) to bound that of Π̄p′ .

Cov
(
Π̄p′ , dPY , κ

)
≤ Cov

(
K(p′), d∆,

κ

Lϕ∥Θ̃∥p

)
≤ Cov

(
∆D, d∆,

κ

Lϕ∥Θ̃∥p

)
(123)

Finally, since all vectors on ∆D have bounded p-norm, we can bound, for some constant E(p,D) depending on the
norm:

Cov
(
∆D, d∆, κ

)
≤

(
2E(p,D)Lϕ∥Θ̃∥p

√
D

κ

)D

(124)

This gives us:

Cov
(
Π, dr, 3κ+ 3Lϕ∥Θ̃∥pLπ̄δ

)
(125)

≤ sup
p′∈∆D

δ

Cov
(
Π̄p′ , dPY , κ

)Cov(∆D,d∆,δ) (126)

≤ Cov

(
∆D, d∆,

κ

Lϕ∥Θ̃∥p

)Cov(∆D,d∆,δ)

(127)

≤

(
2E(p,D)Lϕ∥Θ̃∥p

√
D

κ

)D
(

2E(p,D)
√

D
δ

)D

(128)

And let κ = Lϕ∥Θ̃∥p(Lπ̄)δ.

Then the covering number bound becomes

Cov
(
Π, dr, 6Lϕ∥Θ̃∥pLπ̄δ

)
≤ Cov

(
∆D, d∆, Lπ̄δ

)Cov(∆D,d∆,δ) (129)

≤

(
2E(p,D)

√
D

Lπ̄δ

)D
(

2E(p,D)
√

D
δ

)D

(130)

Recall that the generalisation error bound is

P

(
sup
π∈Π

|RG(π)−RĜn
(π)| ≥ ϵ

)
≤ 2 inf

α∈(0,1)
Cov

(
Π, dr,

αϵ

4

)
e−

2(1−α)2nϵ2

4C2 (131)
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For simplicity let α = 1
2 . So, set

ϵ

8
= 6Lϕ∥Θ̃∥pLπ̄δ (132)

So

δ =
ϵ

48Lϕ∥Θ̃∥pLπ̄

. (133)

and

κ =
Lϕ∥Θ̃∥pLπ̄ϵ

48Lϕ∥Θ̃∥pLπ̄

(134)

=
ϵ

48
(135)

We have

P

(
sup
π∈Π

|RG(π)−RĜn
(π)| ≥ ϵ

)
(136)

≤ Cov(Π, dr, ϵ/8)e
− nϵ2

8C2 (137)

≤ e−
nϵ2

8C2

96Lϕ

∥∥∥Θ̃∥∥∥
p
E(p,D)

√
D

ϵ


D

(
96Lϕ∥Θ̃∥pLπ̄E(p,D)

√
D

ϵ

)D

(138)

For simplices, E[p,D] ≤ 1.

So let’s say we want the probility upper bound to be ω, then the number of samples n we need to generalise is

ω = e−
nϵ2

8C2

96Lϕ

∥∥∥Θ̃∥∥∥
p

√
D

ϵ


D

(
96Lϕ∥Θ̃∥pLπ̄

√
D

ϵ

)D

(139)

n = Ω

D
ϵ2

(
96Lϕ∥Θ̃∥pLπ̄

√
D

ϵ

)D

log

96Lϕ

∥∥∥Θ̃∥∥∥
p

√
D

ϵ

− logω

 (140)

C.2. Proof of Theorem 6

Theorem 6 (Bounding sample complexity of learning without proxy) Let Π̊
(
Lϕ∥Θ̃∥pLπ̄

)
be the subset of Π̊ where π is

Lϕ∥Θ̃∥pLπ̄-Lipschitz. Set κ = ϵ
24 , we need

Ω

D′

ϵ2

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)D′

log

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)
− logω

 (141)

samples to generalise, where D′ ≫ D , and E′(p,D′) ≫ 1. That is, whenever n′ ≥ n(ϵ, ω), we have

P

(
sup

π∈Π̊(Lϕ∥Θ̃∥pLπ̄)
|RG(π)−RĜn′

(π)| ≥ ϵ

)
≤ δ (142)
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Proof of Theorem 6. For learning Π
(
ϕ̃, Θ̃, τ̃◦, Lπ

)
, the covering number bound is as in Eq 138.

For learning Π̊ with the same Lipschitz constant (i.e. Lϕ∥Θ̃∥pLπ̄) as above but without proxy data, the covering number
bound can be read off from Elesedy (2022). Since X is a discrete space, we use the p-norm-induced metric in the embedding
space of X ; denote the embedding function f . Additionally denote the feasible subset in PY by P . Denote the hypothesis
class as Π̊

(
Lϕ∥Θ̃∥pLπ̄

)
to mean the subset with smallest Lipschitz-constant in the argument,

Cov
(
Π̊
(
Lϕ∥Θ̃∥pLπ̄

)
, dr, 2Lϕ∥Θ̃∥pLπ̄δ + κ

)
(143)

= Cov(Y, dPY , κ)
Cov(f(X ),dp,δ) (144)

≤

(
2E′(p,D′)Lϕ∥Θ̃∥pLπ̄

√
D′

κ

)D′
(

2E′(p,D′)
√

D′
δ

)D′

(145)

Setting κ = Lϕ∥Θ̃∥pLπ̄δ,

Cov
(
Π̊
(
Lϕ∥Θ̃∥pLπ̄

)
, dr, 2Lϕ∥Θ̃∥pLπ̄δ + κ

)
(146)

≤

(
2E′(p,D′)

√
D′

δ

)D′
(

2E′(p,D′)
√

D′
δ

)D′

(147)

then setting ϵ/8 = 3Lϕ∥Θ̃∥pLπ̄δ (i.e. setting κ = ϵ
24 )

P

(
sup
π∈Π

|RG(π)−RĜn
(π)| ≥ ϵ

)
(148)

≤ Cov
(
Π̊
(
Lϕ∥Θ̃∥pLπ̄

)
, dr, 2Lϕ∥Θ̃∥pLπ̄δ + κ

)
e−

nϵ2

8C2 (149)

≤ e−
nϵ2

8C2

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)D′
(

48Lϕ∥Θ̃∥pLπ̄E′(p,D′)
√

D′

ϵ

)D′

(150)

A similar analysis show that we need

n = Ω

D′

ϵ2

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)D′

log

(
48Lϕ∥Θ̃∥pLπ̄E

′(p,D′)
√
D′

ϵ

)
− logω

 (151)

D. Experiments
D.1. Tempered Reward

We include a simple experiment to demonstrate the efficacy of our method on a common real-world scenario - regularisation
in learned rewards from tempered softmax. We set the environment as follows:

• X = R5, PX = N (0, I5)

• Y = 1, 2, 3, so PY = ∆2 a two-simplex.
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πref π† π̃ π̃θ π†
θ

mean 0.63 0.0 0.33 0.34 0.32
std 0.00 0.0 0.00 0.014 0.096

Table 1. Results for the Tempered Reward experiment

• D = 1.

• π† : R5 → R → ∆2.

• log(π̃(yk|x)) = log(π†(yk|x))
T . Temperature T = 5.

• πref = Uniform{1, 2, 3}

The proxy policy and true policy are implemented as follows. π̃ is initialised as a neural network with two linear layers

followed by an injective softmax layer; all weights and biases are sampled from Uniform

(
− 1√

input features
, 1√

input features

)
:

π̃ : x 7→ Linear(dim(X ), D) 7→ Linear(D, |Y| − 1)︸ ︷︷ ︸
logits layer

7→ InjectiveSoftMax 7→ π̃(·|x) (152)

The true policy is initialised by scaling the logits layer of π̃ by T .

π† : x 7→ Linear(dim(X ), D) 7→ Linear(D, |Y| − 1) 7→ T ·︸ ︷︷ ︸
logits layer

7→ InjectiveSoftMax 7→ π†(·|x) (153)

The proxy policy model π̃θ is parameterised as a concatenation of τ̃◦, Θ̃ and ϕ̃, where the injectivity of Θ̃ and ϕ̃ are ensured
by forcing Θ̃ to be full-rank and parameterising ϕ̃ with leaky-relu activation (which is injective) and full-rank linear layers.
We parameterise the true policy model π†

θ using the trained τ̃◦,∗, Θ̃∗ and ϕ̃∗, together with π̄ parameterised as a linear layer.
The parameterisation of π̃θ and π†

θ.

π̃θ : x 7→ ϕ̃∗
(
Θ̃∗τ̃◦,∗(x)

)
(154)

π†
θ : x 7→ ϕ̃∗

(
Θ̃∗π̄θ(τ̃

◦,∗(x))
)

(155)

We train the proxy policy model on 8000 proxy samples {(x̃i, ỹw,i, ỹl,i)}8000i=1 generated from π̃, then only finetune π̄ from

35 true samples
{(
x†j , y

†
w,j , y

†
l,j

)}35

j=1
generated from π†. We compare the KL divergences KL(π†, π†

θ) and KL(π†, π̃) to

see if the learned π†
θ is robust against distribution shift π† 7→ π̃. We repeat the experiments 6 times. The results are shown

in Table 1.

D.2. Empirical verification of Theorem 5 and Theorem 6

To help wider understanding, we attempt to empirically show the results of our theorem that the number of samples n scales
differently wrt the generalisation error ϵ for a model constructed with and without our proposed parameterisation. The setup
is as follows, we have the prompt space X = R5 and completion space Y = {1, 2, 3, 4}, that is PY = ∆3 ⊂ R4; we set
D = 1 again.

In this case, we construct the true and proxy policies to explicitly follow our parameterisation:

• The proxy policy π̃ : X τ̃◦

−→ ∆D Θ̃−→ RD ϕ̃−→ PY .

• So, by Theorem 3, the true policy is π† : X τ̃◦

−→ ∆D π̄−→ ∆D Θ̃−→ RD ϕ̃−→ PY .
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Figure 3. Log-log graph of number of samples n against the maximum gap ϵ.

The components τ̃◦, Θ̃, π̄, ϕ̃ are parameterised as neural networks such that the Lipschitz constants are all 1, in other words,
∥Θ̃∥2 = 1, Lϕ̃ = 1 and Lπ̄ = 1.

Given this setup, our results show that, for a fixed ω, n = O(ϵ−3) for models using our parameterisation and n = O(ϵ−5)
for an arbitrary model. To verify this, we use the following policy models:

• For our parameterisation, we obtain samples {π̂†
i }i=1 from the hypothesis class of π† by fixing τ̃◦, Θ̃, ϕ̃ and sampling

the different adapters ˆ̄π from the class of 1-Lipschitz functions from ∆1 to ∆1.

• For an arbitrary model, we obtain samples {π̂j}j by using a general neural network parameterisation and sampling
them from the class of 1-Lipschitz functions from X to PY .

Although the actual bounds in Theorems 5 and 6 uses the supremum over π̂† or π̂, to verify with supremum is computationally
expensive, so we settle for only using the samples of π̂† and π̂ directly.

Given all of this, we make a log-log graph with the number of samples n and the maximum gap ϵ as axis and show the
possible values of ω as color; the figure is shown in . As this is a log-log graph, our theoretical results says that the contour
lines for a specific ω should have slope 3 and for the arbitrary parametrisation should have slope 5, we have ploted these
lines in black and It can be seen from the plots that the contours are either in rough agreement with the plots, or the slope is
slightly below the that of the plots, which is expected as the result is an upper bound.
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