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Abstract
Commonsense reasoning systems should be
able to generalize to diverse reasoning cases.
However, most state-of-the-art approaches de-
pend on expensive data annotations and over-
fit to a specific benchmark without learning
how to perform general semantic reasoning.
To overcome these drawbacks, zero-shot QA
systems have shown promise as a robust learn-
ing scheme by transforming a commonsense
knowledge graph (KG) into synthetic QA-
form samples for model training. Considering
the increasing type of different commonsense
KGs, this paper aims to extend the zero-shot
transfer learning scenario into multiple-source
settings, where different KGs can be utilized
synergetically. Towards this goal, we propose
to mitigate the loss of knowledge from the
interference among the different knowledge
sources, by developing a modular variant of
the knowledge aggregation as a new zero-shot
commonsense reasoning framework. Results
on five commonsense reasoning benchmarks
demonstrate the efficacy of our framework, im-
proving the performance with multiple KGs.

1 Introduction

The ability to understand natural language through
commonsense reasoning is one of the core focuses
in the field of natural language processing. To
measure and study the different aspects of com-
monsense reasoning, several datasets are devel-
oped, such as SocialIQA (Sap et al., 2019b), Com-
monsenseQA (Talmor et al., 2018), and Physi-
calIQA (Bisk et al., 2020), each requiring different
type of commonsense knowledge (e.g., social, taxo-
nomic, causal, declarative, etc) to select the correct
answer. While large-scale neural systems (Devlin
et al., 2018; Yang et al., 2019; Liu et al., 2019b)
have shown human-level accuracy on these bench-
marks, recent studies (Mitra et al., 2019) also crit-
icize that these models solve individual datasets,
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rather than learning how to perform general seman-
tic reasoning. To this end, Ma et al. (2021) sug-
gested zero-shot evaluation as a genuine measure
for the reasoning capability of the machine.

Inspired by this new metric, in this work, we
focus on building unsupervised zero-shot multiple-
choice QA systems. That is, we target an arbitrary
commonsense reasoning task where conventional
approaches (that rely heavily on task-specific super-
vision) are not applicable to such zero-shot learning
scenarios. To learn QA models without expensive
annotation efforts, recent works (Ma et al., 2021;
Banerjee and Baral, 2020; Malaviya et al., 2020)
propose to generate a synthetic QA dataset using a
commonsense KG such as ATOMIC (Sap et al.,
2019a) and ConceptNet (Speer et al., 2017).
Such an approach mostly focuses only on one spe-
cific type of reasoning relations (e.g., if-then re-
lation, or declarative relation), neglecting the fact
that real-world QA systems require simultaneously
considering different types of reasoning abilities
(e.g., declarative and social, or causal and physical
reasoning; Ilievski et al., 2021; Chang et al., 2021).

To consider different types of reasoning, this
paper extends ideas from the aforementioned zero-
shot learning to the multi-source case such that
it benefits from different types of commonsense
knowledge on individual KGs. For example,
ATOMIC (Sap et al., 2019a) focuses on social com-
monsense while ConceptNet (Speer et al., 2017)
contains conceptual knowledge. A practical ap-
proach is multi-task learning (MTL; Caruana, 1997;
Liu et al., 2019a), which learns a shared encoder
for different synthetic QA datasets from multiple
KGs. Despite its effectiveness, MTL scheme suf-
fers from interference among different KGs, which
results in forgetting previously learned knowledge
when trained on new KG which has different kinds
of knowledge (Pilault et al., 2021; Pfeiffer et al.,
2021; Wang et al., 2021a; Wu et al., 2020).

To address these limitations, we propose a novel,



modularized framework that aims to learn multiple
expert models for KGs, then conduct zero-shot fu-
sion to allow collaboration among KGs. For this
purpose, we leverage AdapterFusion (Pfeiffer et al.,
2021) where multiple tiny modules between Trans-
former blocks called adapters (Houlsby et al., 2019)
can be combined after independent training, thus
allowing a continual integration of the adapters
without retraining the entire framework. Specifi-
cally, we treat the adapters as different KG-specific
experts, and combine them using an attention-like
fusion module. To improve the fusion of adapters,
we suggest a KG-alignment adapter that guides
to the apt expert adapters. Here, we use KGs in
three different synthetic supervision training: (1)
KG-specific QA datasets to train the KG-specific
expert adapters, (2) a KG classification datasets to
train the KG-alignment adapter, and (3) a balanced
mixture of KG-specific QA datasets to train the
fusion module. Our modularized method alleviates
the interference between different KGs, which is
the pitfall of MTL from our empirical observation,
and thus combines multiple KGs into a synergetic
zero-shot framework.

Our contributions are: (1) We suggest a simple,
yet effective KG modularization strategy for the use
of multiple KGs in commonsense reasoning. (2)
We then explore the use of AdapterFusion (Pfeif-
fer et al., 2021) for better knowledge aggregation
based on the KG modularization in zero-shot set-
ting. We believe that such modularized transfer
learning is critical to using different knowledge
sources synergetically against interference between
them. (3) In extensive experiments on various com-
monsense reasoning benchmarks, our framework
achieves significant improvements over baselines
using a single KG, even using multiple KGs, which
implies the robustness in commonsense reasoning.

2 Related Work & Preliminaries

2.1 Zero-shot Commonsense Reasoning

Many researchers have recently focused on build-
ing unsupervised models without any benchmark
supervisions (i.e., zero-shot learning). In such zero-
shot setting, KGs are often used as an external re-
source for improving model prior (e.g., continually
learned from pre-trained language models) (Baner-
jee and Baral, 2020; Bosselut and Choi, 2019; Ma
et al., 2021), especially for commonsense reason-
ing, as much existing work couples language mod-
els with neural/symbolic commonsense KGs.

However, most of existing work are either as-
suming the existence of the alignment information
between tasks and KGs (Banerjee and Baral, 2020)
or an integrated KG (Ma et al., 2021). For example,
ATOMIC20

20 (Hwang et al., 2021), a commonsense
KG which incorporates tuples from ConceptNet
and ATOMIC with new relations and further crowd-
sourcing, combines multiple KGs into a new in-
tegrated KG, but as widely known (Ilievski et al.,
2020; Hwang et al., 2021), heterogeneous schema
between different KGs may limit triplets that can be
integrated.1 Rather than such symbolic KG integra-
tion with the inevitable loss of knowledge, in this
work, we explore the neural KG integration leverag-
ing the multiple KGs without additional processing
and alignment information between KG and task.

2.2 Transfer Learning with Modular
Approaches

The idea of having specialized parameters, or so-
called experts, has been widely studied to integrate
multiple sources of knowledge via transfer learn-
ing. The adapter module (Rebuffi et al., 2017;
Houlsby et al., 2019) has been explored as one
of such approaches, introducing a small number
of task-specific parameters at every layer of pre-
trained language model (PLM) while sharing the
parameters of underlying PLM which is fixed. To
address the limitations of transfer learning due to
high re-training cost, many works utilize the multi-
ple adapter modules for individual tasks with differ-
ent domains (Puigcerver et al., 2020; Bapna et al.,
2019; Rücklé et al., 2020; Madotto et al., 2021)
considering each adapter to be an expert of each do-
main. Similar to our work, K-Adapter (Wang et al.,
2021a) encodes factual and linguistic knowledge to
each adapter, but in this paper, we further explore
how to mitigate catastrophic forgetting or interfer-
ence among multiple adapters for better knowledge
transfer in zero-shot setting.

2.3 Multi-Task Learning

MTL (Liu et al., 2019a; Zhang and Yang, 2017;
Caruana, 1997) learns a shared representation while
aggregating knowledge across multiple learning
tasks, often leading to better generalization ability
of a model. However, parametric aggregation of
knowledge with MTL has following limitations:
(1) retraining the full model when adding new

1Only 172K tuples of the 3.4M tuples and 5 relations of
36 relations in ConceptNet are integrated into ATOMIC20

20.



tasks (Houlsby et al., 2019; Pfeiffer et al., 2021,
2020b) (2) catastrophic forgetting and interference
between tasks leading to difficulties of solving
each task equally well (Pilault et al., 2021; Wu
et al., 2020; Yu et al., 2020) and (3) inconsistent
effect (Lourie et al., 2021). To deal with these
challenges, Mixture-of-Experts (MoE) is a param-
eterized generalization of ensembling techniques,
which has been adapted for MTL with gating net-
work trained to optimize each task (Ma et al., 2018).
However, simple linear gating networks are too
shallow and thus may destruct task knowledge for
commonsense reasoning.

To address this problem, AdapterFusion (Pfeiffer
et al., 2021) has been proposed to fuse task specific
parameters called adapters for the given target task
leveraging attention-like mechanism. AdapterFu-
sion aggregates adapters, which is trained indepen-
dently for each task, in a non-destructive manner
mitigating aforementioned MTL problems such
as forgetting and interference between tasks. Re-
cently, it has been used for zero-shot cross-lingual
transfer framework (Pfeiffer et al., 2020c; Wang
et al., 2021b), which motivates our work to transfer
multi-source knowledge with less interference for
zero-shot commonsense reasoning.

3 Modularized Zero-shot Framework

In our setup, we repurpose synthetic QA genera-
tion (Ma et al., 2021) for the task of knowledge-
driven zero-shot learning for commonsense reason-
ing, i.e., we transform a KG into multiple (Qi, Ai)
pairs where Qi is a natural language question and
Ai = {Ai,1, ..., Ai,m} is the set of options with
m answer candidates. Specifically, given a triple
(ehead, r, etail) in a KG, where ehead, etail and r
denote head/tail entity and relation respectively, we
transform ehead and r into a natural language ques-
tion Qi using templates. For the option set Ai, we
use the combination of the correct answer etail and
m− 1 distractors which are tail entities from other
triples sampled randomly (Ma et al., 2021). Details
are described in Appendix B.

Formally, we denote (Qi, Ai) as one QA sam-
ple. The goal is to learn a QA model from the
synthetic QA sample. In a downstream task (e.g.,
reasoning benchmarks such as SocialIQA and Com-
monsenseQA), we need to predict answers given
non-synthetic test samples (Qtest, Atest). In the
training stage, we are given K KG-driven datasets
{Dk

QA}Kk=1 from K different KGs, where Dk
QA is

QA from ATOMIC (Sap et al., 2019a)
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
QA from ConceptNet (Speer et al., 2017)
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
QA from WikiData (Vrandečić and Krötzsch, 2014)
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
QA from WordNet (Miller, 1995)
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X)
A3: family Columbidae

Table 1: Synthetic QA examples. We use templates to
convert (ehead, r) into a natural language sentence.

a dataset with Nk samples for KG k as follows:

Dk
QA = {(Qi, Ai, label)}Nk

i=1 (1)

where label is the index of the correct answer
for each sample. In this work, as shown in Ta-
ble 1, we generate four synthetic QA datasets
from ATOMIC, ConceptNet, WikiData, and
WordNet (More details are in Appendix C).

For effective use of multiple KGs at once with
less interference, we present a modularized frame-
work, which is a novel approach to knowledge
transfer for the zero-shot setting as shown in Fig-
ure 1. As a modular approach, we train the mul-
tiple KG-specific adapters (expert adapters) with
each dataset from KG. Based on these pre-trained
adapters, we use a zero-shot fusion method to
aggregate knowledge of each adapter leveraging
AdapterFusion (Pfeiffer et al., 2021) as a base
architecture with the balanced mixture of each
KG dataset. Further, for better knowledge fusion,
we suggest a KG-alignment aware adapter (KG-
Classifier adapter) as a guide for detecting align-
ment with given sample in zero-shot reasoning.
Here, we utilize KG classification dataset by veri-
fying the synthetic QAs. Algorithm 1 in Appendix
outlines the overall process of our proposed frame-
work. We summarize the notations in Appendix A.

3.1 KG Modularization
First, we modularize the KGs to preserve their in-
trinsic knowledge. Considering the importance of
using a suitable and well-aligned KG (Ma et al.,
2019, 2021) on a downstream task, the subtle
difference between each KG should be learned
by the model without any interference from each
other. Accordingly, we adopt the adapter mod-
ule (Houlsby et al., 2019) which repurposes a pre-
trained language model (PLM) to incorporate each
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Figure 1: Illustration of the proposed modular-
ized framework for zero-shot commonsense reasoning.
Each colored square represents different KGs. Not only
for KG modularization, we re-use a set of synthetic QA
datasets from the multiple KGs for the purpose of KG
classification and zero-shot fusion, which enables bet-
ter knowledge aggregation.

KG as tiny modules in between Transformer blocks.
Specifically, as illustrated in Figure 2 (except for
green area), the adapter training strategy involves
injecting new layers (parameterized by Φ) into the
original PLM (parameterized by θ). The weights
of the original PLM are untouched, while the new
adapter layers are initialized at random. Formally,
we call each adapter trained with Dk

QA as an expert
adapter for KG k, parameterized by Φk

QA.
When a QA sample (Qi, Ai) is given for dataset
Dk

QA, we first concatenate question Qi and each
answer option Ai = {Ai,1, ..., Ai,m} to generate
input sequences Ti = {Ti,1, ..., Ti,m}. Then, we
compute a score Si,j (Ma et al., 2021) for the an-
swer candidate Ai,j is computed as follows:

Si,j = − 1

|Ti,j |

|Ti,j |∑
t=1

logP (wt|...wt−1, wt+1...; θ,Φ)

(2)
where wt is a word token in the sequence Ti,j and
P is the conditional probability from Transformer
blocks parameterized by θ and Φ. To train the
adapter Φk

QA, we use the marginal ranking loss (Ma
et al., 2021) as follows:

LQA =
1

m

Nk∑
i=1

m∑
j=1

j 6=label

max(0, η − Si,label + Si,j)

(3)
where η represents the margin.

Φk
QA ← argmin

Φ
LQA(Dk

QA; θ,Φ) (4)

where KG-invariant parameters θ are fixed and only
KG-dependent parameters Φk

QA are learned, which

enables to store the corresponding knowledge sep-
arately without any interference. Further, we can
parallelize the training of adapter for all KGs. The
efficiency of adapter training allows our modular-
ization to be more scalable.

3.2 Zero-shot Fusion

Once the expert adapters are learned, we combine
the knowledge from each expert adapter using an
attention-like mechanism. We present a novel fu-
sion strategy as shown in Figure 2, which is referred
to as the zero-shot fusion. In contrast to Adapter-
Fusion (Pfeiffer et al., 2021) where the focus is
learning to transfer knowledge to a specific target
task, our zero-shot fusion aims to generalize this
transfer to any arbitrary target task. Specifically,
the zero-shot fusion parameters Ψ learn to combine
fixed expert adapters which are parameterized by
Φ1
QA, ...,Φ

K
QA. In each Transformer layer l of PLM

with the injected fusion layer, the zero-shot fusion
parameters ΨQA consist of query, key, and value
matrices, denoted by WQ

l , WK
l , and WV

l respec-
tively. These parameters are used to learn the bal-
ancing between the representation of each expert
adapters through attention-like mechanism. While
fixing both the parameters θ and all expert adapters
Φ1
QA, ...,Φ

K
QA, the only trainable weights ΨQA on

the fusion layer learns to combine the knowledge
from different K expert adapters by using the sub-
set of {Dk

QA}Kk=1 by random sampling. Here, we
balance the ratio between the K knowledge-driven
datasets as N samples (details are in Appendix D).
Formally,

ΨQA ← argmin
Ψ

K∑
k=1

LQA(Dk
QA; θ, {Φk

QA}Kk=1,Ψ)

(5)
where Ψ refers to the initialized zero-shot fusion
parameters.

More specifically, in the l-th Transformer layer,
let hlPLM and hk,lE be the representations of un-
derlying PLM parameterized by θ and an expert
adapter parameterized by Φk

QA, respectively. Then,
using the hidden representation hlPLM of PLM as
a query, the fusion layer performs the attention-like
function as follows:

Kl,Vl = [h1,l
E , ..., h

K,l
E ] (6)

Ql = hlPLM (7)

zl = Attention(QlW
Q
l ,KlWK

l ,VlWV
l ) (8)
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Figure 2: Illustration of the zero-shot fusion archi-
tecture with KG-Classifier adapter. Each colored cir-
cle represents expert adapters, except the black circle
which denotes KG-Classifier adapter. ∗ indicates the
fixed layer. Details are in Appendix F

where zl is passed to the next Transformer layer.
Given a sample, the zero-shot fusion learns the
suitable balancing parameters between the expert
adapters for zero-shot reasoning. Eventually, it
learns to identify generalizability across common-
sense reasoning tasks.

3.3 KG-Classifier Adapter
AdapterFusion uses the PLM hidden representation
hlPLM as a query which is learned when training
on a specific downstream task. In our zero-shot
setting, however, we use a mixture of synthetic QA
for fusion training, which is not exactly a training
dataset for a downstream task. To compensate for
this issue, we present KG-Classifier adapter, which
is a KG alignment-aware adapter, which is moti-
vated from the fact that the ability to find which
KG has an alignment with the given sample can be
helpful as a role of providing a guidance for better
performance (Ma et al., 2019, 2021).

Specifically, we propose a novel training task for
KG-Classifier adapter, which requires predicting
the KG for the given sample of the task. For that,
given {Dk

QA}Kk=1, we first transform a QA sam-
ple (Qi, Ai) into a new KG classification sample
[Qi;Ai,label] where [; ] is the concatenation. Then,
we obtain a new label yi ∈ {0, 1}K indicating
the corresponding KG source. The samples are in
Appendix E. Formally, KG classification dataset
DKGC is defined as:

DKGC = {([Qi;Ai,label], yi)}Mi=1 (9)

where M is the total size of {Dk
QA}Kk=1.

Based on DKGC , we learn the KG-Classifier
adapter parameterized by θ and ΦKGC . First, a
classification sample i is encoded into hCLS ∈
RH then scored as ŷi ∈ RK with a linear layer
WKGC ∈ RK×H , i.e., ŷi = WKGChCLS . Once ŷi
is normalized by a softmax layer, the network is
trained to minimize the cross-entropy loss LKGC

between the prediction ŷi and its ground truth yi:

ΦKGC ← argmin
Φ

M∑
i=1

LKGC(yi, ŷi; θ,Φ) (10)

We propose to use the representation of KG-
Classifier adapter as a query in attention-like mech-
anism, referred to as the zero-shot fusion with KG-
Classifier adapter. That is, using the hidden repre-
sentation hlKGC of a KG-Classifier adapter param-
eterized by ΦKGC as a query, we substitute Ql in
Eq. (11) as follows:

Ql = hlKGC (11)

The overall zero-shot fusion architecture including
KG-Classifier is illustrated in Figure 2.

4 Experiments

In this section we evaluate the efficacy of our frame-
work on five commonsense reasoning tasks. We
denote KG-Classifier adapter by KG-C adapter.

4.1 Experimental Settings
All our experiments are conducted in a zero-shot
setting, in which the models do not have access to
the official training data or labels of the benchmark.
For the evaluation, we use the validation set of
each benchmark2, however, the validation set of
each benchmark can be role as an test set since
it is not used for hyperparameter tuning or model
selection. We use accuracy as a metric.

4.1.1 Benchmarks
We evaluate our proposed framework on five
question-answering benchmarks for commonsense
reasoning: SocialIQA (SIQA) (Sap et al., 2019b),
CommonsenseQA (CSQA) (Talmor et al., 2018),
Abductive NLI (a-NLI) (Bhagavatula et al., 2020),
PhysicalIQA (PIQA) (Bisk et al., 2020), and Wino-
Grande (WG) (Sakaguchi et al., 2020). Each com-
monsense benchmark evaluates a specific kind
of knowledge: social commonsense for SIQA,
concept-level commonsense for CSQA, abductive

2Since the official test sets are not publicly available



Model KG a-NLI CSQA PIQA SIQA WG Avg.
Random - 50.0 20.0 50.0 33.3 50.0 40.7
Majority - 50.8 20.9 50.5 33.6 50.4 41.2
GPT2-L - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L - 65.5 45.0 67.6 47.3 57.5 56.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
COMET-DynaGen (Bosselut and Choi, 2019) AT - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
RoBERTa-L (MR) (Ma et al., 2021) AT 70.8 64.2 72.1 63.1 59.2 65.9
RoBERTa-L (MR) (Ma et al., 2021) CN,WD,WN 70.0 67.9 72.0 54.8 59.4 64.8
RoBERTa-L (MR) (Ma et al., 2021) Whole 70.5 67.4 72.4 63.2 60.9 66.9
MTL Whole 69.8 (± 0.5) 66.0 (± 0.9) 71.2 (± 0.8) 62.2 (± 1.0) 59.5 (± 0.2) 65.7
zero-shot fusion w/o KG-C adapter Whole 72.3(±0.4) 67.9(±0.2) 73.1(±0.4) 65.9(±0.5) 59.7(±0.2) 67.8
zero-shot fusion w/ KG-C adapter Whole 72.5(±0.2) 68.2(±0.2) 72.9(±0.4) 66.6(±0.1) 60.8(±0.1) 68.2

Table 2: Zero-shot evaluation results with different combinations of models and knowledge sources across five
commonsense tasks. AT, CN, WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet, re-
spectively. Whole represents the combination of AT, CN, WD and WN. Bold text indicates the best performance
on each benchmark. RoBERTa-L (MR) used the synthetic dataset after filtering, while we use the raw version.
SMLM (*) used different KG which has strong alignment with each task (e.g.AT for SIQA).

reasoning for a-NLI, physical commonsense for
PIQA, and pronoun resolution ability for WG.3

The details are presented in Appendix G.

4.1.2 Baselines
We compare our framework with the following
baselines. First, to show the characteristics of
each benchmark, we use the random or the most
frequent label as Random and Majority base-
line, respectively. RoBERTa-L and GPT2-L is
the performance of each PLM without any fine-
tuning. Also, as the baseline for the unsuper-
vised learning model using KGs, we report the
performance of Self-talk (Shwartz et al., 2020),
COMET-DynaGen (Bosselut and Choi, 2019),
SMLM (Banerjee and Baral, 2020) as presented
in original papers.

For further analysis in §4.4 and §4.5, we set the
following models that are pre-trained on the syn-
thetic QA datasets from KGs as baselines:

• Single-Task Learning (STL): The model is
pre-trained on a synthetic QA dataset gener-
ated from a single KG. Specifically, we exper-
iment two architectural choices: PLM (STL-
PLM) and PLM with adapters (STL-Adapter).
For each architecture, there are four STL mod-
els for each of synthetic QA datasets derived
from ATOMIC, ConceptNet, WikiData,
and WordNet. We note that the trained STL-
Adapter is an expert adapter from a specific
KG in our framework. The performance of

3Some benchmarks have a strong alignment with a cer-
tain KG due to its construction strategy: SIQA-ATOMIC, and
CSQA-ConceptNet. To make a direct comparison with Ma
et al. (2021), we use the same KGs to generate data samples.

each STL baseline is shown in Appendix I
Table 9 and Table 10.

• Multi-Task Learning (MTL): The model is
pre-trained on multiple synthetic QA datasets,
each of which is generated from a KG. We
experiment with a PLM trained on all four
aforementioned synthetic QA datasets. We
note that the difference between STL-PLM
and MTL is whether to use one synthetic QA
dataset or multiple synthetic QA datasets for
its training.

4.1.3 Implementations
We employ RoBERTa-L (Liu et al., 2019b) from
Hugging Face’s transformers toolkit for all experi-
ments. We follow the default settings from Ma et al.
(2021). Our implementation uses Adapter (Houlsby
et al., 2019) and AdapterFusion (Pfeiffer et al.,
2021) as a base model architecture from Adpa-
terHub (Pfeiffer et al., 2020a). We run our experi-
ments with three different random seeds. The im-
plementation details are described in Appendix H.

4.2 Main Results

Table 2 shows the zero-shot evaluation results on
five benchmark datasets. Generally, zero-shot fu-
sion scores higher than the baselines across all
benchmarks, and further, zero-shot fusion shows
the best performance in all benchmarks except WG.
We note that although Ma et al. (2021) uses the syn-
thetic QA dataset after sample filtering, our method
achieves comparable performance with the best per-
formance in WG, even with the raw dataset. Also,
the average score of all evaluation benchmarks (the



last column of Table 2) shows that zero-shot fusion
has generalisability in commonsense reasoning.

In addition, zero-shot fusion achieves consis-
tent improvements over MTL. These results indi-
cate that our proposed zero-shot fusion method
attributes to fusing the knowledge of multiple KGs
more synergetically regardless of the task.

Moreover, as an ablation, we compare the zero-
shot fusion with and without KG-C adapter to ex-
plore the efficacy of the KG-C adapter. We can
observe that zero-shot fusion with KG-C adapter
improves the average accuracy by 0.4%, which im-
plies that the use of KG-C adapter improves the
overall performance and makes our method gener-
alize better on most of the evaluation benchmarks.

4.3 Impact of the KG-Classifier Adapter

To assess the effects of the KG-C adapter itself, we
visualize and compare the final layer [CLS] token
representation between PLM and KG-C adapter.
Figure 3 shows t-SNE (Van der Maaten and Hinton,
2008) plots of all representation of five benchmark
datasets. In this figure, every sample is mapped
into a 1024-dimensional feature space through
RoBERTa-L model and projected back into a two-
dimensional plane by t-SNE. We can observe that
KG-C adapter can separate the samples of differ-
ent benchmarks well despite being unseen data. It
verifies that KG-awareness acquired with the KG
classification task is beneficial to categorize the
given sample. The KG-C adapter can thus gener-
ate a relevant KG-aware query for a given sample
and help to fuse representations from suitable ex-
pert adapters in our proposed framework.

Further, we explore how the KG-C adapter
affects zero-shot fusion which is based on an
attention-like mechanism (Pfeiffer et al., 2021)
compared to zero-shot fusion without KG-C
adapter. Here, while zero-shot fusion without KG-
C adapter simply uses the representation of PLM
as a query, zero-shot fusion with KG-C adapter
leverages the representation of KG-C adapter. To
illustrate this strength, we visualize the attention
probability of [CLS] token from each fusion layer
as a representative in Figure 4. The column of the
darker cell indicates the adapter that has the big-
ger influence on the fused representation. We can
observe that zero-shot fusion with KG-C adapter
fuses the knowledge from different experts with a
subtle difference rather than focusing on a single
expert severely. This implies that KG-C adapter

(a) PLM (b) KG-Classifier adapter

Figure 3: t-SNE visualization of the hidden representa-
tion from (a) PLM and (b) KG-C adapter. Each color
denotes the five different benchmark samples.

(a) w/o KG-C adapter (b) w/KG-C adapter

Figure 4: Comparison of attention probability between
zero-shot fusion with/without KG-C adapter. The x-
and y-axis indicate expert adapters and the fusion layer
number in RoBERTa-L, respectively. The darker color
indicates higher attention probability in fusion layer.

enables the delicate balancing between multiple
knowledge sources based on the KG-alignment
awareness, which leads to performance improve-
ments in commonsense reasoning tasks. Interest-
ingly, both cases have the ability not to focus on
the expert adapter based on WikiData, which
can be seen as a redundant expert.4 This obser-
vation would benefit from the further study that
explores the optimal combination of KGs by expert
selection or rejection.

4.4 Mitigating Interference

In this experiment, we compare the amount of in-
terference in the MTL and zero-shot fusion with
KG-C adapter. We propose a novel evaluation met-
ric, the interference ratio, which is the percentage
of the incorrectly predicted samples by the multi-
KG models among the correctly predicted samples
from the STL models in common.

Using the interference ratio, we can precisely
compare the negative effects of multi-KG models

4The zero-shot fusion with KG-C adapter using AT, CN,
and WN shows the best average performance in Table 10.



Figure 5: Interference ratio of multi-KG models on five
benchmarks. The lower indicates less interference.

on knowledge aggregation since the only reason
to get the correct samples wrong is the interfer-
ence caused by learning with additional KGs. We
present the interference ratio of the models on five
benchmark datasets in Figure 5. This figure shows
that MTL has the higher interference ratio than
the competing models across all benchmarks. Our
method achieves a substantially better ratio, espe-
cially when KG-C adapter is used. This demon-
strates the efficacy of our framework in mitigating
interference between knowledge, which is one of
the major problems of MTL.

4.5 Visualization of Knowledge Aggregation

To verify the ability of our model to aggregate dif-
ferent types of KGs, we compare the relative per-
formance gains of MTL and zero-shot fusion with
KG-C adapter when increasing the number of KGs.
The performance of all KG-combinations for each
framework is presented in Table 9 and Table 10. We
visualize the improvement of performance for five
benchmark development sets, leveraging heatmaps
in Figure 6. Here, for the sake of brevity, we denote
our framework with KG-C adapter as our method.

For MTL in Figure 6 (a), the color of the cell
denotes the relative improvement of MTL with the
combination of KGs over the best performance
among the STL-PLM of KGs. Also, for our method
in Figure 6 (b), the relative improvement is mea-
sured based on the best performance among the
STL-Adapter of KGs, considering the difference of
the base architecture for MTL (i.e. PLM) and zero-
shot fusion (i.e. PLM with adapter). The green and
red colors denote the increase and decrease of per-
formance, respectively, when using multiple KGs
together. The greener color on the cells indicates
that the approach benefits from an increasing num-
ber of KGs, which implies aggregating knowledge
successfully.

In Figure 6, while the MTL tends to show the
decrease of the performance when more KGs are

(a) MTL (b) zero-shot fusion
w/ KG-C adapter

Figure 6: Relative improvement upon the STL on five
benchmarks. The x- and y-axis indicate the benchmark
and the combination of the KGs, respectively. The
value of each cell indicates the relative performance
improvement of using multiple KGs over the highest
performance among STLs. The green and red colors
denote the improvement or decrease of relative perfor-
mance, respectively.

utilized for training, our method obtains relative
performance improvement across most of bench-
marks. In both framework, the slightly degraded
performance of the combination of KGs without
ATOMIC could be due to the strong alignment be-
tween ATOMIC and SIQA. Except for the above
case, we can observe that as more KGs are lever-
aged, the color of the cell gets greener, which im-
plies that our method gains more advantages for
better performance. This demonstrates that our
method enables knowledge aggregation for multi-
ple KGs synergetically.

5 Conclusion

Despite the existence of various types of common-
sense KGs, utilizing multiple KGs has not been
explored enough in the commonsense reasoning
field. Motivated by this, this paper proposes a
modularized transfer learning framework to fuse
the knowledge from multiple KGs efficiently for
zero-shot commonsense reasoning. Our framework
consists of KG modularization for expert adapter,
zero-shot fusion and KG-Classifier adapter. Exten-
sive experiments show that our framework obtains
strong improvements over MTL on five common-
sense reasoning benchmarks.

In the future, our work can be extended to adapt
our methods to further various multiple KGs with
studies of appropriate scale for KG modularization.
In addition, based on our hypothesis that the exis-
tence of an optimal combination, we can explore
the study for the optional use of modularized KG
experts for the best transfer learning.
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A List of Notations

We summarize the notations used in this paper in
Table 7.

B Synthetic QA

We generate QA for four KGs (ATOMIC,
ConceptNet, WikiData and WordNet) based
on synthetic QA generation (Ma et al., 2021) with-
out sample filtering. We use the prefixes for relation
of triplet as shown in Table 3 for generating syn-
thetic QA (refer to Ma et al. (2021)). Table 4 shows
the statistics of the synthetic QA dataset from KGs.
The samples of synthetic QA with source triplet
are shown in Table 5.

relation prefix
xAttr . PersonX is seen as

xIntent . Before, PersonX wanted
xNeed . Before, PersonX needed to
xReact . As a result, PersonX felt
xWant . As a result, PersonX wanted to
xEffect . PersonX then
oReact . As a result, others felt
oWant . As a result, others wanted to
oEffect . Others then
Causes can cause [MASK]

UsedFor can be used for [MASK]
CapableOf is capable of [MASK]

CausesDesire causes desire for [MASK]
IsA. is a [MASK]

SymbolOf is a symbol of [MASK]
MadeOf can be made of [MASK]

LocatedNear is often located near [MASK]
Desires desires [MASK]

AtLocation can be found at [MASK]
HasProperty has property [MASK]

PartOf is part of [MASK]
HasFirstSubevent starts by [MASK]
HasLastSubevent ends by [MASK]

Table 3: Prefixes used for synthetic QA dataset

KG Train Validation Total
ATOMIC 534,833 60,289 595,122

ConceptNet 363,645 19,140 382,785
WikiData 42,342 2,229 44,571
WordNet 256,922 13,523 270,445

Whole 1,197,742 95,181 1,292,923

Table 4: Synthetic QA dataset statistics. Whole repre-
sents the combination of AT,CN,WD and WN.

C Commonsense Knowledge Graphs

A variety of KGs have been proposed to provide
large-scale high quality collection of different com-
monsense knowledge types: ATOMIC (Sap et al.,

QA from ATOMIC (Sap et al., 2019a)
(eh, r, et): (Dana speeds on the highway., xAttr, risky)
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
QA from ConceptNet (Speer et al., 2017)
(eh, r, et): (pentode, IsA, vacuum tube)
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
QA from WikiData (Vrandečić and Krötzsch, 2014)
(eh, r, et): (badminton, IsA, type of sport)
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
QA from WordNet (Miller, 1995)
(eh, r, et): (princewood, PartOf, genus Cordia)
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X) A3: family
Columbidae

Table 5: Synthetic QA examples. We use templates to
convert a question (ehead, r) into a natural language.

2019a) focuses on inferential knowledge organized
as typed if-then relations with variables (e.g., “if X
pays Y a compliment, then Y will likely return the
compliment”). ConceptNet (Speer et al., 2017)
mainly consists of taxonomic and lexical knowl-
edge (e.g., RelatedTo, Synonym, and IsA) and
physical commonsense knowledge (e.g., MadeOf
and PartOf). WikiData (Vrandečić and Krötzsch,
2014) is a general-domain KG which has a close
relation with Wikipedia. WordNet (Miller, 1995)
is a large lexical source of words and taxonomical
system.

D Dataset for Zero-shot Fusion

For zero-shot fusion training, we use balanced mix-
ture of synthetic QA from different KGs by random
sampling. The statistics of dataset for zero-shot fu-
sion is shown in Table 6. For validation dataset, we
balance between the ATOMIC, ConceptNet and
WordNet due to the lack of synthetic QA valida-
tion dataset from WikiData.

KG Train Validation Total

+ATOMIC 2,500 2,500 5,000
+ConceptNet 2,500 2,500 5,000

+WikiData 2,500 2,229 4,729
+WordNet 2,500 2,500 5,000

Total 10,000 9,729 19,729

Table 6: Statistics of the dataset for zero-shot fusion



Notation Meaning
(ehead, r, etail) Triple of KG (head entity, relation, tail entity)
Qi Natural language Question of sample i
Ai = {Ai,1, ..., Ai,m} A set of answer options of sample i, Ai,j denotes j-th answer option of sample i(1 ≤ j ≤ m)

Ti = {Ti,1, ..., Ti,m} Input sequences generated by concatenation of Qi and Ai

wt A word t-th token in the sequence Ti,j

label the index of the correct answer for sample
Dk

QA Synthetic QA generated by KG k, 1 ≤ k ≤K
Nk The number of samples for Dk

QA, 1 ≤ k ≤K
θ Parameters for pre-trained LM
Φk

QA Parameters for the expert adapter of KG k, 1 ≤ k ≤K
ΦKGC Parameters for the KG-Classifier adapter
ΨQA Parameters for the fusion layer
l The index of Transformer layer
WQ

l Query matrix of fusion layer in lth Transformer layer
WK

l Key matrix of fusion layer in lth Transformer layer
WV

l Value matrix of fusion layer in lth Transformer layer
hl
PLM Hidden representation of PLM parameterized by θ in lth Transformer layer
hk,l
E Hidden representation of expert adapter parameterized by Φk

QA in lth Transformer layer
hl
KGC Hidden representation of KG-Classifier adapter parameterized by ΦKGC in lth Transformer layer

Table 7: Notations and their meanings

E KG-Classification Dataset

We suggest KG-Classification dataset DKGC for
KG-Classifier adapter training. The example of
transformation from synthetic QA dataset DQA is
shown in Table 8. The dataset size is equal to the
whole dataset of synthetic QA (refer to Table 4).

QA→ KG-Classification ATOMIC
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
S: Dana speeds on the highway. Dana is seen as risky.
A: Atomic
QA→ KG-Classification ConceptNet
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
S: pentode is a vacuum tube.
A: ConceptNet
QA→ KG-Classification WikiData
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
S: badminton is a type of sport.
A: WikiData
QA→ KG-Classification WordNet
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X) A3: family
Columbidae
S: princewood is part of genus Cordia.
A: WordNet

Table 8: KG-Classification examples from synthetic
QA dataset of each KG

F Zero-shot architecture with
parameters

We describe the illustration of the zero-shot fusion
architecture with parameters in Figure 7.
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Figure 7: Illustration of the zero-shot fusion architec-
ture with parameters. Each colored circle represents
expert adapters, except the black circle which denotes
KG-Classifier adapter. ∗ indicates the fixed layer.

G Commonsense Reasoning Benchmarks

SocialIQA (SIQA) (Sap et al., 2019b) requires
reasoning for emotional and social intelligence in
everyday situations. Each QA consists of a con-
text that comes from ATOMIC, a question which
is based on the relations in ATOMIC, and 3 an-
swer candidates. It contains 38,000 multiple-choice



questions, which is generated by crowdsourcing.
CommonsenseQA (CSQA) (Talmor et al., 2018)
evaluates a broad range of concept-level common-
sense reasoning. Each multiple-choice question,
answer and distractors are designed by crowdsourc-
ing based on the ConceptNet.
Abductive NLI (a-NLI) (Bhagavatula et al., 2020)
asks to infer the most plausible explanation based
on the given causal situation to test abductive rea-
soning in narratives. Each sample consists of the
beginning and the end of the story with two pos-
sible options to be an explanation for the given
situation.
PhysicalIQA (PIQA) (Bisk et al., 2020) requires
physical commonsense reasoning to select the most
sensible solution for the given goal among the two
choices. Its dataset is comprised of over 16,000
training samples, 2K validation samples, and 3K
test samples.
HellaSWAG (HSWAG) (Zellers et al., 2019) is an
evolved version of SWAG (Zellers et al., 2018),
which asks to infer the most proper story based on
the given situation. The dataset consists of 70K
questions with four answer options.

H Implementation Details

In all our experiments, we use max sequence length
128, batch size 32, weight decay 0.01, adam β1

0.9, adam β2 0.99, adam epsilion 1e−8, warm-up
proportion 0.05, and margin 1.0. The experiments
are conducted split across NVIDIA GeForce 3090
and NVIDIA RTX A5000.

H.1 Baselines

The baseline models for STL-PLM and MTL are
trained with learning rate 1e−5 for single epoch.

H.2 Adapter

For expert adapters, we use learning rate 8e−5 after
tuning in {5e−6, 8e−6, 1e−5, 5e−5, 8e−5, 1e−4}.
For KG-Classifier adapter, we use learning rate
1e−5, batch size 64 for five epochs.

H.3 Zero-shot fusion

After experiment with learning rates {1e−5, 8e−5},
we empirically find that a learning rate of 1e−5

works well on zero-shot fusion without/with KG-
Classifier adapter, respectively. Here, we set the at-
tention drop probability 0.1. As we used extremely
smaller subset of the synthetic QA dataset, zero-
shot fusions are trained for five epochs.

I Knowledge aggregation of zero-shot
fusion

In order to validate the efficacy on knowledge ag-
gregation of zero-shot fusion over the STL, we
present the results of each framework with various
combination of KGs in Table 9 and Table 10.



Model KG a-NLI CSQA PIQA SIQA WG Avg.

STL-PLM

AT 71.6 64.0 72.2 63.2 60.5 66.3
CN 67.9 68.5 72.6 54.6 58.6 64.4
WD 68.4 64.7 72.0 53.7 58.6 63.5
WN 67.2 61.4 71.7 53.5 58.9 62.5

MTL

AT, CN 70.5 68.4 72.2 60.1 58.2 65.9
AT, WD 69.9 66.4 72.0 60.1 59.3 65.5
AT, WN 69.1 62.7 71.6 59.1 59.1 64.3
CN, WD 69.6 67.8 72.0 54.3 59.5 64.6
CN, WN 69.8 66.3 71.7 53.8 56.4 63.6
WD, WN 67.5 62.0 71.7 53.7 59.0 62.8

MTL

AT, CN, WD 70.4 66.8 71.5 62.4 61.0 66.4
AT, CN, WN 68.5 65.7 72.1 62.7 59.1 65.6
AT, WD, WN 71.0 65.1 71.1 63.2 60.8 66.2
CN, WD, WN 69.6 67.3 72.5 52.0 57.2 63.7

MTL AT, CN, WD, WN 69.8 67.1 72.0 61.9 59.3 66.0

Table 9: STL-PLM and MTL performance across five commonsense tasks in various combination of KGs. AT, CN,
WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet, respectively. We run our experiment
with seed 42.

Model KG a-NLI CSQA PIQA SIQA WG Avg.

STL-Adapter

AT 71.3 66.5 71.1 64.4 60.3 66.7
CN 70.6 67.2 72.4 55.5 58.7 64.9
WD 66.8 61.6 69.9 51.8 58.5 61.7
WN 67.6 60.0 70.3 54.0 57.0 61.8
AT,CN,WD,WN 71.5 66.7 72.1 64.7 59.0 66.8

zero-shot fusion w/KGC-adapter

AT, CN 71.9 68.1 72.8 65.4 59.7 67.6
AT, WD 71.5 66.3 71.4 65.3 61.2 67.1
AT, WN 72.5 67.5 73.1 66.4 59.5 67.8
CN, WD 70.8 68.1 72.1 55.3 59.3 65.1
CN, WN 71.0 67.6 73.0 54.8 59.1 65.1
WD, WN 67.8 62.6 71.3 52.9 57.1 62.3

zero-shot fusion w/KGC-adapter

AT, CN, WD 72.3 68.0 72.9 66.2 60.5 68.0
AT, CN, WN 72.5 68.7 73.8 66.8 60.4 68.4
AT, WD, WN 71.9 67.6 73.0 66.0 59.7 67.6
CN, WD, WN 69.6 67.6 73.1 53.7 59.5 64.7

zero-shot fusion w/KGC-adapter AT, CN, WD, WN 72.4 68.3 73.0 66.7 60.9 68.3

Table 10: STL-Adapter and zero-shot fusion w/ KG-C adapter performance across five commonsense tasks in var-
ious combination of KGs. AT, CN, WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet,
respectively. Whole represents the combination of AT, CN, WD and WN. We run our experiment with seed 42.

Algorithm 1: Proposed framework for zero-shot commonsense reasoning
Input: PLM parameters θ, K KGs
Output: Reasoning model parameters (θ, {Φk

QA}Kk=1,ΦKGC ,ΨQA)

{Dk
QA}Kk=1 ← Generate synthetic QA samples from multiple KGs (Eq. 1)

DKGC ← Generate KG classification samples from multiple KGs (Eq. 9)
for each KG k = 1, ...,K do

Φk
QA ← argminΦ LQA(Dk

QA; θ,Φ) (Eq. 4)

ΦKGC ← argminΦ

∑M
i=1 LKGC(DKGC ; θ,Φ) (Eq. 10)

ΨQA ← argminΨ

∑K
k=1 LQA(Dk

QA; θ, {Φk
QA}Kk=1,ΦKGC ,Ψ) (Eq. 5 and 11)

return (θ, {Φk
QA}Kk=1,ΦKGC ,ΨQA)


