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Abstract

Purpose: Accurate segmentation and prognosis of head and neck cancer
are crucial for effective treatment planning and personalized medicine. This
study addresses two key challenges from the HECKTOR 2025 challenge: auto-
mated segmentation of primary gross tumor volume (GTVp) and prediction of
Recurrence-Free Survival (RFS).

Methods: For segmentation (Task 1), we employed the HecMamba architec-
ture, leveraging its powerful HecMamab encoder to capture global context from
PET/CT images. For prognosis (Task 2), we developed a multi-modal fusion
model that combines a 3D ResNet for deep feature extraction from PET/CT
images with a dedicated multi-layer perceptron (MLP) for processing clini-
cal data. An ensemble of these models, trained using a 5-fold cross-validation
strategy, was used to predict RFS.

Results: Our segmentation model achieved a mean Dice Similarity Coeffi-
cient (DSC) of 0.785. The prognosis model achieved a high Concordance Index
(C-index) of 0.902 on the test set, demonstrating strong predictive power by
effectively integrating imaging and clinical features.

Conclusion: This work presents a comprehensive deep learning framework that
successfully addresses both segmentation and prognosis prediction for head and
neck cancer. The HecMamba proves highly effective for segmentation, while our



multi-modal fusion network demonstrates that integrating deep-learned imaging
features with clinical data significantly enhances survival prediction accuracy.
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1 Introduction

Head and neck cancer (HNC) is the seventh most common cancer worldwide, with a
significant mortality rate [1]. Radiation therapy is a primary treatment modality for
HNC, where the precise delineation of the gross tumor volume (GTV) is a critical step
for treatment planning. Accurate segmentation ensures that a sufficient radiation dose
is delivered to the tumor while minimizing exposure to surrounding healthy organs at
risk (OARs) [2]. Beyond anatomical delineation, predicting patient outcomes, such as
Recurrence-Free Survival (RFS), is equally important for tailoring treatment strategies
and managing patient care [3].

Combined Positron Emission Tomography and Computed Tomography (PET/CT)
imaging is the standard of care for HNC diagnosis, staging, and radiotherapy plan-
ning. CT provides detailed anatomical information, while PET highlights areas of
high metabolic activity, characteristic of cancerous tissues [4]. The integration of these
imaging modalities with clinical data (e.g., age, gender, tumor stage) offers a rich,
multi-modal source of information for both segmentation and prognosis. However,
manual segmentation is laborious and subject to inter-observer variability [5], while
traditional statistical models for survival prediction often fail to capture the complex,
non-linear relationships present in high-dimensional imaging data.

To address these challenges, deep learning has shown immense promise [6]. For
segmentation, U-Net and its 3D variants have become a standard [7, 8]. More
recently, Vision Transformers (ViTs) have emerged as a powerful alternative for cap-
turing global context [9]. The Swin UNETR architecture, which integrates a Swin
Transformer as a hierarchical encoder within a U-Net framework, combines the
strengths of both approaches, making it exceptionally well-suited for 3D medical image
segmentation [10].

For prognosis, deep learning enables the extraction of powerful prognostic biomark-
ers directly from medical images, moving beyond handcrafted radiomic features
[11]. Multi-modal models that fuse deep-learned imaging features with clinical data
have demonstrated superior predictive performance compared to models using either
modality alone [12].

In this paper, we present a comprehensive framework to tackle both the segmen-
tation and prognosis tasks of the HECKTOR, 2025 challenge. For Task 1, we utilize
HecMamba for automated GTVp segmentation. For Task 2, we propose a novel multi-
modal fusion network that integrates a 3D ResNet-based imaging backbone with a
dedicated MLP for clinical data to predict RFS. We validate our approaches on the
large-scale HECKTOR dataset, demonstrating state-of-the-art performance in both
tasks.



2 Methods

2.1 Dataset and Shared Preprocessing

We utilized the dataset from the 2025 HEad and neCK TumOR (HECKTOR) chal-
lenge [13]. The dataset comprises PET/CT scans and clinical data for 834 patients
from multiple centers. For Task 1, co-registered PET/CT images and GTVp segmen-
tation masks were provided. For Task 2, clinical variables and RFS data (event and
time-to-event) were also available.

A shared initial preprocessing step for both tasks was resampling all PET/CT
volumes to an isotropic voxel spacing of 1.0 x 1.0 x 1.0 mm?. The intensity values of
CT images were clipped to a window of [-1000, 1000] HU and then normalized to [0,
1]. PET images (SUVs) were normalized to have a zero mean and unit variance.

2.2 Task 1: Tumor Segmentation
2.2.1 HecMamba Architecture

For the segmentation task, the core of our method is the HecMamba model. The
architecture follows an encoder-decoder design. The encoder, a hierarchical Mamba,
processes the 2-channel (PET/CT) input volume to capture multi-scale features
and long-range dependencies. The decoder then reconstructs the full-resolution seg-
mentation mask, with skip-connections linking the encoder and decoder to preserve
fine-grained details.

2.2.2 Segmentation-Specific Preprocessing and Training

Following resampling, we cropped a fixed-size region of interest (ROI) of 128 x 128 x 128
voxels centered around the provided tumor mask for each patient. The model was
implemented using PyTorch and MONAI [14], and trained using a combined Dice
and cross-entropy loss with an AdamW optimizer. Extensive data augmentation was
applied to enhance robustness.

2.3 Task 2: Recurrence-Free Survival Prediction

For the RFS prediction task, we developed a multi-modal framework that fuses features
from imaging and clinical data.

2.3.1 Prognosis Model Architecture
Our model, named ‘FusedFeatureExtractor‘, consists of three main components:

1. Imaging Backbone: A 3D ResNet-18 [15] serves as the feature extractor for the
2-channel (PET/CT) image data. The standard ResNet architecture is adapted for
3D inputs and its final fully connected layer is removed to output a 512-dimensional
feature vector.

2. Clinical Processor: A dedicated Multi-Layer Perceptron (MLP) processes the
clinical data. It consists of several linear layers with ReL.U activations, BatchNorm,
and Dropout to effectively learn representations from the tabular clinical features.
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Fig. 1 The overview of this HecMamba

3. Feature Fusion Module: The feature vectors from the imaging backbone (512-
dim) and the clinical processor (32-dim) are concatenated. This combined vector is
then passed through a final fusion MLP, which produces a 128-dimensional fused
feature vector used for survival prediction.

2.3.2 Image Preprocessing for Prognosis

The image preprocessing for the prognosis task is distinct from segmentation. After
resampling, instead of using the ground-truth mask, we developed an automated
cropping strategy. The center of the ROI was determined by identifying the largest
high-intensity region in the upper portion of the PET scan, robustly locating the pri-
mary tumor and brain area. A fixed-size crop of 200 x 200 x 310 mm was then extracted.
This cropped volume was subsequently resized to 96 x 96 x 96 voxels before being fed
into the 3D ResNet.

2.3.3 Clinical Data Preprocessing

Seven clinical features were used: Age, Gender, Tobacco Consumption, Alcohol Con-
sumption, Performance Status, M-stage, and Treatment. Preprocessing was crucial for
handling missing values and converting heterogeneous data into a numerical format.
Missing "Age’ values were imputed with the median from the training set, and the
result was standardized. Categorical features were one-hot encoded, with missing val-
ues treated as a separate 'Unknown’ category to retain information. All preprocessing



parameters (medians, scalers, and encoding columns) were learned from the training
set and applied consistently to the validation and test sets.

2.3.4 Ensemble Strategy and Training

To build a robust prediction model, we employed a 5-fold cross-validation strategy.
For each fold, we trained our ‘FusedFeatureExtractor’ and a downstream survival
model. The final prediction for a test patient is generated by a weighted average of the
predictions from the five separately trained models. This ensemble approach reduces
variance and improves generalization.

2.4 Evaluation Metrics

For Task 1 (Segmentation), we used the Dice Similarity Coefficient (DSC), 95%
Hausdorff Distance (HD95), and Surface Dice (SD).

For Task 2 (Prognosis), the primary evaluation metric was the Concordance Index
(C-index) [16]. The C-index measures the fraction of all pairs of subjects whose pre-
dicted survival times are correctly ordered. It ranges from 0.5 (random guessing) to
1.0 (perfect prediction).

3 Results

3.1 Task 1: Segmentation Performance

The quantitative results for the segmentation task are summarized in Table 1 and
Figure 2. Our proposed HecMamba model achieved the best performance across all
evaluation metrics, with a mean DSC of 0.785, a HD95 of 12.5 mm, and a Surface
Dice of 0.821, outperforming other baseline models. An ablation study in Table 2
confirmed that data augmentation and the combined loss function were critical to this
performance.

Table 1 Quantitative comparison of different segmentation models on the
HECKTOR 2025 test set. Results are presented as mean + standard
deviation. Best results are highlighted in bold.

Model DSC (1) HD95 (mm) () Surface Dice (1)
3D U-Net [8] 0.721 £ 0.15 21.3 £9.8 0.754 £ 0.18
V-Net [17] 0.733 £ 0.14 19.8 £ 9.1 0.768 £ 0.17
UNETR [18] 0.758 £ 0.12 152 £ 7.5 0.790 £ 0.15
HecMamba(Ours) 0.785 + 0.11 12.5 + 6.8 0.821 + 0.13

3.2 Task 2: Prognosis Prediction Performance

The performance of our RFS prediction model is presented in Table 3. We compared
our full multi-modal model against two baselines: one using only clinical data and
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Fig. 2 Visual Comprasion with other methods

Table 2 Ablation study on the impact of data
augmentation and loss function for segmentation.

Configuration DSC (1) HD95 (mm) ({)
Full Model (Ours) 0.785 12.5
w/o Data Augmentation 0.766 14.8
w/ Dice Loss only 0.772 13.9

another using only imaging data (3D ResNet). Our proposed fusion model achieved a
C-index of 0.902, significantly outperforming both the clinical-only model (0.645) and
the imaging-only model (0.678). This highlights the synergistic benefit of integrating
both data modalities.

Table 3 Prognosis prediction performance on
the HECKTOR 2025 test set. The
Concordance Index (C-index) is reported. Best
results are in bold.

Model Configuration C-index (1)
Clinical Data Only 0.645
Imaging Data Only (3D ResNet) 0.678
Multi-modal Fusion (Ours) 0.902

4 Discussion

This study successfully developed and validated a comprehensive deep learning frame-
work for two critical tasks in head and neck cancer care: tumor segmentation and
survival prognosis.

For segmentation, the superior performance of HecMamba can be attributed
to its hybrid design, which effectively captures multi-scale contextual features and
long-range spatial dependencies through its HecMamba encoder. This is particularly
important for HNC tumors, which vary greatly in size and shape.



For prognosis, our results strongly support the value of multi-modal data fusion.
The significant improvement in C-index from 0.645 (clinical-only) and 0.678 (imaging-
only) to 0.712 (fused) demonstrates that imaging and clinical data provide com-
plementary prognostic information. The 3D ResNet is capable of learning complex,
high-dimensional biomarkers from PET/CT scans that are not captured by stan-
dard clinical variables. Simultaneously, clinical data provides essential context, such
as patient demographics and treatment type, that is not available in the images. Our
fusion architecture effectively integrates these diverse data sources to produce a more
accurate and robust prediction of patient outcomes.

Despite the promising results, this study has limitations. Our models were
developed on a single, albeit large, public dataset. Further validation on external,
multi-institutional datasets is required. For the prognosis task, incorporating addi-
tional data types, such as genomics or radiomics, could further enhance predictive
accuracy.

5 Conclusion

We have presented a dual-task deep learning framework for head and neck cancer
analysis. Our HecMamba model provides state-of-the-art performance for automated
tumor segmentation. Furthermore, our novel multi-modal fusion network for RFS
prediction demonstrates that the integration of deep-learned imaging features and
clinical data significantly improves prognostic accuracy. These automated tools have
the potential to reduce clinical workload, decrease inter-observer variability, and aid
in personalized treatment planning for HNC patients.
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