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ABSTRACT

Deep Reinforcement Learning (DRL) has achieved awesome performance in a va-
riety of applications. However, most existing DRL methods require massive active
interactions with the environments and use the training environments as the eval-
uation environments, which is not practical in real-world scenarios and leading to
the negligence of the generalization ability of the agent. To fulfill the potential
of DRL, an ideal policy should have 1) the ability to learn from a previously col-
lected dataset (i.e., offline DRL) and 2) the generalization ability for the unseen
scenarios and objects in the testing environments. Given the expert demonstrations
collected from the training environments, the goal is to enhance the performance
of the model in both the training and testing environments without any more inter-
action. In this paper, we proposed a minimalist ensemble imitation learning-based
method that trains a bundle of agents with simple modifications on network ar-
chitecture and hyperparameter tuning and combines them as an ensemble model.
To verify our method, we took part in the No Interaction Track of the SAPIEN
Manipulation Skill (ManiSkill) Challenge and conducted extensive experiments
on the ManiSkill Benchmark. The 1st prize in the ManiSkill Challenge and ex-
perimental results well demonstrated the effectiveness of our method.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has been widely studied and applied to a variety of appli-
cations including robotics (Akkaya et al., 2019) and autonomous driving (Filos et al., 2020; Zhao
et al., 2022), and performed remarkably in ideal environments such as Atari (Bellemare et al., 2013)
and MuJoCo (Todorov et al., 2012). While many DRL methods learn by online interacting with the
environments, interactions with real-world environments are costly and sometimes unsafe. Offline
DRL (Fujimoto et al., 2019; Kumar et al., 2020), in which no additional interactions with the en-
vironments are required after data collection, provides a promising way for making DRL methods
applicable in practice. One way to solve the offline DRL problem is following the paradigm of Imi-
tation Learning (Chen et al., 2020; Liu et al., 2021) to mimic the actions directly. However, offline
DRL methods do not consider the generalization ability in the testing environments, especially for
real-world complex, dynamic, and open-ended applications with unseen objects and new scenarios.

In this paper, we proposed a minimalist ensemble IL-based method and demonstrated its efficacy
in the No Interaction Track of the ManiSkill Challenge (Mu et al., 2021). In this track, only a set
of fixed expert demonstrations can be used for learning generalizable manipulation skills. Based
on a base learner provided by the challenge, we modified the network architecture and tuned hy-
perparameters to make single base learner robust, and we further leveraged ensemble method with
feature diversity improvement to enhance the final model performance. Our team Fattonny won the
1st prize in the No Interaction Track of the ManiSkill Challenge and conducted extensive local ex-
periments on the ManiSkill Benchmark, and the results from the ManiSkill Challenge leaderboard
and the additional experiments on the benchmark demonstrated the superiority of our method.
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2 METHODOLOGY

2.1 OVERVIEW

We represent the environment using a Markov decision process (MDP) (S,A,R,P, γ) with state
space S, action space A, reward function R, state transition function P and discount factor γ. And
we follow the setting of offline DRL that only trains the agent with a fixed dataset D without ad-
ditional interaction. In ManiSkill Challenge tasks, the dataset D = {(si, ai, ri, s′i), i = 1, · · · , N}
is optimal (i.e., all data are expert demonstrations) and consists of N tuples where s is the current
state, a is the continuous action vector, r is the reward and s′ is the next state. Different from the
conventional DRL problem, our goal is to maximize the success rate of a task instead of the excepted
reward.

Given the expert demonstrations D, we efficiently train M independent base learners {πj(·)}Mj=1
in parallel. Each single base learner takes the input s and predicts the action âj . To aggregate all
base learners into an ensemble model, we use the Bagging algorithm (Breiman, 1996) and take the
average action ā as the final decision. In the remainder of this section, we describe the baseline
method, how to make a robust base learner and how to aggregate multi-agents respectively in detail.

2.2 THE BASE LEARNER

We borrow the baseline PointNet+Transformer from the ManiSkill Challenge (Mu et al., 2021).
Given the expert action a and input s = (c, o,m) including the agent state c, the point cloud ob-
servation o and segmentation mask m, the PointNet+Transformer π(·) firstly uses a PointNet (Qi
et al., 2017) to extract the categorical feature for each segmentation category (i.e., C PointNets in
total and C is the segmentation category number). All categorical features are then passed into a
Transformer (Vaswani et al., 2017) and fused into a representative global feature g ∈ Rb×l (b is the
batch size and l is the dimension of the feature). And a final Multilayer Perceptron (MLP) generates
the action â using the global feature. We train the PointNet+Transformer π(·) using the Behavior
Cloning (BC) with the objective Lbc = ∥â− a∥2.

2.3 TOWARDS A ROBUST SINGLE LEARNER

Larger Batch Size. To avoid making out-of-distribution (OOD) actions in both the training and
testing environments, we hope to learn a conservative model fitting on the high-quality successful
demonstrations and reduce the compounding error (Ross & Bagnell, 2010). As discussed in McCan-
dlish et al. (2018), a larger batch size can approximate more accurately true gradients while a smaller
batch size often generates gradients with higher variances. Thus we choose to use a large batch size
to calculate accurate gradients. In our implementation, we used a large batch size b = 1024 rather
than a small value b = 128 in the baseline PointNet + Transformer.

Dropout Regularization. To handle the overfitting problem (Codevilla et al., 2019) which is com-
mon in the BC method, we apply the dropout regularization technique (Srivastava et al., 2014) to
our network. During the training stage, for the input features from the previous layer and the cor-
responding neurons in the dropout layer, the dropout technique randomly cuts off the connection
with a probability p. As claimed in Srivastava et al. (2014), the dropout regularization can reduce
generalization error by a large margin, which is exactly what we focus on. In our implementation,
we added two dropout layers before the last two fully connected layers in the final MLP, where the
probability p was simply set to a mild value of 0.15.

2.4 MINIMALIST ENSEMBLE MODELING

Besides making a single base learner more robust, we also observe that the ensemble methods are
very useful to reduce the generalization error. Following the idea of Bagging (Breiman, 1996), we
train M (M = 20 in our implementation) base learners πj(·) independently and aggregate all base
learners by taking the average of the predicted actions:

ā =
1

M

M∑
j=1

âj =
1

M

M∑
j=1

πj(s). (1)
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As stated in the theory analysis in Breiman (1996), if the base learners are not very different from
each other, the aggregation operation may not help a lot. Conversely, with truly independent base
learners, the aggregation operation can reduce variance, prevent the overfitting problem and enhance
generalization ability to new scenarios. Since base learners are generated by learning from the same
training set D, it is difficult to obtain truly independent base learners. Here we use two methods to
make each base learner more diverse and obtain good generalization performance by aggregation.

Bootstrapping Sampling Technique. To increase the data diversity, we use bootstrapping sam-
pling (Tibshirani & Efron, 1993) to build different sub-datasets for each base learner (i.e., given
a dataset D with N samples, we randomly resample N samples from D with replacement).

Feature Diversity Improvement. For each base learner πj(·), we randomly generate a real symmetric
matrix Aj ∈ Rl×l by sampling from a uniform distribution U(0, 1). Then we produce an orthogonal
basis Bj ∈ Rl×l consisting of l eigenvectors of Aj . By multiplying the orthogonal basis Bj , the
global feature gj ∈ Rb×l from the Transformer module (Vaswani et al., 2017) can be projected to a
new feature space with a specified transformation

fj = gjBj , (2)

and then sent to the final MLP to generate final action âj . Note that since each base learner has a
different orthogonal basis Bj , they can learn different patterns even if the differences on the dataset
are not significant, allowing aggregation operation to reduce variance and improve generalization
ability.

3 EXPERIMENTS

3.1 EXPERIMENTS SETUP

SAPIEN Manipulation Skill (ManiSkill) Challenge. To verify the effectiveness of our method, we
conducted extensive experiments on the SAPIEN Manipulation Skill (ManiSkill) Benchmark and
participated in the ManiSkill Challenge (Mu et al., 2021). Aiming to develop more generalizable
manipulation skills, the ManiSkill Challenge is built on the ManiSkill Benchmark and consists of
4 object-centric manipulation tasks with 162 different objects in total. The 4 tasks are 1) Open-
CabinetDrawer (Drawer), 2) OpenCabinetDoor (Door), 3) PushChair (Chair), and 4) MoveBucket
(Bucket). For each task, the evaluation metric is the success rate rather than the accumulated re-
wards.

No Interaction Track. Specifically, we participated in the No Interaction Track of the ManiSkill
Challenge that only allows to train the agent with the given demonstrations (i.e., unknown behavior
policy and no more interaction with the environments). The demonstration dataset is collected from
the training environments and consists of 7500, 12600, 7800, and 8700 successful trajectories for
OpenCabinetDrawer, OpenCabinetDoor, PushChair and MoveBucket respectively, and about 1.5M
frames in total. The testing environments contain 10 unseen objects for each task. The Challenge
evaluates the model on both the training and the testing environments. The final score of each task
is the mean success rate from both two environments.

Table 1: Success rates on the No Interaction Track of the ManiSkill Challenge. Final scores are the
mean success rates of all four tasks in both the training and testing environments.

Team Final Score
Drawer Door Chair Bucket

Train Test Train Test Train Test Train Test

Silver-Bullet-3D 0.5740 0.932 0.556 0.896 0.208 0.468 0.328 0.716 0.488
bigfish 0.3435 0.740 0.192 0.664 0.124 0.256 0.152 0.360 0.260

MI 0.3320 0.788 0.120 0.700 0.124 0.320 0.180 0.268 0.156
SieRra11799 0.1895 0.456 0.144 0.200 0.044 0.212 0.120 0.196 0.144

ic 0.1880 0.484 0.228 0.280 0.072 0.156 0.116 0.108 0.060
Zhihao 0.1835 0.416 0.120 0.272 0.068 0.216 0.096 0.176 0.104

Fattonny (Ours) 0.4070 0.840 0.184 0.764 0.160 0.400 0.252 0.320 0.336
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Table 2: Ablation studies on batch size "B" and
dropout regularization "D" in terms of the suc-
cess rate in the training environments.

# B D Drawer Door Chair Bucket
1 128 ✗ 0.370 0.300 0.180 0.150
2 128 ✓ 0.370 0.300 0.190 0.170

3 256 ✗ 0.410 0.310 0.180 0.165
4 256 ✓ 0.505 0.370 0.215 0.175

5 512 ✗ 0.545 0.415 0.250 0.180
6 512 ✓ 0.575 0.445 0.255 0.195

7 1024 ✗ 0.565 0.485 0.250 0.225
8 1024 ✓ 0.615 0.605 0.280 0.235

Table 3: Ablation studies on learner number "M"
and feature diversity improvement "F" in terms of
the success rate in the training environments.

# M F Drawer Door Chair Bucket
1 – ✗ 0.615 0.605 0.280 0.235
2 3 ✗ 0.715 0.685 0.325 0.255
3 3 ✓ 0.750 0.715 0.345 0.275
4 5 ✗ 0.785 0.740 0.345 0.255
5 5 ✓ 0.805 0.760 0.355 0.285
6 10 ✓ 0.825 0.755 0.340 0.300
7 15 ✓ 0.825 0.780 0.345 0.300

8 20 ✓ 0.830 0.790 0.375 0.310

3.2 RESULTS ON MANISKILL CHALLENGE

Table 1 shows the detailed results on the No Interaction Track of the ManiSkill Challenge in terms
of mean success rates. Except for the team Silver-Bullet-3D, our results outperformed other teams
by a large margin in most environments. For instance, our method achieved a success rate of 0.4000
on the training environments for task PushChair, which is up to 14.4% ahead of the third team
bigfish. It is worth noting that all teams suffered dramatic performance drops on all 4 tasks when
transferring from the training environments to the testing environments, especially for tasks Open-
CabinetDrawer and OpenCabinetDoor. We therefore inferred that the variations of unseen objects
can lead to dramatic changes in decision making. For tasks PushChair and MoveBucket, we noticed
that the performance gap between the training and testing environments are relatively small, which
indicates the variations of the objects in these two tasks are not large enough to cause more failures.

3.3 ABLATION STUDY

To better understand the effectiveness of each component and technique used in our method, we
conducted detailed ablation studies on ManiSkill Benchmark. Due to fact that we can not access
the testing environments of each task on the local benchmark, we evaluated our models on the
training environments of 4 tasks over 200 times and took the final average success rates as the
results. Note that because we evaluated locally and used different seeds, the results are different
from the challenge results on the training environments in Table 1.

Table 2 shows the results for different batch sizes and dropout regularization used or not. For the
second and third columns, "B" is the abbreviation for batch size and "D" is the abbreviation for
dropout regularization. From the settings 1, 3, 5 and 7 in Table 2, we can observe that there are
consistent improvements as the batch size increases. For example, the mean success rate on the
task OpenCabinetDrawer increased from 0.370 to 0.565 as the batch size increased from 128 to
1024. The dropout regularization can also enhance the performance according to the comparisons
between settings 2, 4, 6, 8 and settings 1, 3, 5, 7 respectively. Table 3 shows the results for different
numbers "M" of the base learners and the feature diversity improvement "F" in the ensemble model.
The ensemble models consistently achieved higher success rates as the number of the base learners
increased on all 4 tasks. For instance, a single base learner can only obtain a success rate of 0.615 on
the task OpenCabinetDrawer, while the ensemble model of 20 base learners achieved 0.830 leading
to a huge improvement of 0.215.

4 CONCLUSION

In this paper, based on the baseline PointNet+Transformer from the ManiSkill Challenge, we pro-
pose a minimalist ensemble method to enhance the generalization ability of the model. Towards a
robust single agent, we simply add dropout regularization and increase the batch size to handle the
overfitting problem and reduce generalization error. To further enhance the generalization ability, we
use bagging algorithm to aggregate a bundle of models. The experimental results on the ManiSkill
Challenge and Benchmark demonstrated the superiority of our method.
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