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ABSTRACT

Complex adaptive systems occur in all domains across all scales, from cells to
societies. The question, however, of how the various forms of collective behavior
can emerge from individual behavior and feedback to influence those individu-
als remains open. Complex systems theory focuses on emerging patterns from
deliberately simple individuals. Fields such as machine learning and cognitive
science emphasize individual capabilities without considering the collective level
much. To date, however, little work went into modeling the effects of chang-
ing and uncertain environments on emergent collective behavior from individu-
ally self-learning agents. To this end, we derive and present deterministic memory
mean-field temporal-difference reinforcement learning dynamics where the agents
only partially observe the actual state of the environment. This paper aims to ob-
tain an efficient mathematical description of the emergent behavior of biologically
plausible and parsimonious learning agents for the typical case of environmental
and perceptual uncertainty. We showcase the broad applicability of our dynamics
across different classes of agent-environment systems, highlight emergent effects
caused by partial observability and show how our method enables the application
of dynamical systems theory to partially observable multi-agent learning. The pre-
sented dynamics have the potential to become a formal yet practical, lightweight,
and robust tool for researchers in biology, social science, and machine learning to
systematically investigate the effects of interacting partially observant agents.

1 INTRODUCTION

Motivation. Complex adaptive multi-agent systems are everywhere. The emergence of a collec-
tive level characterizes them through the interplay of individual entities, which in turn feeds back
to influence those individuals. Advancing the understanding of complex adaptive systems is vital
for explaining collective behavior in nature (Couzin, 2009), making technological multi-agent sys-
tems safe and efficient (Ferber & Weiss, 1999), and tackling societal collective action challenges
(Bak-Coleman et al., 2021).

iven the cognitive demands of fully integrating all sources of uncertainty when learning from expe-
rience and making decisions, real agents must employ methods of bounded rationally Simon (1997)
that use cognitive resources efficiently to obtain acceptable solutions in a timely manner Griffiths
et al. (2015)

Complex systems research has made significant progress in this regard by employing a range of tools
from stochastic processes, statistical physics, and non-linear dynamics. However, while focusing on
the emergence of a collective level, individual entities are kept deliberately simple, often described
as being in one of only a few states. Yet, in most complex systems, individual behavior is more
sophisticated. Research fields such as machine learning and cognitive science focus on the intelligent
behavior of one individual situated in an environment, whereas the collective level is not considered
much, albeit notable exceptions (Rosa et al., 2019; Ha & Tang, 2021). We argue that a combined
approach is required to describe the collective and individual levels’ interplay adequately.

To this end, describing multi-agent reinforcement learning as a dynamical system has proven it-
self useful to gain improved, qualitative insights into the emerging collective learning dynamics
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(Bloembergen et al., 2015). However, existing learning dynamics are either applicable only to state-
less environments, assume that agents do not tailor their response to the current environmental state,
or, if they do, believe that agents observe the true states of the environment perfectly. Yet, in the real
world, state observations are noisy and incomplete.

Overview. With this work, we advance the field of describing multi-agent reinforcement learning
as a dynamical system and obtain an efficient mathematical description of the emergent behavior of
biologically plausible and parsimonious learning agents for the typical case of environmental and
perceptual uncertainty. With the derived dynamics, we can study the idealized reinforcement learn-
ing behavior in a wide range of environmental classes, from partially observable Markov decision
processes to fully general, partially observable stochastic games.

We employ the widely-occurring principle of temporal-difference reinforcement learning (Sutton,
1988). Temporal-difference learning is not only a computational technique (Sutton & Barto, 2018),
it also occurs in biological agents through the dopamine reward prediction error signal (Schultz et al.,
1997; Dayan & Niv, 2008). We study boundedly rational agents who treat their observations (or a
short history of those) as if they were the actual states of the environment. This has the advantage
of being simple to act upon (Williams & Singh, 1998), and they are easy to realize at no or little
additional computational cost.

We showcase the applicability of dynamics at two partially observable environment classes. We
find instances where partial observability can lead to better learning outcomes faster by stabiliz-
ing a chaotic learning process in a multi-state zero-sum game and overcoming an uncertain social
dilemma. Furthermore, our method allows applying dynamical systems theory to partially observ-
able multi-agent learning. We find that partial observability can cause a critical slowing down of
the learning processes between reward regimes and the separation of the learning dynamics into fast
and slow eigendirections.

Related work. As in evolutionary game theory, learning dynamic agents are boundedly rational
Simon (1997), taking into account strategic uncertainty by assuming that other agents are not per-
fectly rational either but instead by allowing agents to adapt to each other sequentially. Börgers &
Sarin (1997) established the formal relationship between the learning behavior of one of the most
basic reinforcement learning schemes, Cross learning (Cross, 1973), and the replicator dynamics of
evolutionary game theory. Since then, the link between evolutionary game theory and reinforcement
learning has been extended to stateless Q-learning (Tuyls et al., 2003; Sato & Crutchfield, 2003),
regret-minimization (Klos et al., 2010) and temporal-difference learning (Barfuss et al., 2019), as
well as discrete-time dynamics (Galla & Farmer, 2013), continuous strategy spaces (Galstyan, 2013)
and extensive-form games (Panozzo et al., 2014). This learning dynamics approach offers a formal,
lightweight, and deterministically reproducible way to gain improved, descriptive insights into the
emerging multi-agent learning behavior.

Apart from strategic uncertainty, representing stochastic uncertainty, i.e., uncertainty about what
will happen in the form of probabilistic events within the environment requires foremost the pres-
ence of an environment. Recent years have seen a growing interest in moving evolutionary and
learning dynamics in stateless games to changing environments. Here, the term environment can
mean external fluctuations (Assaf et al., 2013; Ashcroft et al., 2014), a varying population den-
sity (Hauert et al., 2006; Gokhale & Hauert, 2016), spatial network structure (Gracia-Lázaro et al.,
2013; Szolnoki & Chen, 2018), or coupled systems out of evolutionary and environmental dynamics.
Coupled systems may further be categorized into those with continuous environmental state spaces
Weitz et al. (2016); Chen & Szolnoki (2018); Tilman et al. (2020); Wang & Fu (2020) or discrete
ones (Hilbe et al., 2018; Barfuss et al., 2019; Hauert et al., 2019; Su et al., 2019). We’ll be focusing
on learning dynamics in stochastic games (Hilbe et al., 2018; Barfuss et al., 2019) which encode
stochastic uncertainty via action-depended transition probabilities between environmental states.

While many works on partially observable decision domains are normative, ours is descriptive. For
the normative agenda, agents are often enriched with, e.g., generative models and belief-state repre-
sentations (Spaan, 2012; Oliehoek & Amato, 2016), abstractions (Sutton et al., 2006) or predictive
state representations (Littman et al., 2001) in order to learn optimal policies in partially observable
decision domains. Also, the economic value of signals is often studied by asking how fully rational
agents optimally deal with a specific form of state uncertainty (Bagh & Kusunose, 2020). However,
such techniques can become computationally extremely expensive (Loch & Singh, 1998). It is un-
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likely that biological agents perform those elaborate calculations (Gigerenzer & Gaissmaier, 2011)
and the focus on unboundedly rational game equilibria lacks a dynamic perspective (Papadimitriou
& Piliouras, 2019) making it unable to answer which equilibrium (of the often many) the agents
select.

2 COLLECTIVE LEARNING DYNAMICS

We introduce the necessary background in Sec. 2.1 before we derive of our dynamics in Sec. 2.2.

2.1 BACKGROUND

Partially observable stochastic games. Formally, we employ the framework of stochastic games
(Shapley, 1953; Levy & Solan, 2020). N ∈ N agents interact in a shared environment, which
consists of Z ∈ N states S = (S1, . . . , SZ). In each state s, each agent i has M ∈ N available
actions Ai = (Ai1, . . . , A

i
M ) to choose from. A =

⊗
iAi is the joint-action set where

⊗
i denotes

the cartesian product over the sets indexed by i and agents choose their actions simultaneously. With
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ) we denote the joint action except agent i’s. We chose an equal
number of actions for all states and agents out of notational convenience.

The transition function T : S×A×S → [0, 1] determines the probabilistic state changes. T (s,a, s′)
is the transition probability from current state s to next state s′ under joint action a. Throughout this
work, we restrict ourselves to ergodic environments without absorbing states.

The reward function R : S ×A × S → RN maps the triple of current state s, joint action a and
next state s′ to an immediate reward scalar for each agent. Ri(s,a, s′) is the reward agent i receives.
Agents are interested maximize their rewards over time,

∑∞
t (γi)tRit, discounted by their discount

factors γi ∈ [0, 1) and Rit being the reward agent i received at time step t. The discount factor
regulates how much an agent cares for future rewards.

Instead of observing the states s ∈ S directly, each agent i observes one of Q ∈ N observations
Oi = (Oi1, . . . , O

i
Q) according to the observation functions Oi : S × Oi → [0, 1]. Oi(s, o) is the

probability that agent i observes observation o ∈ Oi given that the environment is in state s ∈ S.
O =

⊗
iOi is the joint observation set andO =

⊗
iO

i : S ×O → [0, 1]N is the joint observation
function. We chose an equal number of observations for all agents out of notational convenience. By
construction, this observation function can model both noisy state observations and hidden states.

We consider agents that choose their actions probabilistically according to their memoryless policy
πi : Oi × Ai → [0, 1]. πi(ai|oi) is the probability that agent i chooses action ai given that it
observed observation oi. π =

⊗
i π

i is the joint policy.

Reinforcement Learning. Motivated by a maximum entropy approach Wolpert et al. (2012); Bar-
fuss (2021), we parameterize the policy of agent i by a soft-max function

πit(a
i|oi) =

eβ
iQi

t(o
i,ai)∑

b∈Ai eβ
iQi

t(o
i,b)

(1)

where the qualities Qit(o
i, ai) express how agent i evaluates action ai for observation oi at time step

t. The intensity of choice parameter βi regulates the exploration-exploitation trade-off. Learning
means a change of policy induced by an update of those state-action values Qit(o

i, ai),

Qit+1(oi, ai) = Qit(o
i, ai) + αi · δit(oi, ai), (2)

where δit denotes the temporal-difference or reward-prediction error. Agents try to successively
improve their qualities of the available actions at each observation. The learning rate parameter
αi ∈ (0, 1) regulates how much new information is used for an observation-action-value update.
Different variants of temporal-difference learning exist in the literature. We focus on the famous
Q-learning update (Watkins & Dayan, 1992) for which the temporal-difference error is obtained as,

δit(o
i, ai) := Rit + γi max

b
Qit(o

′i, b)−Qit(oi, ai), (3)

whereRit is the reward agent i received at time step t and o′i is the next observation agent i observed.
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2.2 DERIVATION

In this section, we derive the deterministic reinforcement learning dynamics under partial observabil-
ity in discrete time. As classic evolutionary dynamics operate in the theoretical limit of an infinite
population, the learning dynamics are derived by considering an infinite memory batch (Barfuss,
2020) or likewise a separation of time scales between the process of interaction and adaptation (Bar-
fuss, 2021). Thus, they can be understood a memory mean-field theory. In essence, deterministic
learning dynamics consider policy averages instead of individual samples of rewards and observa-
tions. Thus, we need to construct the policy-average temporal-difference error δ̄i to be inserted in
the update for the joint policy,

πit+1(ai|oi) =
πit(a

i|oi) · exp
(
αδ̄i(oi, ai)

)∑
b π

i
t(b|oi) · exp

(
αδ̄i(oi, b)

) . (4)

Eq. 4 can be derived by combining Eqs. 2 and 1. The bar on top of δi indicates implicitly that δ̄i
depends fully on the current joint policy πt. Computing δ̄i(oi, ai) involves averaging over policies,
environmental transitions and observations for the first two terms of the temporal-difference error
(Eq. 3), the immediate rewards and the qualities of the next observation. The quality of the current
observation,Qit(o

i, ai) becomes β−1 lnπi(ai|oi) in the average temporal-difference error and serves
as regularization term. This can be derived by inverting Eq. 1 and realizing that the dynamics
induced by Eq. 4 are invariant under additive transformations which are constant in actions.

Beliefs. The challenge is that the rewards Ri(s,a, s′) in the stochastic game model depend on the
true states, not on the observations of the agents. Thus, in order to obtain the average observation-
action rewards R̄i(oi, ai), we need a mapping from observations to states. The observation function
is a mapping from states to observations. With Bayes rule,

B̄i(oi, s) =
Oi(s, oi)P̄ (s)∑
sO

i(s, oi)P̄ (s)
(5)

we can transform the observation function into a belief function, following the rules of probability.
B̄i(oi, s) is the belief of agent i (or simply the probability) that the environment is in state s when it
observed observation oi.

The only problem is how to obtain the policy-average stationary state distribution P̄ (s). P̄ (s) is
the left-eigenvector of the average transition matrix T̄ (s, s) where the entry T̄ (s, s′) denotes the
probability of transitioning from state s to state s′. This matrix could be obtained as T̄ (s, s′) =∏
j

∑
aj ρ̄

j(aj |s)T (s,a, s′) if we had the probability for each agent j to choose action aj in state s,
ρ̄j(aj |s). However, we assumed that agents condition their actions only on observations, πj(aj |oj).
Yet, whenever the environment is in state s, agent j observes observation oj with probability
Oj(s, oj) and than chooses action aj with probability πj(aj |oj). Thus, with

ρ̄j(aj |s) :=
∑
oj∈Oj

Oj(s, oj)πj(aj |oj), (6)

we can average out the observation and obtain the policy-average state-policies ρ̄j(aj |s). Note that
ρ̄j(aj |s) are proper conditional probabilities, which can be seen by applying

∑
aj to both sides of

Eq. 6. With ρ̄j(aj |s) we can then compute the policy-average transition matrix T̄ (s, s), its left-
eigenvector, the stationary state distribution P̄ (s), and thus, the policy-average belief of agent i that
the environment is in state s when it observed observation oi, B̄i(oi, s).

Rewards. Whenever agent i observes observation oi, with probability B̄i(oi, s) the environment
is in state s where all other agents j 6= i behave according to ρ̄j(aj |s), the environment transitions
to a next state s′ with probability T (s,a, s′), and agent i receives the reward Ri(s,a, s′). Mathe-
matically, the policy-average reward for action ai under observation oi reads

R̄i(oi, ai) :=
∑
s

∑
aj

∑
s′

∏
j 6=i

B̄i(oi, s)ρ̄j(aj |s)T (s,a, s′)Ri(s,a, s′). (7)
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Qualities. Second, the policy-average of the quality of the next observation (maxbQ
i
t(o

i
t+1, b)

in Eq. 3) is computed by averaging over all states, all actions of the other agents, next states and
next observations. Whenever agent i observes observation oi, the environment is in state s with
probability B̄i(oi, s). There, all other agents j 6= i choose their action aj with probability ρ̄j(aj |s).
Consequently, the environment transitions to the next state s′ with probability T (s,a, s′). At s′,
the agent observes observation o′ with probability Oi(s′, o′) and estimates the quality to be of value
maxb Q̄

i(o′, b). Mathematically, we write
maxQ̄i(oi, ai) :=

∑
s

∑
aj

∑
s′

∑
o′

∏
j 6=i

B̄i(oi, s)ρ̄j(aj |s)T (s,a, s′)Oi(s′, o′) max
b
Q̄i(o′, b). (8)

Here, we replace the quality estimates Qit(o
i, ai), which evolve in time t (Eq. 2), with the policy-

average observation-action quality Q̄i(oi, ai), which is the expected discounted sum of future re-
wards from executing action ai at observation oi and then following along the joint policy π. It is
obtained by a discount factor weighted average of the current policy-average reward R̄i(oi, ai) and
the policy-average observation quality of the following observation V̄ i(o′),

Q̄i(oi, ai) = R̄i(oi, ai) + γi
∑
o′∈Oi

T̄ i(oi, ai, o′)V̄ i(o′). (9)

Here, T̄ i(oi, ai, o′) is agent i’s policy-average transition probability of observing observation o′ at
the next time step given it observed observation oi at the current time step and chose action ai. It
is computed by averaging over all states, next states and all actions of the other agents. Whenever
agent i observes observation oi and selects action ai, the environment is in state s with probability
B̄i(oi, s), where all other agents j 6= i select action aj with probability ρ̄j(aj |s). Consequently,
the environment will transition to the next state s′ with probability T (s,a, s′) which is observed by
agent i as o′ with probability Oi(s′, o′). Mathematically, we write

T̄ i(oi, ai, o′) =
∑
s

∑
aj

∑
s′

∏
j 6=i

B̄i(oi, s)ρ̄j(aj |s)T (s,a, s′)Oi(s′, o′). (10)

Further at Eq. 9, V̄ i(oi) is the policy-average observation quality, i.e., the expected discounted
sum of future rewards from observation oi and then following along the joint policy π. They are
computed via matrix inversion according to

V̄ i(o) = [1Q − γiT̄ i(o,o)]−1R̄(o). (11)

This equation is a direct conversion of the Bellman equation V̄ i(oi) = R̄(oi) +
γi
∑
o′ T̄

i(oi, o′)V̄ i(o′), which expresses that the value of the current observation is the discount
factor weighted average of the current reward and the value of the next observation. Bold obser-
vation variables indicate that the corresponding object is a vector or matrix and 1Q is a Q-by-Q
identity matrix.

T̄ i(o,o) denotes the policy-averaged transition matrix for agent i. The entry T̄ i(oi, o′) indicates the
probability that agent i will observe observation o′ after observing observation oi at the previous
time step, given all agents follow the joint policy π. We compute them by averaging over all states,
all actions from all agents and all next states,

T̄ i(oi, o′) =
∑
s

∑
aj

∑
s′

∏
j

B̄i(oi, s)ρ̄j(aj |s)T (s,a, s′)Oi(s′, o′). (12)

For any observation oi, B̄i(oi, s) is the probability to be in state s, where all agents j act according
to ρ̄j(aj |s). Therefore, the environment transitions with probability T (s,a, s′) from state s to the
next state s′, which is observed by agent i as observation o′ with probability Oi(s′, o′). Note that
T̄ i(o,o) is a proper probabilistic matrix. This can be seen by applying

∑
o′ to both sides of Eq. 12.

Further in Eq. 11, R̄i(oi) denotes the policy-average reward agent i obtains from observation oi. We
compute them by averaging over all states, all actions from all agents and all next states. Whenever
agent i observes observation oi, the environment is in state s with probability B̄i(oi, s). Here, all
agents j choose action aj with probability ρ̄j(aj |s). Hence, the environment transitions to the next
state s′ with probability T (s,a, s′) and agent i receives the reward Ri(s,a, s′),

R̄i(oi) :=
∑
s

∑
aj

∑
s′

∏
j

B̄i(oi, s)ρ̄j(aj |s)T (s,a, s′)Ri(s,a, s′). (13)
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Figure 1: Deterministic learning dynamics in an uncertain zero-sum competition. Policy spaces
and reward trajectories are shown for three different observational noise levels: (A) ν = 0.0, i.e.,
perfect observation, (B) ν = 0.25, and (C) ν > 0.5, i.e., both states are observed inseparably as
one. The probability of choosing action left, conditioned on the current observation, is plotted on
the x-axis for agent 1 and on the y-axis for agent 2. Learning trajectories are shown from 5 initial
policies around the center of the policy spaces. Only one of those trajectories is portrayed in color
for better visual inspection. Arrows in gray indicate the flow of the dynamical learning system.
Learning-parameters were α = 0.005, β = 200, and γ = 0.9. Partial observability can stabilize the
learning process and separate the learning dynamics into fast and slow eigendirections.

Note that the quality maxQ̄i(oi, ai) depends on oi and ai although it is the policy-averaged maximum
observation-action value of the next observation.

TD error. All together, the policy-average temporal-difference error, to be inserted into Eq. 4,
reads

δ̄i(oi, ai) = R̄i(oi, ai) + γmaxQ̄i(oi, ai)− β−1 lnπi(ai|oi). (14)

3 EXPERIMENTS

In the following section, we will showcase our dynamics at two environment classes, an uncertain
zero-sum competition 3.1 and an uncertain social dilemma 3.2.

3.1 UNCERTAIN ZERO-SUM COMPETITION

Environment description. The first environment we use to explore the derived learning dynamics
is a two-agent, two-state, two-action zero-sum competition, also known as the two-state matching
pennies game (Hennes et al., 2010). It roughly models the situation of penalty kicks between a
kicker and a keeper. Both agents can choose between the left and the right side of the goal. The
keeper agent scores one point if it catches the ball (when both agents have chosen the same action);
otherwise, the kicker agent receives one point. The two states of the environment encode which
agent is the keeper and which one is the kicker. In the state KeepKick agent 1 is the keeper, and
agent 2 is the kicker. In the state KickKeep it is the other way around. Agents change roles under
state transitions, which depend only on agent 1’s actions. When agent 1 selects either left as keeper
or right as kicker both agents will change roles. With symmetrical rewards but asymmetrical state
transitions, this two-state zero-sum game presents the challenge of coordinating both agents on
playing a mixed strategy with equiprobable actions. The agents’ observations of the environmental
states are obscured by a noise level ν.

Results. Fig. 1 shows how partial observability can stabilize the learning process. When both
agents observe the environment perfectly, the learning dynamics are prone to be unstable, either
unpredictably chaotic or on periodic orbits and limit cycles (Panel A, Barfuss et al., 2019). The
rewards of agents 1 and 2 are circulating around zero. The learning dynamics are still unstable under
a medium observational noise level of ν = 0.25. Especially the transient dynamics in the policy
space (Panel B, on the right) appear strange. The average reward trajectory is damped compared to
the fully observant agents. Increasing the observational noise further such that the agents perceive
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Figure 2: Deterministic learning dynamics in an uncertain social dilemma. Panel A illustrates
the environment. Panels B and C show the average rewards at convergence for agent 1 in red and
agent 2 in blue (top row) and the timesteps it takes the learners to convergence (bottom row) for
various observational noise levels from 0 to 0.5. The plots show a histogram for each noise level
via the color scale. Each histogram results from a Monte Carlo simulation from 100 random initial
policies. Panel B shows the case of homogeneous uncertainty where both agents’ observations are
corrupted equally by noise. In Panel C, only agent 2 is increasingly unable to observe the environ-
ment correctly (Heterogeneous Uncertainty). The discount factor was set to γ = 0.5 since future
states are independent of the agents’ actions, making the discount factor irrelevant for the learning
in this case. Remaining parameters were set to α = 0.01 and β = 50. Homogeneous uncertainty
can overcome the social dilemma through the emergence of a stable, mutually high rewarding fixed
point above a critical level of observational noise. Heterogeneous uncertainty, however, leads to
reward inequality. In both cases, the transition is accompanied by a critical slowing down of the
convergence speed.

the two environmental states (KeepKick and KickKeep) as a single observation (KK) stabilizes the
learning process.

Interestingly, the flow of the learning dynamics is separated into fast and slow eigendirections. The
fast directions have the form of two half circles directed at the upper half of the line at which agent
1 chooses both actions with equal probabilities. The slow direction is the movement down to the
center of the policy space. At this downward movement, both agents play the different roles of
kicker and keeper in equal amounts since only agent 1 is responsible for the state transitions. Any
advantage agent 2 gains from deviating from the equiprobable policy as the kicker is balanced by the
same amount of disadvantage agent 2 loses as the keeper. Thus, the rewards for both agents quickly
stabilize at zero.

3.2 UNCERTAIN SOCIAL DILEMMA

Environment description. The emergence of cooperation in social dilemmas is a crucial research
challenge for evolutionary biology, the social and sustainability sciences (Nowak, 2006; Kollock,
1998; Geier et al., 2019; Strnad et al., 2019; Barfuss et al., 2020). We’ll focus on the situation where
two agents can either cooperate (C) or defect (D) and either face a Prisoner’s Dilemma or a Stag
Hunt game with equal probability (Fig. 2 A, cf., Levine & Ponssard, 1977; LiCalzi & Mühlenbernd,
2019). In the pure Prisoner’s Dilemma, defection is the Nash equilibrium, which leads to a sub-
optimal reward for both agents, also known as the tragedy of the commons (Hardin, 1968). In the
pure Stag Hunt game, both mutual cooperation and mutual defection are Nash equilibria with the
difference that mutual cooperation yields a higher reward than mutual defection for both agents. It
is therefore also referred to as a coordination challenge (Barrett & Dannenberg, 2012). Here, we
consider the situation when the agents are uncertain about the game they face at each decision point.
Whether we are facing a tragedy or a coordination challenge is relevant for, e.g., the mitigation of
human-caused climate change (Barrett & Dannenberg, 2017). We investigate two scenarios. Under
homogenous uncertainty (Fig. 2 B), both agents’ observations are blurred by an increasing level
of observational noise. Under heterogeneous uncertainty (Fig. 2 C), only agent 2’s observations
become noisier. Since the environment is symmetric under exchanging the roles of the agents, it
suffices to explore only one heterogeneous uncertainty scenario.
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Results. Homogeneous uncertainty can overcome the social dilemma through the emergence of a
stable, mutually high rewarding fixed point above a critical level of observational noise. Under per-
fect observation, both agents convergence to full defection when observing the Prisoner’s Dilemma.
When observing the Stag Hunt game, it depends on the initial joint policy whether the agents con-
verge to mutual defection or cooperation. Reward values are as such that the defective basin of
attraction is comparable small (see the light line at an average reward of 0 in Fig. 2 B). Increasing
the observational noise level from zero under homogeneous uncertainty will first decrease the aver-
age reward at convergence. The agents still converge to the perfect observation policy, which leads
them to defect when they observe the Prisoners’ Dilemma, but the situation is actually the Stag Hunt.
However, increasing observational noise further eventually leads to a bifurcation (Fig. 2 B). Mutual
cooperation under both observations becomes a stable fixed point. Consequently, both agents obtain
an average reward of 5 at convergence. Interestingly, there seems to be a small range of observa-
tional noise at which all three rewards 0, ∼ 2, and 5 are supported by equilibria. Only the rewards
at 0 and 5 are stable for large noise levels.

Thus, we find that the deterministic learning dynamics under homogeneous partial observability can
converge to more rewarding policies than under perfect observation. The existence of those equilib-
ria is long known in traditional static game theory (Levine & Ponssard, 1977). Here we show that our
derived dynamics serve as dynamic micro-foundations for those static equilibria. They correspond
not only to fixed points of the derived learning dynamics. The transition between equilibria is not
smooth but occurs at a critical level of observational noise. It is also accompanied by the dynamical
systems phenomenon of a critical slowing down of the convergence speed (Fig. 2 B, bottom).

However, the mutual benefit of uncertainty vanishes when not all agents’ observations are uncertain
(Fig. 2 C). Under slight uncertainty, only the reward of the ill-informed agent (Agent 2 in Fig. 2) de-
creases. After the bifurcation point under large uncertainty, the ill-informed agent converges to full
cooperation under both observations. In contrast, the well-informed agent still defects in the Pris-
oner’s Dilemma, earning an average reward of even more than 5. The knowledgable agent exploits
the ill-informed and heterogeneous uncertainty leads to reward-inequality between the agents.

Interestingly, Fig. 2 suggests a difference in the type of phase transition between the policy of
mediocre reward at low observational noise levels and the policies at high noise levels. The phase
transition under homogeneous uncertainty seems to be discontinuous and shifted towards greater
noise levels, whereas the transition under heterogeneous uncertainty appears to be continuous. In-
vestigating the relationship between the learning dynamics and phase transitions is a promising
direction of future work.

4 CONCLUSION

In this article, we introduced deterministic multi-agent reinforcement learning dynamics, in which
the agents are only partially able to observe the actual states of the environment. These dynamics
operate in the theoretical limit of an infinite memory batch and implicitly infer the actual states
via Bayes rule. This limit allows us to systematically separate the stochasticity of reinforcement
learning, resulting from probabilistic environmental dynamics, observations, and decisions, from
the environmental uncertainty that originates in the agents’ incomplete awareness of the actual state
space. The interested reader is referred to a longer version of this work (Barfuss & Mann, 2022) .

Overall, we demonstrated how these dynamics serve as a practical, lightweight, deterministically
reproducible, and robust tool to systematically study the combined effects of strategic uncertainty,
stochastic uncertainty and state uncertainty in collectives of self-learning agents. For instance,
we have shown that partial observability can lead to better learning outcomes faster by stabiliz-
ing a chaotic learning process in a multi-state zero-sum game and overcoming an uncertain social
dilemma. Furthermore, our method allows applying dynamical systems theory to partially observ-
able multi-agent learning. We find that partial observability can cause a critical slowing down of the
learning processes between reward regimes and the separation of the learning dynamics into fast and
slow eigendirections. It is an interesting direction for future work how such insights from dynamical
systems theory can be used in technological applications of multi-agent reinforcement learning, e.g.,
with respect to training regimes, hyper-parameter tuning, and the development of novel algorithms.
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CODE AVAILABILITY

Python code to reproduce all results is available at https://github.com/wbarfuss/POLD
and archived at https://doi.org/10.5281/zenodo.6361994.
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