
To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

REALNET: ACHIEVING MORE HUMAN BRAIN-LIKE
VISION VIA HUMAN NEURAL REPRESENTATIONAL
ALIGNMENT

Zitong Lu∗& Julie D. Golomb
Department of Psychology
The Ohio State University
Columbus, OH 43210, USA
{lu.2637, golomb.9}@osu.edu

Yile Wang
Department of Neuroscience
The University of Texas at Dallas
Richardson, TX 75080, USA
yile.wang@utdallas.edu

ABSTRACT

Despite the remarkable strides made in artificial intelligence, current object recog-
nition models still lag behind in emulating the mechanism of visual informa-
tion processing in human brains. Recent studies have highlighted the poten-
tial of using neural data to mimic brain processing; however, these often reply
on invasive neural recordings from non-human subjects, leaving a critical gap
in our understanding of human visual perception and the development of more
human brain-like vision models. Addressing this gap, we present, for the first
time, ‘Re(presentational)Al(ignment)net’, a vision model aligned with human
brain activity based on non-invasive EEG recordings, demonstrating a signifi-
cantly higher similarity to human brain representations. Our innovative image-
to-brain multi-layer encoding alignment framework not only optimizes multiple
layers of the model, marking a substantial leap in neural alignment, but also en-
ables the model to efficiently learn and mimic human brain’s visual representa-
tional patterns across object categories and different neural data modalities. Fur-
thermore, we discover that alignment with human brain representations improves
the model’s adversarial robustness. Our findings suggest that ReAlnet sets a new
precedent in the field, bridging the gap between artificial and human vision, and
paving the way for more brain-like artificial intelligence systems.

1 INTRODUCTION

While current vision models in artificial intelligence (AI) are advanced, they still fall short of captur-
ing the full complexity and adaptability inherent in the human brain’s information processing. Deep
convolutional neural networks (DCNNs) have reached a performance level in object recognition
that rivals human capabilities Lecun et al. (2015), and many studies have identified similarities in
the hierarchical structure between DCNNs and the ventral visual stream Cichy et al. (2016); Güçlü
& van Gerven (2015); Kietzmann et al. (2019); Lu & Golomb (2023a); Yamins et al. (2014). How-
ever, the alignment between DCNNs and human neural representations remains deeply inadequate,
whether compared with human electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI) data. Enhancing the resemblance between visual models and the human brain has
become a critical concern for both computer scientists and neuroscientists. From a computer vision
perspective, brain-inspired models often exhibit higher robustness and generalization, crucial for
realizing true brain-like intelligence; meanwhile, from a cognitive neuroscience perspective, models
that more closely mirror brain representations can significantly aid in our exploration of the brain’s
visual processing mechanisms.

Given these challenges and limitations, the pivotal question arises is how we can leverage our un-
derstanding of the human brain to enhance current AI vision models. Conventional approaches
have limitations in emulating the complexity of the human brain’s visual information processing,
even with increased model depth and layers Rajalingham et al. (2018). This limitation has prompted
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Figure 1: ReAlnet aligned with human neural signals as a more human brain-like vision model. (A)
An overview of ReAlnet alignment framework. Adding an additional multi-layer encoding module
to an ImageNet pre-trained CORnet-S, the outputs contain the category classification results and
the generated EEG signals. Using training EEG data, we aim to minimize both classification loss
and generation loss, enabling CORnet to not only stabilize the classification performance but also
effectively learn human brain features and transform into ReAlnet. (B) Using test EEG data, we
measure the representational similarity between the model RDM and timepoint-by-timepoint EEG
neural RDMs for early and late layers in ReAlnet, CORnet-S, ResNet-101, and CLIP (with a ResNet-
101 backbone) respectively (early layer: the first layer; late layer: the layer before the classification
layer in ReAlnet, CORnet, and ResNet, and the last visual layer in CLIP), and ReAlnet shows the
highest similarity to the human brain.

the exploration of new methodologies. Researchers have attempted various strategies, including
altering the model’s architecture (adding recurrent structures Kar et al. (2019); Kietzmann et al.
(2019); Kubilius et al. (2019); Spoerer et al. (2017); Tang et al. (2018), dual-pathway models Bai
et al. (2017); Choi et al. (2023); Han & Sereno (2022; 2023); Sun et al. (2017), topographic con-
straints Finzi et al. (2022); Lee et al. (2020); Lu et al. (2023); Margalit et al. (2023) or feedback
pathways Konkle & Alvarez (2023) ) and changing the training task (using self-supervised training
Konkle & Alvarez (2022); Prince et al. (2023) or 3D task models O’Connell et al. (2023)). How-
ever, limited studies have focused on directly using neural responses to complex visual information
as feedback to improve the model’s similarity to human brains. Our research focuses on a third
approach – utilizing human brain neural activity data to realize brain-like models. This approach
represents a more direct alignment strategy between models and the human brain, unconstrained
by variations in model structure or pre-training methods, potentially marking a crucial step towards
achieving greater resemblance to the human brain. Thus, our central research question emerges:
Can we use human brain activity to align ANNs on object recognition and achieve more hu-
man brain-like vision models?

Related Work. Several previous studies have already started to try to apply neural data to machine
learning especially deep learning models. The earliest attempt was to apply human fMRI signals
to amend the classification boundary of SVMs and CNNs to achieve better category classification
performance Fong et al. (2018). Some more recent studies started to let the models learn neural rep-
resentations. One common way is to add a similarity loss to increase the representational similarity
between models and neural activity (neural recordings from mouse V1, monkey V1 or IT) during
the training Dapello et al. (2023); Federer et al. (2020); Li et al. (2019); Pirlot et al. (2022). An-
other strategy from Safarani et al. (2021) is to add an additional task based on an encoding module
to predict monkey V1 neural activity. Both similarity-based method and multi-task framework can
achieve more brain-like representations and improve model robustness. However, these neural align-
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ment studies have two key challenges: (a) Dependence on animal instead of human neural activity.
This limits the direct applicability and relevance of findings to human visual processing, and it is
harder to enable models to effectively learn the human brain’s representational patterns based on the
low data quality. (b) Single brain region or single model layer alignment. On the one hand, previous
studies could only align a single early or late layer in CNN and/or align the model with a certain
brain region, V1 or IT. On the other hand, it remains unclear which specific brain region should align
with which particular layer of the model, leading to potential misalignment and inaccuracies.

Additionally, a recent study focused on video emotion recognition first applied a representational
similarity-based method to align CNN with human fMRI activity Fu et al. (2023). However, it is
noteworthy that they focused on simpler emotion recognition tasks, may fall short in the more com-
plex and diverse domain of object recognition which has larger space and multitude of object cate-
gories. Therefore, our work addressed this by employing an additional encoding module that goes
beyond mere similarity. This module predicts human neural activity and is trained to autonomously
extract complex visual features, offering a more effective approach for aligning the model with
human neural representations in object recognition.

Contributions. To bridge the gap between AI vision and human vision, we propose a more human
brain-like vision model, ReAlnet, effectively aligned with human brain representations based on a
novel and effective encoding-based multi-layer alignment framework. We summarize our contribu-
tions and novel findings as follows:

• To the best of our knowledge, we are the first to directly align object recognition models
using non-invasive neural data recorded from human brains, which opens new possibilities
for enhancing brain-like representations in models based on human brain activity.

• We propose a novel image-to-brain encoding-based representational alignment framework
that optimizes multiple layers of the network simultaneously, which effectively improves
the model’s similarity to human brain representations across different modalities (both hu-
man EEG and fMRI).

• Our representational alignment framework allows us to obtain a personalized vision model
by aligning with individual’s neural data.

• Aligning with human neural representations can improve the model adversarial robustness.

2 RE(-PRESENTATIONAL)AL(-IGNMENT)NET

Here we describe the human neural data (EEG data for the alignment, and both EEG and fMRI data
for testing the similarity between models and human brains) we used in this study, the alignment
pipeline (including the structure, the loss functions, and training and test methods) for aligning
CORnet representations with human neural representations to obtain ReAlnet, and the evaluation
methods for measuring representational similarity between models and human brains and adversarial
robustness.

2.1 HUMAN EEG DATA FOR REPRESENTATIONAL ALIGNMENT

Human EEG data were obtained from an EEG open dataset, THINGS EEG2 Gifford et al. (2022),
including EEG data from 10 healthy human subjects in a rapid serial visual presentation (RSVP)
paradigm. Stimuli were images sized 500 × 500 pixels from THINGS dataset Hebart et al. (2019),
which consists of images of objects on a natural background from 1854 different object concepts.
Before imputing the images to the model, we reshaped image sizes to 224 × 224 pixels and normal-
ized the pixel values of images to ImageNet statistics. Subjects viewed one image per trial (100ms).
Each participant completed 66160 training set trials (1654 object concepts × 10 images per con-
cept × 4 trials per image) and 16000 test set trials (200 object concepts × 1 image per concept ×
80 trials). EEG data were collected using a 64-channel EASYCAP and a BrainVision actiCHamp
amplifier. We use already pre-processed data from 17 channels (O1, Oz, O2, PO7, PO3, POz, PO4,
PO8, P7, P5, P3, P1, Pz, P2) overlying occipital and parietal cortex. We re-epoched EEG data rang-
ing from stimulus onset to 200ms after onset with a sample frequency of 100Hz. Thus, the shape
of our EEG data matrix for each trial is 17 channels × 20 time points. and we reshaped the EEG
data as a vector including 340 values for each trial. Before the model training and test, we averaged
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all the repeated trials (4 trials per image in the training set and 80 trials per image in the test set) to
obtain more stable EEG signals.

It is worth noting that the training and test sets do not overlap in terms of object categories (concepts),
which means that the performance of ReAlnet trained on the training set, when evaluated on the test
set, can effectively reveal the model’s generalization capability across different object categories.

2.2 HUMAN FMRI DATA FOR CROSS-MODALITY TESTING

To demonstrate that our approach of aligning with human EEG not only enhances the model’s simi-
larity to human EEG but indicates that ReAlnet has effectively learned the human brain’s represen-
tational patterns more broadly, we also performed cross-modal testing, testing ReAlnet on data from
a different modality (fMRI), from a different set of subjects, viewing a different set of images. The
fMRI data originate from Shen et al. (2019). This Shen fMRI dataset recorded human brain fMRI
signals from three subjects while they focused on the center of the screen viewing natural images
sourced from ImageNet. We selected he test set from Shen fMRI dataset, which comprises fMRI
signals of each subject viewing 50 images of different categories, with each image being viewed 24
times. We averaged the fMRI signals across the 24 repeated trials to obtain more stable brain activity
for each image observation and extracted signals from five regions-of-interest (ROIs) for subsequent
comparison of model and human fMRI similarity: V1, V2, V3, V4, and the lateral occipital complex
(LOC).

2.3 IMAGE-TO-BRAIN ENCODING-BASED ALIGNMENT PIPELINE

Basic architecture of ReAlnet: We have chosen the state-of-the-art CORnet-S model Kubilius
et al. (2018; 2019) as the foundational architecture for ReAlnet, incorporating recurrent connections
akin to those in the biological visual system and proven to more closely emulate the brain’s visual
processing.

EEG generation module: In addition to the original recurrent CNN structure, we have added an
EEG generation module designed to construct an image-to-brain encoding model for generating re-
alistic human EEG signals. Each visual layer is connected to a nonlinear N × 128 layer-encoder
(Enc-V1, Enc-V2, Enc-V4, and Enc-IT correspond to Layer V1, V2, V4, and IT) that processes
through a fully connected network with a ReLU activation. These four layer-encoders are then
directly concatenated to form an N × 512 Multi-Layer Visual Encoder, which is subsequently con-
nected to an N × 340 EEG encoder through a linear layer to generate the predicted EEG signals.
Here N is the batch size.

Therefore, we aim for the model to not only perform the object classification task but also to generate
human EEG signals which can be highly similar to the real EEG signals when a person views the
certain image through the EEG generation module with a series of encoders. During this process
of generating brain activity, ReAlnet’s visual layers are poised to effectively extract features more
aligned with neural representations.

Alignment Loss: Accordingly, the training loss LA of our alignment framework consists of two
primary losses, a classification loss and a generation loss with a parameter β that determines the
relative weighting:

LA = LC + β · LG (1)

LC represents the standard categorical cross entropy loss for model predictions on ImageNet labels:

LC = −
N∑
i=1

yilog(pi) (2)

Here, yi represents the i-th image, and pi represents the probability that model predicts the i-th image
belongs to class i out of 1000 categories. However, the correct ImageNet category labels for images
in THINGS dataset are not available. Therefore, we adopt the same strategy as in Dapello et al.
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(2023), using the labels obtained from the ImageNet pre-trained CORnet without neural alignment
as the true labels to stabilize the classification performance of ReAlnet.

LG is the generation loss, which includes a mean squared error (MSE) loss LMSE and a contrastive
loss LCont between the generated and real EEG signals. This contrastive loss is calculated based on
the dissimilarity (one minus Spearman correlation coefficient) between generated and real signals,
aiming to bring the generated signals from the same image (positive pairs) closer to the correspond-
ing real human EEG signals and make the generated signals from different images (negative pairs)
more distinct. LG is calculated as followed:

LG = LMSE + LCont (3)

LMSE =
1

N

N∑
i=1

(Si − Ŝi)
2 (4)

LCont =
1

N

N∑
i=1

[1− ρ(Si, Ŝi)]−
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

[1− ρ(Si, Ŝj)] (5)

Here, Si and Ŝi represent the generated and real EEG signals corresponding to the i-th image.

Training procedures: Unlike CORnet which trained on the same ImageNet dataset, ReAlnet addi-
tionally trained on individual EEG data consists of 10 personalized ReAlnets, 1 per EEG subjects.
Each network were trained to minimize the alignment loss including both classification and gen-
eration losses with a static training rate of 0.00002 for 30 epochs using the Adam optimizer. We
used a batch size of 16, meaning the contrastive loss computed dissimilarities of 256 pairs for each
gradient step. Also, we trained various ReAlnets using four different β weights (β = 1, 10, 100,
1000) separately. In total, we trained 40 ReAlnets (4 β weights × 10 subjects).

Representational similarity analysis (RSA): RSA is used for representational comparisons be-
tween models and human brains Kriegeskorte et al. (2008) based on first computing representational
dissimilarity matrices (RDMs) for models and human neural signals, and then calculating Spearman
correlation coefficients between RDMs from two systems.

To evaluate the similarity between models and human EEG, the shape of each RDM is 200 × 200,
corresponding to 200 images in THINGS EEG2 test set. For EEG RDMs, we applied decoding
accuracy between two image conditions as the dissimilarity index to construct EEG RDM for each
timepoint and each subject. For model RDMs, we input 200 images into each model and obtained
latent features from each visual layer. Then, we constructed each layer’s RDM by calculating the
dissimilarity using one minus Pearson correlation coefficient between flattened vectors of latent fea-
tures corresponding to any two images. To compare the representations, we calculated the Spearman
correlation coefficient as the similarity index between layer-by-layer model RDMs and timepoint-
by-timepoint neural EEG RDMs. To evaluate the similarity between models and human fMRI, the
shape of each RDM is 50 × 50, corresponding to 50 images in Shen fMRI dataset test set. For fMRI
RDMs, we calculated one minus Pearson correlation coefficient between voxel-wise activation pat-
terns corresponding to any two images as the dissimilarity index in the RDM for each ROI and each
subject. For model RDMs, similar to the EEG comparisons above, we obtained the 50 × 50 RDM
for each layer from each model. Then, we calculated the Spearman correlation coefficient as the
similarity index between layer-by-layer model RDMs and neural fMRI RDMs for different ROIs,
assigning the final similarity for a certain brain region as the highest similarity result across model
layers due to the lack of a clear correspondence between different model layers and brain regions.
All RSA analyses were implemented based on NeuroRA toolbox Lu & Ku (2020).

Adversarial attacks: For performing white box adversarial attacks, we used Fast Gradient Sign
Attack (FGSA). We evaluated top-5 classification accuracies on ImageNet with epsilon ranged from
0 to 0.06 for each model.
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Figure 2: ReAlnets show higher similarity to human EEG and fMRI representations. (A) Represen-
tational similarity time courses between human EEG and models for different layers respectively.
Black square dots at the bottom indicate the timepoints where ReAlnet vs. CORnet were signif-
icantly different (p < .05). Shaded area reflects ±SEM. (B) Representational similarity between
three subjects’ fMRI activity of five different brain regions and models respectively. Asterisks in-
dicate significantly higher similarity of ReAlnet than that of CORnet (p < .05). (C) Correlation
of similarity improvement between ReAlnet vs. human EEG and ReAlnet vs. human fMRI. Each
circle dot indicates an individual ReAlnet.

3 RESULTS

3.1 IMPROVED SIMILARITY IN REALNETS TO HUMAN EEG

Here, for each of the 10 human subjects, we calculated (1) the similarity between their EEG data
and the single CORnet, and (2) the similarity between their EEG data and the subject-matched
ReAlnet. ReAlnets show significantly higher similarity to human EEG neural dynamics for all four
visual layers (Layer V1: 70-130ms and 160-200ms; Layer V2: 60-200ms; Layer V4: 60-200ms;
Layer IT: 70-160ms) than the original CORnet without human neural alignment (Figure2A). Further
statistical analysis of each layer’s similarity improvement (ReAlnet - CORnet) and improvement
ratio ((ReAlnet - CORnet) / CORnet) also indicate that at the similarity peak timepoint, there is
a maximum of an 8% similarity improvement and an 80% improvement ratio, with the average
improvement for the 50-200ms time-window being over 5% and the average improvement ratio
over 40% (Figure2B). Additional comparisons also show that ReAlnet is more human brain-like
than not only CORnet, but also ResNet and CLIP (Figure1B).

These results suggest three findings: (1) Our multi-layer alignment framework indeed improves all
layers’ similarity to human EEG representations. (2) Every ReAlnet with individual neural align-
ment exhibits improved similarity to human EEG compared to the basic CORnet. (3) ReAlnets
demonstrate the generalization of improvement in human brain-like similarity cross object cate-
gories, as the image categories used for testing were entirely absent during the alignment training.

3.2 IMPROVED SIMILARITY IN REALNETS TO HUMAN FMRI

Although ReAlnet demonstrates higher similarity to human EEG, a question arises: Does ReAlnet
learn representations specific to EEG, or more general neural representations of the human brain? To
ensure that our alignment framework enables the model to learn representations beyond the single
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modality of EEG, we utilized additional human fMRI data to evaluate the model’s cross-modality
representational similarity to human fMRI.

Excitingly, we indeed observed an increase in this cross-modal brain-like similarity. The results
indicate that even though ReAlnets were aligned based on human EEG data, they still resemble
the human brain more closely on fMRI data compared to CORnet (Figure2B). Also, there is a
significant correlation of ReAlnets’ similarity improvement compared to CORnet between EEG and
fMRI (r=.9204, p < .001) (Figure2C).

These findings further highlight three points: (1) Across multiple ROIs, ReAlnets exhibits higher
human fMRI similarity than CORnet. (2) Despite not being trained with the EEG data of subjects
in the fMRI dataset, almost every ReAlnet shows higher fMRI similarity, suggesting that ReAl-
net learns consistent brain information processing patterns across subjects. (3) Images from fMRI
dataset for evaluation were never presented during the alignment training, reaffirming the general-
ization of ReAlnets in improving brain-like similarity across object categories and images.

Figure 3: Individual variability across ten personalized ReAlnets and increased adversarial robust-
ness in ReAlnets. (A) ReAlnet individual variability matrices of four visual layers. (B) ReAlnet
individual variability along the model layers. Each circle dot indicates a pair of two different ReAl-
nets. (C) Original (left) and baseline-aligned (right) adversarial robustness for ReAlnets and CORnet
as a function of Epsilon. Asterisks indicate significantly higher adversarial robustness of ReAlnets
than that of CORnet (p < .05).

3.3 HIERARCHICAL INDIVIDUAL VARIABILITIES IN REALNETS

Unlike traditional models in computer vision, ReAlnet is a personalized model trained based on
different individual’s neural data. This sparked our interest in exploring whether these personalized
ReAlnets exhibit intra-model individual variabilities and how such variabilities change across dif-
ferent layers of the model. To investigate this, we conducted comparisons between model RDMs
based on 200 images in THINGS EEG2 test set across different layers, using the dissimilarity (one
minus the Spearman correlation coefficient) between two RDMs corresponding to two ReAlnets as
an individual variability index.

Our results show: (1) Personalized ReAlnets indeed exhibit individual variability (Figure3A and
Figure3B). (2) This variability increases with the depth of the layers (from Layer V1 to Layer IT,
Figure3A and Figure3B). This may also suggest a trend of increasing individual variability from
primary to higher visual cortical areas in human brains.

3.4 INCREASED ADVERSARIAL ROBUSTNESS IN REALNETS

Using white-box FGSA, we also discovered that ReAlnets, aligned with human neural representa-
tions, have increased adversarial robustness against adversarial attacks (Figure3C). The left panel
of Figure3C shows a slight increase in adversarial robustness in ReAlnets compared to CORnet at
around Epsilon = 0.02. However, the original classification performance (Epsilon = 0) of ReAlnets
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is lower than that of CORnet, due to the absence of correct labels for images in THINGS EEG2
dataset. To make a fairer comparison, we aligned the classification accuracy at Epsilon = 0 as the
baseline to observe the relative decline in accuracy for both ReAlnets and CORnet as Epsilon value
increases. The corrected results (Figure3C right) demonstrate more pronounced adversarial stability
in ReAlnets.

3.5 REALNET PERFORMANCE ACROSS DIFFERENT WEIGHTS

The results presented above are based on a generation loss weight β set to 100. We further explored
the impact of this β value on the performance of ReAlnet. Theoretically, a higher β should lead
to stronger learning of human neural representations. However, is a larger β always better? Our
findings suggest otherwise.

Figure 4: ReAlnet performance across different β values. (A) Improvement in human EEG simi-
larity of ReAlnets compared to CORnet (averaging four visual layers and timepoints in a 50-200ms
time-winodw). (B) Improvement in human fMRI similarity of ReAlnets compared to CORnet (av-
eraging three subjects and five brain regions). (C) ReAlnet individual variability (averaging four
visual layers). (D) Adversarial robustness of ReAlnets and CORnet when Epsilon = 0.02. Asterisks
indicate significantly higher adversarial robustness of ReAlnets than that of CORnet (p < .05).

We observed that with an increase in β, ReAlnets show greater similarity to human EEG and fMRI
(Figure4A and Figure4B) and more pronounced individual variability within models (Figure4C).
However, an increase in β also reduces the improvement of adversarial stability (the improvement at
β = 100 was less significant than at β = 1 or 10) (Figure4D). Moreover, at excessively high values (β
= 1000), ReAlnet’s adversarial robustness was even lower than the original CORnet without neural
alignment (Figure4D). Therefore, this analysis suggests that: (1) It justifies our use of β = 100 as a
weight that balances the trade-offs and maximizes advantages of ReAlnet. (2) β is a parameter that
could be manipulated differently in future research depending on research goals.

3.6 CONTROL EXPERIMENTS

For the control experiments, we tested two aspects: (1) How does contrastive learning influence
model-to-brain alignment? (2) If we disrupt the pairing of each image with the EEG signal from
the same subject but elicited by viewing a different image, can the model still learn the neural
representation patterns of the human brain? Accordingly, we trained two additional sets of ReAlnets
based on human EEG data from ten subjects in THINGS EEG2 dataset, termed as W/o ContLoss
models (without the constrastive loss component) and Unpaired models (where the pairing between
images and EEG signals was disrupted).

The results of the control experiments reveal: (1) W/o ContLoss models still exhibit an improve-
ment in human brain similarity compared to CORnet. However, while the similarity to human EEG
did not decrease compared to ReAlnet, the similarity to cross-modality human fMRI significantly
decreased. This suggests that the contrastive loss component in our alignment framework aids Re-
Alnet in extracting more cross-modality brain visual representation features. (2) Unpaired models
failed to enhance brain similarity, which show no significant improvement in brain similarity com-
pared to CORnet, indicating that the training process requires the model to effectively learn the
specific neural visual features corresponding to each image. Only in this way can the model become
more human brain-like and then exhibit higher similarity to the human brain across different object
images, categories, and human neuroimaging data modalities.

8



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Figure 5: Results of control experiments. (A) Improvement in human EEG similarity of ReAlnets
and control models compared to CORnet. (B) Improvement in human fMRI similarity of ReAlnets
and control models compared to CORnet. Asterisks indicate the significance (p < .05).

4 DISCUSSION

Building upon previous research utilizing neural data for aligning object recognition models, we
have proposed a novel and more effective framework for human neural representational alignment,
along with the corresponding human brain-like model, ReAlnet. Unlike previous studies that fo-
cused on using animal neural signals to optimize models or were unable to use global neural activity
for comprehensive model optimization Dapello et al. (2023); Federer et al. (2020); Li et al. (2019);
Pirlot et al. (2022); Safarani et al. (2021), our approach efficiently utilizes human neural activity to
simultaneously optimize multiple layers of the model, enabling it to learn the human brain’s internal
representational patterns for object visual processing. Notably, unlike prior research relying on be-
havioral or single modality neural recording data for model evaluation Dapello et al. (2023); Federer
et al. (2020); Fu et al. (2023); Li et al. (2019); Pirlot et al. (2022); Safarani et al. (2021), we em-
ployed different modalities of human neuroimaging data for model evaluation to ensure that ReAlnet
learns broader, cross-modal brain representational patterns. Additionally, we observed that ReAl-
net exhibits individual representational variabilities akin to human brain’s hierarchical processing
and adversarial stability similar to the findings in other brain-inspired models Dapello et al. (2023);
Konkle & Alvarez (2023).

Regarding ReAlnet itself, it warrants further exploration to ascertain what specific information has
learned from the alignment with human brains. The fact that different generation loss weights do not
significantly impact the behavioral performance but do enhance its similarity to human brains sug-
gests that nodes in the model, which originally did not encode category-specific information, may
have been optimized Federer et al. (2020). More analyses of the neural network’s internal represen-
tations may be needed to delve into this. Also, from a reverse-engineering perspective, attempting
to understand the brain-like optimization process of the model could further aid in unraveling the
mechanisms by which our brains process visual information Ayzenberg et al. (2023); Cic (2019);
Doerig et al. (2023); Kanwisher et al. (2023); Lu & Ku (2023); Lu & Golomb (2023b).

Certainly, it is important to highlight that ReAlnet transcends being merely a specific vision model;
it represents a pioneering framework potentially applicable for aligning any AI model with brain
activity. On the one hand, this alignment framework can be extended to other neural modalities, such
as fMRI and MEG (dimensionality reduction might be necessary for extensive neural data features),
paving the way for the development of variants like ReAlnet-fMRI and ReAlnet-MEG. On the other
hand, the ambition is to adapt this framework to a wider range of models and tasks in the future,
including language and auditory processing and self-supervised or unsupervised models, leading
to innovations such as ReAlnet-Language, ReAlnet-Auditory, and self-supervised or unsupervised
versions of ReAlnet.

5 CONCLUSION

Our study transcends traditional boundaries by employing a groundbreaking alignment framework
that pioneers the use of human neural data to achieving a more human brain-like vision model, Re-
Alnet. Demonstrating significant advances in bio-inspired AI, ReAlnet not only aligns closely with
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human EEG and fMRI but also exhibit hierarchical individual variabilities and increased adversar-
ial robustness, mirroring human visual processing. We hope that our alignment framework stands
as a testament to the potential synergy between computational neuroscience and machine learning
and enables the enhancement of any AI model to be more human brain-like, opening up exciting
possibilities for future research in brain-like AI systems.
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A APPENDIX

A.1. ImageNet classification performances of ReAlnets at different β values

We tested the classification accuracy of ReAlnets on ImageNet at different β values (Figure 8). Im-
portantly, to ascertain that the observed decrease in accuracy was not due to the additional generation
task compromising classification performance, but rather the absence of correct ImageNet labels for
images in THINGS EEG2 dataset, we trained a ReAlnet with β = 0. This ReAlnet excluded the EEG
signal generation module but underwent fine-tuning with images from THINGS EEG2 dataset. The
results indicated that the ReAlnet with β = 0 also experienced a similar level of decline.

Figure 6: ImageNet classification accuracy of different ReAlnets. Left: Top-1 accuracy. Right:
Top-5 accuracy. The blue dotted line indicates the accuracy of CORnet, and the grey dotted line
indicates the accuracy of ReAlnet at β = 0.
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A.2. EEG generation performances of our alignment framework at different β values

We evaluated the EEG generation performance of the alignment frameworks at different ( values
by calculating the Spearman correlation between the generative EEG signals and the actual EEG
signals. Figure 7 shows the EEG generation performance and some examples of generated results.

Figure 7: (A) EEG generation performance of different alignment frameworks. (B) Four examples
of EEG generation results (from the model at β = 100 of Sub-01). For each example, the left
image indicates the image input to the ReAlnet and the image viewed by the subject. The grey
curves represent the real EEG signals, and the green curves represent the generated EEG signals
corresponding to the same image.
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A.3. Representational similarity between human EEG and ReAlnets at different β values

Figure 8 shows the representational similarity between human EEG and ReAlnets at different β
values.

Figure 8: Representational similarity time courses between human EEG and different ReAlnets
for different layers respectively. Black square dots at the bottom indicate significant timepoints
(p < .05). Shaded area reflects ±SEM.
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A.4. Representational similarity between human fMRI and ReAlnets at different β values

Figure 9 shows the representational similarity between human fMRI and ReAlnets at different β
values.

Figure 9: Representational similarity between three subjects’ fMRI activity of five different brain
regions and different ReAlnets respectively. Asterisks indicate significantly higher similarity of
ReAlnet than that of CORnet (p < .05).
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A.5. Individual variability across personalized ReAlnets at different β values

Figure 10 shows the representational similarity between human fMRI and ReAlnets at different β
values.

Figure 10: Individual variability matrices of four visual layers of different ReAlnets.
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A.6. Adversarial robustness of ReAlnets at different β values

Figure 11 shows the adversarial robustness of ReAlnets at different β values.

Figure 11: Baseline-aligned adversarial robustness for different ReAlnets as a function of Epsilon.
Asterisks indicate significantly higher adversarial robustness of ReAlnets than that of CORnet (p <
.05).
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A.7. Representational similarity between human brains and controlled models

Figure 12A shows the representational similarity between human EEG and controlled models, and
Figure 12B shows the representational similarity between human fMRI and controlled models.

Figure 12: (A) Representational similarity time courses between human EEG and ReAlnets and
control models (β for different layers respectively. Shaded area reflects±SEM. (B) Representational
similarity between three subjects’ fMRI activity of five different brain regions and ReAlnets and
control models (β = 100) respectively.
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