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ABSTRACT
Prognostic prediction research holds immense significance in
guiding doctors in evaluating the effectiveness of various
treatment modalities, thereby facilitating the selection of the most
appropriate treatment plan tailored to individual patients.
However, a critical challenge that persists in this domain is the
scarcity of clinical interpretability. This issue primarily stems
from the inherent opacity of deep learning algorithms, often
referred to as "black boxes," where most models operate with
closed decision-making processes, lacking transparency in
explaining the reasons behind their predictions. To address this
gap, this article introduces HPExplainPro, a purpose-built deep
explainable learning framework tailored for pan-cancer prognostic
prediction. HPExplainPro is composed of a deep learning model
rooted in expert knowledge, a data-driven feature fusion approach,
a triple feature selection technique, a heterogeneous classifier, and
a secondary learning probability error integration model. At its
core, HPExplainPro features the Deepxplain module, which
leverages global interpretation via DeepSHAP and local
interpretation through LIME algorithms to provide insights into
the decision-making process. To demonstrate the superiority of
HPExplainPro, this article employs three distinct cancer datasets
sourced from preeminent hospitals in China. These datasets were
leveraged to construct an immunotherapy ORR prediction model
for lung cancer, a 5-year survival prediction model for breast
cancer patients, and a local progression outcome prediction model
for early liver cancer microwave ablation. The experimental
results unequivocally demonstrate that HPExplainPro outperforms
alternative methods. Furthermore, through Deepxplain's global
interpretation capabilities, the study identifies potential prognostic
biomarkers such as NETs, LDH, and NLR, which significantly
influence the outcome of lung cancer immunotherapy.
Additionally, HPExplainPro's local interpretation functionality
enables individualized prognostic predictions for lung cancer
patients, offering clinicians tailored insights into patient-specific
responses to treatment, see in figure 1. Beyond lung cancer, this
article explores the broader applicability of HPExplainPro in other
diseases. Specifically, it presents a COVID-19 critical illness
prediction model using patient data from Wuhan Third Hospital,
illustrating the flexibility of HPExplainPro in addressing diverse

Figure 1 the local interpretation results of HPExplainPro.

clinical challenges. Additionally, the study delves into the
utilization of HPExplainPro in prognostic prediction within the
realm of traditional Chinese medicine (TCM), developing a
prognostic prediction model, named "Zhongjing," that
harmoniously integrates principles from both TCM and Western
medicine. This additional validation further underscores the
generalization performance of HPExplainPro across different
medical domains. Lastly, the reliability and practicality of
HPExplainPro are further bolstered by its validation in the breast
department of Hunan Provincial Cancer Hospital. This
comprehensive validation process not only validates the
effectiveness of HPExplainPro but also showcases its potential to
enhance clinical decision-making and improve patient outcomes
across a wide range of cancers and diseases.
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1 INTRODUCTION
Artificial intelligence (AI) has taken center stage in contemporary
medical research, particularly in the diagnosis and treatment of
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intricate diseases [1]. The complexities clinicians encounter in
crafting treatment plans and forecasting disease outcomes are
well-documented [2]. Nonetheless, the swift advancements in AI
technology in recent years have revolutionized its application in
diagnosing, treating, and, crucially, predicting the prognosis of
these complex diseases [3].

When it comes to intelligent prognosis prediction for complex
diseases, AI algorithms excel at analyzing vast clinical datasets to
uncover disease progression patterns and identify the critical
factors that shape patient outcomes [4]. This breadth of algorithms
spans machine learning, deep learning, and Bayesian networks.
Among these, machine learning algorithms, such as support vector
machines, decision trees, and random forests, have demonstrated
promising results in predicting the prognosis of diverse diseases
[5]. Additionally, deep learning algorithms, including
convolutional neural networks and recurrent neural networks,
have shown exceptional prowess in predicting prognoses based on
image and sequential data, attributed to their robust ability to learn
features [6].

Opportunities. As cutting-edge technologies in predictive
modeling, machine learning algorithms have catapulted medical
AI to unprecedented pinnacles, providing vital clinical decision
support in domains encompassing disease diagnosis and risk
prediction. Nevertheless, despite the remarkable enhancements in
predictive model performance stemming from advancements in
these algorithms, their intricate and often inscrutable reasoning
processes, colloquially termed "black box" thinking, have
undermined the trust of end-users [7]. This swift evolution has
relegated traditional modeling techniques, such as linear and
logistic regression, to the category of legacy algorithms. However,
when juxtaposed against the enigmatic decision-making
mechanisms of newer algorithms, traditional algorithms that offer
explanations for their reasoning processes seem to garner greater
trust. Consequently, some researchers argue that AI systems must
possess two fundamental interpretability aspects: the ability to
elucidate and validate their predictions, as well as the
transparency of their knowledge sources to establish trust among
physicians [8].

Challenges. Current prognostic prediction models continue to
encounter significant challenges. Primarily, the predictive
accuracy of these models needs significant enhancement to align
with the personalized demands of diverse diseases and patients.
Secondly, these models are frequently hindered by the "black box"
issue, which stems from a lack of sufficient transparency in their
decision-making processes, ultimately undermining the trust of
doctors and patients in their predictions [9]. Consequently, the
development of efficient, accurate, and interpretable prognostic
prediction models has become a critical priority in current disease
prognosis research [10]. To tackle this challenge, this paper
presents a pan-cancer prognostic prediction approach called
HPExplainPro, which employs deep interpretable learning for
intelligent prognosis forecasting. To assess the efficacy of
HPExplainPro, comparative experiments are conducted against
various methodologies, particularly focusing on lung cancer,

breast cancer, and liver cancer. Furthermore, this paper explores
potential biomarkers that influence pan-cancer prognosis, aiming
to provide valuable insights that can contribute to the
advancement of related fields.

Contributions. In this work, we present HPExplainPro— a
comprehensive framework harnessing the power of deep
interpretable learning to facilitate accurate pan-cancer prognosis
prediction. HPExplainPro has undergone meticulous evaluation,
encompassing three cancer-specific experiments, external
validations across diverse diseases, and practical clinical
applications. Its implementation addresses pivotal scientific
challenges inherent in AI methodologies, particularly those
pertaining to deep learning. These challenges include limited
robustness, scant interpretability, and a heavy reliance on
extensive datasets. By successfully overcoming these obstacles,
HPExplainPro empowers medical AI to earn greater trust and
widespread adoption among users, ultimately enhancing its
supportive role in disease treatment and patient rehabilitation
endeavors.

2 RELATED WORK
In clinical practice, commonly used prognostic prediction
methods include Logistic regression and COX regression [11-13].
However, the growing volume of patient data—characterized by
its vastness, diversity, and complex structure—poses significant
challenges to traditional statistical methods. For instance,
Abdulaal et al. [14] sought to develop a model that could provide
early mortality warnings upon patient admission. They collected
electronic medical records of COVID-19 patients admitted to a
local hospital between February and April 2020. Utilizing an
Artificial Neural Network (ANN), they conducted an in-depth
analysis of various patient characteristics, including demographic
information (such as age and gender), comorbidities, smoking
history, and a range of symptoms such as the duration since
symptom onset, fever, cough, shortness of breath, myalgia,
abdominal pain, and diarrhea.The model processes these clinical
data inputs to predict the mortality rate at the time of admission. If
the predicted mortality probability exceeds 50%, it indicates that
the patient's prognosis may be poor. In the test group, the
predictive model demonstrated high specificity and sensitivity in
assessing patient mortality risk, achieving scores of 0.863 and
0.875, respectively.

Huang Yan from the Breast Surgery Department at the 307
Hospital of the Academy of Military Medical Sciences
emphasized that investigating the heterogeneity of breast cancer
and its relationship to tumor development can address treatment
challenges, predict prognosis, enable personalized treatment
assessments, and improve patient survival rates. Although
numerous studies have focused on breast cancer prognosis
prediction, only the 21-gene recurrence score and the 70-gene
signature have gained clinical approval. However, the high costs,
technical limitations, and poor reproducibility of these tests
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highlight the need for practical and affordable tools for predicting
breast cancer prognosis in clinical settings.

Many machine learning models are like mysterious "black
boxes," lacking the ability to explain how they arrive at their
predictions. This lack of transparency can pose challenges for
doctors, especially when the model's suggestions clash with their
own intuition, leaving them puzzled without any rationale.
Enhancing the clarity of these models is crucial for boosting their
reliability and effectiveness in aiding medical decision-making.
Take predicting ICU mortality rates, for example. The model's
diagnostic findings play a significant role in shaping patient care.
A model that can be easily understood can pinpoint the key
factors affecting mortality, thereby offering stronger support for
clinical judgment. This empowers doctors to more accurately
assess the decision's validity and enables them to intervene in the
patient's treatment process earlier.

The lack of clear clinical interpretability poses a significant
challenge when it comes to predicting disease prognosis. In
response, this paper introduces HPExplainPro, a holistic method
for predicting cancer prognosis. HPExplainPro combines
transformer architecture with interpretability techniques, boosting
model effectiveness in several key areas: data preparation, feature
engineering, prediction model, decision model, and interpretation
of results. This strategy offers a comprehensive insight into the
deep learning model from both a broad overview and specific
details.

3 THE HPEXPLAINPRO FRAMEWORK
Figure 2 illustrates the complete workflow of the HPExplainPro
model outlined in this paper. It is broadly divided into five main
stages.

Stage 1: To prepare the data: we gather basic information,
medical history, diagnostic records, examination results,
electronic medical records, and patient follow-up data from
hospital information systems. Next, we split the clinical data into
training, validation, and test sets using a 10-fold cross-validation
technique, ensuring that the test set remains unchanged for feature
selection and model training. Additionally, we conduct data
preprocessing simultaneously to prepare the data for the feature
selection stage.

Stage 2: Feature Engineering: In the initial phase, we use
techniques like feature transformation and feature combination to
unveil underlying feature patterns. In the subsequent phase, we
apply three feature selection algorithms—chi-square test, t-test
combined with mutual information, maximum relevance
minimum redundancy algorithm, and genetic algorithm—to refine
the data features, resulting in three optimal feature subsets. After
feature processing, we evaluate the balance of the data samples. If
any imbalance is detected, corrective measures are implemented
to address it.

Stage 3: Prediction Model: we divide the reduced learning set into
multiple training sets using N-fold cross-validation. These diverse

training sets are used to train four different algorithms, which
include deep models such as CNN and transformer. Through this
process, we obtain a multi-heterogeneous classification model and
determine class weights for each model category.

Stage 4: Decision Model: The diverse classifiers produce class
probability predictions for each fold's validation set, leveraging
the optimal parameters derived in the preceding step. These
predictions, along with the actual class labels, are amalgamated to
create a new dataset. Following this, we employ XGBoost for
secondary learning on this dataset to fine-tune the probability
errors. Ultimately, we establish an ensemble model comprising
heterogeneous classifiers. Subsequently, diagnostic predictions for
unknown samples are made through competition based on class
weights.

Stage 5: Prediction Results: The Deepxplain model is employed
to provide explanations for the model from both a global and local
standpoint. To obtain the final classification diagnosis results,
each fold of the test set is subjected to testing, employing the
feature subset selected through triple feature selection for every
fold of the test set.

3.1 Data Preparation
In disease prognosis prediction, data preparation is fundamental. It
involves gathering essential patient information such as age,
gender, and medical history, which serves as the foundation for
building predictive models. Furthermore, diagnostic and treatment
data, including treatment plans and medication records, are
essential as they document the patient's treatment journey.
Additionally, diagnostic test data such as imaging and
biochemical indicators act as vital reference points for prognosis
prediction. Follow-up data documenting changes in the patient's
condition after discharge are also critical for assessing predictive
model accuracy. By integrating these diverse datasets, a
comprehensive understanding of the patient's condition can be
attained, providing robust data support for prognosis prediction.
Building upon this, the paper develops a comprehensive,
multidimensional clinical dataset by seamlessly integrating these
data, thus enhancing the understanding of the complex synergistic
effects among risk factors in the prognosis process of complex
diseases.

Data preprocessing methods. Upon acquiring clinical data,
preprocessing becomes imperative due to the frequent presence of
missing or outlier values in the raw data, which can detrimentally
affect the predictive capability of models. Key preprocessing
techniques encompass addressing outliers and handling missing
values. Outliers often manifest as special symbols (e.g., "<", "-")
or erroneous data (e.g., negative age values). Managing outliers
involves either replacing them or eliminating them entirely.
Dealing with missing values encompasses either removing
features with missing values or imputing them. Specifically,
features with an excessive number of missing values are removed,
and if a single indicator contains over 50% missing values, the
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entire sample information is excluded. Missing samples are then
filled by using the median or mean for continuous features, mode
for categorical features, or through methodologies such as the k-

nearest neighbors (KNN) algorithm.

Methods for Handling Imbalanced Data. Imbalanced data sets

frequently arise in clinical data for various reasons. For instance,
certain phenomena may appear or not appear in different
environments, contributing to these imbalances. To enhance the
performance of machine learning classifiers and improve
classification accuracy and recognition capabilities, it is crucial to
address the estimation issues caused by imbalanced data sets. The
primary methods for handling imbalanced data sets involve
sampling techniques at the data level, which include both
upsampling and downsampling. At the algorithm level,
optimization involves considering the cost differences associated
with various misclassification scenarios. The following section
provides a detailed overview of the techniques used to manage
imbalanced data sets in this paper, with a focus on data-level
approaches.

Adhering to the "randomized, controlled, double-blind"
principles in the medical field, the concept of sampling
emphasizes "randomness and balance." When there is a significant
disparity in the sample sizes of different classes within a dataset,
trained models often become biased towards the more prevalent
class. To improve the learning from minority class samples, it is

essential to address the issue of imbalanced data. The primary
methods for this include: Synthetic Minority Over-Sampling
Technique (SMOTE) and Random Under-Sampling (RUS).
Upsampling involves increasing the number of minority class
samples to achieve a more balanced dataset. This method uses
interpolation on existing minority class sample data to create new
samples, which are then added to the dataset. For each sample in
the minority class, the K-Nearest Neighbors (KNN) algorithm
calculates the distances to other samples in the same class,
identifying the k-nearest neighbors. Based on the imbalance ratio,
a sampling rate is determined, and neighboring samples are
randomly selected. These selected neighbor samples, together with
the original sample, are used to generate new sample data through
interpolation. Downsampling involves reducing the number of
majority class samples to achieve a more balanced dataset. The
downsampling method, Random Under-Sampling (RUS),
randomly selects a subset of the majority class samples and
removes them from the dataset.

Figure 2: HPExplainPro Model Framework.



3.2 Feature Engineering
The HPExplainPro model's feature engineering module integrates
expert knowledge-based and data-driven feature fusion techniques,
enhanced by a triple feature selection strategy.

An approach to feature fusion that combines expert knowledge
with data-driven techniques. Feature transformation,
combination, and other processing techniques enable the
exploration of underlying information hidden within features.
Feature fusion not only consolidates data from diverse dimensions
but also uncovers intrinsic relationships and potential patterns
among features. This approach not only enhances diagnostic
accuracy but also aids in the early detection of lung cancer. For
instance, utilizing basic measurements like height and weight to
calculate BMI offers insights into a patient's overall health.
Nevertheless, for more precise lung cancer diagnosis, expertise is
paramount. Medical professionals advocate for the neutrophil-to-
lymphocyte ratio (NLR) as a pivotal blood biomarker, indicating
potential inflammatory responses or immune status within the
patient's body. Therefore, employing a data-driven approach to
meticulously analyze this ratio substantiates its importance in lung
cancer diagnosis.

Method for triple feature selection. The clinical dataset for early
diagnosis of complex diseases presents a multimodal nature,
characterized by high dimensionality and significant variations
across dimensions. In actual clinical datasets, only a few features
exhibit a strong correlation with early disease diagnosis, amidst
numerous noisy and redundant features. Consequently, addressing
cancer classification in such multimodal clinical datasets poses a
critical and formidable challenge. Filter methods, which can be
applied across various machine learning algorithms and are not
tied to specific learners, offer remarkable versatility. They
demonstrate computational efficiency, making them suitable for
large-scale datasets and scenarios requiring rapid results.
Conversely, wrapper methods involve substantial computational
overhead and complexity, potentially making them impractical for
large-scale datasets.

Traditional filter methods are commonly employed due to their
high generality and low complexity, which facilitate the rapid
reduction of data dimensionality. However, their limitation arises
from the assumption of linear separability within the data. Clinical
data, known for its high redundancy, may not always adhere to this
assumption. To address this challenge, our paper proposes three
feature selection methods: the chi-square test, t-test combined with
mutual information, maximum relevance minimum redundancy
algorithm, and genetic algorithm. These methods are designed to
optimize data features, resulting in three optimal feature subsets.
More detailed explanations are provided below:

The primary feature selection algorithm: Using a statistical
significance-based approach to feature selection, we combine the
chi-square test, t-test, and mutual information technique to reduce
the dimensionality of the clinical dataset and remove irrelevant
features. The chi-square test compares categorical variables, the t-

test compares continuous variables, and the mutual information
method assesses the correlation between variables. By integrating
these methods, we can effectively pinpoint features with
substantial differences, thus improving the precision and
efficiency of disease diagnosis.

The second-tier feature selection algorithm: We've opted for
the mRMR algorithm due to its efficiency in eliminating
redundant features while maximizing correlations within clinical
data. At its core, this algorithm aims to enhance the relevance
between features and classification targets to identify the optimal
m features. However, the mere presence of these m features does
not guarantee the highest predictive accuracy. Let's define the data
matrix � = ��,�, �� ��,� ∈ ��, �� ∈ �

�×�
, where ��,� signifies the

j-th feature of the i-th sample, with �� representing the feature
space, and y denoting the classification label set. We denote the
selected feature set as S. By employing specific formulas, the
mRMR algorithm enhances feature-classification correlations
while reducing inter-feature correlations:

��� ( 1
� xi∈S

� xi; � −� 1
� 2 xi,xj∈S � xi; xj )� (1)

The third-tier feature selection algorithm: Using a genetic
algorithm, this approach imitates optimization through natural
selection and genetic mechanisms, possessing robust global search
capabilities, which render it suitable for addressing various
complex optimization problems. By iteratively refining the
process, this paper automatically identifies the most representative
features, thus enhancing the accuracy and efficiency of the
diagnostic model.

3.3 Heterogeneous Classifier
The HPExplainPro model brings together two distinct deep
learning architectures, CNN and Transformer, alongside traditional
machine learning techniques and ensemble methods, to create a
diverse classifier. CNN excels in tasks involving image processing
and computer vision, efficiently extracting local image features
through convolutional operations and gradually building higher-
level abstract representations with hierarchical structures. This
prowess has led to significant progress in image classification and
object detection. However, CNN encounters difficulties with
sequential data due to its focus on local features, hindering its
ability to capture global dependencies. In contrast, Transformer
has achieved notable success in natural language processing
endeavors. By leveraging self-attention mechanisms, it effectively
captures long-range dependencies within sequences, facilitating
the adept handling of contextual language information. This
achievement is particularly evident in tasks such as machine
translation and text generation. Nonetheless, Transformer's
computational complexity presents a challenge, especially when
processing lengthy sequences, resulting in heightened resource
consumption. When it comes to disease prognosis prediction,
harnessing the strengths of both CNN and Transformer proves
advantageous. CNN excels in extracting local features from
patient image data, such as medical images, capturing the
localized manifestations of diseases. Conversely, Transformer



HPExplainPro: A Framework for Pan-cancer Prognosis Prediction
Based on Deep Interpretable Learning WOODSTOCK’18, June, 2018, El Paso, Texas USA

adeptly processes sequential data like patient medical records and
examination results, capturing the global dependencies essential
for predicting disease prognosis. The synergistic integration of
these models effectively leverages their respective strengths,
thereby enhancing the accuracy and reliability of disease
prognosis prediction.

In summary, the heterogeneous classifier overcomes the
constraints of individual models and optimizes their benefits by
combining the complementary features of CNN and Transformer,
two distinct deep learning models. This strategy effectively
harnesses the strengths of both models, offering strong support for
disease prognosis prediction.

3.4 Integrated Model of Secondary Learning
Probability Error

The prevailing ensemble techniques encounter challenges in
capturing the nonlinear relationships among different classifiers
and struggle to effectively grasp and precisely estimate the
nonlinear variations in clinical data after dimensionality reduction.
Addressing this issue, this paper introduces an innovative
ensemble strategy centered on second-order learning of probability
errors.

This strategy begins by amalgamating the category probability
forecasts of multiple heterogeneous classifiers on the validation
set with the true category labels post the initial learning phase,
thereby crafting a comprehensive new dataset. This method
ingeniously converts the classification errors produced by
individual models into probability format, amalgamating them into
the newly formed dataset. Subsequently, we proceed with a second
round of learning using this dataset.

In this subsequent learning phase, we opted for the XGBoost
algorithm as the cornerstone tool, leveraging its expansion of the
Gradient Boosting algorithm's capabilities and its popularity
owing to its remarkable error learning and nonlinear fitting
prowess. The core concept behind XGBoost lies in using residuals
between predicted and true values as the learning objective for
subsequent iterations, progressively minimizing these residuals to
enhance model performance. Additionally, the algorithm
incorporates L1 and L2 regularization terms into the objective
function of each iteration, effectively managing model complexity
and mitigating overfitting.

Considering the potentially substantial sample size of
individual disease samples in clinical datasets, we selected the
XGBoost algorithm, which does not hinge on large sample sizes,
to ensure the effectiveness and efficiency of second-order learning.
By thoroughly learning and fitting the errors between the predicted
probabilities of individual models from heterogeneous classifiers
in the new dataset and the true values, we successfully attained an
unbiased estimation of the nonlinear integration of heterogeneous
classifiers and the nonlinear data change patterns.

In summary, this ensemble strategy, based on second-order
learning of probability errors, actively forecasts, learns, and
rectifies the classification errors of multiple heterogeneous
classifiers, providing robust support for enhancing the predictive

performance of disease diagnosis. Through the integration of
heterogeneous classifiers, the ensemble model proposed in this
paper is realized.

3.5 Deepxplain Interpretable Model
The DeepXplain explanation model empowers HPExplainPro with
a comprehensive and detailed tool for understanding the predictive
behavior of machine learning models through two methods: global
explanation using DeepSHAP and local explanation using LIME.
Global explanation aims to delve into the overall decision logic
and functioning of the model, providing users with a thorough and
detailed explanation of the sample on a global scale. It scrutinizes
the influencing factors in the feature subset and identifies potential
biomarkers affecting the target outcome. Conversely, local
explanation focuses on investigating the model's decision-making
process for individual instances, providing specific decision logic
or basis of the machine learning model for each input sample to
clarify the reasons behind the classification results.

Global interpretation. Shapley Additive Explanations (SHAP) is
a technique that elucidates the outcomes of machine learning
models by integrating expected values with Shapley values [15]. It
evaluates the relationship between each feature element and the
model's predictive capacity, along with its impact on the prediction
results, thereby assisting individuals in understanding the practical
significance encapsulated by model features. The SHAP value
assigned to each feature serves as the cornerstone for
interpretation, indicating the feature's contribution to the
prediction risk of complications. Positive SHAP values indicate
that the corresponding feature contributes to an increase in the risk
of complications, while negative SHAP values suggest a decrease
in the risk of complications associated with the feature.

This section utilizes an improved SHAP explanation tool to
provide an extensive explanation of the target prediction model.
The enhanced SHAP explanation tool calculates the attributes of
each input-baseline pair using a baseline distribution and then
averages the resulting attributes for each input. Additionally, it
treats the network output as a linear combination of simplified
inputs:

 
 N

n nnX xXfF
10))((  (1)

In this scenario, X represents the feature vector of the input model,
where X belongs to {x1, x2, …, xn}, and X' stands for the simplified
feature vector of X, with X' belonging to {0, 1}, indicating
whether corresponding features are present in X or not. The
variable n denotes the feature dimension, while ∅ n serves as a
constant. ∅ represents the feature weights, which can take on
positive or negative values, providing a measurement of the
respective feature relationships. Additionally, ∅ n represents the
feature weight of feature vector xn. N represents the total number
of features. The scalar output of the model is denoted by F(fx(X’)) ,
and (fx(X’)) denotes the mapping function responsible for
converting the binary vector back to the original space.
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Local explanation. In this section, we provide an overview of the
established predictive model and create a practical visualization
model for interpreting patient-level data, facilitating comparisons
between a selected patient and those without specified
complications. The Local Interpretable Model-Agnostic
Explanations (LIME), introduced by Marco Ribeiro et al., acts as a
valuable tool for comprehending the decision-making process of
intricate black-box models [16]. Let's denote the complex model
under scrutiny as f and the simpler model as g. Thus, the objective
function employed to assess the contrast between these two
models can be expressed as:

)())'()(()()( 2

',

gzgzfzx
zz

x  (2)

The equation depicts πx(z) as the measure of similarity between
samples before and after perturbation. In this context, x signifies
the sample necessitating elucidation, x' is the sample obtained by
removing features to transform into x', z' is the fresh sample point
generated post perturbation, and z' incorporating excluded features
is reverted to the initial sample z. Ω denotes the complexity of the
model.

Table 2: Prognostic datasets for three different types of cancer.

Dataset Poor prognosis Good prognosis Total number Features
Lung cancer 90 114 210 26
Breast cancer 60 250 310 33
Liver cancer 90 229 319 23

The second equation highlights that the perturbed samples
generated by LIME may lack sufficient validity, potentially
impeding the surrogate model's ability to accurately mirror the
intricate predictive patterns of the complex model surrounding the
focal instance. This research endeavors to refine the methodology
for selecting perturbed samples. By augmenting the likelihood of
selecting perturbed samples exhibiting higher degrees of validity,
we indirectly penalize those with lower validity, thereby refining
the precision of LIME's explanatory outcomes. To achieve this
objective, we propose a sampling technique that amplifies the
chances of selecting samples with superior validity while
diminishing the probability of choosing those with inferior validity,
thus ensuring the coherence of the perturbed samples selected.The
workflow of the LIME algorithm is illustrated in Table 1.

Table 1: The workflow of the LIME algorithm.

Algorithm 1: LIMEAlgorithm
Input: 1) the Complex model, f; 2) the Sample of interest, x; 3) the Number
of randomly generated samples, N.
Output: Weights of linear models
1. Through feature screening, obtain d' important features and obtain the
explanatory version of the sample of interest, x';
2. Perform random perturbation near sample x' to generate new sample
data z', restore z' 'to a sample z with the same dimension as x, and use the
complex model to predict labels;
3. Fit the newly generated dataset using a linear model.

4 EXPERIMENTS

4.1 Datasets
This study utilizes datasets from three prominent large hospitals in
China, spanning three distinct cancer types: lung cancer, breast

cancer, and liver cancer. The lung cancer dataset, obtained from
Hunan Cancer Hospital, includes demographic characteristics,
symptoms, and blood biomarkers. These encompass age, height,
weight, smoking history, pathological subtype, blood biomarkers
such as neutrophils, lymphocytes, CD8+ T lymphocytes, absolute
and percentage values of CD8+ T lymphocytes, late-stage
indicators, liver metastasis, bone metastasis, results of neutrophil
extracellular traps (NETs) secondary detection, and objective
response rate (ORR). The breast cancer dataset, sourced from
Hunan Cancer Hospital, comprises patient age, pathological
subtype, maximum tumor diameter, lymph node metastasis,
vascular cancer embolism, whether it is classified as triple-
negative breast cancer, treatment recommendations, and 5-year
survival status. The liver cancer dataset, obtained from the General
Hospital of the People's Liberation Army, includes patient
demographic details, preoperative laboratory assessments, and
ablation parameters. Specific features include basic demographic
information, ablation time, power (W), number of ablations,
ablation sites, surgical duration, postoperative hospital stay
duration, complications, local recurrence, and time of local
recurrence. Data summaries of the three different cancer datasets
are provided in Table 2.
Feature selection was conducted through a rigorous feature
engineering process, integrating clinical expertise and insights
from collaborating specialists. The final set of features was
carefully determined. Initially, the lung cancer dataset included 26
features, which were narrowed down to the top 13 through feature
selection. Based on clinical expert feedback, further refinements
were made: neutrophils and lymphocytes were combined into the
NLR, and for the CD8 marker, the percentage value was preferred
over the absolute value. Additionally, for NETs, the first test result
was used if secondary detection values were present.
Consequently, the top 10 selected features were: CD8_%, NK,
LDH, metastasis sites, NETs, bone metastasis, pathological types,
IL-8, NLR, and smoking index.



Figure 3: depicts the correlation curve between the number of features and accuracy across three different types of cancer.

Figure 4: AUC Comparison HPExplainPro VS SOTA.

4.2 Evaluation Metrics
To ensure robust test results, this study employs a 10-fold cross-
validation method. The clinical dataset is initially divided
randomly into 10 parts. In each iteration, 9 parts are used as the
training set, while the remaining part serves as the test set.
Additionally, within each fold of the 10-fold cross-validation, a
K-fold cross-validation is conducted. In this step, the training set
is further divided into K mutually exclusive subsets. For each
iteration of the K-fold cross-validation, K-1 subsets are used for
training, and the remaining subset is used for validation.

Table 3: Number of samples after preprocessing in the three
different cancer datasets.

Prediction: Normal Prediction: Tumor

Actual: Normal TN FP

Actual: Tumor FN TP

In this study, we consider primary tumor tissue as positive and
normal solid tissue as negative. The evaluation of the classifier
relies on a confusion matrix, as shown in Table 3, which illustrates

the correspondence between actual and predicted classes. The
cancer diagnosis results from the test set present four scenarios:
true positive (TP), true negative (TN), false negative (FN), and
false positive (FP). TP represents the correctly classified samples
of tumor tissue, TN denotes the correctly classified samples of
normal tissue, FN indicates samples predicted as normal tissue but
are actually tumor tissue, and FP represents samples predicted as
tumor tissue but are, in reality, normal tissue. The evaluation
metrics, including accuracy, sensitivity, specificity, and F1-score,
are defined as follows:
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(3)
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4.3 Hyperparameters Configuration
During the feature selection phase, we applied the mRMR method.
We defined the feature variable parameter, denoted by λ, with a
step size set to 1. Starting from 1, we iteratively determined the
optimal number of features while plotting the relationship curve
between feature variables and cancer prognosis. When training
diverse classifiers, we automatically optimized the parameters of
each classifier through grid search. In this study, the Transformer's
num_layers parameter ranged from {6,12,24}, the d_model
parameter ranged from {512,1024}, and the learning_rate ranged
from {0.001,0.0001}.

To evaluate the broad applicability of our proposed method,
we conducted comprehensive investigations on lung cancer, breast
cancer, and liver cancer. Based on the specified parameter
configurations, we meticulously recorded the accuracy
corresponding to varying numbers of features, denoted as n.
Figure 3 vividly illustrates the relationship between feature count
and accuracy across these three cancer types. As the feature count,



Table 4: Prognostic Prediction Results (%) for Three Types of Cancer.

Evaluation Metrics Lung Cancer Breast Cancer Liver Cancer
No.of features 13 22 10

�� ��
�� ��

90 0
0 114

60 0
0 250

90 0
1 228

Accuracy 99.99% 100% 99.93%
Sensitivity 99.99% 100% 99.97%
Specificity 100% 100% 100%
F1-score 99.99% 100% 99.95%

Figure 5 presents the comparative results of the HPExplainPro ablation experiments.

n, increases, accuracy initially rises until reaching peak values at
feature counts of 13, 22, and 10 for lung cancer, breast cancer, and
liver cancer, respectively, followed by a gradual decline. This
pattern suggests that beyond a certain number of features, the
noise introduced by additional features outweighs their utility.
Consequently, in our study, we selected the number of features
that initially achieved peak accuracy—13, 22, and 10 for lung
cancer, breast cancer, and liver cancer, respectively—as the final
feature selection counts.

4.4 Main Results
The HPExplainPro model framework has developed predictive
models for assessing the objective response rate (ORR) post-
immunotherapy in lung cancer, predicting 5-year survival rates
among breast cancer patients, and forecasting local progression
outcomes following microwave ablation in early-stage liver
cancer. Examination of Table 4 yields the following insights: In
lung cancer, the utilization of 13 core features resulted in

achieving remarkable metrics, including 99.99% accuracy,
99.99% sensitivity, perfect 100% specificity, and a 99.99% F1
score. For breast cancer, employing 22 key features led to
achieving perfect scores across all four metrics. Similarly, in liver
cancer, leveraging 10 key features yielded exceptional results with
99.93% accuracy, 99.97% sensitivity, 100% specificity, and a
99.95% F1 score. These experimental findings underscore the
high accuracy of HPExplainPro in prognostic predictions across
these prevalent cancers using real clinical data. Moreover, this
methodology demonstrates extensive applicability and robustness
in predicting outcomes across diverse cancer types.

Furthermore, this paper compares HPExplainPro's
performance with that of cutting-edge methods (see Figure 4).
Chowell et al [17]. introduced RF16, an ensemble learning-
random forest classifier with 16 input features, designed to predict
the prognosis of various cancers. Their work was published in Nat
Biotechnol. The study highlighted RF16's performance: on the
training set - (pan-cancer AUC: RF16 0.85, RF11 0.79, TMB



0.62), and on the test set - (pan-cancer AUC: RF16 0.79, RF11
0.71, TMB 0.63).

The study findings reveal a significant improvement in AUC
values compared to both the baseline and state-of-the-art (SOTA)
methods discussed in this paper. Employing the same Random
Forest base model, the method proposed in this section,
mRMR_RF10, demonstrated a 15.96% enhancement over the
baseline and a 9.71% improvement over SOTA. Additionally, the
GBDT-based approach, mRMR_GBDT10, showcased superior
performance as outlined in this study. These results underscore
HPExplainPro as a robust framework for prognosticating pan-
cancer outcomes.

4.5 Ablation Study
The methodology outlined in this paper primarily consists of two
key components: a triple feature selection algorithm and a
secondary learning probability error ensemble model. This section
delves into the specific contributions of these components within
HPExplainPro by conducting comparisons between the method
with and without them. The analysis demonstrates that
HPExplainPro achieves optimal performance when both the triple
feature selection algorithm and the secondary learning probability
error ensemble model are utilized (refer to Figure 6). For instance,
in the case of lung cancer, excluding the triple feature selection
algorithm results in improvements of 1.85% in accuracy, 1.54% in
sensitivity, 0.24% in specificity, and 3.26% in F1-score with
HPExplainPro. Similarly, when the secondary learning probability
error ensemble model is omitted, HPExplainPro exhibits
enhancements of 4.64% in accuracy, 3.86% in sensitivity, 1.83%
in specificity, and 5.87% in F1-score for lung cancer. These
experimental findings underscore HPExplainPro's efficacy in
improving the efficiency of cancer prognosis prediction.

Figure 6: Global Explanation Results of HPExplainPro.

4.6 Potential Biomarkers for Lung Cancer
Prognosis Discovered by DeepXplain

Using the HPExplainPro method, this study sought to forecast the
efficacy of immunotherapy ORR in non-small cell lung cancer
(NSCLC). The methodology entailed amalgamating clinical
insights and integrating variables such as the neutrophil-to-
lymphocyte ratio (NLR), CD8 percentage value, and the initial test

value of NETs. Through Deepxplain global interpretation,
potential biomarkers impacting disease prognosis were pinpointed,
encompassing NETs, LDH, CD8, IL-8, metastasis sites, and NLR.
Clinical validation was conducted at the hospital [18]. See in
Figure 6.

Deepxplain's local explanation illuminates how the
HPExplainPro model predicts the prognosis for individual NSCLC
patients. Since clinicians may struggle to understand how the
model determines a poor prognosis based on patient demographics,
clinical features, and test results, Figure 7 elucidates the decision
criteria of the black-box model. It emphasizes that a higher score
is linked to the programmed death-ligand 1 value (%) and whether
the patient is in an advanced stage, ultimately leading to a
prediction of a poor prognosis.

4.7 External Validation: COVID-19 Critical Illness
Prediction

This section details the validation process of HPExplainPro for
other diseases. Severe cases of COVID-19 pose a considerable
risk of mortality, with 6-8% of confirmed patients advancing to
critical illness requiring intubation or ICU care, and the mortality
rate for these critically ill patients can soar as high as 65%.
Drawing upon data from 1590 COVID-19 cases nationwide, a
team led by Academician Zhong Nanshan from the Guangzhou
Institute of Respiratory Health integrated clinical risk factors to
devise the COVID-GRAM critical illness prediction model for
COVID-19 [19]. This model encompasses 10 key features,
encompassing abnormal chest X-ray findings, age, hemoptysis,
dyspnea, altered consciousness, number of comorbidities, history
of previous cancer, neutrophil-to-lymphocyte ratio, lactate
dehydrogenase levels, and direct bilirubin levels. COVID-GRAM
exhibits the ability to predict whether COVID-19 patients will
progress to critical illness with an accuracy rate of up to 88%.

4.7.1 Dataset

This section details the development of a critical illness prediction
model for COVID-19, utilizing the HPExplainPro framework and
data collected from 246 COVID-19 patients at the Third Hospital
of Wuhan. The model encompasses various demographic factors
like gender, age, weight, and height, as well as medical histories
categorized by systems including respiratory, digestive, endocrine,
and metabolic diseases, as well as musculoskeletal and
reproductive system conditions. Furthermore, it incorporates
surgical and infectious disease histories, alongside admission-
recorded vital signs such as respiratory rate, body temperature,
pulse, and blood pressure. Additionally, the model incorporates
laboratory test results like routine blood cell counts, chemical
profiles, coagulation profiles, electrolytes, and brain natriuretic
peptide (BNP) levels as predictive features.

4.7.2 Main Results
In the development cohort, COVID-GRAM achieved an AUC of
0.88, and it also reached an AUC of 0.88 in the validation cohort.
HPExplainPro obtained an AUC of 0.92 in the development
cohort and 0.90 in the validation cohort. As depicted in Figure 7,



HPExplainPro: A Framework for Pan-cancer Prognosis Prediction
Based on Deep Interpretable Learning WOODSTOCK’18, June, 2018, El Paso, Texas USA

the experimental findings indicate that HPExplainPro outperforms
COVID-GRAM in predictive performance.

4.7.3 Potential biomarkers for COVID-19 critical illness
discovered by DeepXplain
Deepxplain's analysis revealed several factors influencing the
severity of COVID-19 critical illness, including age, medical
history, neutrophil-to-lymphocyte ratio (NLR), and BNP.
Research has consistently shown a strong correlation between age
and the severity of COVID-19 symptoms. With age, the immune
system gradually weakens, making older individuals more
susceptible to viral infections and often experiencing more severe
illness, particularly among those aged 70 and above. Additionally,
patients' medical history, especially the presence of chronic
conditions like cardiovascular disease, diabetes, and hypertension,
significantly impacts the severity of COVID-19 symptoms. These
chronic conditions can compromise the immune system,
heightening the risk of viral infection and exacerbating the illness.
Moreover, certain chronic conditions may impair patients'
cardiopulmonary function, making them more vulnerable to
respiratory attacks from COVID-19. The neutrophil-to-
lymphocyte ratio (NLR) is a crucial indicator reflecting the body's

Figure 7 illustrates the cross-validation results of
HPExplainPro.

inflammatory response and immune status. Studies have
demonstrated a close relationship between elevated NLR and the
severity of COVID-19 symptoms. During viral infections,
neutrophil levels surge to combat the virus, while lymphocyte
levels may decrease due to viral attacks. Consequently, an
elevated NLR may signify a severe inflammatory response and
immune suppression, aligning with the condition observed in
critically ill COVID-19 patients. BNP, a hormone produced by the
heart, primarily regulates fluid balance and blood pressure. In
cardiovascular diseases such as heart failure and myocardial
infarction, BNP levels typically rise significantly. Similarly, in
critically ill COVID-19 patients, heart muscle damage and cardiac
dysfunction resulting from viral attacks can lead to elevated BNP
levels. Therefore, BNP serves as a vital indicator for evaluating
the cardiac function of COVID-19 patients and predicting the
severity of the illness.

In conclusion, age, medical history, NLR, and BNP are
potential biomarkers influencing the severity of COVID-19 critical
illness. By monitoring changes in these indicators, physicians can
more accurately assess the severity of patients' symptoms, devise
more precise treatment strategies, and ultimately enhance
treatment outcomes and reduce mortality rates.

4.8 External Validation: Zhongjing
This section delineates how HPExplainPro is utilized to forecast
the prognosis of diseases under traditional Chinese medicine
(TCM) treatment. It introduces a prognostic model called
"Zhongjing," which harmonizes both Chinese and Western
medicine approaches. The objective is to enhance the validation of
the model's overall performance.

4.8.1 Dataset

The research collected electronic medical records data from 317
osteoarthritis patients treated at the First Affiliated Hospital of
Hunan University of Chinese Medicine. All participants
underwent significant orthopedic surgery and underwent
postoperative lower limb deep vein color Doppler ultrasound
examinations. Among them, 40 patients experienced lower limb
deep vein thrombosis (VTE) following surgery. The analysis
encompassed various factors, including patients' demographic
information, existing medical conditions, clinical details
pertaining to the surgery, and results of laboratory tests.
Specifically, these aspects included: ① Essential admission
particulars, such as age, gender. ② Pre-existing medical
conditions such as hypertension, diabetes. ③ Clinical data
associated with the surgery, including the specific type and
location of the fracture, cause of injury, duration between injury
and admission, surgical techniques employed (such as acupuncture
injection, massage therapy, acupuncture and moxibustion,
traditional Chinese medicine treatments, etc.), method of
anesthesia, and duration of surgery. ④ Laboratory results,
covering complete blood count (CBC), coagulation function, and
C-reactive protein (CRP). CBC parameters comprised white blood
cell (WBC) count, platelet (PLT) count, among others.

4.8.2 Main Results
By conducting 10-fold cross-validation, we obtained the validation
results for the model. Developed within the HPExplainPro
framework and utilizing the CatBoost algorithm, the prognostic
prediction model named "Zhongjing" achieved an impressive
AUC of 99.30% on the validation set. This outperformed both
XGBoost (AUC=90.00%) and the transformer deep learning
model (AUC=89.90%). The optimal parameters for the
transformer were determined as follows: d_model=128,



Figure 8: Prognostic Prediction Model "Zhongjing" for Traditional Chinese and Western Medicine in Arthritis.

nhead=4, num_encoder_layers=2, num_decoder_layers=2.
Incorporating insights from prior experiments conducted by our
team, we observed that when dealing with small sample data in
the training set, the performance of the transformer model fell
behind that of traditional machine learning models. As illustrated
in Figure 8, the AUC curve of our model underscores the robust
generalization capabilities of HPExplainPro. Additionally, our
study identified several risk factors for postoperative lower limb
deep vein thrombosis (DVT) in osteoarthritis patients, including
'plasma D-dimer measurement (D-Dimer)', 'glucose', 'prothrombin
time', 'activated partial thromboplastin time', 'uric acid', 'diabetes
status', and 'age at diagnosis'.

4.8.3 Potential biomarkers for arthritis prognosis in both Chinese
& Western medicine discovered by DeepXplain
Various factors were observed from Figure 8, including age at
diagnosis, plasma D-dimer measurement (D-Dimer), percentage
of neutrophils, glucose levels, activated partial thromboplastin
time, prothrombin time, diabetes status, and uric acid levels. Age
plays a pivotal role in determining the effectiveness of
osteoarthritis treatment. As individuals age, cartilage degeneration
increases, and joint function declines, potentially resulting in less
effective treatment compared to younger individuals. Younger
patients may demonstrate better self-repair capabilities and
treatment response. D-Dimer, a breakdown product of fibrin,
typically increases in association with thrombosis or a
hypercoagulable state. In osteoarthritis, D-Dimer levels may
correlate with the severity of joint inflammation and blood
circulation status, affecting treatment outcomes. Neutrophils,
primary inflammatory cells, often indicate inflammation when
their percentage increases. Higher neutrophil percentages in
osteoarthritis patients may suggest more severe joint inflammation
requiring stronger anti-inflammatory treatment. Blood sugar
levels can affect the nutritional supply and repair capacity of joint
cartilage. Elevated blood sugar levels may exacerbate joint
cartilage damage and influence treatment efficacy. Activated

partial thromboplastin time and prothrombin time reflect the status
of coagulation function. Abnormalities in coagulation function
may lead to intra-articular bleeding or thrombosis, impacting joint
function and treatment outcomes. Patients with diabetes
commonly experience vascular changes and microcirculation
disorders, worsening osteoarthritis symptoms and affecting
treatment outcomes. Diabetes may also modify drug metabolism
and distribution, affecting treatment efficacy. While
hyperuricemia may be associated with gouty arthritis, its role in
osteoarthritis is unclear. Some studies suggest that high uric acid
levels may exacerbate joint inflammation and cartilage damage,
affecting treatment outcomes. However, the surgical approach in
traditional Chinese medicine, including acupuncture injection,
massage technique, acupuncture and moxibustion, and Chinese
medicine treatment, does not significantly impact prognosis.
In summary, factors influencing the prognosis of osteoarthritis
treated with traditional Chinese and Western medicine include age
at diagnosis, plasma D-dimer, neutrophil percentage, blood sugar
levels, coagulation function, diabetes, and uric acid levels. During
treatment, comprehensive consideration of these factors and the
development of personalized treatment plans are essential to
improve treatment efficacy and prognosis.

4.9 Clinical Application of HPExplainPro
The study described earlier has witnessed the integration of
COVID-GRAM into numerous hospitals throughout Hubei
Province, including Huoshenshan Hospital. This integration has
solidified its reputation as an accurate and practical clinical tool
widely embraced by the medical community. Inspired by the
success of this endeavor, our research team collaborated with
Hunan Provincial Tumor Hospital to apply the HPExplainPro
model in the realm of breast oncology. Upon testing with a dataset
comprising 100 cases, the model demonstrated an accuracy rate
exceeding 90%. Among these cases, 88% represented breast
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cancer patients with a 5-year survival rate, while the remaining
12% comprised patients who succumbed to the disease [20].

The effectiveness of the 5-year survival prediction model for
breast cancer in clinical settings may not meet expectations due to
various factors [21-23]. Firstly, breast cancer patients exhibit
significant individual variations [24], including age, gender,
physical health, lifestyle choices, comorbidities, and other factors
[25]. While these factors can influence patient survival rates and
treatment outcomes, they may not be fully accounted for by the
model. Secondly, although the model incorporates features such
as marital status, parity, lymph node metastasis, HER2 [26], Ki67
[27], staging, surgical history, and recurrence status, it may still
not cover all factors affecting breast cancer's 5-year survival
comprehensively. Genetic variations [28,29], other biological
markers [30], environmental influences[31-33], and patient
lifestyle habits [34] can also significantly affect survival rates.
Clinical data may face quality issues like missing, erroneous, or
inconsistent data, impacting the model's training effectiveness and
prediction accuracy. For instance, some breast cancer patients
may be lost to follow-up, resulting in incomplete data on
recurrence status. Complex models may lead to overfitting, where
they perform well on training data but poorly on new data.

To tackle these challenges, future efforts will concentrate on
identifying additional factors related to breast cancer survival
through further research and clinical observation, integrating them
into the model.

This study's main contribution lies in uncovering multiple
potential biomarkers linked to the prognosis of various diseases
using the advanced tool HPExplainPro. These findings offer fresh
insights into early disease detection, treatment strategy
development, and prognosis evaluation, charting a course for
future medical investigations. NETs and NLR, two insufficiently
validated prognostic markers for lung cancer, have been
successfully pinpointed. As indicators of immune response,
abnormal levels of NETs and NLR may closely correlate with
lung cancer progression and metastasis, aiding in more precise
prognosis assessment and treatment planning for lung cancer
patients [35,36]. Biomarkers NLR and BNP associated with
critical COVID-19 illness have been identified, holding
significant significance for promptly identifying high-risk patients,
optimizing treatment approaches, and reducing mortality rates
[37,38]. Biomarkers plasma D-dimer and uric acid levels [39,40]
post combined traditional Chinese and Western medicine
treatment have been discovered, providing scientific backing for
refining treatment strategies in the future. Through HPExplainPro,
this study has effectively identified numerous potential
biomarkers linked to the prognosis of diverse diseases, offering
substantial scientific value and fresh guidance for clinical practice.
With further exploration into these biomarkers' mechanisms, more
breakthroughs are anticipated in preventing, diagnosing, and
treating related ailments.

5 CONCLUSION

We have designed and developed a sophisticated deep
interpretable learning approach tailored for pan-cancer prognosis
prediction, dubbed HPExplainPro. This framework brilliantly
fuses transformer technology with interpretability methods,
enabling it to deliver pinpoint-accurate disease prognosis
predictions. Through meticulous experimentation, we have delved
into clinical data pertaining to three cancers with elevated
incidence rates: lung cancer, breast cancer, and liver cancer. The
findings garnered from our investigations unequivocally reveal
that HPExplainPro surpasses other cutting-edge methodologies in
prognosis prediction. Remarkably, the versatility of HPExplainPro
transcends solely cancer prognosis. It holds vast potential in
prognostic predictions for COVID-19, analysis of traditional
Chinese medicine treatments, and numerous other diseases.
Leveraging the power of Deepxplain analysis, we have
successfully dissected the model's feature utilization, presenting
personalized and visually intuitive results. This innovative
approach effectively dismantles the opaque nature of machine
learning outcomes, offering biomarker insights for cancer
prognosis that serve as invaluable references for clinical auxiliary
diagnosis.

Throughout the entire research trajectory, from the initial
conception of the method to its experimental validation and
clinical implementation, HPExplainPro has exhibited remarkable
coherence and synergy. During the experimental verification
phase, the HPExplainPro framework exhibited exceptional
performance across diverse cancer datasets, further underscoring
its robust generalization capabilities through cross-disease
validations. Ultimately, the clinical deployment of this innovative
methodology not only validates its practical efficacy but also
illustrates the seamless transition from theoretical conjecture to
tangible real-world application.
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