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Abstract— This work presents the first use-case of full
second-order Differential Dynamic Programming (DDP) with
a whole-body model for model predictive control on legged
robot hardware. Recent advances in the literature show that
DDP can be simplified by exploiting the dynamics structure
in the algorithm, allowing the use of reverse-mode derivative
accumulation to efficiently compute sensitives. These advances
allow DDP to be run at similar compute times as the iterative
LQR (iLQR) algorithm, its first-order counterpart. Beyond a
hardware implementation of these past theoretical develop-
ments for a robot making regular contact with the environment,
this paper provides a characterization of full DDP vs. iLQR
following push disturbances with a quadruped robot. The
resulting DDP controller is shown to achieve lower costs and
withstand bigger disturbances as compared to iLQR.

Paper Type – Original Work

I. INTRODUCTION
Most existing robot locomotion controllers based on model

predictive control (MPC) consider a reduced model of the
robot’s dynamics when solving for the optimal control. The
choice of a reduced model (template), at its core, aims to
capture as much important information as possible about the
robot’s dynamics. While the inclusion of more dynamic in-
formation may lead to a better controller overall, care must be
taken to ensure that the resulting dynamic information does
not lead to dimension explosion and increased computation
time. However, with increasing computational capabilities,
the trend toward more complex template models and whole-
body trajectory optimization is steadily gaining traction. For
example, the authors in [1] used a whole body algorithm
known as Differential Dynamic Programming (DDP) to
control a simulated humanoid at seven times slower than
real-time. [2] used DDP to control a 22-DOF humanoid robot
walking and making contact with the environment and [3] a
quadruped performing dynamic such as cantering.

DDP is a shooting method that provides dynamically
feasible trajectories at any iteration of its optimization pro-
cess, encouraging its use in an MPC fashion. The algorithm
provides both a feed-forward control tape and a locally
optimal feedback policy, which can be used to handle distur-
bances [4]. Originally described by [5] as a single shooting
method for smooth unconstrained nonlinear systems, DDP
has been extended to handle control limits [1], state-control
constraints [6], [7] and hybrid dynamics [7]–[10] where the
robot has to make and break contact with its environment. In
the literature, DDP presentations often consider the second-
order approximation of the robot’s dynamics, but in practice,
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only the first-order dynamics approximation [2], [9], [11]
is used due to its faster evaluation time. This configuration
gives rise to the iterative linear quadratic regulator (iLQR).
While the second-order dynamics sensitivity information in
DDP retains higher fidelity to the full model locally, these
sensitivities are tensorial and represent the most intensive
computation in DDP. The work in [12], [13] presented an
algorithmic method to efficiently include the second-order
information. It resulted in a reduction from cubic to quadratic
computational complexity (in the number of bodies of the
robot) compared to conventional tensor methods. The ad-
vancement therein showed that full second-order DDP could
be performed in similar compute time as first-order iLQR,
potentially allowing the use of DDP on hardware. It should
be noted that even for strictly convex running cost functions,
the inclusion of second-order dynamics information may lead
to a non-convex approximation of the local cost landscape.
As such, a reconditioning of the cost landscape known as
regularization (i.e., via an artificial Hessian shift) is often
needed and we note that this incurs additional compute effort
for DDP as compared to iLQR.

It is hypothesized that since DDP includes more infor-
mation about the full dynamics of the robot, it is likely to
be able to reject larger disturbances compared to iLQR. We
evaluate this hypothesis via Monte Carlo simulations, where
we vary the disturbance applied to the robot and characterize
the resultant properties of the robot’s motion.

The results presented herein are enabled by efficiently in-
cluding second-order information in the DDP algorithm [12],
[13]. These advances allow (I) the presentation of full
second-order DDP on hardware for a robot making regular
contact with the ground. Further, in simulation, we use this
advancement to perform a Monte Carlo characterization of
the disturbance rejection capabilities of DDP/iLQR when
used for closed-loop MPC. The results presented here show
that (II) DDP can withstand larger disturbances as compared
to iLQR and without sacrificing significant compute time.

II. BACKGROUND: TRAJECTORY OPTIMIZATION

Consider a model with discrete-time dynamics[
xk+1

λk

]
= f(xk,uk) =

[
F(xk,uk)
g(xk,uk)

]
(1)

where x = [q⊤ q̇⊤]⊤ is the state vector and q is the
generalized coordinates. Further, uk is the control input at
time k with λk being the ground reaction force at that time
instant. The term F represents the forward dynamics, whereas
g represents the realized contact forces function. For a model
(or a contact mode, e.g., flight mode) that does not exert
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contact with the environment, λk = g = ∅. Therefore in (1),
f captures both the contact-free and constrained dynamics as
appropriate.

DDP [5] is used to solve an optimal control prob-
lem (OCP) of the form

J(U) = Φk(xN ) +

N∑
k=0

ℓk(xk,uk,λk) (2)

where J(U) represents the total cost incurred when starting
at some initial state, x0 and applying a control sequence U =
[u1, , ...,uN ]. The term, ℓk is the running cost that measures
the cost of taking some control uk at the intermediate state
xk. The term Φk is the terminal cost. To obtain an optimal
trajectory, (2) is minimized such that

min
U

J(U) (3)

subject to xk+1 = f(xk,uk) (4)
Other Constraints . (5)

In solving (3), DDP/iLQR seeks the optimal control tape
U⋆

0(x0) = argmin
U0

J(U0), where the superscript ⋆ implies

an optimal quantity. Rather than optimizing over the entire
control tape, DDP/iLQR solves (3) by optimizing a control
policy at each time point. This process recursively provides
an approximation of the value function

Vk(xk) = min
uk

[
ℓk(xk,uk, g(xk,uk)) + Vk+1(f(xk,uk))︸ ︷︷ ︸

Qk(xk,uk)

]

where VN (xN ) = Φ(xN ) , (6)

where the function, Qk(xk,uk), captures the cost to go when
starting in state xk at time k, taking action uk, and then
acting optimally thereafter. Consider the differential change
to Qk in (6) around a nominal state-control pair x̄k and ūk

with

δQk(δxk, δuk) = Qk(x̄k + δxk, ūk + δuk)−Qk(x̄k, ūk) .

The second-order approximation of the Q function gives

Qx = ℓx + f⊤x V ′
x (7a)

Qu = ℓu + f⊤u V ′
x (7b)

Qxx = ℓxx + f⊤x V ′
xxfx + V ′

x · fxx (7c)

Quu = ℓuu + f⊤u V ′
xxfu + V ′

x · fuu (7d)

Qux = ℓux + f⊤u V ′
xxfx + V ′

x · fux . (7e)

where the prime in (7) denotes the next time step, i.e., V ′
xx =

Vxx(k+1) whereas the subscripts indicate partial derivatives.
The operation · denotes a contraction with a tensor, e.g.,
V ′
x · fxx denotes the contraction of the tensor fxx with the

vector V ′
x to attain a matrix. When the · operation is ignored,

i.e., when second-order partials of the dynamics are ignored,
the resulting algorithm is known as iLQR [2].

Minimizing (6) over δuk attains the incremental control

δu⋆
k = −Q−1

uuQu −Q−1
uuQuxδxk . (8)

The resulting control from (8) is used to form the quadratic
approximation of the value function and this process is
repeated until a value function approximation is obtained
at time k = 0, constituting the backward sweep of DDP.
Following this backward sweep, a forward sweep proceeds
by simulating the system forward under the incremental
control policy (8) resulting in a new state-control trajectory.
We refer the interested reader to [5] or [2] for a detailed
derivation of the algorithm, and [10] for detailed derivation
when the hybrid dynamics are considered.

A. DDP vs iLQR
The main difference between iLQR and DDP is that

the vector-tensor contraction in (7) is ignored in iLQR.
This contraction contains second-order information about
the dynamics, and its inclusion in DDP confers quadratic
convergence for trajectories that are sufficiently close to
local optimality [2]. However, even for a strictly convex
running cost function, the inclusion of those terms may cause
the ensuing control cost landscape in (6) to have negative
curvature in some directions, which corresponds with Quu

being indefinite. This non-convexity necessitates a Hessian
shift (regularization) to render Quu positive definite (PD) [2],
[14], and this process incurs additional computational cost.
Following the regularization, the entire backward sweep
is repeated.Therefore, this regularization procedure, may at
times, increase the computation cost of the algorithm.

Despite this challenge for DDP, it is theorized that since
DDP reasons about the second-order partials of the dy-
namics, policies based upon it are likely to have better
disturbance rejection capabilities compared to iLQR. Con-
ventionally, the inclusion of second-order tensorial dynamics
terms in DDP is the most arduous operation. The authors’
previous work [12], [13] showed that this computation cost
could indeed be relaxed by considering the structure of
dynamics formulation in (7) such that the tensorial terms
are avoided. We briefly review the advancement needed to
allow the efficient inclusion of second-order partials in DDP.

III. TOWARD HARDWARE IMPLEMENTATION
A. Second-order Dynamics

Consider that if the dynamics function f(x,u) ∈ Rn,
its first-order partial ∇xf ∈ Rn×n, and its second-order
partials ∇2

xf ∈ Rn×n×n. In (7), this second-order partial
will be left multiplied with a fixed vector γ ≜ V ′

x. Both
the calculation of ∇2

xf and subsequent tensor-contraction
are computationally expensive and represent a bottleneck in
DDP.

The work [12] developed an efficient method to include
this second-order information without resorting to any tensor
operations. The key derivation therein exploited the structure
of the dynamics partials in (7), recognizing the second-order
partials are left multiplied with a fixed vector V ′

x. Reverse
mode derivative accumulation allowed efficiently calculating
the tensor contraction without ever computing the tensor.
That work demonstrated an order of magnitude reduction
in computational complexity when computing the second-
order dynamics partials as compared to conventional tensor

2



operations. In this letter, we rely on a similar methodology
to enable the inclusion of second-order information in DDP.

IV. RESULTS
We benchmark this work using a similar formulation as

in [15] where we optimize a trotting gait for the MIT Mini-
Cheetah [16] robot using the hybrid Kinodynamic (HKD)
model. The HKD model considers the dynamics of the float-
ing base using the single rigid body dynamics and models
leg kinematics during the swing phase. During stance, as
the endpoint (i.e., foot) of each leg should not change, only
the endpoint position is modeled. The running cost penalizes
deviations from a reference trajectory and further includes a
smoothing control term, as detailed above. The DDP/iLQR
formulation is implemented in a similar fashion as [10] where
we consider the hybrid nature of the trotting gait and dynamic
constraints such as friction cone constraints. We use a custom
DDP solver [10] running on a standard desktop computer.
Following an initial solve of DDP/iLQR, the MPC solver
plans at 50 Hz, with each solve using the previous solution
to warm-start the current solution. In the MPC setting, the
number of DDP/iLQR iterations is limited to 2 iterations.
The main control loop/state estimator run at 500 Hz. In this
work, Forward Euler integration is assumed with a time step
of 0.011s and a planning horizon of 0.32s.

To characterize the contributions of our approaches, we
simulate the robot trotting forward at forward at 0.5m/s and
from a static initial position. In a Monte Carlo fashion,
we apply an instantaneous velocity change to the robot
at the 5−second mark in the transverse plane. Essentially,
this velocity change acts as a disturbance to the robot. The
velocity change is sampled randomly from a pseudo-random
disturbance generated uniformly from −2 to 2 m/s. We
characterize the effects of this velocity change following the
disturbance injection. This characterization is done for both
DDP/iLQR.

A. Simulation
In Fig. 2 and Fig. 3, we show results for the trunk roll

and yaw angle, respectively, across the experiments. The plot
shows a band for the min/max angles at each time across the
trials. For both Fig. 2 and Fig. 3, we limit our discussion
to a sampling of lateral velocity changes within ±0.5 m/s.
The robot was also simulated without the instantaneous
velocity change, and the average response of the roll/yaw
angle over time is plotted as well to provide a baseline.
Since the simulation includes non-deterministic inter-process
communication between control components, the averaging
removes small discrepancies that may exist between different
runs. To eliminate the influence of outliers, we include a plot
that shows the 75-th percentile value of the data. We also
indicate on the plot, the maximum value over this subset of
data. This value can be considered as an indicator of the
robot’s worst achieved angle in 75% of cases. We note that
the jump from an initial static position to then accelerating
toward the desired speed introduces a transient to the robot
at the start and this behavior is also reflected in the extremal
bands.

For the roll angle (Fig. 2), the iLQR approach performed
seemingly better as compared to DDP approach. The iLQR
algorithm with the maximal angle (over 75% of the data) of
0.1825 rad achieved a lower maximum as compared to the
Traditional DDP angle of 0.2936 rad. However, this result is
reversed for the yaw angle (Fig. 3) whereby DDP approach
outperformed iLQR algorithm. For this metric, traditional
DDP had the lower maximal angle of 0.0519 rad, with
iLQR’s maximal angle being at 0.0659 rad.

Since an individual algorithm may choose to prioritize one
metric, such as yaw, over another, we consider the rollout
cost (Fig. 4) of the MPC policy as another relevant metric.
This metric reflects the sum of all minimized costs, including
terminal costs, after each MPC update. In that sense, this
figure captures the quality of each MPC solution across
all disturbances and simulation instances. As shown, DDP
attains a lower cost rollout as compared to iLQR. Further,
the iLQR approach had a bigger spread in the rollout cost
achieved as compared to DDP. This result indicates that
DDP methods more quickly reattained the local optimality
as compared to iLQR.

To characterize push recovery capabilities from another
perspective, we consider the maximal velocity change that
either method withstood at least once within the Monte-
Carlo simulations. DDP was about to withstand a bigger
velocity magnitude change of |1.028|m/s velocity change
whereas iLQR was able to withstand a velocity magnitude
of |0.7| m/s. We take care to note that these results do not,
in general, mean that DDP will, in all instances, withstand
bigger disturbances as compared to iLQR. Rather, when the
nominal trajectory is close to an optimal trajectory or when
the injected disturbance does not substantially change the
control landscape to warrant a complete re-solve, DDP will
more quickly converge to the optimal trajectory. The results
in this paper may only be seen in that context and not through
the lens of global optimality guarantees.

In Fig. 5, we show the average time to compute the
forward pass, backward pass, and the dynamics partials using
the different approaches. DDP, in general, took longer than
iLQR. This is due to the fact that DDP includes the calcu-
lation of the second-order partials and, in certain instances,
the regularization (in the backward pass) procedures incur
additional timing costs. From Fig. 5, it is shown that the extra
compute times in DDP is incurred mostly in the backward
pass, i.e., regularization procedure, and minorly from the
calculation of the dynamics partials.

B. Hardware
We perform similar tests as above on the MIT Mini-

Cheetah robotic hardware. In Fig. 1, we show screenshots
of the MIT Mini-Cheetah trotting on a treadmill. Further,
in Fig. 6, we show the roll tracking of the robot using
iLQR/DDP using both regularization methods. There is no
discernible difference in the tracking control between the
methods. Further, in Table I, we show the average policy lag
for the robot wherein similar results as before are attained
(see Fig. 5). Policy lag refers to the delay between the time a
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Fig. 1. (a) Simulation of the MIT Mini Cheetah in simulation. The blue arrow indicates the application of an instantaneous velocity change in the y
direction (b) V̇ideo splice of the MIT Mini-Cheetah trotting on a treadmill.

Fig. 2. Roll characterization in a Monte-Carlo simulation

Fig. 3. Yaw Characterization in a Monte-Carlo simulation

policy decision is made and the time it is implemented, i.e.,
the time that the robot is using a stale policy awaiting a new
policy. The DDP approach took slightly more time but the
net difference in comparison with iLQR is no more than a
few milliseconds (ms). Overall, the policy lags indicated in
Table I was still fast enough to run on hardware platforms.

V. DISCUSSION
We, firstly, note that this is the first time in literature

that full second-order DDP has been shown to work in an
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Fig. 4. Average Rollout cost over numerous instances

TABLE I
POLICY LAG (MS)

DDP iLQR
Mean (ms) Std. Dev. (ms) Mean (ms) Std. Dev. (ms)

11.39 5.84 9.7 5.83

Fig. 5. Average time to compute forward, backward passes and time to
calculate the partials for DDP/iLQR.

Fig. 6. Roll tracking results on the MIT Mini-Cheetah

MPC fashion on hardware owing to the recent technical
contributions outlined herein. This advancement has previ-
ously not been possible since the inclusion of second-order
information often requires expensive dynamic calculations.
The advantages of full second-order DDP outlined here
would allow for DDP to be deployed in environments that
inadvertently introduce disturbances to the robot, such as
allowing legged robots to walk in novel terrains. This work
shows that DDP can be used to attain a lower cost at about
the same compute time as iLQR even when running in MPC.

Finally, we note that in our analysis, we stated that DDP
handled bigger velocity changes as compared to iLQR. We
take care to note that these results do not, in general, mean
that DDP will, in all instances, withstand bigger disturbances
as compared to iLQR. The improved convergence properties
of DDP over iLQR only hold locally around an optimal
trajectory. As a result, any disturbance that substantially
changes the optimal trajectory will require many iterations to
find an optimal trajectory, wherein the comparative benefits
of DDP over iLQR only hold in final iterations. As a result, it
is difficult to conclusively say whether iLQR or DDP would
perform better in these more extreme cases.
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