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ABSTRACT

Identifying the structure of a partially observed causal system is essential to various
scientific fields. Recent advances have focused on constraint-based causal discovery
to solve this problem, and yet in practice these methods often face challenges
related to multiple testing and error propagation. These issues could be mitigated
by a score-based method and thus it has raised great attention whether there
exists a score-based greedy search method that can handle the partially observed
scenario. In this work, we propose the first score-based greedy search method
for the identification of structure involving latent variables with identifiability
guarantees. Specifically, we propose Generalized N Factor Model and establish the
global consistency: the true structure including latent variables can be identified up
to the Markov equivalence class by using score. We then design Latent variable
Greedy Equivalence Search (LGES), a greedy search algorithm for this class of
model with well-defined operators, which search very efficiently over the graph
space to find the optimal structure. Our experiments on both synthetic and real-life
data validate the effectiveness of our method (code will be publicly available).

1 INTRODUCTION AND RELATED WORK

Causal discovery aims at identifying the causal relations from observational data and it is crucial
to many scientific fields (Spirtes et al., 2001; Pearl, 2009). However, traditional methods such as
PC (Spirtes et al., 2001), GES (Chickering, 2002), and LiNGAM (Shimizu et al., 2006), rely on
the causal sufficiency assumption, i.e., the absence of latent variables, which hardly holds in many
real-world scenarios. Therefore, extensive efforts are being made for structure identification of a
partially observed causal model.

To handle this problem, the earliest attempts make use of conditional independence including Fast
Causal Inference (FCI) (Spirtes et al., 2001; Zhang, 2008) and its variants (Colombo et al., 2012;
Spirtes et al., 2013; Claassen et al., 2013; Akbari et al., 2021), as well as over-complete ICA-based
techniques (Hoyer et al., 2008; Salehkaleybar et al., 2020). Yet, these methods only focus on
identifiable relations among observed variables, and the results provide limited information about
structure among latent variables.

To this end, recent advance has been on discovery of entire structure including latent variables, by intro-
ducing additional parametric or graphical assumptions. This includes methods based on rank or tetrad
constraints linearity assumption (Silva et al., 2003; 2006; Silva & Scheines, 2005; Choi et al., 2011;
Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2024a), high-order moments (Shimizu
et al., 2009; Zhang et al., 2018; Cai et al., 2019; Salehkaleybar et al., 2020; Xie et al., 2020; Adams
et al., 2021; Dai et al., 2022; Améndola et al., 2023; Wang & Drton, 2023), matrix decomposi-
tion (Anandkumar et al., 2013), mixture oracles (Kivva et al., 2021), and multiple domains (Zeng
et al., 2021; Sturma et al., 2023). Despite of the asymptotic correctness, however, these methods gener-
ally fall into the category of constraint-based methods; they rely heavily on statistical test to iteratively
construct the structure and thus suffer from the problem of multiple-testing and error propogation
(Spirtes, 2010; Colombo et al., 2012), especially with small sample size and large number of variables.

On the other hand, score-based causal discovery may not suffer from these issues and thus is believed
to be more practially favorable (Nandy et al., 2018; Ramsey et al., 2017). One of the most classical
methods is Greedy Equivalence Search (GES) (Chickering, 2002), and yet it cannot handle the
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existence of latent variables. Later, various score-based methods that allow the existence of latent
variables have been proposed (Shpitser et al., 2012; Triantafillou & Tsamardinos, 2016; Nowzohour
et al., 2017; Bhattacharya et al., 2021a; Shahin & Chechik, 2020; Bernstein et al., 2020; Bellot &
van der Schaar, 2021; Claassen & Bucur, 2022), and yet they still focus only on relations among
observed variables, except the one by Zhang (2004) without identifiability and another with exact
search by Ng et al. (2024). As a consequence, considerable attention has been given to the following
problem: Is it possible to develop a score-based greedy search method that can efficiently recover
the entire underlying structure involving latent variables with an asymptotic correctness guarantee?

To address such a challenging problem, we are confronted with three fundamental questions: (i) What
is the core of structure identifiability by using likelihood scores? (ii) What graphical assumptions are
needed to uniquely recover the structure using score? (iii) How can we design an efficient algorithm
to search over the graph space to find the optimal structure? We provide our answers to these
questions respectively in Sections 3.1, 3.2 and 4 and our contributions can be summarized as follows.

• We characterize how likelihood score can be used for the structure identification of partially
observed linear causal models. Specifically, we show that the structure with the best likelihood
score and minimal dimension is algebraically equivalent to the ground truth (in Theorem 1).

• We propose Generalized N Factor Model (in Definition 2), and accordingly establish the global
consistency of score for it - the whole underlying structure can be uniquely recovered up to MEC
by using score (in Theorem 2 and Corollary 1). This graphical condition is rather mild and takes
the prevalent one factor model (Silva et al., 2003) as a special case.

• We develop Latent variable Greedy Equivalence Search (LGES), an efficient causal discovery
algorithm for identifying structure involving latent variables. To our best knowledge, this is the
first score-based greedy search with identifiability guarantee in the partially observed scenario
(in Theorem 3). Our extensive experiments on both synthetic and real-world dataset empirically
validate its effectiveness.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We aim to identify the structure of a partially observed linear causal model, defined as follows.
Definition 1 (Partially Observed Linear Causal Models). Let G := (VG ,EG) be a Directed Acyclic
Graph (DAG) and variables follow a linear SEM as VG = FTVG + ϵVG , where VG = LG ∪XG =

{Vi}m+n
1 = {Li}m1 ∪ {Xi}n1 contains m latent variables and n observed variables, F = (fj,i) is the

weighted adjacency matrix and fj,i ̸= 0 if and only if Vj is a parent of Vi in G, and ϵVi
represents

the Gaussian noise term of Vi.

Our goal is to identify the underlying structure G over all the variables LG∪XG , given i.i.d. samples of
observed variables XG only. Note that the name/order of latent variables can never be identified so we
focus on structure identification up to permutation of latent variables. Without loss of generality, we
can assume that all variables have zero mean, and thus the observational data can also be summarized
as the empirical covariance matrix over observed variables, i.e., Σ̂XG . We use V and V, to denote a
random variable and a set of variables, respectively. We drop the subscript G in LG and XG when the
context is clear. For a matrix M , we define its support set as supp(M) := {(i, j) : Mi,j ̸= 0}. G1
and G2 belong to the same Markov Equivalence Class (MEC) iff they share the same skeleton and set
of v-structures (over the entire graph including latent variables).
2.2 LIKELIHOOD SCORE

Despite the asymptotic correctness of constraint-based causal discovery approaches, in practice these
methods often suffer from the problem of multi-testing and error propagation (Spirtes, 2010; Colombo
et al., 2012). In the finite sample case, they rely heavily on statistical tests to iteratively build the
result, while the power of each test might be limited especially when the sample size is small and
number of variables is large. On the contrary, score-based causal discovery methods may not suffer
from these problems and could be practically more favorable (Nandy et al., 2018; Ramsey et al.,
2017), especially when the sample size is small (also empirically validated in Section 5.2).

To this end, in this work we aim at structure identification based on the use of likelihood scores in the
partially observed scenario. In contrast to the fully observed case, in the presence of latent variables,
the formulation of likelihood is not trivial, and we provide it in what follows.
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Proposition 1 (Parameterization of Population Covariance (Dong et al., 2024b)). Consider the model
defined in Def. 1, and let F=

(
FLL FLX
FXL FXX

)
, and Ω=

(
ΩϵL

0

0 ΩϵX

)
, where Ω is the diagonal covariance

matrix of ϵVG . Let M = ((I − FLL − FLX(I − FXX)−1FXL))
−1, N = (((I − FLL)F

−1
XL(I −

FXX)− FLX))−1, and ΣL = MTΩϵLM +NTΩϵXN . Then the population covariance of X can
be formulated as

ΣX = (I − FXX)−T
(
FT
LXΣLFLX +ΩϵXNFLX +ΩϵX + FT

LXNTΩϵX

)
(I − FXX)−1. (1)

By making use of Proposition 1 to parametrize ΣX, the maximum log-likelihood of a given structure
G and observation Σ̂X is as follows.

scoreML(G, Σ̂X) = max
(F,Ω): supp(F )⊆supp(FG),Ω∈diag(Rn+m

>0 )
L, (2)

L = −(N/2)(tr((ΣX)−1Σ̂X) + log detΣX). (3)

We next show the theoretical foundation of using maximum likelihood score for the structure
identification of partially observed linear causal models.

3 SCORE-BASED IDENTIFIABILITY THEORY FOR PARTIALLY OBSERVED
CAUSAL MODELS

3.1 ALGEBRAIC EQUIVALENCE BY SCORE AND DIMENSION

Consider a model in Def. 1. Its structure imposes various types of equality (i.e., algebraic) con-
straints on the covariance matrices (over observed variables), no matter how its parameters (F,Ω)
may change. The imposed equality constraints are properties of the observational distribution and
contain crucial graphical information about the underlying structure G. Such constraints include
conditional independence (i.e., vanishing partial correlation) constraints (Spirtes et al., 2001), rank
constraints (i.e., vanishing determinant) (Spirtes et al., 2001; Sullivant et al., 2010), and possibly
Verma constraints (Verma & Pearl, 1991). An overview can be found in Drton (2018).

Let H(G) be the set of equality constraints imposed by structure G on the generated covariance
matrices over observed variables (detailed in Definition 6), Gn be the set of all DAG structures
that has n measured variables, and Hn :=

⋃
G∈Gn B(G), where B(G) consists of the canonical and

minimal set of equality constraints with respect to reduced Gröbner basis (detailed in Definition 7).
We say two structures G1 and G2 are algebraic equivalent, if they lead to the same equality constraints
(on the observational distribution), i.e., H(G1) = H(G2) (van Ommen & Mooij, 2017). Similar to
the classical CI faithfulness assumption in causal discovery (Spirtes et al., 2001), to better relate the
constraints to the underlying structure, we assume the generalized faithfulness as follows.
Assumption 1 (Generalized faithfulness (Ghassami et al., 2020)). A distribution ΣX is said to be
generalized faithful to DAG G ∈ Gn if the entries of ΣX satisfy an equality constraint κ ∈ Hn only if
κ ∈ H(G).
In Assumption 1, it suffices to use ΣX to denote the distribution, as X are jointly gaussian and
mean do not contain any information about structure (Ghassami et al., 2020). Note that different
types of faithfulness assumptions have been adopted in causal discovery, e.g., CI faithfulness and
rank faithfulness (Spirtes et al., 2001; Ghassami et al., 2020; Huang et al., 2022; Dong et al.,
2024a) and Assumption 1 is the generalized version of them for linear causal models. Similar to CI
faithfulness, generalized faithfulness is justified by that the set of parameters that result in violation
has Lebesgue measure zero (Ghassami et al., 2020) and it has been widely adopted in the field
(Ng et al., 2020; Bhattacharya et al., 2021b; Sethuraman et al., 2023). On the other hand, without
faithfulness, graphical information extracted from observations cannot be trusted, which makes
structure identification extremely hard, if not impossible.

Furthermore, let dim(G) denote the model dimension or degrees of freedom of DAG G for the
marginal over the observed variables (which can also be viewed as the number of free parameters of
the set of distribution it can generate). In the absence of latent variables, the degrees of freedom are
nothing but the sum of number of edges and number measured variables. However, in the presence
of latent variables, it does not necessarily hold (Geiger et al., 1996; 2001). Without any specific
graphical assumption, capturing the dimension could be highly non-trivial; e.g., the analysis of the
degrees of freedom for sparse factor analysis, where latent variables are independent, already involves
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(a) Ground truth G∗. (b) Ĝ1 by Theorem 1. (c) Ĝ2 by Theorem 1.
Figure 1: Without further graphical assumption, the algebraic equivalence class is very large and not
very informative: suppose the ground truth G∗ in (a), by Theorem 1 we may arrive at either Ĝ1 (b) or
Ĝ2 (c), both are algebraically equivalent to G∗.

complex techniques from algebraic statistics (Drton et al., 2023). We note that the focus of this work
is not to characterize the dimension of each structure. In contrast, we only need to know the basic
idea of dimension here and later we will show that a greedy search does not necessarily rely on
knowing the exact dimension of a graph.

Now we are ready to present the key result of this subsection, achieving algebraic equivalence by
making use of score, captured in the following theorem.

Theorem 1 (Algebraic Equivalence by Score and Dimension). Suppose a model follows Definition 1
with G∗ and distribution Σ∗

X satisfies the generalized faithfulness assumption. Given observation Σ̂X

and let G∗ = argmaxG∈Gn scoreML(G, Σ̂X). If Ĝ ∈ G∗ and Ĝ ∈ argminG∈G∗ dim(G), then Ĝ and
G∗ are algebraic equivalent, i.e., H(Ĝ) = H(G∗), in the large sample limit.

Remark 1. Theorem 1 (partially inspired by Ng et al. (2024)) says that, if Ĝ can generate the
observation Σ̂X, and Ĝ has the smallest dimension among those graphs that can generate the
observation, then Ĝ and G∗ are algebraically equivalent. In other words, we can enumerate all the
graphs in the assumed graph space, and utilize Theorem 1 to find a graph Ĝ that is algebraically
equivalent to the ground truth G∗. In the absence of latent variables, if Ĝ and G∗ are algebraically
equivalent, Ĝ and G∗ belong to the same MEC, and thus we can make use of score to identify the
structure up to MEC. In this sense, Theorem 1 takes the theoretical guarantee of score, e.g., in GES
(Chickering, 2002) as a special case and generalizes it to the partially observed scenario.

Algebraic equivalence is a general sense of equivalence: if two graphs are algebraically equivalent,
then we cannot differentiate them purely by observational data without any further assumption. The
reason lies in that, in the linear gaussian case, all the information from the distribution are just
equality and inequality constraints, and generally inequality constraints cannot be used; we have to
assume inequality-constraint-faithfulness to utilize inequality-constraints, but the set of parameters
that results in violation of such faithfulness is not of Lebesgue measure zero.

At this point, we have characterized how likelihood score can be used for structure identification
in the partially observed scenario. Yet, there still exist two main challenges. First, in the partially
observed scenario, without any graphical assumption, relating Ĝ to G∗ can be very challenging, as
the algebraic equivalence class is very large. For example, suppose the ground truth graph is G∗ in
Figure 1(a). Even though by making use of all the equality constraints, we still just arrive at some
elements of the algebraic equivalence class of G∗, e.g., Ĝ1 or Ĝ2 in Figure 1(b) and (c). In fact,
without any further graphical assumption, the cardinality of the class is infinity, as we can always add
one more latent variable to the structure without changing any constraints. Therefore, a general recipe
may involve identifying suitable structural assumptions that allow algebraic equivalence to translate
into more fine-grained notions of model equivalence, such as Markov equivalence, as in Section 3.2.

Second, Theorem 1 only implies a search procedure that requires the exact enumeration of all possible
graphs in the assumed graph space. Yet, such an exact search is impractical due to the computational
overhead. To be specific, the number of possible graphs grows super-exponentially with the increase
of the number of observed variables; e.g., with 10 observed variables, the number of all possible
graphs that satisfy Definition 2 is more than 3× 108 and this number grows to 2× 1013 when the
number of observed variables increase only by 1. Therefore, it is crucial to design an efficient way to
search over the graph space for the identification of the optimal structure, as in Section 4.
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3.2 GRAPHICAL ASSUMPTION AND GLOBAL CONSISTENCY

In this section, we propose generalized N factor model, a graphical condition under which algebraic
equivalence can be translated into Markov equivalence. Its definition with examples is as follows.

Definition 2 (Generalized N Factor Model). DAG G satisfies the definition of generalized N factor
model if observed variables are the effects of latent variables and there exists a partition of all latent
variables LG such that for each element in the partition, Lp, (i) there exist at least |Lp| ∗ 2 observed
variables Xp such that for all X ∈ Xp,PaG(X) = Lp, (ii) if V causes or is caused by a variable in
Lp, then V also causes or is caused by all variables in Lp, respectively, and (iii) elements in Lp are
mutually nonadjacent.

For brevity, in the rest of the paper, we use GGNF to denote the set of all graphs that satisfy the
definition of generalized N factor model. For a better understanding of the generalized N factor
model, we provide an example to elaborate each requirement in Definition 2.

Figure 2: An illustrative example of the
graph that satisfies generalized N factor
model in Definition 2.

Fig. 2 shows an illustrative graph that satisfies Def. 2.
Specifically, all the observed variables in Figure 2 are
leaf nodes and caused by only latent variables. Fur-
ther, all latent variables can be partitioned into groups
{L1}, {L2}, {L3}, {L4, L5}, {L6, L7} and thus the rest re-
quirements (i), (ii), (iii) are also satisfied. For example, for
Lp = {L6, L7}, there exist Xp = {X15,X16,X17,X18}
such that their parents are {L6, L7} and |Xp| ≥ |Lp| × 2.
These groups have the properties that the relation within
a group can not be identified, and the relation between
groups applies to every element in the group. Thus, re-
quirements in Def. 2 are satisfied in Figure 2.

Notably, the graphical condition required for generalized N factor model is rather weak. It takes the
prevalent one factor model assumption (Silva et al., 2003) (defined in Definition 8 and illustrated in
Section C.2 for a comparison) as a special case, and further allows latent variables to share observed
variables as children. In GNFM, we want to make very weak assumption about how latent variables
are related - they can be partitioned into groups, and the relation among each group of latent variables
can be very flexible. At this premise, the key requirement of 2|Lp| observed children of Lp in GFNM
is minimal. On the other hand, if we make a stronger assumption about how latent variables are
related to each others than what has been made in GNF, the requirement of having at least twice
number of observed children can be relaxed.

The reason why GNFM chooses this specific trade-off point is that we believe it is more practically
meaningful. In real-life problems, the way latent variables are related could be complicated and
we do not want to rule out the possibility of certain structural patterns in advance. At the same time,
if the number of observed children is insufficient, we can still gather more relevant observations
or measurements of the underlying system.

Next, we show in Theorem 2 that for GNFM, the notion of algebraic equivalence leads to Markov
equivalence, and thus by using score we can identify the structure up to MEC, as in Corollary 1.

Theorem 2 (Identifiability of Generalized N Factor Models by Equality Constraint up to MEC). For
G1,G2 ∈ GGNF, if they are algebraically equivalent, i.e., H(G1) = H(G2), then G1 and G2 belong to
the same MEC (same skeleton and v-structures over all variables).

Corollary 1 (Global Consistency by Score for Generalized N Factor Models). Suppose a model
follows Definition 1 with G∗ ∈ GGNF and distribution Σ∗

X satisfies Assumption 1. Given observation
Σ̂X and let G∗ = argmaxG∈GGNF scoreML(G, Σ̂X). If Ĝ ∈ G∗ and Ĝ ∈ argminG∈G∗ dim(G), then
Ĝ and G∗ are Markov equivalent in the large sample limit.

Corollary 1 establishs the global consistency of using likelihood score for structure identification.
Yet, it still requires impractical exact enumeration. Furthermore, it is also unclear how to calculate
the exact dimension for each graph with latent variables. Fortunately, an efficient greedy search can
be designed to identify the optimal causal structure without capturing the dimension, as we will show
in what follows.
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4 SCORE-BASED GREEDY SEARCH FOR PARTIALLY OBSERVED LINEAR
CAUSAL MODELS

We begin with the general design for greedy search in Section 4.1, specify the design in LGES for
generalized N factor model in Section 4.2, and establish the asymptotic correctness in Section 4.3.

4.1 GENERAL DESIGN FOR GREEDY SEARCH

(a) Sinit by Def. 3, where latent variables are
mutually fully connected by undirected edges
and all latent cause all observed variables.

(b) Sphase1, the output of Alg. 1, where the
number of latent and the edges from latent to
observed variables are determined.

(c) Sfinal, the output of Alg. 2, represents the
MEC of the ground truth G∗ (here the MEC
only contains G∗ so Sfinal is the same as G∗).

Figure 3: An illustration of the whole
process of LGES, where (a) Sinit is the
initial state of Algorithm 1, (b) Sphase1 is
the output of Algorithm 1, and (c) Sfinal
is the final output of Algorithm 2.

Our overall objective is to find a graph Ĝ such that it can
generate Σ̂X equally well as the ground truth G∗, while
having a dimension that is as small as possible (as in
Theorem 1 and Corollary 1). To efficiently search over
the graph space, we follow the traditional wisdom GES
Chickering (2002) and define three key elements for a
greedy search.

• A set of states.
• A representation scheme for the states.
• A set of operators.

A state represents a solution to the search problem and we
use S to represent state and S to represent a set of states.
The representation scheme defines an efficient way to rep-
resent the states. As the structure can only be identified up
to MEC, it is natural to use Completed Partially Directed
Graph (CPDAG) to represent states and we also use S to
represent a CPDAG and S(G) to transform a DAG G into
a CPDAG. Finally, the set of operators is to transform one
state to another state, in order to traverse the whole graph
space systematically and efficiently.

For any two graphs that belong to the same state (i.e., the
same MEC), they share the same dimension and maxi-
mum likelihood score (Ng et al., 2024). Thus, we also
define scoreML for a CPDAG S, as scoreML(S, Σ̂X) =

scoreML(G, Σ̂X), for all G ∈ MEC(S).
Furthermore, the initial state Sinit is often designed as a
state that is a super graph of the ground truth, and Sinit can
generate the observation equally well as the ground truth.
For example, the phase 1 of GES is to find such an initial
state and thus the phase 2 of GES can focus on the delete
operation. Next, we introduce the detailed design of our
novel method, LGES.

4.2 ALGORITHM: LATENT VARIABLE GREEDY EQUIVALENCE SEARCH (LGES)

In this section we discuss the detailed design for Latent variable Greedy Equivalence Search (LGES)
for structure identification of generalized N factor models. We begin with the initial state Sinit.
Definition 3 (Initial State for Generalized N Factor Model). Given X, Sinit(X) outputs a CPDAG
such that it contains observed variables X and ⌊ |X|

2 ⌋ latent variables, all latent variables are fully
connected with undirected edge, and all latent variables cause all observed variables.

In Definition 3 it implicitly requires that the number of observed variables is at least twice the number
of latent ones. We note that this latent-to-observed ratio is a property of the graphical assumption of
GNFM in Definition 2, and thus invariant to the design of a method. An example of Sinit(X) can be
found in Figure 3, where (c) is the ground truth G∗ and (a) is the initial state Sinit(X) by Definition 3.
The reason why we design Sinit as such lies in the properties of Sinit formalized in Lemma 1.
Lemma 1 (Properties of Initial State). Suppose a model follows Definition 1 with G∗ ∈ GGNF and we
are given observation Σ̂X. Then Sinit is a supergraph of S(G∗) and Sinit can generate the observed
distribution, i.e., scoreML(Sinit, Σ̂X) = maxG∈GGNF scoreML(G, Σ̂X) in the large sample limit.
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The core spirit of LGES is that we begin with a state that can generate the observation. Each time we
delete some edges and see whether the new CPDAG can still generate the observation. If so, we keep
it as the new state; otherwise we try a different deletion. As an edge deletion leads to smaller or equal
dimension, the process is in essence finding the CPDAG with smallest dimension while keeping the
ability of generating the observation. Next we discuss the operators that connect between states.

Definition 4 (Delete Operator OLX). OLX(S,L,X) returns a CPDAG that is the same as S except
that all edges from L to X are deleted.

Definition 5 (Delete Operator OLL). OLL(S,L1,L2,H) returns a CPDAG that is the same as S
except that (i) all edges between L1 and L2 are deleted, (ii) for each H ∈ H, directing the previously
undirected edge between L1 and H as L1 → H and directing the previously undirected edge between
L2 and H as L2 → H.

OLX is designed to delete edges from latent variables to observed variables while OLL (partially
inspired by Chickering (2002)) is designed to delete relations among two groups of latent variables L1

and L2. Our LGES is built upon these two operators and includes two phases. Phase 1 (summarized
in Alg 1). is to recover the structure between latent variables and observed variables. Roughly
speaking, each time the algorithm chooses some latent variables and some observed variables from
the current state, deletes all the edges between them to get a neighbouring state, and check whether
this neighbouring state can generate the observation Σ̂X (up to a certain tolerance level δ). If so, this
neighboring state is taken as the new state; otherwise the algorithm looks for a new combination for
edge deletion. An example of the output of phase 1 is in Fig 3 (b), where the structure between latent
and observed are expected to be the same as the ground truth (also formalized in Lemma 2).

Phase 2 (summarized in Alg 2) of LGES, which is partially inspired by Chickering (2002), aims to
identify the structure among latent variables. Roughly, each time the algorithm chooses two groups
of latent variables, deletes all the edges between them to get a neighbouring state; if this state can
generate the observation (up to δ), then takes it as the new state; otherwise looks for another two
groups. δ controls the sparsity level in the finite sample case: with bigger δ, deletions are more likely
to be kept (ablation study in Section 5.2). An illustration of the output of phase 2 is in Fig 3 (c),
which is expected to be the same as the ground truth (which is formalized in Theorem 3).

As implied by Theorem 1, our objective is to search over the graph space to find a graph Ĝ such that
(i) Ĝ has the best likelihood and (ii) at the premise of ensuring (i), the dimension of Ĝ should be as
small as possible. Below are the key designs of LGES to ensure this goal.

• We start with a graph that is guaranteed to be a super graph of the ground truth.
• At each step, we try to delete some edges. Only when the likelihood after the deletion is still the

best do we keep the deletion. This guarantees that (i) always holds.
• An edge deletion operation will either keep the dimension the same or decrease the dimension.

Thus, throughout our search process, the dimension will decrease monotonically.
• The design of deletion operators ensure at each step, the current graph is always a super-graph of

the ground truth, through out the whole process. This is because if the post-deletion graph is not a
super-graph of the ground truth, additional equality constraints will be introduced such that the
post-deletion graph cannot reach the best likelihood and thus this deletion will not be kept.

• By the end of the process, LGES will arrive at the ground truth. This can be proved by contradiction
in a rough sense as follows (detailed in proof). Suppose the final state G′ is not optimal. As it must
be a super graph of G∗, there must exist a sequence of deletion to transform G′ into G∗. Suppose
the first deletion in the sequence leads to G′′. As G′′ is also a super graph of G∗, the score of G′′ is
also the best, and thus the algorithm would not terminate at G′, yielding a contradiction.

4.3 ASYMPTOTIC CORRECTNESS OF LGES

Here we establish the asymptotic correctness of LGES. Specifically, if the ground truth satisfies the
generalized N factor model, LGES can asymptotically produce the correct Markov equivalence class
over both observed and latent variables, as in Lemma 2 and Theorem 3 (all proofs in Appendix).

Lemma 2 (Correctness of Phase 1 of LGES). Suppose a model follows Definition 1 with G∗ ∈ GGNF

and we are given observation Σ̂X. In the large sample limit the output Sphase1 of Algorithm 1 is a
CPDAG such that the number of latent variables in Sphase1 is the same as that of G∗ and the edges
from X to L in Sphase1 is the same as that of G∗, up to permutation of latent variables.

7
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Table 1: F1 score and SHD (mean(standard error)) of each compared method (LGES, FOFC, GIN,
and RLCD) across different sample sizes. ↑ means the bigger the better while ↓ the smaller the better.

F1 score for skeleton ↑ SHD for MEC ↓
Sample size LGES FOFC GIN RLCD LGES FOFC GIN RLCD

100 0.60(0.01) 0.55(0.02) 0.27(0.01) 0.33(0.01) 20.87(0.72) 20.8(0.34) 26.76(0.36) 35.84(3.01)
200 0.72(0.02) 0.56 (0.02) 0.36(0.01) 0.49(0.02) 14.03(0.85) 18.0(0.29) 24.14(0.45) 28.58(2.59)
500 0.79(0.02) 0.58 (0.02) 0.42(0.01) 0.69(0.02) 10.02(0.69) 16.5 (0.31) 22.46(0.39) 14.68(0.96)

1000 0.82(0.02) 0.61 (0.03) 0.47(0.01) 0.76 (0.02) 8.80(0.70) 16.1(0.29) 20.88(0.54) 11.24(0.86)

Table 2: Under model misspecification, F1 score and SHD (mean(standard error)) of each compared
method across different sample sizes. ↑ means the bigger the better while ↓ the smaller the better.

Non-gaussian F1 score for skeleton ↑ SHD for MEC ↓
Sample size LGES FOFC GIN RLCD LGES FOFC GIN RLCD

500 0.78(0.02) 0.40 (0.03) 0.42(0.01) 0.68(0.01) 10.72(0.93) 17.66 (0.49) 22.46(0.39) 14.81(0.63)
1000 0.79(0.02) 0.39 (0.03) 0.47(0.01) 0.75 (0.02) 10.12(0.82) 17.82(0.44) 20.88(0.54) 12.45(0.77)

Non-linear F1 score for skeleton ↑ SHD for MEC ↓
Sample size LGES FOFC GIN RLCD LGES FOFC GIN RLCD

500 0.68(0.02) 0.26 (0.04) 0.50(0.02) 0.60(0.02) 16.6(1.24) 19.98(0.46) 23.38(0.64) 19.89(1.08)
1000 0.71(0.02) 0.23 (0.04) 0.52(0.02) 0.65(0.01) 15.0(0.95) 20.10(0.54) 23.32(0.73) 17.56(0.77)

Theorem 3 (Correctness of LGES). Suppose a model follows Definition 1 with G∗ ∈ GGNF and
we are given observation Σ̂X. In the large sample limit the output Sfinal of Algorithms 1 and 2 is a
CPDAG that represent the MEC of G∗, up to permutation of latent variables.

5 EXPERIMENTS
5.1 SYNTHETIC SETTING AND EVALUATION METRIC

In our synthetic experiments, we validate LGES by comparing it with multiple latent variable causal
discovery methods, including FOFC (Kummerfeld & Ramsey, 2016), GIN (Xie et al., 2020), and
RLCD (Dong et al., 2024a). The ground truth model follows Def 1 where each edge coefficient
fji is randomly sampled uniformly from [−5, 5] and the variance for each noise term uniformly from
[0.1, 1]. As GIN assumes non-gaussianity, we use uniform distribution for the noise when testing
GIN. We consider 20 randomly generated structures that satisfy Def 2 as the ground truth structure
(examples in Fig 8 in Appendix). On average, each ground truth graph contains 20 variables and 5 of
them are latent. We employ F1 score over the skeleton and SHD over the MEC as evaluation metrics,
and consider four different sample sizes: 100, 200, 500, 1000. We adopt 10 random seeds to generate
the ground truth causal model and observational data, and report the mean and standard error.

5.2 PERFORMANCE ON SYNTHETIC DATA AND ABLATION STUDY ON δ

The F1 scores of skeletons and SHDs of MECs are reported in Table 1. As shown, the proposed
LGES achieves the best F1 score (bigger better) and SHD (smaller better) performance compared
to all baselines. For example, with sample size 1k, LGES achieves a F1 score of 0.82 and a SHD
of 8.8, where the runner-up achieves 0.76 and 11.24 respectively. Another key observation is that
our score-based method can still work well with a very small sample size, while constraint-based
methods may not. E.g., with only 100 datapoints, LGES still achieves a F1 score of 0.60, while
constraint-based method GIN (CI-test-based) and RLCD (rank-test-based) only achieves 0.27
and 0.33 respectively. The reason why constraint-based methods do not work well with a small
sample size may lie in that with small sample size the power of the test is limited and and the null
distribution may be very different from the asymptotic case, both of which aggravate the issue of
error propogation. On the contrary, our score-based method may not suffer from these issues.

Similar to the hyper-parameter λ in GES, in practice we can tune the value of δ to control the sparsity
level of the result (the bigger δ the sparser). In our experiments, δ is set as δ = 0.25× log(N)

N , where
N is the sample size. This design follows the spirit of BIC score in GES such that δ → 0 when
N →∞. The ablation study to analyze the sensitivity to δ can be found in Table 4, where LGES is not
very sensitive to small change of δ. A more detailed discussion about δ can be found in Section C.4.
5.3 MISSPECIFICATION BEHAVIOR

We investigate the performance of LGES under model misspecification: violation of normality and
linearity. For the setting of violation of normality, we use uniform noise terms for the underlying
model, and report the result in Table 2. Specifically, when the normality is violated, LGES still
performs the best compared to baselines and the result is almost the same as that of the gaussian
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Table 3: Model fitness scores on eal-life datasets
to validate LGES (↑ the bigger the better).

Scenarios Model Fitness Scores
Dataset Structures RMSEA ↓ CFI ↑ TLI↑
Big Five Figure 5 by LGES 0.054 0.874 0.855

By Goldberg (1993) 0.072 0.767 0.746

T Burnout Figure 6 by LGES 0.067 0.876 0.865
By Byrne (1994) 0.096 0.753 0.727
By Byrne (2010) 0.072 0.861 0.847

M-tasking Figure 4 by LGES 0.068 0.977 0.965
By Himi et al. (2019b) 0.087 0.962 0.943

Figure 4: Causal structure (CPDAG) recovered by
LGES on Multi-tasking behavior dataset.

Figure 5: Causal structure (CPDAG) recovered by
LGES on Big Five personality dataset.

Figure 6: Causal structure (CPDAG) recovered by
LGES on Teacher burnout dataset.

case. For example, with 1k sample size, the F1 score of LGES under non-gaussianity is 0.79
while the counter part under the standard setting is 0.82. This is not very unexpected: the structure
identifiability by score is built upon the hard constraints imposed by structure on the observational
covariance matrix, which only relies on the linearity of the underlying causal model and does not
rely on gaussianity. As for violation of linearity, we employ leaky ReLU (Xu, 2015) to simulate
piecewise linear function, as Vi = LR(

∑
Vj∈Pa(Vi)

fjiVj + ϵVi), LR(x) = max(αx, x), where
α = 0.8. The result is in Table 2, which shows that LGES works reasonably well under certain
extent of non-linearity, and still surpasses all baselines. For example, with sample size 1k, LGES
still achieves 0.71 F1 score even under nonlinearity, while the runner-up achieves 0.65.

5.4 REAL-WORLD PERFORMANCE
We consider three real-life datasets. Big Five personality dataset (openpsychometrics.org),
which consists of 50 questions with 19,719 datapoints. There are five dimensions: Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism (O-C-E-A-N), and each dimension
with 10 questions (e.g., O1 is the first question for Openness). We use the first 5 questions for each
dimension and in total 25 variables. The structure by LGES is shown in Figure 5. Interestingly,
without any prior knowledge, the structure recovered by LGES is very aligned with psychology
study. To be specific, each item in our result is indeed caused by the supposed dimension (latent
variable). Further, we found that some items are caused not only by one latent variable. For example,
E3 (I feel comfortable around people) is caused by L4 (Extraversion), L5 (Agreeableness), and L6
(Neuroticism), which may shed new light on the existing factor-analysis-based psychometric study.

Teacher burnout dataset (Byrne, 2001). The term burnout refers to the inability to perform effectively
in one’s job due to job-related stress. The dataset includes 32 observed variables with 599 datapoints.
Multi-tasking behavior dataset (Himi et al., 2019a). To compare with the model proposed by Himi
et al. (2019a), we use 9 variables of it with all its 202 datapoints. The structures produced by LGES
for teacher burnout data and multi-tasking data are shown in Figures 4 and 6 respectively. Finally,
we use three prevalent goodness of fit statistics to validate the structure produced by LGES: RMSEA
(Steiger, 1980; 1990), CFI (Bentler, 1990), and TLI (Tucker & Lewis, 1973; Bentler & Bonett, 1980)
(detailed in Section C.3). We used these fit indices to compare the structure produced by our method
with the well-known hypothesized structures in existing psychological studies. The result is reported
in Table 3, where the structures by LGES achieve the best scores compared to all the structures
proposed in psychological research, shows that the structures by LGES explain the observational
data better than existing study, and validates the proposed method in real-life scenarios.

5.5 IMPLEMENTATION DETAILS, RUNTIME ANALYSIS, AND EXTENDABILITY
Please kindly refer to Section C.4, Section C.5, and Section C.6, respectively.

6 CONCLUSION
We characterize the relation between score and structure, propose Generalized N Factor Model with
consistency, and finally propose LGES, an asymptotically correct score-based greedy search method.
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Algorithm 1 Phase 1 of LGES

1: Input: Empirical covariance Σ̂X over X, tolerance δ
2: Output: CPDAG Sphase1
3: Let current state S = Sinit by Def. 3 with latent variables L, let k = 1, Xt = X, Ld = ∅, and P

be an empty list;
4: while k ≤ |Xt|

2 do
5: for each size k subset Li ⊆ Ld (in parallel) do
6: for each Xj ∈ Xt (in parallel) do
7: Sij = OLX(S,L \ Li, {Xj});
8: Calculate scoreML(Sij , Σ̂X);
9: Let scoreML(S, Σ̂X) = s;

10: for each i, j s.t., |scoreML(Sij , Σ̂X)− s| ≤ δ do
11: S = OLX(S,L \ Li, {Xj}) and Xt = Xt \ {Xj}
12: Let L′ be any size k subset of L \ Ld;
13: for each size k + 1 subset Xj ⊆ Xt (in parallel) do
14: Sj = OLX(S,L \ L′,Xj)

15: Calculate scoreML(Sj , Σ̂X);
16: Maintain a disjoint setX for elements in Xj , j ∈ {j : |scoreML(Sj , Σ̂X)−scoreML(S, Σ̂X)| ≤

δ};
17: for each X′ ∈ X do
18: Let L′ be any size k subset of L \ Ld;
19: S = OLX(S,L \ L′,X′);
20: Ld = Ld ∪ L′, Xt = Xt \X′, append L′ to P ;
21: k=k+1;
22: Remove L \ Ld from S and let Sphase1 = S;
23: return Sphase1, P (which records those latent variables that really exist for the use of Phase 2)

Algorithm 2 Phase 2 of LGES

1: Input: Empirical covariance Σ̂X over X, tolerance δ, the output Sphase1 and P of Algorithm 1
2: Output: CPDAG Sfinal
3: Let S = Sphase1;
4: while True do
5: for Li ∈ P (in parallel) do
6: for Lj ∈ P (in parallel) do
7: if Li − Lj or Li → Lj then
8: Let H = {L : L− Lj and (L− Li or L→ Li or L← Li)};
9: for each subset H′

k ⊆ H (in parallel) do
10: Sijk = OLL(S,Li,Lj ,H

′
k);

11: Calculate scoreML(Sijk, Σ̂X);
12: Let i∗, j∗, k∗ = argmax scoreML(Sijk, Σ̂X);
13: if |scoreML(Si∗j∗k∗ , Σ̂X)− scoreML(S, Σ̂X)| ≤ δ then S = Si∗j∗k∗ ; else Break;
14: for Li ∈ P do
15: Delete edges among Li in S;
16: Sfinal = S;
17: return Sfinal

A DETAILED DISCUSSION ABOUT RELATED WORK

In this section, we provide a more comprehensive review of related work based on those discussed
in Section 1, expanding on both latent variable causal discovery and score-based causal discovery.

Latent variable causal discovery: The earliest attempts for handling latent variables in causal
discovery were the Fast Causal Inference (FCI) algorithm (Spirtes et al., 2001; Richardson & Spirtes,
2002; Zhang, 2008). However, FCI’s objective is more of “deconfounding” for the identification
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Table 4: Ablation study on the sensitivity of hyper-
parameter δ.

value of δ F1 score for skeleton ↑ SHD for MEC ↓
5× 10−4 0.79(0.02) 10.85(0.79)
1× 10−3 0.81(0.02) 9.52(0.84)
2× 10−3 0.82(0.02) 8.80(0.70)
4× 10−3 0.80(0.02) 9.85(0.59)
1× 10−2 0.78(0.02) 11.13(0.70)

of causal relations among observed variables, and does not provide direct insight into the causal
structure among latent variables. Moreover, FCI is already proved to be maximally informative under
nonparametric conditional independence constraints. Therefore, to go beyond the limitations of
conditional independence constraints, new statistical tools have been developed, often relying on
additional parametric assumptions.

These tools have been discussed in Section 1. Among them, the most commonly used one and also
the earliest developed one might be rank constraints (Sullivant et al., 2010), which generalize the
classical Tetrad representation theorem (Spirtes et al., 2001) and basic conditional independence
constraints. Based on these new tools, many algorithms have also been developed (Silva et al., 2003;
Huang et al., 2022; Dong et al., 2024a). However, despite their theoretical advancements, most
existing methods remain within the constraint-based paradigm, heavily relying on statistical tests
that suffer from multiple-testing and error propagation issues. This is exactly our motivation on
developing score-based algorithms for latent variable causal discovery.

Score-Based causal discovery: Score-based methods offer an alternative to constraint-based
approaches, mitigating some of the issues related to error propagation. These methods search for
an optimal structure by maximizing a scoring function, such as the Bayesian Information Criterion
(BIC) or likelihood-based scores. Based on their search strategies, they can be broadly categorized as
follows:

• Exact Search Methods employ exhaustive graph traversal techniques or exploit minimal
pruning strategies, such as permutation search (Raskutti & Uhler, 2014), dynamic program-
ming (Koivisto & Sood, 2004), or integer linear programming (Cussens, 2012), to identify
the globally optimal structure. These methods require minimal assumptions about the
underlying graph structure or parametric model. However, their computational complexity
grows super exponentially with the number of variables, rendering them impractical for
large-scale causal discovery.

• A*-based and heuristic search methods integrate heuristic functions into the search process
to guide exploration through the graph space (Yuan & Malone, 2013; Scanagatta et al., 2015).
These methods strike a balance between computational efficiency and search completeness
by prioritizing graph structures with high potential scores while avoiding exhaustive enu-
meration. Although more scalable than exact search, the quality of the learned structure
relies heavily on the effectiveness of the heuristic function.

• Greedy search methods, such as the widely used Greedy Equivalence Search (GES) (Chick-
ering, 2002), formulate the search problem in terms of graphical operators that iteratively
modify the structure by adding, deleting, or reversing edges. These methods are computa-
tionally efficient and well-suited for large-scale problems. As illustrated in (Nandy et al.,
2018), greedy search methods can often be interpreted as progressively refining the graph
structure based on conditional independence or other graphical constraints, offering an
intuitive connection between constraint-based and score-based paradigms.

• Differentiable approaches, such as the seminal NOTEARS method (Zheng et al., 2018),
recast the structure learning problem as a continuous optimization task. Subsequent works
have incorporated nonlinear functional forms (Yu et al., 2019; Lachapelle et al., 2020; Zheng
et al., 2020; Ng et al., 2022b), interventional data (Brouillard et al., 2020; Faria et al., 2022;
Lippe et al., 2022), alternative optimization techniques (Ng et al., 2020; 2022a; Bello et al.,
2022; Deng et al., 2023), and improved formulations of the acyclicity constraint (Yu et al.,
2019; Lee et al., 2019; Wei et al., 2020; Bello et al., 2022; Zhang et al., 2022; 2025). These
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methods benefit from direct compatibility with well-established numerical solvers and GPU
acceleration, enabling them to efficiently handle large-scale problems.

Lastly, let us note that in the intersection of latent variable causal discovery and score-based algorithms,
the only existing approach, to our knowledge, is that of Ng et al. (2024). As for the specific search
procedure, their method follows an inefficient exact search paradigm. In contrast, our work is the
first to introduce greedy score-based search for latent causal discovery, offering a more practical and
scalable solution to real-world problems while maintaining identifiability guarantees.

The research on nested Markov model Shpitser et al. (2012; 2014); Richardson et al. (2023) is
related to causal discovery in the presence of latent variables. This line of work is elegant in that it
accomodates Verma-type constraints and contains marginal distributions given by a DAG model with
latent variables. However, nested Markov models follow the acyclic directed mixed graph (ADMG)
framework, where the effect of latent variables are simplified into bidirected edges between observed
variables. That is to say, within ADMG, only structure among observed variables is concerned. On
the contrary, this paper aims to identify the whole underlying causal structure among both observed
and latent variables (e.g., an edge from a latent variable to another latent variable). The research on
learning phylogenetic tree Felsenstein (2004); Huelsenbeck et al. (2001) is also related as it aims to
infer the evolutionary relationships among a group of organisms using observed data—typically and
outputs a tree-structured graph. Yet, the graphical assumption in this line of work is much stronger
then the GNFM considered in this paper.

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1 (Algebraic Equivalence by Score and Dimension). Suppose a model follows Definition 1
with G∗ and distribution Σ∗

X satisfies the generalized faithfulness assumption. Given observation Σ̂X

and let G∗ = argmaxG∈Gn scoreML(G, Σ̂X). If Ĝ ∈ G∗ and Ĝ ∈ argminG∈G∗ dim(G), then Ĝ and
G∗ are algebraic equivalent, i.e., H(Ĝ) = H(G∗), in the large sample limit.

The overall proof strategy below is inspired by Ghassami et al. (2020); Ng et al. (2024).

Proof. In the large sample limie, we have Σ∗
X = Σ̂X. By Ĝ ∈ G∗, we have that Ĝ can generate

Σ∗
X and thus Σ∗

X contains all the equality and inequality constraints of Ĝ. Under the generalized
faithfulness assumption, we have

H(Ĝ) ⊆ H(G∗). (4)

Further, we have Ĝ ∈ argminG∈G∗ dim(G). As G∗ ∈ G∗, we have dim(Ĝ) ≤ dim(G∗). Suppose
by contradiction that H(Ĝ) ⊊ H(G∗). This implies dim(Ĝ) > dim(G∗), which contradicts with
dim(Ĝ) ≤ dim(G∗). Therefore, we have

H(Ĝ) ̸⊊ H(G∗). (5)

Taking Equations (4) and (5) together, we have H(Ĝ) = H(G∗).

B.2 PROOF OF THEOREM 2

Theorem 2 (Identifiability of Generalized N Factor Models by Equality Constraint up to MEC). For
G1,G2 ∈ GGNF, if they are algebraically equivalent, i.e., H(G1) = H(G2), then G1 and G2 belong to
the same MEC (same skeleton and v-structures over all variables).

Proof. We prove by showing that, by using equality constraints we can identify a graph G ∈ GGNF
up to MEC.

Suppose G satisfies Definition 2 and thus there exists a partition of all latent variables in G that
satisfies the requirement in Definition 2, as {Li}P1 . For each Li, there exist at least |Li| ∗ 2 observed
variables Xi such that for all X ∈ Xi, PaG(X) = Li. We first prove by induction that the structure
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from latent variables to observed variables can be identified up to MEC by equality constraints. Let
k = 1. For those |Li| = k, all the pure children of Li can be identified by rank constraints: We can
simply check size k+1 combination of observed variables X̂ and we have the variables in X̂ are pure
children of the same size 1 latent group, iff rankΣX̂,XG\X̂

= k, given the relation between rank and
t-separation in Sullivant et al. (2010). Next, suppose when the pure children of all the latent groups
with |Li| ≤ k have been found, we show the pure children of latent groups with |Li| = k + 1 can
also be found by rank constraint. In this case, check all size k + 2 combination of observed variables
X̂ such that rankΣX̂,XG\X̂

= k + 1. Consider all such {X̂}ci and maintain a disjoint set for them such

that X̂i and X̂j belong to the same group if they have at least one common element. Take the union
of such a group, say X̃. If X̃ share no common element with the pure children of any Li that has
size≤ k, then elements in X̃ are pure children of the same latent group Lj with |Lj | = k + 1. By
induction, all the pure children of each latent group can be identified.

Further, for an observed variable, say, X, that is a common child of multiple latent groups, suppose
its common parents are L, which is a set of some groups of latent variables. Let A = X ∪⋃

Lj∈L{PCh1
G(Lj)}, where PCh1G(Lj) is a set of |Lj | pure children of Lj , we have rankΣA,XG\A =∑

Lj∈L |Lj |, and that when any edge related to X is changed, the related observed rank constraint
will change, and thus the set of equality constraints will also change. Therefore, we have that if
H(G1) = H(G2), then the structure from latent to observed variables in G1 and that in G2 are the
same.

Next, we show that the structure among latent groups can be identified up to MEC by equality
constraints. By making use of Corollary 1.3 in Di (2009), we can translate d-separation between latent
groups into t-separation among the pure children of these latent groups. Specifically, for Li,Lj , i ̸= j,
we have Li,Lj , are d-separated by L ⊆ {Ll}P1 \{Li,Lj}, iff A = PCh1G(Li) ∪

⋃
Ll∈L{PCh1G(Ll)}

and B = PCh1
G(Lj) ∪

⋃
Ll∈L{PCh2

G(Ll)} are t-separated by {L, ∅} or {∅,L}, where PCh1G(Ll)

and PCh2
G(Ll) refer to two disjoint groups of |Ll| pure children of Ll (by definition we know such

two groups must exist). Given Assumption 1 and the relation between rank and t-separation in
Sullivant et al. (2010), we have that Li and Lj are d-separated by L, iff rankΣA,B

= ||L||,where
||L|| = |

⋃
Ll∈L Ll|. This means that the d-separations among latent groups can be inferred from rank

constraints on observed variables, and d-separations can be used to identified the structure among
latent variables up to MEC. As rank constraints are part of the equality constraints, we have that
the structure among latent variables can be identified up to MEC by equality constraints. Taking
that the structure from latent to observed variables can also be identified up to MEC by equality
constraints (proved before) and in Generalized N factor models there is no direct edge between
observed variables, we have that if H(G1) = H(G2), then G1 and G2 belong to the same MEC.

B.3 PROOF OF COROLLARY 1

Corollary 1 (Global Consistency by Score for Generalized N Factor Models). Suppose a model
follows Definition 1 with G∗ ∈ GGNF and distribution Σ∗

X satisfies Assumption 1. Given observation
Σ̂X and let G∗ = argmaxG∈GGNF scoreML(G, Σ̂X). If Ĝ ∈ G∗ and Ĝ ∈ argminG∈G∗ dim(G), then
Ĝ and G∗ are Markov equivalent in the large sample limit.

Proof. Similar to the proof of Theorem 1, we can show that H(Ĝ) = H(G∗). By Theorem 2, we
have Ĝ and G∗ belong to the same MEC.

B.4 PROOF OF LEMMA 1

Lemma 1 (Properties of Initial State). Suppose a model follows Definition 1 with G∗ ∈ GGNF and we
are given observation Σ̂X. Then Sinit is a supergraph of S(G∗) and Sinit can generate the observed
distribution, i.e., scoreML(Sinit, Σ̂X) = maxG∈GGNF scoreML(G, Σ̂X) in the large sample limit.

Proof. By the graphical assumption in Definition 2, suppose L is the set of all latent variables in
G∗, then there must exist at least |L| × 2 observed variables in G∗. As such, the number of latent
variables |L| should be no more than ⌊ |X|

2 ⌋. Thus, by Definition 3, Sinit must be a supergraph of the
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CPDAG of the ground truth, S(G∗), up to permutation of latent variables, and thus Sinit must be able
to generate the observation equally well as S(G∗).

B.5 PROOF OF LEMMA 2

Lemma 2 (Correctness of Phase 1 of LGES). Suppose a model follows Definition 1 with G∗ ∈ GGNF

and we are given observation Σ̂X. In the large sample limit the output Sphase1 of Algorithm 1 is a
CPDAG such that the number of latent variables in Sphase1 is the same as that of G∗ and the edges
from X to L in Sphase1 is the same as that of G∗, up to permutation of latent variables.

We provide a sketch of proof as follows.

Proof. We prove by induction. First consider k = 1. We show that all the observed variables
that belong to a size 1 latent group can be identified. Specifically, OLX(S,L \ L′,Xj) in line 17
introduces a rank constraint rank(ΣXj ,X\Xj

) = 1 to Sj , if Sj in line 17 of Algorithm 1 can still
generate the observation, then under the generalized faithfulness in Assumption 1 this rank constraint
must also belong to H(G∗), which means that variables in Xj must belong to the same size 1 latent
group in G∗. As such, all observed variables that belong to the same size 1 latent group can be
identified. Now, suppose we have already identified those observed variables whose parent set has
cardinality t and let the set of these observed variables as Xt

done, for all t ≤ T . We show that for
k = T+1, all the observed variables that belong to a size k latent group can be identified. Specifically,
Sj introduces a rank constraint rank(ΣXj ,X\Xj

) = k to Sj , if Sj in line 17 of Algorithm 1 can still
generate the observation, then under the generalized faithfulness in Assumption 1 this rank constraint
must also belong to H(G∗). Given that Xj has no common variable with any Xt

done for all t ≤ T ,
we have that Xj must belong to the same size k latent group in G∗. Therefore, by the end of the
while in line 27 in Algorithm 1, all the parents of each observed variable can be identified. Till
now, in the state considered in the algorithm, there might still exist some latent variables having no
observed variable as children. These latent variables are removed from the current state in line 28 in
Algorithm 1, and thus the number of latent variables in Sphase1 is the same as that of the ground truth
and the structure between latent variables and observed variables in Sphase1 is also the same as that of
the ground truth up to permutation of latent variables.

B.6 PROOF OF THEOREM 3

Theorem 3 (Correctness of LGES). Suppose a model follows Definition 1 with G∗ ∈ GGNF and
we are given observation Σ̂X. In the large sample limit the output Sfinal of Algorithms 1 and 2 is a
CPDAG that represent the MEC of G∗, up to permutation of latent variables.

The proof is partially inspired by the proof of Lemma 10 in Chickering (2002).

Proof. First, we know that all the states must be able to generate the observation. Assume that Phase
2 terminates with a sub-optimal state S ′ and let G′ be a DAG that belongs to S ′. By Theorem 4 in
Chickering (2002) we know that there must exist a sequence of covered edge reversals and edge
additioins that transforms G∗ to G′. Suppose G′′ precedes the last edge addition in the sequence. We
have that G′′ must also be able to generate the observation and S(G′′) is a neighboring state of S ′,
which means Phase 2 should not terminate at S ′, yielding a contradiction. Thus, by the end of Phase
2, the structure among latent variables in Sfinal must be the same as that of the ground truth up to
permutation of latent variables. Taking Lemma 2 also into consideration, we have that in the large
sample limit the output Sfinal of Algorithms 1 and 2 is a CPDAG that represent the MEC of G∗, up to
permutation of latent variables.

C ADDITIONAL DEFINITIONS, IMPLEMENTATION DETAILS, RUNTIME
ANALYSIS, AND EXAMPLES

C.1 DETAILED DEFINITION OF H(G) AND Hn.

Definition 6 (Detailed Definition of H(G).). Let G be the DAG structure of a Partially Observed
Linear Causal Model with m latent variables and n observed variables (as in Definition 1). The
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entries of the observed covariance matrix ΣX are polynomial functions of model parameters θ =
(FT ,Ωϵ), where FT is the edge coefficient matrix and Ωϵ is the diagonal noise variance matrix. This
induces a parametric map under G:

ϕG : R|θ| → Rn(n+1)/2,

from parameters to observed covariance matrix, defining the system of equations:

{ΣXij − ϕG,ij(θ) = 0|1 ≤ i ≤ j ≤ n}.

Let R[θ,ΣX] be the polynomial ring which contains all variables for all model parameters θ and all
distinct covariance entries ΣXij , while R[ΣX] be the polynomial ring on ΣX only. Define the ideal
IG ⊆ R[θ,ΣX] generated by the above equations as:

IG = ⟨{ΣXij − ϕG,ij(θ) = 0|1 ≤ i ≤ j ≤ n}⟩.

Then, H(G) is the elimination ideal obtained by intersecting IG with R[ΣX], i.e.,

H(G) := IG ∩ R[ΣX].

Definition 7 (Definition of B(G) and Hn.). Let > be a fixed lexicographic monomial ordering on
R[θ,ΣX] such that all parameter variables in θ are greater than all covariance variables in ΣX.
Define B(G) as follows. (i) Compute the reduced Gröbner basis of IG following ordering >, i.e.,
GB(IG , >). (ii) Retain only those polynomials that involve only variables in ΣX. Formally,

B(G) := GB(IG , >) ∩ R[ΣX].

Then is Hn defined as
Hn :=

⋃
G∈Gn

B(G).

In essence, H(G) contains all equality constraints implied by G on the observed covariance matrix,
while B(G) consists of a canonical and minimal (owing to reduced Gröbner basis) ] set of polynomial
constraints among the observed covariances that must vanish for any distribution consistent with
structure G. Since the reduced Gröbner basis is unique (given a fixed monomial order), B(G) serves
as a standard representative of these constraints. The vanishing set of B(G) defines the smallest
algebraic variety that contains all observed covariance matrices generated by the model.

C.2 DEFINITION OF ONE FACTOR MODEL BY SILVA ET AL. (2003) AND COMPARISON

Definition 8 (One Factor Model (Silva et al., 2003)). DAG G satisfies the definition of One Factor
Model if each measured variable has a single latent parent, and each latent variable has at least
three measured variables as children.

First, the generalized N factor model takes one factor model as a special case. An example of one
factor model can be found in Figure 7 (b). As a comparison, an example of generalized N factor
model can be found in Figure 7 (a). Specifically, (a) differs from (b) in that, (i) (a) allows latent
variables to form a group and share observed variables as children, e.g., {L4, L5} in (a) compared to
L4 in (b), (ii) (a) allows some observed variables to be common children of muiltiple groups of latent
variables, e.g., X14 in (a), while (b) does not.

C.3 GOODNESS-OF-MODEL-FIT MEASURES

RMSEA (Steiger, 1980; 1990) measures the discrepancy due to the approximation per degree of
freedom. It is actually a badness-of-fit measure and thus the lower value the better fit of the model.
The sample RMSEA is estimated as follows.

ˆRMSEA =

√
max(χ2 − df, 0)

df(N − 1)
, (6)

where χ2 is the chi-square statistic of the concerned model and df is the degree of freedom of the
chi-square statistic.
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(a) An illustrative graph that satisfies generalized N
factor model.

(b) An illustrative graph that satisfies one factor
model.

Figure 7: Illustrative examples to compare two graphical assumptions, generalized N factor model
v.s. one factor model.

The CFI (Bentler, 1990) measures the relative improvement in terms of fit from the baseline model to
the proposed model. The sample CFI is estimated as follows:

ĈFI = 1− max(χ2
k − dfk, 0)

max(χ2
0 − df0, 0)

, (7)

where χ2
k and dfk corresponds to the concerned model while χ2

0 and df0 corresponds to the baseline
independent model that can only parameterize a diagonal covariance matrix.

The TLI (Tucker & Lewis, 1973; Bentler & Bonett, 1980) measures a relative reduction in misfit per
degree of freedom. The sample estimator of TLI can be given as follows:

ˆTLI =
χ2
0/df0 − χ2

k/dfk

χ2
0/df0 − 1

. (8)

C.4 IMPLEMENTATION DETAILS AND DISCUSSION ON THE DESIGN OF δ

Our code is based on Python3.7 and PyTorch (Paszke et al., 2017) and the optimization problem in
Equation (2) is solved by Adam (Kingma & Ba, 2014) and LBFGS. Data is standardized to have zero
mean and unit variance. The hyper parameter δ in Algorithms 1 and 2 is set as δ = 0.25× log(N)

N ,
where N is the sample size. This design follows the spirit of BIC score such that δ → 0 when
N →∞. In practice, we found that the result is only influenced marginally by a small change of δ.

Bellow we provide a further discussion on δ and the criterion of keeping edge removal in LGES.

Specifically, in LGES an edge removal is kept only when |LogL curr− LogL prev| ≤ k logN
N , where

δ := k logN
N is the tolerance level, N is the sample size, and k is a hyper-parameter that controls

sparsity. This design follows the spirit of BIC score in GES (score BIC = LogL − 0.5 logN
N dim).

Thus, the behavior of LGES is quite similar to GES - both of them accommodates asymptotic
consistency and finite sample performance at the same time.

In the asymptotic case, 0.5 logN
N dim → 0, and thus the likelihood term dominates the BIC score.

Therefore, what GES favors is exactly the graph that (i) has the best likelihood, (ii) at the premise of
(i) the dimension should be as small as possible. Similarly, in the asymptotic case δ → 0, and thus in
LGES what is performed is precisely ”Only when the likelihood after the deletion is still the best
do we keep the deletion” in the asymptotic case. Combined with other designs as discussed in our
last response, LGES also achieves the goal of finding the graph that (i) has the best likelihood, (ii) at
the premise of (i) the dimension should be as small as possible, and thus guarantees the asymptotic
consistency.

In the finite sample case, there exists a problem that a supermodel always has a better likelihood.
To address this problem, in GES the BIC score sensibly encourages an edge removal by the term
0.5 logN

N dim. As in GES each edge removal results in exactly 1 dimension decrease, the criterion
in GES is equivalent to keeping an edge removal as long as LogL curr ≥ LogL prev − 0.5 logN

N .
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In LGES, an edge removal is kept when |LogL curr − LogL prev| ≤ k logN
N , and thus it is also

encouraged sensibly in LGES with finite samples.

C.5 RUNTIME ANALYSIS

Next we discuss the time complexity of LGES. Similar to the classical PC and GES, our method has
a worst-case complexity exponential in the number of observed variables. However, if the underlying
graph is sparse, which is a common and reasonable assumption Kalisch & Bühlman (2007), the
complexity becomes polynomial. The intuition is as follows. Similar to PC and GES, during the
process, LGES enumerates different combinations of variables and check the score to decide whether
to delete some edges. Although the number of all combinations is exponential (also in GES and PC),
if the underlying graph is sparse, e.g., maximum degree of a node is P, the algorithm will successfully
find the correct combination to delete the edge before enumerating all the combinations. Thus the
number of combinations that are actually enumerated only depends on the constant P instead of
number of variables. Therefore, the time complexity will become a term polynomial in N, times a
term polynomial in constant P, and thus polynomial in N.

In our implementation, the computational cost is almost irrelevant to sample size, as we only need
to calculate the sample covariance once and cache it. Further, lines 5,6,13 in Alg 1 and lines 5,6,9
in Alg 2 can be executed in parallel. Owe to these designs, in practice LGES is fairly efficient: on
average it takes only one minute to handle a graph with 20 variables.

We conduct all the experiments with single Intel(R) Xeon(R) CPU E5-2470. Thanks to the fact that
lines 5,6,13 in Algorithm 1 and lines 5,6,9 in Algorithm 2 can be executed in parallel, we employ
the package joblib in python to conduct them by multi-processing. As such, on average it takes
only one minute to handle a graph with 20 variables. We note that the computational cost is almost
irrelevant to sample size, as we only need to calculate the sample covariance matrix once and cache
it for further use. Compared to RLCD and GIN, LGES is faster than RLCD but slower than GIN.
Specifically, it takes RLCD around 2 minutes and GIN around 20 seconds to handle a graph with 20
variables, while around one minute for LGES. The reason why GIN is faster than LGES, is that GIN
only focuses on the structure between latent variables and observed variables and does not identify
structure among latent variables, while RLCD and LGES identify the whole underlying structure
involving both observed and latent variables.

C.6 WHETHER THE IDENTIFIABILITY THEORY CAN BE EXTENDED TO NON-GAUSSIAN OR
NONLINEAR MODELS?

The identifiability result can be extended to both linear non-Gaussian and certain kinds of nonlinear
models. (i) The key role of the score in our identifiability theory is to check whether the constraints
on the observed covariance matrix is a subset of the constraints entailed by a candidate structure. For
any structure, the constraints entailed by in the non-Gaussian case is exactly the same as that of the
Gaussian case. Therefore, the proposed identifiability theory still holds in the non-Gaussian scenario.
(ii) For certain kinds of nonlinearity, the proposed identifiability theory still works. For example, in
Nonparanormal models where there exist smooth, monotonic transformations for each variable to
transform variables to be jointly Gaussian, as the monotonic transformations can be identified up to
trivial indeterminacy, we can still use the proposed score-based theory for structure identification.

D LIMITATIONS

One limitation of this work is that our theoretical results are based on the assumption of linear causal
models. When data is not linear, we have also conducted experiments to see the performance and
it can be shown that our method still performs well. Yet, theoretical analysis and identifiability
guarantee for the nonlinear case are to be developed and will be the focus of future work.

E BROADER IMPACTS

The goal of this paper is to advance the field of machine learning. We do not see any potential
negative societal impacts of the work.
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(a) G1. (b) G2.

(c) G3. (d) G4.

(e) G5. (f) G6.

(g) G7. (h) G8.

Figure 8: Examples of graphs considered in our experiments. They satisfy Definition 2.
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