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ABSTRACT

Augmented Reality (AR) encompasses transformative technologies that are re-
defining how humans interact with their environment. A key component of AR
is image segmentation, which breaks down the user’s front-view scene into dis-
tinct regions for analysis. This process is essential for accurately overlaying
digital content onto the physical world by detecting and isolating relevant objects.
However, despite its importance, image segmentation poses significant compu-
tational demands and latency issues on AR devices, which can severely impact
the overall user experience. In this paper, we propose Focus-Oriented Segment
Anything Model (FoSAM), a framework built upon the Segment Anything Model
(SAM) that utilizes real-time gaze data to focus segmentation on regions of in-
terest, substantially lowering computational cost. Experimental results show that
FoSAM reduces computational cost by over 50×, enabling a seamless visual expe-
rience for users, as confirmed by our real-world user study. The code is provided
at https://anonymous.4open.science/r/FoSAM-D627.

1 INTRODUCTION

Image segmentation Long et al. (2015); Badrinarayanan et al. (2017); Kirillov et al. (2023); Xie et al.
(2021) is a core task in computer vision that involves dividing an image into meaningful regions
to support visual content analysis and interpretation. Building on this, instance segmentation He
et al. (2017a); Bolya et al. (2019); Wang et al. (2020); Yang et al. (2019) identifies and outlines each
individual object within a scene. This capability is particularly crucial in augmented reality, where
accurate object detection and separation enable precise interaction and seamless overlay of virtual
content onto the physical environment, enhancing both immersion and contextual awareness.

Instance segmentation serves as a foundational component for numerous AR applications. For
example, in educational contexts (Figure 1 (a)), segmentation can detect individual components of
complex diagrams the user is viewing, enhancing student engagement and understanding. These
segmented objects can also be passed to downstream applications (e.g., vision-language models
(VLMs)), to provide detailed explanations or context-aware information. In an AR-assisted grocery
shopping scenario, real-time segmentation enables users to identify products on a shelf as they
look at them. Furthermore, segmentation enables direct object manipulation, allowing users to
edit or interact with specific elements in their environment, creating a seamless bridge between the
physical and virtual worlds. Additional AR use cases leveraging image segmentation are discussed
in González Izard et al. (2019; 2020); Tanzi et al. (2021); Alhaija et al. (2017).

The Segment Anything Model (SAM) Kirillov et al. (2023); Ravi et al. (2024) is among the most
advanced models for image segmentation today. However, despite its strong performance, SAM
is computationally intensive, making it difficult to deploy on resource-limited AR devices that
handle high-resolution imagery. This results in high overhead and latency, degrading overall system
performance and user experience.

Unlike typical image processing scenarios, AR device users display distinct behavioral patterns. They
tend to focus on small, specific areas within a scene before shifting their attention elsewhere. For
instance, as shown in Figure 1 (b), a user wearing AR glasses may first focus on the door (left) and
then turn their head to look at the bookshelf (right). This behavior naturally segments the video
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Figure 1: (a) Application of VLM in AR. (b) An example on gaze movement for the AR scenario. (c)
Meta Orion AR glass. (d) Front view and (e) innter view of Meta Quest Pro VR headset.

stream into distinct video fragments (VF) based on head movements. In the first VF, where the user’s
gaze remains on the door across several frames, the segmentation results can be reused, avoiding
redundant computation. Similarly, in the second VF, segmentation efforts can be focused solely on
the bookshelf. Moreover, as illustrated in Figure 1 (a), it is often beneficial to restrict segmentation to
the instances of interest (IOI) currently under the user’s gaze, as this typically reflects the user’s active
focus. This leads to a more efficient approach for AR image segmentation: prioritize processing for
gaze-identified IOIs while ignoring non-essential regions. This strategy aligns with the principles
of foveated rendering Patney et al. (2016), which improves rendering efficiency by showing full-
resolution detail only within the user’s line of sight, reducing visual fidelity in peripheral areas to
save computations.

In this work, we aim to reduce the high computational cost of segmentation in AR by leveraging
natural human eye movement. We introduce a novel segmentation framework based on Efficient
SAM Xiong et al. (2024) (ESAM), a lightweight version of the original SAM that maintains nearly
the same performance. By limiting segmentation to only the regions the user is actively viewing,
our proposed variant, called focus-oriented SAM (FoSAM), achieves more than a 50× reduction in
processing latency without compromising the user’s visual experience. Our contributions are:

• We introduce a novel and important perspective on instance segmentation with SAM that
exploits human eye behavior to reduce computational costs in AR settings. A simple demo
can be found in https://anonymous.4open.science/w/FoSAM-D627).

• We propose FoSAM, a lightweight segmentation framework built on ESAM, which processes
high-resolution input images and performs instance segmentation on the IOI with extremely
low computational cost.

• Building on FoSAM, we introduce FoSAM Streaming Algorithm (FSA), an efficient instance
segmentation framework tailored for real-time AR/VR applications. FSA, exploits temporal
continuity across frames and human gaze patterns to optimize segmentation, delivering
enhanced performance in dynamic AR environments.

2 BACKGROUND AND RELATED WORK

2.1 LITERATURE REVIEW ON SEGMENTATION

Semantic segmentation Shelhamer et al. (2014); Badrinarayanan et al. (2015); Chen et al. (2017);
Touvron et al. (2020); Cheng et al. (2021); Minaee et al. (2020); Li et al. (2023); Xiong et al.
(2019); Cheng et al. (2019) is a key task in computer vision that involves partitioning an image
into distinct regions or segments to simplify content analysis and interpretation. A more advanced
form of this task is instance segmentation He et al. (2017b); Li et al. (2020); Neven et al. (2019);
Brabandere et al. (2017), which aims to distinguish individual instances of the same object class.
Unlike semantic segmentation, which labels each pixel without differentiating between instances
of the same object class, instance segmentation provides a finer level of detail by distinguishing
each instance. To improve segmentation efficiency, previous research has focused on developing
learnable input downsampling techniques that adjust sampling resolution in a selective manner. In
Recasens et al. (2018), the authors propose a saliency-based distortion layer for convolutional neural
networks that enhances spatial sampling of input data in image classification tasks. Subsequent works,
such as Jin et al. (2021); Thavamani et al. (2021); Marin et al. (2019); Zeng et al. (2025), follow
similar approaches by learning a saliency score for each pixel to guide the downsampling process.
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Previous approaches perform image downsampling at the pixel level using Convolutional Neural
Networks (CNNs). In contrast, FoSAM is a transformer-based model that adaptively selects tokens
of input image at token level, guided by the user’s gaze location and the shape of the IOI. Prior work
Marin et al. (2023) shows that performing naive downsampling on the token map severely degrades
performance. Therefore, porting pixel level downsampling methods to the token level is not feasible.
Our FoSAM is fundamentally different from these approaches. Furthermore, previous studies Yang
et al. (2019); Wang et al. (2021); Yan et al. (2023); Rajič et al. (2023); Lin et al. (2021); Wu et al.
(2022) on video instance segmentation process consecutive frames together. This methods leverage
temporal correlations across frames to improve performance; however, it introduces considerable
latency, as processing can only begin once all frames are available.

2.2 HUMAN EYE BEHAVIOR IN AR/VR ENVIRONMENT
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Figure 2: (a) Video Fragments in the user’s view.
(b) Distribution of the gaze distances. (c) Distribu-
tion of the image differences.

The human eye operates in three main modes of
movement: fixation, where the eye remains sta-
tionary and focuses on a single point; saccadic
movements, rapid, jerky shifts in gaze from one
target to another; and smooth pursuit, where the
eye follows a moving object in a smooth manner.
During a saccade, the visual system’s sensitivity
is reduced. This decrease in sensitivity helps pre-
vent the brain from perceiving the blur caused
by the swift movement of the eyes.

Figure 1 (c-e) present the Meta Aria AR
glasses Engel et al. (2023) and Meta Quest Pro Inc. (2022), respectively. Both devices feature
an outward-facing camera that continuously captures high-resolution images of the user’s front view,
along with an inward-facing eye-tracking (ET) camera that records monochrome images of the
user’s eyes. Most modern AR devices are equipped with eye trackers that takes the eye images and
provide highly precise gaze direction estimates with minimal latency. To investigate human gaze
behavior while using AR devices, we perform an in-depth analysis using the Aria Everyday Activities
Dataset Lv et al. (2024). This dataset contains 143 sequences of frames captured by the AR device.

As the user adjusts their head orientation, the front view also changes. To quantify these head move-
ments, we calculate the image difference by measuring the Euclidean distance between corresponding
pixels of consecutive frames. If the pixel difference is below a certain threshold, the frames are
considered highly similar and nearly indistinguishable to the human eye. These frames are grouped
into a single video fragment (VF), as shown in Figure 1 (b) and Figure 2 (a). As shown in Figure 2
(c), 32% of consecutive frames exhibit less than 9% pixel value changes, suggesting a similarity
between the consecutive frames and potential for reusing segmentation results across frames.

Furthermore, within each VF, segmentation results can be reused if the gaze remains relatively stable
and consistently points to the same IOI. To support this, we analyze the distances (in pixels) between
consecutive gaze locations within a VF. Our analysis reveals that a threshold of 22 pixels effectively
groups gaze locations during the fixation phase, where the user focuses on a single IOI. Gaze distances
exceeding this threshold indicate a saccade, as seen with the rapid gaze changes in VF2 of Figure 2
(a). As shown in Figure 2 (b), 87% of the frames within each VF have a gaze distance of less than 22
pixels, indicating that AR users typically focus on one or two IOIs during each VF. This provides
an opportunity to enhance image segmentation efficiency by focusing processing on the IOI and
reusing segmentation results when gaze shifts are minimal.

2.3 SEGMENTATION TASK LATENCY

Table 1: Processing latencies of segmen-
tation models on AR platform.

Image Size SAM-B ESAM-S ESAM-T

10242 1897.4 ms 600.3 ms 279.7 ms
6402 441.8 ms 102.6 ms 46.7 ms

Despite its significance, the segmentation task presents
considerable computational challenges, especially on
resource-constrained AR devices, primarily because of
the high resolution of images these devices capture. This
heavy data load leads to significant computational latency,
severely limiting performance and responsiveness. To ex-
plore this issue, we evaluate the processing latency of the
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image segmentation task using well-established neural networks, including Segment Anything Base
model (SAM-B) Kirillov et al. (2023); Ravi et al. (2024), Efficient SAM Tiny (ESAM-T) Xiong
et al. (2024), and ESAM Small (ESAM-S). The latencies are profiled on the Qualcomm XR2 Gen2
platform Qualcomm Technologies, Inc. (2024b) using the Qualcomm AI Hub toolkit Qualcomm
Technologies, Inc. (2024a), which is equipped by Meta Quest Pro Inc. (2022) and Meta Aria AR
glasses Engel et al. (2023). Table 1 shows that the processing latencies for 1024× 1024 input images
are 1897.4ms, 600.3ms, and 279.7ms for SAM-base (SAM-B), Efficient SAM-small (ESAM-S), and
Efficient SAM-tiny (ESAM-T), respectively. Furthermore, even with a smaller input resolution of
640× 640, the latency still ranges from 441.8ms to 46.7ms. These latency fall short of the threshold
required for a seamless visual experience, as prior studies indicate that latencies below 30 ms are
essential for maintaining optimal visual fluidity Kaaresoja et al. (2014); vis; Albert et al. (2017).

3 METHODOLOGY
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Figure 3: System Deployment of FoSAM.

Figure 3 illustrates the computational pipeline
of the FoSAM framework. During runtime, the
inward-facing sensor of the AR/VR device con-
tinuously captures images of the user’s eye and
sends them to the gaze tracker, which estimates
the gaze direction instantaneously with high ac-
curacy (5 to 10 milliseconds) Stein et al. (2021);
Hou et al. (2024). At timestep t, this estimated
gaze direction gt, along with a high-resolution
image It captured by the front-facing camera,
is provided as input to FoSAM. FoSAM then
produces a segmentation map Mt focused on
the IOI, which can be reused across frames where the gaze location remains similar. To simplify
notation, we omit the subscript t in the following sections. The core idea of FoSAM is to employ
a lightweight token selector to identify and select a subset of image tokens, which are then passed
to the segmentation network. By processing only the selected tokens, the segmentation network
significantly reduces its computational overhead.

3.1 PRELIMINARIES

FoSAM builds on ESAM Xiong et al. (2024), which includes three main components: an image
encoder E(.), a prompt encoder R(.), and a mask decoder D(.). Given an input RGB image
I ∈ RH×W×3, it is first tokenized and positionally embedded into a set of tokens X = {xij}
with a size of He × We, where each token xij ∈ R1×dt . He and We equal H

P and W
P , where P

is the patch size of the tokenizer. These tokens are passed through the image encoder to produce
Y = {yij} = E(X), which retains the same spatial resolution. In parallel, a point-based gaze prompt
g is processed by the prompt encoder R(.), and its output is fused with Y in the decoder to generate
the final segmentation mask M ∈ RH×W . In ESAM, the image encoder E(.) is a 12-layer Vision
Transformer, and the decoder D(.) consists of a pre-trained two-layer CNN and a two-layer ViT.
Since E(.) dominates the computational cost, we focus on optimizing it by introducing a gaze-guided
Token Importance Encoder (TIEncoder) S(.), a Gaussian Predictor G(.), and an Adaptive Sampling
module. Together, they will selects a subset of K important tokens from X based on the gaze direction
g, reducing the input size to E(.) from He ×We to K and greatly decrease the computational cost
of the segmentation task. The entire selection process is end-to-end trainable, resulting in strong
accuracy performance. Next is the design of our TIEncoder S(.).

3.2 FOSAM FRAMEWORK

3.2.1 GAZE-GUIDED TOKEN IMPORTANCE ENCODER

The gaze-guided TIEncoder is designed to assign a Token Importance Score (TIScore) to each token
X based on the user’s gaze direction g. A common approach predicts token-wise importance scores
independently for each token Liu et al. (2021; 2023); Kockwelp et al. (2025); Rao et al. (2021);
Tang et al. (2022), and then removes those with low scores. However, this strategy often leads to
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Figure 4: An overview of FoSAM framework.

poor accuracy because it lacks spatial coherence. The independently predicted scores can result in
fragmented TIScore map with missing regions, which negatively affect the segmentation quality of the
image decoder. Additionally, this approach requires computing a TIScore for every token, resulting
in computational complexity that grows linearly with the number of tokens. This significantly limits
the potential for reducing model size and improving efficiency.

To address these limitations, we propose estimating the TIScores of tokens using a 2D Gaussian
distribution. The top portion of Figure 4 illustrates the overall pipeline, with the black and blue
arrows show the inference flow. The input image I is first uniformly downsampled from H ×W
to H

v × W
v , resulting in a lower-resolution image I ′, where v denotes the downsampling ratio. This

step effectively reduces the computational cost of the TIEncoder function S(.). Next, I ′ is passed
through a pre-trained ESAM tokenizer and a positional embedding module to generate token features
X ′ = {x′

ij} with dimensions H ′
e ×W ′

e. X ′ is then processed by the TIEncoder S(.), which outputs
Z = S(X ′) containing the same number of tokens. Tokens Z are selected based on their spatial
proximity to the gaze point g obtained from the gaze tracker. The token nearest to g, denoted as
zg ∈ Z, captures essential information about the IOI, such as its shape and scale, and serves as the
foundation for predicting a bounding window that encloses the IOI.

To simplify the window generation process while preserving spatial continuity, we introduce a
Gaussian predictor to estimate the TIScore of each token x ∈ X . This predictor, G(·), takes zg
as input and outputs the parameters of a 2D Gaussian distribution: the mean (µx, µy), standard
deviations (σx, σy), and correlation coefficient ρ. Let fG(zg)(., .) represent the probability density
function of Gaussian distribution with the parameter specified by G(zg). The TIScore for each token
x ∈ X is then computed as its likelihood under the predicted 2D Gaussian distribution, denoted as
fG(zg)(ci(x), cj(x)), where ci(x) and cj(x) is the 2D coordinate of x within the token map.

3.2.2 ADAPTIVE TOKEN SAMPLING MECHANISM

Based on the TIScores generated by the 2D Gaussian map, only a subset of tokens with the highest
scores are retained. Specifically, a larger IOI results in more tokens receiving high TIScores,
corresponding to a Gaussian distribution with lower variance. Conversely, smaller IOIs produce
higher-variance distributions and fewer high-importance tokens. As a result, we retain the top K
tokens, where K is determined adaptively based on the Gaussian distribution. Specifically, let
τ ∈ [0, 1] denotes a threshold of the token elimination, token xi are kept only if specified as follows:

fG(zg)(ci(x), cj(x)) ≥ max
x∈X

[fG(zg)(ci(x), cj(x))]× τ (1)

Here, τ denotes the threshold applied to the TIScores. Additionally, we define a minimum token
count ϵ to ensure a sufficient number of tokens are selected. If the number of tokens satisfying the
condition in Equation 1 falls below ϵ, the top-ϵ tokens are selected based on their TIScores. By
setting τ to a predefined value (e.g., 0.01), Equation 1 enables adaptive token selection, allowing
the number of retained tokens to vary according to the size of the IOI. Let Xs ⊆ X represent set of
tokens selected under equation 1. The selected tokens are passed through the image encoder, yielding
E(Xs), which is then fed into the mask decoder D(.) as shown by the low portion of Figure 4. As
noted in Section 3.1, D(.) expects a fixed input size of He ×We. To satisfy this requirement, E(Xs)
is zero-padded to the target dimensions, the results is denoted as Ys. The decoder then generates the
predicted segmentation mask Mpred. The following section details the training procedure.
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3.2.3 TRAINING AND LOSS FUNCTION

Figure 4 illustrates the training and inference workflows of FoSAM, with data flows for inference and
training shown in black+blue and black+red, respectively. During inference, only the token zg , which
is closest to the gaze location g, is used to predict the TIScore. Let Mgt represent the ground-truth
binary mask corresponding to the input I , where Mgt,ij = 1 indicates that the pixel lies within the
IOI, and 0 otherwise. Additionally, let XMgt

⊆ X denote the subset of tokens whose spatial positions
fall within the IOI as defined by Mgt, and let ZMgt

= S(XMgt
) represent the outputs of the S(.) of

the corresponding tokens. The loss function used during training comprises three components: the
negative log-likelihood, Lnll, the classification loss Lcls, and the Dice loss Ldice. The objective of
Lnll is to train the TIEncoder module S(·) and the Gaussian predictor G(·) to generate a 2D Gaussian
map fG(S(x))(·), where x ∈ XMgt , that closely approximates the ground-truth mask Mgt, as follows:

Lnll = −
∑

xm∈XMgt

∑
x′
m∈XMgt

log[fG(S(xm))(ci(x
′
m), cj(x

′
m))] (2)

where
∑

x′
m∈XMgt

log[fG(S(xm))(ci(x
′
m), cj(x

′
m))] represents the sum of the log-probabilities for

each token x′
m within the ground truth mask Mgt. These probabilities are computed using a 2D

Gaussian distribution, where the distribution parameters are generated based on the reference token
xm. In other words, we aim to ensure that each token xm within the ground truth mask Mgt can
generate a 2D Gaussian distribution that effectively covers the intended IOI.

In practice, obtaining an accurate Gaussian distribution that closely mimic the ground-truth mask
poses a granular alignment challenge. For example, when the gaze point lands on the headlight of a car,
it is often ambiguous whether the target object is the headlight itself or the entire vehicle. Similarly,
if the gaze fixed on a chess piece, it is unclear whether the segmentation should cover the individual
piece or the whole chessboard. To mitigate this ambiguity, we introduce an additional classification
loss Lcls, which leverages category labels to enforce granular alignment. Beyond alignment, Lcls

also provide clustering effect, markedly enhancing the inter-class diversity of the Gaussian maps.
As an auxiliary supervision signal, it encourages the TIEncoder S(.) to learn class-specific features,
leading to a better Gaussian maps. Therefore, as shown in Figure 3, a shallow neural network U(.) is
attached to the output of S(.) for classification task. Let Mcls(xi) denote the class label associated
with the IOI where xm is mapping to, Lcls can be expressed as:

Lcls = −
∑

xm∈XMgt

CE[U(S(xm),Mcls(xm)] (3)

Here, CE(·) denotes the cross-entropy loss. Finally, to ensure that the output Mpred of the image
decoder D(·) aligns with the ground-truth mask Mgt, we apply the Dice loss.

Ldice = DICE[Mpred,Mgt] (4)

The overall loss function can be calculated as Ltotal = λ1Lnll + λ2Lcls + λ3Ldice, where λ1,λ2 and
λ3 represent the relative importance of the loss functions. During training, only the TIEncoder S(·),
classification head U(·), Gaussian head G(·), and image decoder D(·) are updated, while the image
encoder E(·) remains frozen, significantly reducing the training cost of FoSAM.

3.3 FOSAM STREAMING ALGORITHM

in IOI?gt

Reuse Segment

No

Yes

No

1

2

Yes

Diff(   ,    )>T?I t I ini

Figure 5: FSA flow.

Building on the FoSAM architecture introduced in Section 3.2, this section
explains how FoSAM can be extended for efficient instance segmentation
across consecutive video frames. As motivated by the study in Section 2.2,
FoSAM is triggered during real-time operation only when the input image
I , captured by the front-facing camera, shows a significant change or when
a shift in the user’s gaze direction is detected. The logic flow of the FoSAM
Streaming Algorithm (FSA) is shown in Figure 5. Let Iini and It represent
the input images at the initial frame and at time step t, respectively. A simple
criterion is used to determine whether the current view remains within the
previous segment by computing the relevant difference between It and Iini (Condition 1). Instead of
computing pixel-wise differences over the entire images It and Iini, we restrict the computation to
the masked regions, focusing only on the relevant areas across the two frames. Instead of using a fixed
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α threshold, we times α by the area of Mpred. This allows the threshold to adapt automatically based
on the size of the gazed object, making the segmentation decision more robust across varying object
sizes. If this difference surpasses the threshold T = α×

∑
i,j Mpred,ij , it signals a substantial change

in the previous gazed area, prompting a full re-execution of FoSAM, and Iini will be updated with It.
If no big change is observed, the current gaze location gt is examined to determine whether it remains
in IOI region defined by the segmentation mask Mpred of Iini (Condition 2). If it does, Mpred can be
reused; otherwise FoSAM must be executed with gt and Mpred will be updated accordingly. Details
of the FSA are in the supplementary materials.

4 EVALUATION

Table 2: IoU and FLOP comparison of FoSAM and baseline
algorithms. K denotes the token budget.

Method K ADE20K LVIS Cityscape GFLOP

SAM-B Ravi et al. (2024) 4096 0.511 0.537 0.347 744
ESAM-S Xiong et al. (2024) 4096 0.411 0.359 0.304 188.2
ESAM-T Xiong et al. (2024) 4096 0.350 0.236 0.248 56.1
SlimSAM Chen et al. (2024) 4096 0.477 0.474 0.293 15.1
FSNet-DL Zeng et al. (2025) NA 0.34 0.38 0.24 18.8
FSNet-SF Zeng et al. (2025) NA 0.33 0.36 0.21 12.6

AD-S 200 0.273 0.350 0.221 14.6
LC-S 200 0.368 0.477 0.385 14.6

FoSAM-S 200 0.495 0.487 0.404 14.6
AD-S 100 0.252 0.343 0.203 10.4
LC-S 100 0.294 0.444 0.339 10.4

FoSAM-S 100 0.465 0.461 0.362 10.4
AD-T 200 0.256 0.322 0.198 7.4
LC-T 200 0.327 0.453 0.371 7.4

FoSAM-T 200 0.471 0.469 0.377 7.4
AD-T 100 0.239 0.318 0.176 5.3
LC-T 100 0.264 0.421 0.302 5.3

FoSAM-T 100 0.457 0.435 0.328 5.3

We evaluate FoSAM using publicly
available datasets: ADE20K Zhou
et al. (2019), LVIS Gupta et al. (2019),
and Cityscapes Cordts et al. (2016).
As these datasets are originally de-
signed for generic segmentation tasks
to cover all the objects in the image,
we introduce a gaze-aware masking
preprocessing step to enable segmen-
tation over the IOI only. Specifically,
for each training and testing sample,
a gaze location is randomly selected
within the image, and the correspond-
ing IOI region is defined based on this
location. The size of the input images
is 640× 640 for all datasets.

We use a lightweight two-layer ViT as
the TIEncoder S(.). The input images
have a resolution of H ×W = 640×
640, and are average downsampled to H ′

e × W ′
e = 160 × 160 prior to processing. The FoSAM

framework is integrated with ESAM Small Xiong et al. (2024) and ESAM Tiny, referred to as
FoSAM-S and FoSAM-T, respectively. Two baseline methods are developed for comparison. The first
method, Average Downsampling (AD), enhances segmentation efficiency by directly applying average
pooling to the original input X , reducing its spatial resolution and thus lowering computational cost.
The second method, Local Cropping (LC), improves efficiency by extracting a fixed-size patch
centered around the gaze point g, thereby narrowing the focus to a smaller input region. These
baselines are evaluated on both ESAM Small and ESAM Tiny, resulting in AD-S, AD-T, LC-S,
and LC-T configurations. Furthermore, we evaluate performance against SAM Base (SAM-B),
ESAM Small (ESAM-S), ESAM Tiny (ESAM-T), and SlimSAM Chen et al. (2024), which improves
segmentation efficiency through a combination of knowledge distillation, embedding pruning, and
bottleneck pruning. We also compare FoSAM with FSNet, which integrates DeepLab He et al.
(2016) and Segformer Xie et al. (2021) backbones to enable efficient segmentation via learnable input
downsampling strategies, referred to as FSNet-DL and FSNet-SF, respectively. During training, the
weights for the loss terms Lnll, Lcls, and Ldice are all set to 1. We evaluate segmentation performance
using the Intersection over Union (IoU) metric, which measures the overlap between the predicted
segmentation and the ground truth IOI region. To control the average number of retained tokens K,
we adjust the TIScore threshold τ and the minimum token count ϵ as defined in Equation 1. More
evaluation results are shown in the supplementary materials.

4.1 EVALUATION RESULTS OF FOSAM

Table 2 presents the evaluation results. The compared methods, FoSAM, AD, and LC, all operate on
input images at their original resolution. FoSAM adopts an adaptive token sampling strategy with
average token budgets of K = 200 and K = 100 across the entire test dataset. To ensure a fair
comparison, the input sizes of AD and LC are adjusted so that their computational cost aligns with
that of FoSAM. For ESAM, SlimSAM, and SAM, regardless of the original input size, the built-in
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Latency Token
(ms) 200 100

FoSAM-S 21.6 18.3
FoSAM-T 17.6 14.5

Table 3: Processing la-
tencies of FoSAM on
an AR platform.
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Figure 6: Average IoU and frame skip rate of FSA
on FoSAM-S and FoSAM-T under varying α.

Figure 7: Participants
are doing user study.

resizing layer by default resizes all inputs to 1024× 1024, resulting in a fixed number of 4096 tokens.
For SlimSAM, we tune its pruning ratio to achieve a similar computational cost to FoSAM. In the
case of FSNet-DL and FSNet-SF, input images are downsampled to a resolution of 80× 80, which
is the default setting of it. As shown in the results, FoSAM consistently outperforms the AD and
LC baselines across all datasets. In contrast to different versions of ESAM, SlimSAM and FSNet,
FoSAM achieves both higher accuracy and reduced computation. For instance, in Cityscape datasets,
FoSAM-T with 100 token budget achieves 3.5% higher IoU than SlimSAM with only one third of the
computation cost. This highlights the effectiveness of IOI guided adaptive token sampling in FoSAM.
Moreover, FoSAM demonstrates strong generalizability across datasets, with minor performance
variations attributed to dataset-specific characteristics. Compared to SAM, although FoSAM does not
achieve equally high IoU, it provides comparable accuracy while reducing computational cost by
over 50×. As shown in the user study in Section 4.4, FoSAM also offers a significantly better visual
experience, whereas SAM introduces noticeable processing delays that degrade user experience.

To assess FoSAM’s processing latency on AR device, we profile the performance of FoSAM-
S and FoSAM-T with average token budgets of K=200 and 100 on the Qualcomm XR2 Gen2
platform Qualcomm Technologies, Inc. (2024b), utilizing the Qualcomm AI Hub toolkit Qualcomm
Technologies, Inc. (2024a). It is important to note that the Qualcomm XR2 Gen2 is integrated into the
Meta Quest Pro for AR/VR task processing Inc. (2022); Engel et al. (2023). The average latencies,
computed over 100 profiling runs on a single LVIS sample, are reported in Table 3. Compared to
the latency of SAM and ESAM shown in Table 1, FoSAM achieves an average of 24× reduction in
inference time and meets the 30 ms latency threshold required for a seamless visual experience, as
indicated by prior research Kaaresoja et al. (2014); vis; Albert et al. (2017).

4.2 EVALUATION RESULTS OF FOSAM STREAMING ALGORITHM

The FSA mechanism introduced in Section 3.3 reduces segmentation overhead by reusing results
from previous frames. However, as illustrated in Figure 5, varying the parameter can influence
the average IoU across frames. To evaluate this effect, we analyze the performance of FoSAM-S
and FoSAM-T with FSA evaluated on the Cityscapes dataset under different settings of α, which
represent the threshold for image difference shown in Figure 5. The token budget is set to 200 for both
FoSAM-S and FoSAM-T. We use 10 video sequences which contain 5000 images in total. However,
since the Cityscapes dataset lacks gaze location data, we incorporate gaze traces described in Lv et al.
(2024) into each frame of the Cityscapes dataset. The results are described in Figure 6, as α increases
from 0.01 to 0.1, more frames are skipped by reusing segmentation results of previous frames. For
instance, skipping 40% of the frames leads to only a 0.03 reduction in average IoU across frames for
both FoSAM-S and FoSAM-T, showing that FSA can greatly reduce segmentation computation with
negligible impact on the accuracy.

4.3 ABLATION STUDY

Table 4: Impact of the TIEncoder.

Layer Number Image Size IoU SE GFLOPs

3 640× 640 0.499 10.4
3 320× 320 0.499 2.8

2 320× 320 0.497 1.88
2 160× 160 0.495 0.48
2 80× 80 0.492 0.12

1 320× 320 0.492 0.94

Impact of TIEncoder Size In this section, we examine
how the computational cost of the TIEncoder S(·) influ-
ences FoSAM’s accuracy under an average token budget
of K = 200 on the ADE20K dataset. Specifically, we
evaluate the impact on FoSAM performance by varying
both the parameter size of S(·) and the input resolution
of X ′ fed into S(·). As shown in Table 4, increasing the
number of encoder layers from 2 to 3 and raising the input
resolution from 160 × 160 to 640 × 640 leads to only a
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slight improvement in IoU, while the computational cost rises substantially from 0.48 GFLOPs to
10.4 GFLOPs for the TIEncoder processing. Additionally, reducing the number of encoder layers
results in a more significant accuracy drop than downsampling the input image. The TIEncoder
design in FoSAM strikes an effective balance between computational efficiency and performance.

Table 5: Performances with
varying token budgets.

Dataset Budget (K) FoSAM-S LC-S

LVIS
400 0.499 0.490
200 0.487 0.477
100 0.475 0.443
25 0.371 0.318

Cityscape
400 0.417 0.394
200 0.404 0.385
100 0.362 0.339
25 0.269 0.243

ADE
400 0.517 0.442
200 0.499 0.368
100 0.472 0.293
25 0.311 0.227

Impact of the Token Budget As described in Section 3.2.2,
FoSAM adopts an adaptive token sampling mechanism that adjusts
the number of retained tokens according to the size of the IOI. In
contrast, the LC algorithm applies a fixed token count regardless of
IOI size, which can lead to too few tokens for large IOIs, reducing
accuracy, or too many tokens for small IOIs, causing unnecessary
computation. Table 5 compares the performance of FoSAM and
LC under varying token budgets K on different datasets. For
FoSAM, the number of retained tokens varies across frames, with
an average of K. On the LVIS, FoSAM-S achieves an average
of 0.9% higher IoU than LC-S when K = 400, and outperforms
LC-S by 5.5% when K = 25. These results highlight FoSAM’s
ability to adapt the token budget to the size of the IOI, allowing
it to maintain accuracy even under constrained token budgets.

Table 6: Gaussian vs. Token-wise

Method Lvis (200 token budget) (IoU)

Gaussian (ours) 0.487
Token-wise design 0.231

TIEncoder design: Gaussian vs. Token-wise Selecting
tokens based on assigned scores is a common concept in
computer vision, but most of them use a token-wise design,
which means predicting a score for each token separately,
as described in Section 3.2.1. In contrast, FoSAM only
predict a single Gaussian distribution and use it to assign
all TIScores at once. Table 6 provides a comparison to demonstrate the effect of switching to a
common token-wise design in our case by adding Importance Head for each token. As shown,
the token-wise approach performs significantly worse under the same token budget. It is because
unlike the smooth and concentrated Gaussian TIScore map, the token-wise design often produces
fragmented and discontinuous token selection, and the SAM’s mask decoder is very vulnerable to
this discontinuity.

4.4 USER STUDY

100%

95%

90%

85%

80%
1 2 3 4 5 6 7

FoSAM SAM

Figure 8: Preference
rates of the seven par-
ticipants.

To assess the user experience benefits of FoSAM over the standard
SAM method on AR device, we conduct a two-interval forced-choice
(2IFC) Yeshurun et al. (2008) user study simulating both methods’ effects
on the Meta Quest Pro headset Inc. (2022). Segmentation masks were pre-
computed and gaze-contingent visualizations were rendered with artificially
introduced latencies reflecting each method’s runtime profiled on the Qual-
comm XR2 Gen2’s NPU Qualcomm Technologies (2025). Each of the seven
participants compared results across four test images, selecting the preferred
output in 32 trials, as shown in Figure 7. As shown in Figure 8, FoSAM was
preferred in 96.9%±4.8% of trials overall, consistently outperforming SAM
across all images. Although FoSAM incurs a slight drop in segmentation accuracy compared to SAM,
its greatly lower latency and better temporal alignment with gaze location result in a significantly
improved user experience. See supplementary materials for implementation details.

5 CONCLUSION AND LIMITATION

We presented FoSAM, a gaze-guided segmentation framework optimized for AR/VR. By focusing
computation on user-relevant regions, FoSAM achieves over 50× speedup with minimal accuracy
loss. Experiments and user studies validate its effectiveness for real-time deployment on AR devices.
While FSA achieves substantial latency reduction, it relies on heuristic thresholds for result reuse,
which could be further optimized in future work. Additionally, potential risks include privacy
concerns related to eye-tracking data and reliance on model accuracy in sensitive applications, which
needs to be solved as future work.
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Ethics Statement We affirm that all authors have read and will adhere to the ICLR Code of Ethics.
Our work includes a user study with seven adult participants using a head-mounted AR devices to
compare gaze-contingent segmentation latency/quality. All participants provided informed consent
prior to participation. The study involved minimal risk, and participants could withdraw at any
time without penalty. No personally identifiable information (PII) was collected; no raw eye images
were stored; only anonymized preference choices and aggregate metrics were retained. The study
complied with our institution’s human-research guidelines and applicable laws. We use only public
datasets for training/evaluation. All data are used under their respective licenses/terms; no attempt
was made to re-identify individuals or to reconstruct any personally sensitive attributes. We will
release code, configuration files, and evaluation scripts sufficient for reproducibility. We will not
release any user-study raw data or raw eye-tracking images.

Reproducibility Statement We aim to make all results fully reproducible. We provide an
anonymized repository at https://anonymous.4open.science/r/FoSAM-D627 which
contains the full source code. The model architecture and inference pipeline are specified in Sec-
tion 3 (with the streaming procedure detailed in Appendix A.1), and the learning objective is given
by Equation 2,3,4. Detailed Hyperparameter settings for experiments can be find in the provided
anonymized repository. Datasets preprocessing are described in Section 4.
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Frano Rajič, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher Yu. Segment
anything meets point tracking. arXiv preprint arXiv:2307.01197, 2023.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Matusik, and Antonio Torralba. Learning
to zoom: a saliency-based sampling layer for neural networks. In Proceedings of the European
conference on computer vision (ECCV), pp. 51–66, 2018.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3431–3440, 2014. URL https://api.semanticscholar.org/CorpusID:1629541.

Niklas Stein, Diederick C Niehorster, Tamara Watson, Frank Steinicke, Katharina Rifai, Siegfried
Wahl, and Markus Lappe. A comparison of eye tracking latencies among several commercial
head-mounted displays. i-Perception, 12(1):2041669520983338, 2021.

Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. Patch
slimming for efficient vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12165–12174, 2022.

13

https://arxiv.org/abs/2402.13349
https://api.semanticscholar.org/CorpusID:210702798
https://api.semanticscholar.org/CorpusID:210702798
https://api.semanticscholar.org/CorpusID:195658142
https://api.semanticscholar.org/CorpusID:195658142
https://www.qualcomm.com/products/technology/processors/hexagon
https://www.qualcomm.com/products/technology/processors/hexagon
https://app.aihub.qualcomm.com/docs/index.html
https://app.aihub.qualcomm.com/docs/index.html
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-gen-2-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-gen-2-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-gen-2-platform
https://api.semanticscholar.org/CorpusID:1629541


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Leonardo Tanzi, Pietro Piazzolla, Francesco Porpiglia, and Enrico Vezzetti. Real-time deep learn-
ing semantic segmentation during intra-operative surgery for 3d augmented reality assistance.
International Journal of Computer Assisted Radiology and Surgery, 16(9):1435–1445, 2021.

Chittesh Thavamani, Mengtian Li, Nicolas Cebron, and Deva Ramanan. Fovea: Foveated image mag-
nification for autonomous navigation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 15539–15548, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herv’e
J’egou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, 2020. URL https://api.semanticscholar.org/
CorpusID:229363322.

Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dynamic and fast
instance segmentation. Advances in Neural information processing systems, 33:17721–17732,
2020.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia
Xia. End-to-end video instance segmentation with transformers. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8741–8750, 2021.

Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang Bai. Seqformer: Sequential transformer
for video instance segmentation. In European Conference on Computer Vision, pp. 553–569.
Springer, 2022.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances in neural
information processing systems, 34:12077–12090, 2021.

Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiaoliang
Dai, Dilin Wang, Fei Sun, Forrest Iandola, et al. Efficientsam: Leveraged masked image pretraining
for efficient segment anything. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16111–16121, 2024.

Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel
Urtasun. Upsnet: A unified panoptic segmentation network. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 8810–8818, 2019. URL https:
//api.semanticscholar.org/CorpusID:58004609.

Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu. Universal
instance perception as object discovery and retrieval. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 15325–15336, 2023.

Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 5188–5197, 2019.

Yaffa Yeshurun, Marisa Carrasco, and Laurence T Maloney. Bias and sensitivity in two-interval
forced choice procedures: Tests of the difference model. Vision research, 48(17):1837–1851, 2008.

Hongyi Zeng, Wenxuan Liu, Tianhua Xia, Jinhui Chen, Ziyun Li, and Sai Qian Zhang. Foveated
instance segmentation. arXiv preprint arXiv:2503.21854, 2025.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302–321, 2019.

14

https://api.semanticscholar.org/CorpusID:229363322
https://api.semanticscholar.org/CorpusID:229363322
https://api.semanticscholar.org/CorpusID:58004609
https://api.semanticscholar.org/CorpusID:58004609


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DETAILS OF FOSAM STREAMING ALGORITHM

Algorithm 1: FoSAM Streaming Algorithm
Input: Iini is the initial frame of current VF. Mpred is

the buffered segmentation mask of Iini. IOI is the
instance of interest region defined by Mpred. gt,
It, and Mt represent the current gaze direction,
the current input frame, and the segmentation
mask at time t. α is the threshold of result reuse.

1 Initiation
2 Iini = ∅, Mpred = ∅
3 for 1 ≤ t ≤ T do
4 if

∑
ij |It,ij−Iini,ij |∑

ij Iini,ij
> α×

∑
i,j Mpred,ij then

5 Run FoSAM with It and gt, get Mt;
6 Iini ← It, Mpred ←Mt;
7 return Mt

8 else
9 if gt in IOI then

10 return Mpred

11 else
12 Run FoSAM with It and gt, get Mt;
13 Iini ← It, Mpred ←Mt;
14 return Mt

FoSAM streaming algorithm is out-
lined in Algorithm 1, a simple crite-
rion is applied to detect if the view
is still in the previous video fragment
(VF) by calculating the relative dif-
ference between It and Iini (line 4).
If this difference exceeds a thresh-
old T = α ×

∑
i,j Mpred,ij , it indi-

cates a significant change in the front
scene, triggering a full re-execution of
FoSAM (line 5). Iini and Mpred will
be updated accordingly (line 6). If not,
the current gaze location is analyzed
to determine if it remains within the
same IOI region (line 9). If it does, the
last segmentation mask Mpred can be
reused (line 10). Otherwise, FoSAM
must be executed with the new input
frame It and gaze location gt (line
12), Iini and Mpred will be updated
accordingly (line 13).

A.2 EXTRA EVALUATION

Noise and latency sensitivity study
Relevant studies show that gaze jitter keeps most of the gaze points within 1° of visual angle from the
target center. Including the eyetracker’s error, the overall gaze error remains within 2°. Therefore,
We add random angular noise into the gaze location and report the performance under the same token
budget. As shown in Table 7, on LVIS (with many small objects), slight gaze noise can push fixation
outside the target boundary and modestly reduce accuracy. On ADE, FoSAM remains robust.

Table 7: Impact of the Gaze Noise.

Gaze error (deg) 0 (no error) ±1 ±2

Lvis (200 tokens budget) (IoU) 0.487 0.461 0.437
ADE (200 tokens budget) (IoU) 0.495 0.488 0.479

Table 8: Impact of the Latency.

Gaze latency negligible latency 10ms

AriaEveryday (400 token budget) (IoU) 0.588 0.564

A typical eye tracker’s refresh rate is 100 Hz,
introducing 10ms of gaze latency. Therefore,
we use the gaze point from 10 ms earlier as
the current frame’s gaze to simulate this delay,
and report its impact on Aria with the same to-
ken budget. As shown in Table 8, the accuracy
degradation from the gaze latency is minimal,
highlighting the robustness of FoSAM to gaze
latency.

As described in Section 3.2.3, during training
we supervise all tokens within the ground-truth
mask to produce the same target Gaussian. This
means any fixation locations within the object are encouraged to yield the same target Gaussian
TIScore map. This training technique (like data augmentation) ensures that as long as the gaze
remains on the object, FoSAM produces consistent predictions.

Impact of Adaptive Token Sampling Hyperparameters The saliency score threshold τ and
the minimum token count ϵ are used to determine how many tokens are retained, as detailed in
Section 3.2.2. Different combinations of τ and ϵ can result in the same average number of tokens
being retained across the samples in a dataset. In Table 9, we evaluate the effects of varying τ and
ϵ under different token budgets using FoSAM-S over the Cityscape dataset. A larger τ reduces the
number of tokens selected based on saliency scores; to maintain the target token budget, ϵ must be
increased accordingly.
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τ ϵ FoSAM-S Token Budget (K)

0.2 300 0.404 400
0.12 200 0.417 400
0.1 100 0.416 400

0.4 150 0.39 200
0.3 100 0.404 200

0.25 50 0.402 200

0.7 75 0.355 100
0.6 50 0.362 100

0.55 25 0.362 100

Table 9: Evaluation results of
adaptive token sampling set-
tings.

When the Token Budget is held constant—i.e., the mean of |Xs| is
fixed—a smaller τ and ϵ result in a larger variance of |Xs| across
different samples. In this setting, Xs most faithfully reflects the
Gaussian distribution predicted by the model. However, our exper-
iments reveal that FoSAM may produce overly extreme Gaussian
distribution, especially when the predicted Gaussian has a very small
standard deviation, overall performance deteriorates markedly. As
shown in Table 9, a smaller ϵ indeed causes a slight drop in per-
formance, underscoring the necessity of introducing the ϵ term.
Conversely, larger τ and ϵ prevent Xs from accurately reflecting
predicted Gaussian distribution, constraining FoSAM’s capacity to
allocate token budgets in proportion to IOI size and resulting in a
pronounced performance degradation.

λ1 λ2 Token Budget IoU

1 1 200 0.404
2 1 200 0.398
1 0 200 0.381

Table 10: Impact of the
weights of the nll loss (λ1) and
classification loss (λ2).

Impact of Loss Weights During the training of FoSAM, the over-
all loss is computed as a weighted sum of the negative log-likelihood
loss, classification loss, and Dice loss, with weights λ1, λ2, and λ3,
respectively, as defined in Equation 2, Equation 3, and Equation 4.
Dice loss plays a critical role in the segmentation task, while the
negative log-likelihood loss and classification loss help the saliency
encoder in FoSAM better adapt the saliency score distribution based
on the IOI. In Table 10, we evaluate the contributions of the negative
log-likelihood loss and the classification loss to the overall perfor-
mance of FoSAM by varying their weights λ1 and λ2, using the
FoSAM-S model on the Cityscapes dataset.

The setting λ1 = 1, λ2 = 1 is used as the baseline for our main evaluation results. Increasing λ1

reduces the relative contribution of the classification loss, which leads to a decrease in segmentation
accuracy. When λ2 = 0, the classification loss is completely removed, resulting in a further drop in
accuracy. This highlights the importance of the classification loss in achieving good segmentation
performance.

A.3 DETAILS OF USER STUDY

Image 1 Image 2 Image 3 Image 4

Figure 9: Four sample images.

To evaluate the enhancement in user experience
offered by FoSAM compared to the conven-
tional SAM approach, we simulate their visual
effects on the Meta Quest Pro HMD Inc. (2022)
due to HMD’s restrictions on direct access to its
NPU Qualcomm Technologies (2025).

For each test image, segmentation masks for
the IOIs were precomputed using FoSAM-S and
SAM-B Kirillov et al. (2023). During the user study, the HMD displays the mask of the currently
observed IOI according to gaze locations obtained by the HMD’s gaze tracker, simulating the visual
effects of both algorithms.

To account for system performance, we profile the latency of FoSAM-S (200 token budget) and
SAM-B on the Qualcomm XR2 Gen2 platform Qualcomm Technologies, Inc. (2024b) using the
Qualcomm AI Hub toolkit Qualcomm Technologies, Inc. (2024a), and artificially introduce the delay
between the moment the user’s gaze identifies the IOI and when the segmentation mask is displayed
on the VR screen. Due to its efficient design, FoSAM-S exhibited significantly lower latency (21.6
ms) compared to SAM-B (1897.4 ms). Figure 9 illustrates these differences: in Image 1, FoSAM
maintains low latency, ensuring masks closely align with current gaze location, whereas in Image 2,
SAM’s higher latency results in noticeable misalignment between the mask and current gaze location,
negatively impacting user experience.

Seven participants take part in the study (in Figure 7, where the computer monitor display the HMD-
cast content), and interact using the HMD controllers. The stimuli consists of four images (Figure 9).
The two methods, denoted as m1 (FoSAM-S) and m2 (SAM-B), are directly compared. Participants
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perform a two-interval forced-choice (2IFC) task Yeshurun et al. (2008), viewing two segmentation
results (t1 and t2) per image, with masks and latency applied as described. The test conditions (t1
and t2) are randomly assigned to m1 and m2. Using the HMD controller buttons, participants switch
between t1 and t2 while observing different objects. After comparing both at least once, they select
the one with higher perceived quality. Each participant completes 32 trials, consisting of 4 images,
each tested with both t and m pairs across 4 repetitions, presented in a random sequence.

Figure 8 presents the results. Across participants, FoSAM was preferred in 96.9%±4.8% of trials
overall, consistently outperforming SAM across all images (98.2%±4.7% for Image 1, 96.4%±6.1%
for Image 2, 96.4%±9.4% for Image 3, and 96.4%±9.4% for Image 4). These results evidence that
the superior performance of FoSAM can potentially improve user experience for AR/VR applications
due to lower processing latency and precise segmentation accuracy.

A.4 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR Author Guide, we disclose that we used LLM-based assistants only for
English-language editing (grammar, wording, and minor rewrites for clarity/flow). LLMs did not
generate ideas, methods, analyses, figures/tables, code, experiments, or results.
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