FOSAM: FOCUS-ORIENTED ADAPTIVE TOKEN SAM-PLING FOR EFFICIENT SEGMENT ANYTHING IN AUG-MENTED REALITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Augmented Reality (AR) encompasses transformative technologies that are redefining how humans interact with their environment. A key component of AR is image segmentation, which breaks down the user's front-view scene into distinct regions for analysis. This process is essential for accurately overlaying digital content onto the physical world by detecting and isolating relevant objects. However, despite its importance, image segmentation poses significant computational demands and latency issues on AR devices, which can severely impact the overall user experience. In this paper, we propose *Focus-Oriented Segment Anything Model* (FoSAM), a framework built upon the Segment Anything Model (SAM) that utilizes real-time gaze data to focus segmentation on regions of interest, substantially lowering computational cost. Experimental results show that FoSAM reduces computational cost by over $50\times$, enabling a seamless visual experience for users, as confirmed by our real-world user study. The code is provided at https://anonymous.4open.science/r/FoSAM-D627.

1 Introduction

Image segmentation Long et al. (2015); Badrinarayanan et al. (2017); Kirillov et al. (2023); Xie et al. (2021) is a core task in computer vision that involves dividing an image into meaningful regions to support visual content analysis and interpretation. Building on this, instance segmentation He et al. (2017a); Bolya et al. (2019); Wang et al. (2020); Yang et al. (2019) identifies and outlines each individual object within a scene. This capability is particularly crucial in augmented reality, where accurate object detection and separation enable precise interaction and seamless overlay of virtual content onto the physical environment, enhancing both immersion and contextual awareness.

Instance segmentation serves as a foundational component for numerous AR applications. For example, in educational contexts (Figure 1 (a)), segmentation can detect individual components of complex diagrams the user is viewing, enhancing student engagement and understanding. These segmented objects can also be passed to downstream applications (e.g., vision-language models (VLMs)), to provide detailed explanations or context-aware information. In an AR-assisted grocery shopping scenario, real-time segmentation enables users to identify products on a shelf as they look at them. Furthermore, segmentation enables direct object manipulation, allowing users to edit or interact with specific elements in their environment, creating a seamless bridge between the physical and virtual worlds. Additional AR use cases leveraging image segmentation are discussed in González Izard et al. (2019; 2020); Tanzi et al. (2021); Alhaija et al. (2017).

The Segment Anything Model (SAM) Kirillov et al. (2023); Ravi et al. (2024) is among the most advanced models for image segmentation today. However, despite its strong performance, SAM is computationally intensive, making it difficult to deploy on resource-limited AR devices that handle high-resolution imagery. This results in high overhead and latency, degrading overall system performance and user experience.

Unlike typical image processing scenarios, AR device users display distinct behavioral patterns. They tend to focus on small, specific areas within a scene before shifting their attention elsewhere. For instance, as shown in Figure 1 (b), a user wearing AR glasses may first focus on the door (left) and then turn their head to look at the bookshelf (right). This behavior naturally segments the video

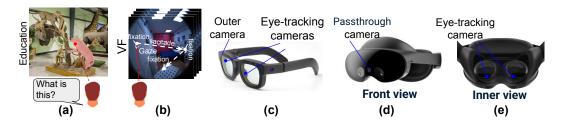


Figure 1: (a) Application of VLM in AR. (b) An example on gaze movement for the AR scenario. (c) Meta Orion AR glass. (d) Front view and (e) innter view of Meta Quest Pro VR headset.

stream into distinct video fragments (VF) based on head movements. In the first VF, where the user's gaze remains on the door across several frames, the segmentation results can be reused, avoiding redundant computation. Similarly, in the second VF, segmentation efforts can be focused solely on the bookshelf. Moreover, as illustrated in Figure 1 (a), it is often beneficial to restrict segmentation to the instances of interest (IOI) currently under the user's gaze, as this typically reflects the user's active focus. This leads to a more efficient approach for AR image segmentation: **prioritize processing for gaze-identified IOIs while ignoring non-essential regions**. This strategy aligns with the principles of *foveated rendering* Patney et al. (2016), which improves rendering efficiency by showing full-resolution detail only within the user's line of sight, reducing visual fidelity in peripheral areas to save computations.

In this work, we aim to reduce the high computational cost of segmentation in AR by leveraging natural human eye movement. We introduce a novel segmentation framework based on Efficient SAM Xiong et al. (2024) (ESAM), a lightweight version of the original SAM that maintains nearly the same performance. By limiting segmentation to only the regions the user is actively viewing, our proposed variant, called *focus-oriented SAM* (FoSAM), achieves more than a $50 \times$ reduction in processing latency without compromising the user's visual experience. Our contributions are:

- We introduce a novel and important perspective on instance segmentation with SAM that exploits human eye behavior to reduce computational costs in AR settings. A simple demo can be found in https://anonymous.4open.science/w/FoSAM-D627).
- We propose *FoSAM*, a lightweight segmentation framework built on ESAM, which processes high-resolution input images and performs instance segmentation on the IOI with extremely low computational cost.
- Building on FoSAM, we introduce *FoSAM Streaming Algorithm* (FSA), an efficient instance segmentation framework tailored for real-time AR/VR applications. FSA, exploits temporal continuity across frames and human gaze patterns to optimize segmentation, delivering enhanced performance in dynamic AR environments.

2 BACKGROUND AND RELATED WORK

2.1 LITERATURE REVIEW ON SEGMENTATION

Semantic segmentation Shelhamer et al. (2014); Badrinarayanan et al. (2015); Chen et al. (2017); Touvron et al. (2020); Cheng et al. (2021); Minaee et al. (2020); Li et al. (2023); Xiong et al. (2019); Cheng et al. (2019) is a key task in computer vision that involves partitioning an image into distinct regions or segments to simplify content analysis and interpretation. A more advanced form of this task is instance segmentation He et al. (2017b); Li et al. (2020); Neven et al. (2019); Brabandere et al. (2017), which aims to distinguish individual instances of the same object class. Unlike semantic segmentation, which labels each pixel without differentiating between instances of the same object class, instance segmentation provides a finer level of detail by distinguishing each instance. To improve segmentation efficiency, previous research has focused on developing learnable input downsampling techniques that adjust sampling resolution in a selective manner. In Recasens et al. (2018), the authors propose a saliency-based distortion layer for convolutional neural networks that enhances spatial sampling of input data in image classification tasks. Subsequent works, such as Jin et al. (2021); Thavamani et al. (2021); Marin et al. (2019); Zeng et al. (2025), follow similar approaches by learning a saliency score for each pixel to guide the downsampling process.

Previous approaches perform image downsampling at the pixel level using Convolutional Neural Networks (CNNs). In contrast, FoSAM is a transformer-based model that adaptively selects tokens of input image at token level, guided by the user's gaze location and the shape of the IOI. Prior work Marin et al. (2023) shows that performing naive downsampling on the token map severely degrades performance. Therefore, porting pixel level downsampling methods to the token level is not feasible. Our FoSAM is fundamentally different from these approaches. Furthermore, previous studies Yang et al. (2019); Wang et al. (2021); Yan et al. (2023); Rajič et al. (2023); Lin et al. (2021); Wu et al. (2022) on video instance segmentation process consecutive frames together. This methods leverage temporal correlations across frames to improve performance; however, it introduces considerable latency, as processing can only begin once all frames are available.

2.2 HUMAN EYE BEHAVIOR IN AR/VR ENVIRONMENT

The human eye operates in three main modes of movement: fixation, where the eye remains stationary and focuses on a single point; saccadic movements, rapid, jerky shifts in gaze from one target to another; and smooth pursuit, where the eye follows a moving object in a smooth manner. During a saccade, the visual system's sensitivity is reduced. This decrease in sensitivity helps prevent the brain from perceiving the blur caused by the swift movement of the eyes.

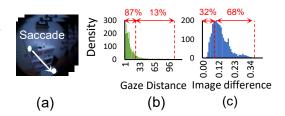


Figure 2: (a) Video Fragments in the user's view. (b) Distribution of the gaze distances. (c) Distribution of the image differences.

Figure 1 (c-e) present the Meta Aria AR glasses Engel et al. (2023) and Meta Quest Pro Inc. (2022), respectively. Both devices feature an outward-facing camera that continuously captures high-resolution images of the user's front view, along with an inward-facing eye-tracking (ET) camera that records monochrome images of the user's eyes. Most modern AR devices are equipped with eye trackers that takes the eye images and provide highly precise gaze direction estimates with minimal latency. To investigate human gaze behavior while using AR devices, we perform an in-depth analysis using the Aria Everyday Activities Dataset Lv et al. (2024). This dataset contains 143 sequences of frames captured by the AR device.

As the user adjusts their head orientation, the front view also changes. To quantify these head movements, we calculate the image difference by measuring the Euclidean distance between corresponding pixels of consecutive frames. If the pixel difference is below a certain threshold, the frames are considered highly similar and nearly indistinguishable to the human eye. These frames are grouped into a single video fragment (VF), as shown in Figure 1 (b) and Figure 2 (a). As shown in Figure 2 (c), 32% of consecutive frames exhibit less than 9% pixel value changes, suggesting a similarity between the consecutive frames and potential for reusing segmentation results across frames.

Furthermore, within each VF, segmentation results can be reused if the gaze remains relatively stable and consistently points to the same IOI. To support this, we analyze the distances (in pixels) between consecutive gaze locations within a VF. Our analysis reveals that a threshold of 22 pixels effectively groups gaze locations during the fixation phase, where the user focuses on a single IOI. Gaze distances exceeding this threshold indicate a saccade, as seen with the rapid gaze changes in VF2 of Figure 2 (a). As shown in Figure 2 (b), 87% of the frames within each VF have a gaze distance of less than 22 pixels, indicating that AR users typically focus on one or two IOIs during each VF. This provides an opportunity to enhance image segmentation efficiency by focusing processing on the IOI and reusing segmentation results when gaze shifts are minimal.

2.3 SEGMENTATION TASK LATENCY

Despite its significance, the segmentation task presents considerable computational challenges, especially on resource-constrained AR devices, primarily because of the high resolution of images these devices capture. This heavy data load leads to significant computational latency, severely limiting performance and responsiveness. To explore this issue, we evaluate the processing latency of the

Table 1: Processing latencies of segmentation models on AR platform.

Image Size	SAM-B	ESAM-S	ESAM-T
$ \begin{array}{r} 1024^2 \\ 640^2 \end{array} $	1897.4 ms	600.3 ms	279.7 ms
	441.8 ms	102.6 ms	46.7 ms

image segmentation task using well-established neural networks, including Segment Anything Base model (SAM-B) Kirillov et al. (2023); Ravi et al. (2024), Efficient SAM Tiny (ESAM-T) Xiong et al. (2024), and ESAM Small (ESAM-S). The latencies are profiled on the Qualcomm XR2 Gen2 platform Qualcomm Technologies, Inc. (2024b) using the Qualcomm AI Hub toolkit Qualcomm Technologies, Inc. (2024a), which is equipped by Meta Quest Pro Inc. (2022) and Meta Aria AR glasses Engel et al. (2023). Table 1 shows that the processing latencies for 1024×1024 input images are 1897.4ms, 600.3ms, and 279.7ms for SAM-base (SAM-B), Efficient SAM-small (ESAM-S), and Efficient SAM-tiny (ESAM-T), respectively. Furthermore, even with a smaller input resolution of 640×640 , the latency still ranges from 441.8ms to 46.7ms. These latency fall short of the threshold required for a seamless visual experience, as prior studies indicate that latencies below 30 ms are essential for maintaining optimal visual fluidity Kaaresoja et al. (2014); vis; Albert et al. (2017).

3 METHODOLOGY

Figure 3 illustrates the computational pipeline of the FoSAM framework. During runtime, the inward-facing sensor of the AR/VR device continuously captures images of the user's eye and sends them to the gaze tracker, which estimates the gaze direction instantaneously with high accuracy (5 to 10 milliseconds) Stein et al. (2021); Hou et al. (2024). At timestep t, this estimated gaze direction g_t , along with a high-resolution image I_t captured by the front-facing camera, is provided as input to FoSAM. FoSAM then produces a segmentation map M_t focused on

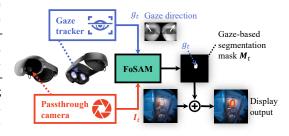


Figure 3: System Deployment of FoSAM.

the IOI, which can be reused across frames where the gaze location remains similar. To simplify notation, we omit the subscript t in the following sections. The core idea of FoSAM is to employ a lightweight token selector to identify and select a subset of image tokens, which are then passed to the segmentation network. By processing only the selected tokens, the segmentation network significantly reduces its computational overhead.

3.1 PRELIMINARIES

FoSAM builds on ESAM Xiong et al. (2024), which includes three main components: an *image encoder* E(.), a *prompt encoder* R(.), and a *mask decoder* D(.). Given an input RGB image $I \in \mathbb{R}^{H \times W \times 3}$, it is first tokenized and positionally embedded into a set of tokens $X = \{x_{ij}\}$ with a size of $H_e \times W_e$, where each token $x_{ij} \in \mathbb{R}^{1 \times d_t}$. H_e and W_e equal $\frac{H}{P}$ and $\frac{W}{P}$, where P is the patch size of the tokenizer. These tokens are passed through the image encoder to produce $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$, which retains the same spatial resolution. In parallel, a point-based gaze prompt $Y = \{y_{ij}\} = E(X)$ and $Y = \{y_{ij}\} = E(X)$ and Y

3.2 FoSAM Framework

3.2.1 GAZE-GUIDED TOKEN IMPORTANCE ENCODER

The gaze-guided TIEncoder is designed to assign a Token Importance Score (TIScore) to each token X based on the user's gaze direction g. A common approach predicts token-wise importance scores independently for each token Liu et al. (2021; 2023); Kockwelp et al. (2025); Rao et al. (2021); Tang et al. (2022), and then removes those with low scores. However, this strategy often leads to

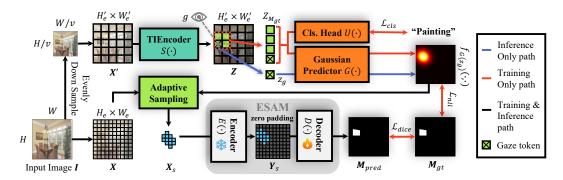


Figure 4: An overview of FoSAM framework.

poor accuracy because it lacks spatial coherence. The independently predicted scores can result in fragmented TIScore map with missing regions, which negatively affect the segmentation quality of the image decoder. Additionally, this approach requires computing a TIScore for every token, resulting in computational complexity that grows linearly with the number of tokens. This significantly limits the potential for reducing model size and improving efficiency.

To address these limitations, we propose estimating the TIScores of tokens using a 2D Gaussian distribution. The top portion of Figure 4 illustrates the overall pipeline, with the black and blue arrows show the inference flow. The input image I is first uniformly downsampled from $H \times W$ to $\frac{H}{v} \times \frac{W}{v}$, resulting in a lower-resolution image I', where v denotes the downsampling ratio. This step effectively reduces the computational cost of the TIEncoder function S(.). Next, I' is passed through a pre-trained ESAM tokenizer and a positional embedding module to generate token features $X' = \{x'_{ij}\}$ with dimensions $H'_e \times W'_e$. X' is then processed by the TIEncoder S(.), which outputs Z = S(X') containing the same number of tokens. Tokens Z are selected based on their spatial proximity to the gaze point g obtained from the gaze tracker. The token nearest to g, denoted as $z_g \in Z$, captures essential information about the IOI, such as its shape and scale, and serves as the foundation for predicting a bounding window that encloses the IOI.

To simplify the window generation process while preserving spatial continuity, we introduce a Gaussian predictor to estimate the TIScore of each token $x \in X$. This predictor, $G(\cdot)$, takes z_g as input and outputs the parameters of a 2D Gaussian distribution: the mean (μ_x, μ_y) , standard deviations (σ_x, σ_y) , and correlation coefficient ρ . Let $f_{G(z_g)}(\cdot, \cdot)$ represent the probability density function of Gaussian distribution with the parameter specified by $G(z_g)$. The TIScore for each token $x \in X$ is then computed as its likelihood under the predicted 2D Gaussian distribution, denoted as $f_{G(z_g)}(c_i(x), c_j(x))$, where $c_i(x)$ and $c_j(x)$ is the 2D coordinate of x within the token map.

3.2.2 Adaptive Token Sampling Mechanism

Based on the TIScores generated by the 2D Gaussian map, only a subset of tokens with the highest scores are retained. Specifically, a larger IOI results in more tokens receiving high TIScores, corresponding to a Gaussian distribution with lower variance. Conversely, smaller IOIs produce higher-variance distributions and fewer high-importance tokens. As a result, we retain the top K tokens, where K is determined adaptively based on the Gaussian distribution. Specifically, let $\tau \in [0,1]$ denotes a threshold of the token elimination, token x_i are kept only if specified as follows:

$$f_{G(z_g)}(c_i(x), c_j(x)) \ge \max_{x \in X} [f_{G(z_g)}(c_i(x), c_j(x))] \times \tau$$
 (1)

Here, τ denotes the threshold applied to the TIScores. Additionally, we define a minimum token count ϵ to ensure a sufficient number of tokens are selected. If the number of tokens satisfying the condition in Equation 1 falls below ϵ , the top- ϵ tokens are selected based on their TIScores. By setting τ to a predefined value (e.g., 0.01), Equation 1 enables adaptive token selection, allowing the number of retained tokens to vary according to the size of the IOI. Let $X_s \subseteq X$ represent set of tokens selected under equation 1. The selected tokens are passed through the image encoder, yielding $E(X_s)$, which is then fed into the mask decoder D(.) as shown by the low portion of Figure 4. As noted in Section 3.1, D(.) expects a fixed input size of $H_e \times W_e$. To satisfy this requirement, $E(X_s)$ is zero-padded to the target dimensions, the results is denoted as Y_s . The decoder then generates the predicted segmentation mask M_{vred} . The following section details the training procedure.

3.2.3 Training and Loss Function

Figure 4 illustrates the training and inference workflows of FoSAM, with data flows for inference and training shown in black+blue and black+red, respectively. During inference, only the token z_g , which is closest to the gaze location g, is used to predict the TIScore. Let M_{gt} represent the ground-truth binary mask corresponding to the input I, where $M_{gt,ij}=1$ indicates that the pixel lies within the IOI, and 0 otherwise. Additionally, let $X_{M_{gt}}\subseteq X$ denote the subset of tokens whose spatial positions fall within the IOI as defined by M_{gt} , and let $Z_{M_{gt}}=S(X_{M_{gt}})$ represent the outputs of the S(.) of the corresponding tokens. The loss function used during training comprises three components: the negative log-likelihood, $\mathcal{L}_{\mathrm{nll}}$, the classification loss $\mathcal{L}_{\mathrm{cls}}$, and the Dice loss $\mathcal{L}_{\mathrm{dice}}$. The objective of $\mathcal{L}_{\mathrm{nll}}$ is to train the TIEncoder module $S(\cdot)$ and the Gaussian predictor $G(\cdot)$ to generate a 2D Gaussian map $f_{G(S(x))}(\cdot)$, where $x\in X_{M_{gt}}$, that closely approximates the ground-truth mask M_{gt} , as follows:

$$\mathcal{L}_{\text{nll}} = -\sum_{x_m \in X_{M_{gt}}} \sum_{x'_m \in X_{M_{gt}}} log[f_{G(S(x_m))}(c_i(x'_m), c_j(x'_m))]$$
 (2)

where $\sum_{x_m' \in X_{M_{gt}}} log[f_{G(S(x_m))}(c_i(x_m'), c_j(x_m'))]$ represents the sum of the log-probabilities for each token x_m' within the ground truth mask M_{gt} . These probabilities are computed using a 2D Gaussian distribution, where the distribution parameters are generated based on the reference token x_m . In other words, we aim to ensure that each token x_m within the ground truth mask M_{gt} can generate a 2D Gaussian distribution that effectively covers the intended IOI.

In practice, obtaining an accurate Gaussian distribution that closely mimic the ground-truth mask poses a granular alignment challenge. For example, when the gaze point lands on the headlight of a car, it is often ambiguous whether the target object is the headlight itself or the entire vehicle. Similarly, if the gaze fixed on a chess piece, it is unclear whether the segmentation should cover the individual piece or the whole chessboard. To mitigate this ambiguity, we introduce an additional classification loss \mathcal{L}_{cls} , which leverages category labels to enforce granular alignment. Beyond alignment, \mathcal{L}_{cls} also provide clustering effect, markedly enhancing the inter-class diversity of the Gaussian maps. As an auxiliary supervision signal, it encourages the TIEncoder S(.) to learn class-specific features, leading to a better Gaussian maps. Therefore, as shown in Figure 3, a shallow neural network U(.) is attached to the output of S(.) for classification task. Let $M_{cls}(x_i)$ denote the class label associated with the IOI where x_m is mapping to, \mathcal{L}_{cls} can be expressed as:

$$\mathcal{L}_{cls} = -\sum_{x_m \in X_{M_{gt}}} CE[U(S(x_m), M_{cls}(x_m))]$$
(3)

Here, $CE(\cdot)$ denotes the cross-entropy loss. Finally, to ensure that the output M_{pred} of the image decoder $D(\cdot)$ aligns with the ground-truth mask M_{gt} , we apply the Dice loss.

$$\mathcal{L}_{\text{dice}} = DICE[M_{pred}, M_{gt}] \tag{4}$$

The overall loss function can be calculated as $\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{nll}} + \lambda_2 \mathcal{L}_{\text{cls}} + \lambda_3 \mathcal{L}_{\text{dice}}$, where λ_1, λ_2 and λ_3 represent the relative importance of the loss functions. During training, only the TIEncoder $S(\cdot)$, classification head $U(\cdot)$, Gaussian head $G(\cdot)$, and image decoder $D(\cdot)$ are updated, while the image encoder $E(\cdot)$ remains frozen, significantly reducing the training cost of FoSAM.

3.3 FOSAM STREAMING ALGORITHM

Building on the FoSAM architecture introduced in Section 3.2, this section explains how FoSAM can be extended for efficient instance segmentation across consecutive video frames. As motivated by the study in Section 2.2, FoSAM is triggered during real-time operation only when the input image I, captured by the front-facing camera, shows a significant change or when a shift in the user's gaze direction is detected. The logic flow of the FoSAM Streaming Algorithm (FSA) is shown in Figure 5. Let I_{ini} and I_t represent the input images at the initial frame and at time step t, respectively. A simple criterion is used to determine whether the current view remains within the

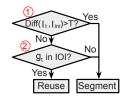


Figure 5: FSA flow.

previous segment by computing the relevant difference between I_t and $I_{\rm ini}$ (Condition 1). Instead of computing pixel-wise differences over the entire images I_t and I_{ini} , we restrict the computation to the masked regions, focusing only on the relevant areas across the two frames. Instead of using a fixed

 α threshold, we times α by the area of M_{pred} . This allows the threshold to adapt automatically based on the size of the gazed object, making the segmentation decision more robust across varying object sizes. If this difference surpasses the threshold $T=\alpha\times\sum_{i,j}M_{pred,ij}$, it signals a substantial change in the previous gazed area, prompting a full re-execution of FoSAM, and I_{ini} will be updated with I_t . If no big change is observed, the current gaze location g_t is examined to determine whether it remains in IOI region defined by the segmentation mask M_{pred} of I_{ini} (Condition 2). If it does, M_{pred} can be reused; otherwise FoSAM must be executed with g_t and M_{pred} will be updated accordingly. Details of the FSA are in the supplementary materials.

4 EVALUATION

324

325

326

327

328

330

331332333

334 335

336

337

338

339

340

341

342

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

364

365

366

367

368

369

370

371372

373 374

375

376

377

We evaluate FoSAM using publicly available datasets: ADE20K Zhou et al. (2019), LVIS Gupta et al. (2019), and Cityscapes Cordts et al. (2016). As these datasets are originally designed for generic segmentation tasks to cover all the objects in the image, we introduce a gaze-aware masking preprocessing step to enable segmentation over the IOI only. Specifically, for each training and testing sample, a gaze location is randomly selected within the image, and the corresponding IOI region is defined based on this location. The size of the input images is 640×640 for all datasets.

We use a lightweight two-layer ViT as the TIEncoder S(.). The input images have a resolution of $H \times W = 640 \times 10^{-2}$

Table 2: IoU and FLOP comparison of FoSAM and baseline algorithms. K denotes the token budget.

Method	1 17	L ADEQUE	LIVIC	C:	CELOD
Method	K	ADE20K	LVIS	Cityscape	GFLOP
SAM-B Ravi et al. (2024)	4096	0.511	0.537	0.347	744
ESAM-S Xiong et al. (2024)	4096	0.411	0.359	0.304	188.2
ESAM-T Xiong et al. (2024)	4096	0.350	0.236	0.248	56.1
SlimSAM Chen et al. (2024)	4096	0.477	0.474	0.293	15.1
FSNet-DL Zeng et al. (2025)	NA	0.34	0.38	0.24	18.8
FSNet-SF Zeng et al. (2025)	NA	0.33	0.36	0.21	12.6
AD-S	200	0.273	0.350	0.221	14.6
LC-S	200	0.368	0.477	0.385	14.6
FoSAM-S	200	0.495	0.487	0.404	14.6
AD-S	100	0.252	0.343	0.203	10.4
LC-S	100	0.294	0.444	0.339	10.4
FoSAM-S	100	0.465	0.461	0.362	10.4
AD-T	200	0.256	0.322	0.198	7.4
LC-T	200	0.327	0.453	0.371	7.4
FoSAM-T	200	0.471	0.469	0.377	7.4
AD-T	100	0.239	0.318	0.176	5.3
LC-T	100	0.264	0.421	0.302	5.3
FoSAM-T	100	0.457	0.435	0.328	5.3

640, and are average downsampled to $H'_e \times W'_e = 160 \times 160$ prior to processing. The FoSAM framework is integrated with ESAM Small Xiong et al. (2024) and ESAM Tiny, referred to as FoSAM-S and FoSAM-T, respectively. Two baseline methods are developed for comparison. The first method, Average Downsampling (AD), enhances segmentation efficiency by directly applying average pooling to the original input X, reducing its spatial resolution and thus lowering computational cost. The second method, Local Cropping (LC), improves efficiency by extracting a fixed-size patch centered around the gaze point g, thereby narrowing the focus to a smaller input region. These baselines are evaluated on both ESAM Small and ESAM Tiny, resulting in AD-S, AD-T, LC-S, and LC-T configurations. Furthermore, we evaluate performance against SAM Base (SAM-B), ESAM Small (ESAM-S), ESAM Tiny (ESAM-T), and SlimSAM Chen et al. (2024), which improves segmentation efficiency through a combination of knowledge distillation, embedding pruning, and bottleneck pruning. We also compare FoSAM with FSNet, which integrates DeepLab He et al. (2016) and Segformer Xie et al. (2021) backbones to enable efficient segmentation via learnable input downsampling strategies, referred to as FSNet-DL and FSNet-SF, respectively. During training, the weights for the loss terms \mathcal{L}_{nll} , \mathcal{L}_{cls} , and \mathcal{L}_{dice} are all set to 1. We evaluate segmentation performance using the Intersection over Union (IoU) metric, which measures the overlap between the predicted segmentation and the ground truth IOI region. To control the average number of retained tokens K, we adjust the TIScore threshold τ and the minimum token count ϵ as defined in Equation 1. More evaluation results are shown in the supplementary materials.

4.1 EVALUATION RESULTS OF FOSAM

Table 2 presents the evaluation results. The compared methods, FoSAM, AD, and LC, all operate on input images at their original resolution. FoSAM adopts an adaptive token sampling strategy with average token budgets of K=200 and K=100 across the entire test dataset. To ensure a fair comparison, the input sizes of AD and LC are adjusted so that their computational cost aligns with that of FoSAM. For ESAM, SlimSAM, and SAM, regardless of the original input size, the built-in

Latency	Tol	ken
(ms)	200	100
FoSAM-S	21.6	18.3
FoSAM-T	17.6	14.5

384

385 386

387

388

389

390

391

392

393

394

395

396

397

398 399

400

401

402

403

404

405

406

407 408

409 410

411

412

413

414

415

416

417

418

419

420

421 422

423 424

425

426

427

428

429

430

431

Table 3: Processing laan AR platform.

Skip Rate — F-S IoU — F-T IoU					
0.01 0.4 0.3 0.2 0.0 0.0 0.01	0.03	0.05	0.08	0.1	- 0.42 - 0.40 - 0.38 <u>-</u> - 0.36 - 0.34

tencies of FoSAM on Figure 6: Average IoU and frame skip rate of FSA on FoSAM-S and FoSAM-T under varying α .

Figure 7: Participants are doing user study.

resizing layer by default resizes all inputs to 1024×1024 , resulting in a fixed number of 4096 tokens. For SlimSAM, we tune its pruning ratio to achieve a similar computational cost to FoSAM. In the case of FSNet-DL and FSNet-SF, input images are downsampled to a resolution of 80×80 , which is the default setting of it. As shown in the results, FoSAM consistently outperforms the AD and LC baselines across all datasets. In contrast to different versions of ESAM, SlimSAM and FSNet, FoSAM achieves both higher accuracy and reduced computation. For instance, in Cityscape datasets, FoSAM-T with 100 token budget achieves 3.5% higher IoU than SlimSAM with only one third of the computation cost. This highlights the effectiveness of IOI guided adaptive token sampling in FoSAM. Moreover, FoSAM demonstrates strong generalizability across datasets, with minor performance variations attributed to dataset-specific characteristics. Compared to SAM, although FoSAM does not achieve equally high IoU, it provides comparable accuracy while reducing computational cost by over 50×. As shown in the user study in Section 4.4, FoSAM also offers a significantly better visual experience, whereas SAM introduces noticeable processing delays that degrade user experience.

To assess FoSAM's processing latency on AR device, we profile the performance of FoSAM-S and FoSAM-T with average token budgets of K=200 and 100 on the Qualcomm XR2 Gen2 platform Qualcomm Technologies, Inc. (2024b), utilizing the Qualcomm AI Hub toolkit Qualcomm Technologies, Inc. (2024a). It is important to note that the Qualcomm XR2 Gen2 is integrated into the Meta Quest Pro for AR/VR task processing Inc. (2022); Engel et al. (2023). The average latencies, computed over 100 profiling runs on a single LVIS sample, are reported in Table 3. Compared to the latency of SAM and ESAM shown in Table 1, FoSAM achieves an average of 24× reduction in inference time and meets the 30 ms latency threshold required for a seamless visual experience, as indicated by prior research Kaaresoja et al. (2014); vis; Albert et al. (2017).

4.2 EVALUATION RESULTS OF FOSAM STREAMING ALGORITHM

The FSA mechanism introduced in Section 3.3 reduces segmentation overhead by reusing results from previous frames. However, as illustrated in Figure 5, varying the parameter can influence the average IoU across frames. To evaluate this effect, we analyze the performance of FoSAM-S and FoSAM-T with FSA evaluated on the Cityscapes dataset under different settings of α , which represent the threshold for image difference shown in Figure 5. The token budget is set to 200 for both FoSAM-S and FoSAM-T. We use 10 video sequences which contain 5000 images in total. However, since the Cityscapes dataset lacks gaze location data, we incorporate gaze traces described in Lv et al. (2024) into each frame of the Cityscapes dataset. The results are described in Figure 6, as α increases from 0.01 to 0.1, more frames are skipped by reusing segmentation results of previous frames. For instance, skipping 40% of the frames leads to only a 0.03 reduction in average IoU across frames for both FoSAM-S and FoSAM-T, showing that FSA can greatly reduce segmentation computation with negligible impact on the accuracy.

4.3 ABLATION STUDY

Impact of TIEncoder Size In this section, we examine how the computational cost of the TIEncoder $S(\cdot)$ influences FoSAM's accuracy under an average token budget of K=200 on the ADE20K dataset. Specifically, we evaluate the impact on FoSAM performance by varying both the parameter size of $S(\cdot)$ and the input resolution of X' fed into $S(\cdot)$. As shown in Table 4, increasing the number of encoder layers from 2 to 3 and raising the input resolution from 160×160 to 640×640 leads to only a

Table 4: Impact of the TIEncoder.

Layer Number	Image Size	IoU	SE GFLOPs
3	640×640	0.499	10.4
3	320×320	0.499	2.8
2	320×320	0.497	1.88
2	160×160	0.495	0.48
2	80×80	0.492	0.12
1	320×320	0.492	0.94

slight improvement in IoU, while the computational cost rises substantially from 0.48 GFLOPs to 10.4 GFLOPs for the TIEncoder processing. Additionally, reducing the number of encoder layers results in a more significant accuracy drop than downsampling the input image. The TIEncoder design in FoSAM strikes an effective balance between computational efficiency and performance.

Impact of the Token Budget As described in Section 3.2.2, FoSAM adopts an adaptive token sampling mechanism that adjusts the number of retained tokens according to the size of the IOI. In contrast, the LC algorithm applies a fixed token count regardless of IOI size, which can lead to too few tokens for large IOIs, reducing accuracy, or too many tokens for small IOIs, causing unnecessary computation. Table 5 compares the performance of FoSAM and LC under varying token budgets K on different datasets. For FoSAM, the number of retained tokens varies across frames, with an average of K. On the LVIS, FoSAM-S achieves an average of 0.9% higher IoU than LC-S when K=400, and outperforms LC-S by 5.5% when K=25. These results highlight FoSAM's ability to adapt the token budget to the size of the IOI, allowing it to maintain accuracy even under constrained token budgets.

Table 5: Performances with varying token budgets.

Dataset	Budget (K)	FoSAM-S	LC-S
	400	0.499	0.490
LVIS	200	0.487	0.477
	100	0.475	0.443
	25	0.371	0.318
	400	0.417	0.394
Cityscape	200	0.404	0.385
	100	0.362	0.339
	25	0.269	0.243
	400	0.517	0.442
ADE	200	0.499	0.368
	100	0.472	0.293
	25	0.311	0.227

TIEncoder design: Gaussian vs. Token-wise Selecting tokens based on assigned scores is a common concept in computer vision, but most of them use a token-wise design, which means predicting a score for each token separately, as described in Section 3.2.1. In contrast, FoSAM only predict a single Gaussian distribution and use it to assign

Table 6: Gaussian vs. Token-wise

Method	Lvis (200 token budget) (IoU)
Gaussian (ours)	0.487
Token-wise design	0.231

all TIScores at once. Table 6 provides a comparison to demonstrate the effect of switching to a common token-wise design in our case by adding Importance Head for each token. As shown, the token-wise approach performs significantly worse under the same token budget. It is because unlike the smooth and concentrated Gaussian TIScore map, the token-wise design often produces fragmented and discontinuous token selection, and the SAM's mask decoder is very vulnerable to this discontinuity.

4.4 USER STUDY

To assess the user experience benefits of FoSAM over the standard SAM method on AR device, we conduct a two-interval forced-choice (2IFC) Yeshurun et al. (2008) user study simulating both methods' effects on the Meta Quest Pro headset Inc. (2022). Segmentation masks were precomputed and gaze-contingent visualizations were rendered with artificially introduced latencies reflecting each method's runtime profiled on the Qualcomm XR2 Gen2's NPU Qualcomm Technologies (2025). Each of the seven participants compared results across four test images, selecting the preferred output in 32 trials, as shown in Figure 7. As shown in Figure 8, FoSAM was preferred in 96.9% $\pm 4.8\%$ of trials overall, consistently outperforming SAM

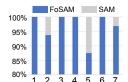


Figure 8: Preference rates of the seven participants.

across all images. Although FoSAM incurs a slight drop in segmentation accuracy compared to SAM, its greatly lower latency and better temporal alignment with gaze location result in a significantly improved user experience. See supplementary materials for implementation details.

5 CONCLUSION AND LIMITATION

We presented FoSAM, a gaze-guided segmentation framework optimized for AR/VR. By focusing computation on user-relevant regions, FoSAM achieves over $50\times$ speedup with minimal accuracy loss. Experiments and user studies validate its effectiveness for real-time deployment on AR devices. While FSA achieves substantial latency reduction, it relies on heuristic thresholds for result reuse, which could be further optimized in future work. Additionally, potential risks include privacy concerns related to eye-tracking data and reliance on model accuracy in sensitive applications, which needs to be solved as future work.

Ethics Statement We affirm that all authors have read and will adhere to the ICLR Code of Ethics. Our work includes a user study with seven adult participants using a head-mounted AR devices to compare gaze-contingent segmentation latency/quality. All participants provided informed consent prior to participation. The study involved minimal risk, and participants could withdraw at any time without penalty. No personally identifiable information (PII) was collected; no raw eye images were stored; only anonymized preference choices and aggregate metrics were retained. The study complied with our institution's human-research guidelines and applicable laws. We use only public datasets for training/evaluation. All data are used under their respective licenses/terms; no attempt was made to re-identify individuals or to reconstruct any personally sensitive attributes. We will release code, configuration files, and evaluation scripts sufficient for reproducibility. We will not release any user-study raw data or raw eye-tracking images.

Reproducibility Statement We aim to make all results fully reproducible. We provide an anonymized repository at https://anonymous.4open.science/r/FoSAM-D627 which contains the full source code. The model architecture and inference pipeline are specified in Section 3 (with the streaming procedure detailed in Appendix A.1), and the learning objective is given by Equation 2,3,4. Detailed Hyperparameter settings for experiments can be find in the provided anonymized repository. Datasets preprocessing are described in Section 4.

REFERENCES

- Understanding vr performance metrics. https://moldstud.com/articles/p-understanding-vr-performance-metrics-for-developers.
- Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. Latency requirements for foveated rendering in virtual reality. *ACM Trans. Appl. Percept.*, 14(4), September 2017. ISSN 1544-3558. doi: 10.1145/3127589. URL https://doi.org/10.1145/3127589.
- Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars Mescheder, Andreas Geiger, and Carsten Rother. Augmented reality meets deep learning for car instance segmentation in urban scenes. In *British machine vision conference*, volume 1, 2017.
 - Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39:2481–2495, 2015. URL https://api.semanticscholar.org/CorpusID:60814714.
- Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(12):2481–2495, 2017.
- Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9157–9166, 2019.
- Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic instance segmentation with a discriminative loss function. *ArXiv*, abs/1708.02551, 2017. URL https://api.semanticscholar.org/CorpusID:2328623.
- Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation, 2017. URL https://arxiv.org/abs/1706.05587.
- Zigeng Chen, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Slimsam: 0.1% data makes segment anything slim. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 39434–39461. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/45a7ca247462d9e465ee88c8a302ca70-Paper-Conference.pdf.
- Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12472–12482, 2019. URL https://api.semanticscholar.org/CorpusID:208248153.
- Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for semantic segmentation. In *Neural Information Processing Systems*, 2021. URL https://api.semanticscholar.org/CorpusID:235829267.
- Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gamino, Andrew Turner, Arjang Talattof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project aria: A new tool for egocentric multi-modal ai research. *arXiv preprint arXiv:2308.13561*, 2023.
- Santiago González Izard, Juan A Juanes Méndez, Pablo Ruisoto Palomera, and Francisco J García-Peñalvo. Applications of virtual and augmented reality in biomedical imaging. *Journal of medical systems*, 43(4):102, 2019.

- Santiago González Izard, Ramiro Sánchez Torres, Oscar Alonso Plaza, Juan Antonio Juanes Mendez,
 and Francisco José García-Peñalvo. Nextmed: automatic imaging segmentation, 3d reconstruction,
 and 3d model visualization platform using augmented and virtual reality. *Sensors*, 20(10):2962,
 2020.
 - Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation, 2019. URL https://arxiv.org/abs/1908.03195.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the IEEE international conference on computer vision*, pp. 2961–2969, 2017a.
 - Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask r-cnn. 2017b. URL https://api.semanticscholar.org/CorpusID:54465873.
 - Baosheng James Hou, Yasmeen Abdrabou, Florian Weidner, and Hans Gellersen. Unveiling variations: A comparative study of vr headsets regarding eye tracking volume, gaze accuracy, and precision. In 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 650–655. IEEE, 2024.
 - Meta Platform Inc. Meta quest pro. https://www.meta.com/quest/quest-pro/, 2022.
 - Chen Jin, Ryutaro Tanno, Thomy Mertzanidou, Eleftheria Panagiotaki, and Daniel C Alexander. Learning to downsample for segmentation of ultra-high resolution images. *arXiv preprint arXiv:2109.11071*, 2021.
 - Topi Kaaresoja, Stephen Brewster, and Vuokko Lantz. Towards the temporally perfect virtual button: touch-feedback simultaneity and perceived quality in mobile touchscreen press interactions. *ACM Transactions on Applied Perception (TAP)*, 11(2):1–25, 2014.
 - Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.
 - Jacqueline Kockwelp, Daniel Beckmann, and Benjamin Risse. Human gaze improves vision transformers by token masking. In *Proceedings of the Winter Conference on Applications of Computer Vision*, pp. 396–405, 2025.
 - Xiangtai Li, Henghui Ding, Wenwei Zhang, Haobo Yuan, Jiangmiao Pang, Guangliang Cheng, Kai Chen, Ziwei Liu, and Chen Change Loy. Transformer-based visual segmentation: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46:10138–10163, 2023. URL https://api.semanticscholar.org/CorpusID:258212528.
 - Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun, and Jiaya Jia. Fully convolutional networks for panoptic segmentation. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 214—223, 2020. URL https://api.semanticscholar.org/CorpusID:227239035.
 - Huaijia Lin, Ruizheng Wu, Shu Liu, Jiangbo Lu, and Jiaya Jia. Video instance segmentation with a propose-reduce paradigm. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1739–1748, 2021.
 - Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei Han. Visual saliency transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4722–4732, 2021.
 - Tianpeng Liu, Jing Li, Jia Wu, Lefei Zhang, Jun Chang, Jun Wan, and Lezhi Lian. Tracking with saliency region transformer. *IEEE Transactions on Image Processing*, 33:285–296, 2023.
 - Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3431–3440, 2015.

- Zhaoyang Lv, Nicholas Charron, Pierre Moulon, Alexander Gamino, Cheng Peng, Chris Sweeney, Edward Miller, Huixuan Tang, Jeff Meissner, Jing Dong, Kiran Somasundaram, Luis Pesqueira, Mark Schwesinger, Omkar Parkhi, Qiao Gu, Renzo De Nardi, Shangyi Cheng, Steve Saarinen, Vijay Baiyya, Yuyang Zou, Richard Newcombe, Jakob Julian Engel, Xiaqing Pan, and Carl Ren. Aria everyday activities dataset, 2024. URL https://arxiv.org/abs/2402.13349.
 - Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee, Sam Tsai, Fei Yang, and Yuri Boykov. Efficient segmentation: Learning downsampling near semantic boundaries. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2131–2141, 2019.
 - Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and Oncel Tuzel. Token pooling in vision transformers for image classification. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 12–21, 2023.
 - Shervin Minaee, Yuri Boykov, Fatih Murat Porikli, Antonio J. Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep learning: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44:3523–3542, 2020. URL https://api.semanticscholar.org/CorpusID:210702798.
 - Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8829–8837, 2019. URL https://api.semanticscholar.org/CorpusID:195658142.
 - Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir Benty, David Luebke, and Aaron Lefohn. Towards foveated rendering for gaze-tracked virtual reality. *ACM Transactions on Graphics (TOG)*, 35(6):1–12, 2016.
 - Inc. Qualcomm Technologies. Qualcomm hexagon npu, 2025. URL https://www.qualcomm.com/products/technology/processors/hexagon. Accessed: 2025-05-08.
 - Qualcomm Technologies, Inc. Qualcomm ai hub. https://app.aihub.qualcomm.com/docs/index.html, 2024a. Accessed: 2025-04-19.
 - Qualcomm Technologies, Inc. Snapdragon xr2 gen 2 platform. https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-gen-2-platform, 2024b. Accessed: 2025-04-19.
 - Frano Rajič, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher Yu. Segment anything meets point tracking. *arXiv preprint arXiv:2307.01197*, 2023.
 - Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision transformers with dynamic token sparsification. *Advances in neural information processing systems*, 34:13937–13949, 2021.
 - Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024.
 - Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Matusik, and Antonio Torralba. Learning to zoom: a saliency-based sampling layer for neural networks. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 51–66, 2018.
 - Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for semantic segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, 2014. URL https://api.semanticscholar.org/CorpusID:1629541.
 - Niklas Stein, Diederick C Niehorster, Tamara Watson, Frank Steinicke, Katharina Rifai, Siegfried Wahl, and Markus Lappe. A comparison of eye tracking latencies among several commercial head-mounted displays. *i-Perception*, 12(1):2041669520983338, 2021.
 - Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. Patch slimming for efficient vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12165–12174, 2022.

- Leonardo Tanzi, Pietro Piazzolla, Francesco Porpiglia, and Enrico Vezzetti. Real-time deep learning semantic segmentation during intra-operative surgery for 3d augmented reality assistance. *International Journal of Computer Assisted Radiology and Surgery*, 16(9):1435–1445, 2021.
 - Chittesh Thavamani, Mengtian Li, Nicolas Cebron, and Deva Ramanan. Fovea: Foveated image magnification for autonomous navigation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 15539–15548, 2021.
 - Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herv'e J'egou. Training data-efficient image transformers & distillation through attention. In *International Conference on Machine Learning*, 2020. URL https://api.semanticscholar.org/CorpusID:229363322.
 - Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dynamic and fast instance segmentation. *Advances in Neural information processing systems*, 33:17721–17732, 2020.
 - Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-end video instance segmentation with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8741–8750, 2021.
 - Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang Bai. Seqformer: Sequential transformer for video instance segmentation. In *European Conference on Computer Vision*, pp. 553–569. Springer, 2022.
 - Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer: Simple and efficient design for semantic segmentation with transformers. *Advances in neural information processing systems*, 34:12077–12090, 2021.
 - Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiaoliang Dai, Dilin Wang, Fei Sun, Forrest Iandola, et al. Efficientsam: Leveraged masked image pretraining for efficient segment anything. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16111–16121, 2024.
 - Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A unified panoptic segmentation network. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8810-8818, 2019. URL https://api.semanticscholar.org/CorpusID:58004609.
 - Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu. Universal instance perception as object discovery and retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15325–15336, 2023.
 - Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5188–5197, 2019.
 - Yaffa Yeshurun, Marisa Carrasco, and Laurence T Maloney. Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. *Vision research*, 48(17):1837–1851, 2008.
 - Hongyi Zeng, Wenxuan Liu, Tianhua Xia, Jinhui Chen, Ziyun Li, and Sai Qian Zhang. Foveated instance segmentation. *arXiv preprint arXiv:2503.21854*, 2025.
 - Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. *International Journal of Computer Vision*, 127(3):302–321, 2019.

A APPENDIX

756

758

759 760

761

762

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

781 782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802 803 804

805

806

807

808

A.1 DETAILS OF FOSAM STREAMING ALGORITHM

FoSAM streaming algorithm is outlined in Algorithm 1, a simple criterion is applied to detect if the view is still in the previous video fragment (VF) by calculating the relative difference between I_t and I_{ini} (line 4). If this difference exceeds a threshold $T = \alpha \times \sum_{i,j} M_{pred,ij}$, it indicates a significant change in the front scene, triggering a full re-execution of FoSAM (line 5). I_{ini} and M_{pred} will be updated accordingly (line 6). If not, the current gaze location is analyzed to determine if it remains within the same IOI region (line 9). If it does, the last segmentation mask M_{pred} can be reused (line 10). Otherwise, FoSAM must be executed with the new input frame I_t and gaze location g_t (line 12), I_{ini} and M_{pred} will be updated accordingly (line 13).

Algorithm 1: FoSAM Streaming Algorithm

Input: I_{ini} is the initial frame of current VF. M_{pred} is the buffered segmentation mask of I_{ini} . IOI is the instance of interest region defined by M_{pred} . g_t , I_t , and M_t represent the current gaze direction, the current input frame, and the segmentation mask at time t. α is the threshold of result reuse.

```
1 Initiation
          I_{ini} = \varnothing, M_{pred} = \varnothing
          for 1 \le t \le T do
3
                if \frac{\sum_{i,j} |I_{t,ij} - I_{ini,ij}|}{\sum_{i,j} |I_{t,ij} - I_{ini,ij}|} > \alpha \times \sum_{i,j} M_{pred,ij} then
4
                       Run FoSAM with I_t and g_t, get M_t;
 5
6
                      I_{ini} \leftarrow I_t, M_{pred} \leftarrow M_t;
                      return M_t
 7
                else
8
                      if g_t in IOI then
10
                             return M_{pred}
11
                       else
                             Run FoSAM with I_t and g_t, get M_t;
12
                             I_{ini} \leftarrow I_t, M_{pred} \leftarrow M_t;
13
                             return M_t
```

A.2 EXTRA EVALUATION

Noise and latency sensitivity study

Relevant studies show that gaze jitter keeps most of the gaze points within 1° of visual angle from the target center. Including the eyetracker's error, the overall gaze error remains within 2°. Therefore, We add random angular noise into the gaze location and report the performance under the same token budget. As shown in Table 7, on LVIS (with many small objects), slight gaze noise can push fixation outside the target boundary and modestly reduce accuracy. On ADE, FoSAM remains robust.

A typical eye tracker's refresh rate is 100 Hz, introducing 10ms of gaze latency. Therefore, we use the gaze point from 10 ms earlier as the current frame's gaze to simulate this delay, and report its impact on Aria with the same token budget. As shown in Table 8, the accuracy degradation from the gaze latency is minimal, highlighting the robustness of FoSAM to gaze latency.

As described in Section 3.2.3, during training we supervise all tokens within the ground-truth mask to produce the same target Gaussian. This

Gaze error (deg) | 0 (no error) | ±1 | ±2

Lvis (200 tokens budget) (IoU) | 0.487 | 0.461 | 0.437

0.495

0.488

0.479

Table 7: Impact of the Gaze Noise.

Table 8: Impact of the Latency.

ADE (200 tokens budget) (IoU)

Gaze latency	negligible latency	10ms
AriaEveryday (400 token budget) (IoU)	0.588	0.564

means any fixation locations within the object are encouraged to yield the same target Gaussian TIScore map. This training technique (like data augmentation) ensures that as long as the gaze remains on the object, FoSAM produces consistent predictions.

Impact of Adaptive Token Sampling Hyperparameters The saliency score threshold τ and the minimum token count ϵ are used to determine how many tokens are retained, as detailed in Section 3.2.2. Different combinations of τ and ϵ can result in the same average number of tokens being retained across the samples in a dataset. In Table 9, we evaluate the effects of varying τ and ϵ under different token budgets using FoSAM-S over the Cityscape dataset. A larger τ reduces the number of tokens selected based on saliency scores; to maintain the target token budget, ϵ must be increased accordingly.

When the Token Budget is held constant—i.e., the mean of $|X_s|$ is fixed—a smaller τ and ϵ result in a larger variance of $|X_s|$ across different samples. In this setting, X_s most faithfully reflects the Gaussian distribution predicted by the model. However, our experiments reveal that FoSAM may produce overly extreme Gaussian distribution, especially when the predicted Gaussian has a very small standard deviation, overall performance deteriorates markedly. As shown in Table 9, a smaller ϵ indeed causes a slight drop in performance, underscoring the necessity of introducing the ϵ term. Conversely, larger τ and ϵ prevent X_s from accurately reflecting predicted Gaussian distribution, constraining FoSAM's capacity to allocate token budgets in proportion to IOI size and resulting in a pronounced performance degradation.

τ	ϵ	FoSAM-S	Token Budget (K)
0.2	300	0.404	400
0.12	200	0.417	400
0.1	100	0.416	400
0.4	150	0.39	200
0.3	100	0.404	200
0.25	50	0.402	200
0.7	75	0.355	100
0.6	50	0.362	100
0.55	25	0.362	100

Table 9: Evaluation results of adaptive token sampling settings.

Impact of Loss Weights During the training of FoSAM, the overall loss is computed as a weighted sum of the negative log-likelihood loss, classification loss, and Dice loss, with weights λ_1 , λ_2 , and λ_3 , respectively, as defined in Equation 2, Equation 3, and Equation 4. Dice loss plays a critical role in the segmentation task, while the negative log-likelihood loss and classification loss help the saliency encoder in FoSAM better adapt the saliency score distribution based on the IOI. In Table 10, we evaluate the contributions of the negative log-likelihood loss and the classification loss to the overall performance of FoSAM by varying their weights λ_1 and λ_2 , using the FoSAM-S model on the Cityscapes dataset.

λ_1	λ_2	Token Budget	loU
1	1	200	0.404
2	1	200	0.398
1	0	200	0.381

Table 10: Impact of the weights of the nll loss (λ_1) and classification loss (λ_2) .

The setting $\lambda_1=1,\lambda_2=1$ is used as the baseline for our main evaluation results. Increasing λ_1 reduces the relative contribution of the classification loss, which leads to a decrease in segmentation accuracy. When $\lambda_2=0$, the classification loss is completely removed, resulting in a further drop in accuracy. This highlights the importance of the classification loss in achieving good segmentation performance.

A.3 DETAILS OF USER STUDY

To evaluate the enhancement in user experience offered by FoSAM compared to the conventional SAM approach, we simulate their visual effects on the Meta Quest Pro HMD Inc. (2022) due to HMD's restrictions on direct access to its NPU Qualcomm Technologies (2025).

For each test image, segmentation masks for the IOIs were precomputed using FoSAM-S and

Figure 9: Four sample images.

SAM-B Kirillov et al. (2023). During the user study, the HMD displays the mask of the currently observed IOI according to gaze locations obtained by the HMD's gaze tracker, simulating the visual effects of both algorithms.

To account for system performance, we profile the latency of FoSAM-S (200 token budget) and SAM-B on the Qualcomm XR2 Gen2 platform Qualcomm Technologies, Inc. (2024b) using the Qualcomm AI Hub toolkit Qualcomm Technologies, Inc. (2024a), and artificially introduce the delay between the moment the user's gaze identifies the IOI and when the segmentation mask is displayed on the VR screen. Due to its efficient design, FoSAM-S exhibited significantly lower latency (21.6 ms) compared to SAM-B (1897.4 ms). Figure 9 illustrates these differences: in Image 1, FoSAM maintains low latency, ensuring masks closely align with current gaze location, whereas in Image 2, SAM's higher latency results in noticeable misalignment between the mask and current gaze location, negatively impacting user experience.

Seven participants take part in the study (in Figure 7, where the computer monitor display the HMD-cast content), and interact using the HMD controllers. The stimuli consists of four images (Figure 9). The two methods, denoted as m_1 (FoSAM-S) and m_2 (SAM-B), are directly compared. Participants

perform a two-interval forced-choice (2IFC) task Yeshurun et al. (2008), viewing two segmentation results $(t_1 \text{ and } t_2)$ per image, with masks and latency applied as described. The test conditions $(t_1 \text{ and } t_2)$ are randomly assigned to m_1 and m_2 . Using the HMD controller buttons, participants switch between t_1 and t_2 while observing different objects. After comparing both at least once, they select the one with higher perceived quality. Each participant completes 32 trials, consisting of 4 images, each tested with both t_1 and t_2 pairs across 4 repetitions, presented in a random sequence.

Figure 8 presents the results. Across participants, FoSAM was preferred in $96.9\%\pm4.8\%$ of trials overall, consistently outperforming SAM across all images ($98.2\%\pm4.7\%$ for Image 1, $96.4\%\pm6.1\%$ for Image 2, $96.4\%\pm9.4\%$ for Image 3, and $96.4\%\pm9.4\%$ for Image 4). These results evidence that the superior performance of FoSAM can potentially improve user experience for AR/VR applications due to lower processing latency and precise segmentation accuracy.

A.4 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR Author Guide, we disclose that we used LLM-based assistants only for English-language editing (grammar, wording, and minor rewrites for clarity/flow). LLMs did not generate ideas, methods, analyses, figures/tables, code, experiments, or results.