Under review as a conference paper at ICLR 2026

FOSAM:FOoCUS-ORIENTED ADAPTIVE TOKEN SAM-
PLING FOR EFFICIENT SEGMENT ANYTHING IN AUG-
MENTED REALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Augmented Reality (AR) encompasses transformative technologies that are re-
defining how humans interact with their environment. A key component of AR
is image segmentation, which breaks down the user’s front-view scene into dis-
tinct regions for analysis. This process is essential for accurately overlaying
digital content onto the physical world by detecting and isolating relevant objects.
However, despite its importance, image segmentation poses significant compu-
tational demands and latency issues on AR devices, which can severely impact
the overall user experience. In this paper, we propose Focus-Oriented Segment
Anything Model (FOSAM), a framework built upon the Segment Anything Model
(SAM) that utilizes real-time gaze data to focus segmentation on regions of in-
terest, substantially lowering computational cost. Experimental results show that
FoSAM reduces computational cost by over 50, enabling a seamless visual expe-
rience for users, as confirmed by our real-world user study. The code is provided
atthhttps://anonymous.4open.science/r/FoSAM-D627.

1 INTRODUCTION

Image segmentation Long et al. (2015); Badrinarayanan et al.| (2017); [Kirillov et al.| (2023); | Xie et al.
(2021)) is a core task in computer vision that involves dividing an image into meaningful regions
to support visual content analysis and interpretation. Building on this, instance segmentation He
et al.|(2017a)); Bolya et al.|(2019); Wang et al.|(2020); |Yang et al.| (2019) identifies and outlines each
individual object within a scene. This capability is particularly crucial in augmented reality, where
accurate object detection and separation enable precise interaction and seamless overlay of virtual
content onto the physical environment, enhancing both immersion and contextual awareness.

Instance segmentation serves as a foundational component for numerous AR applications. For
example, in educational contexts (Figure(l|(a)), segmentation can detect individual components of
complex diagrams the user is viewing, enhancing student engagement and understanding. These
segmented objects can also be passed to downstream applications (e.g., vision-language models
(VLMs)), to provide detailed explanations or context-aware information. In an AR-assisted grocery
shopping scenario, real-time segmentation enables users to identify products on a shelf as they
look at them. Furthermore, segmentation enables direct object manipulation, allowing users to
edit or interact with specific elements in their environment, creating a seamless bridge between the
physical and virtual worlds. Additional AR use cases leveraging image segmentation are discussed
in|Gonzalez Izard et al.| (2019} [2020); Tanzi et al.|(2021)); |/Alhaija et al.| (2017).

The Segment Anything Model (SAM) Kirillov et al.[(2023); Ravi et al.|(2024)) is among the most
advanced models for image segmentation today. However, despite its strong performance, SAM
is computationally intensive, making it difficult to deploy on resource-limited AR devices that
handle high-resolution imagery. This results in high overhead and latency, degrading overall system
performance and user experience.

Unlike typical image processing scenarios, AR device users display distinct behavioral patterns. They
tend to focus on small, specific areas within a scene before shifting their attention elsewhere. For
instance, as shown in Figure[T](b), a user wearing AR glasses may first focus on the door (left) and
then turn their head to look at the bookshelf (right). This behavior naturally segments the video
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Figure 1: (a) Application of VLM in AR. (b) An example on gaze movement for the AR scenario. (c)
Meta Orion AR glass. (d) Front view and (e) innter view of Meta Quest Pro VR headset.

stream into distinct video fragments (VF) based on head movements. In the first VF, where the user’s
gaze remains on the door across several frames, the segmentation results can be reused, avoiding
redundant computation. Similarly, in the second VF, segmentation efforts can be focused solely on
the bookshelf. Moreover, as illustrated in Figure ] (a), it is often beneficial to restrict segmentation to
the instances of interest (IOI) currently under the user’s gaze, as this typically reflects the user’s active
focus. This leads to a more efficient approach for AR image segmentation: prioritize processing for
gaze-identified IOIs while ignoring non-essential regions. This strategy aligns with the principles
of foveated rendering |Patney et al.| (2016), which improves rendering efficiency by showing full-
resolution detail only within the user’s line of sight, reducing visual fidelity in peripheral areas to
save computations.

In this work, we aim to reduce the high computational cost of segmentation in AR by leveraging
natural human eye movement. We introduce a novel segmentation framework based on Efficient
SAM Xiong et al.[(2024) (ESAM), a lightweight version of the original SAM that maintains nearly
the same performance. By limiting segmentation to only the regions the user is actively viewing,
our proposed variant, called focus-oriented SAM (FoSAM), achieves more than a 50 x reduction in
processing latency without compromising the user’s visual experience. Our contributions are:

* We introduce a novel and important perspective on instance segmentation with SAM that
exploits human eye behavior to reduce computational costs in AR settings. A simple demo
can be found in https://anonymous.4open.science/w/FoSAM-D627).

* We propose FoSAM, a lightweight segmentation framework built on ESAM, which processes
high-resolution input images and performs instance segmentation on the IOl with extremely
low computational cost.

* Building on FOSAM, we introduce FoSAM Streaming Algorithm (FSA), an efficient instance
segmentation framework tailored for real-time AR/VR applications. FSA, exploits temporal
continuity across frames and human gaze patterns to optimize segmentation, delivering
enhanced performance in dynamic AR environments.

2 BACKGROUND AND RELATED WORK

2.1 LITERATURE REVIEW ON SEGMENTATION

Semantic segmentation |[Shelhamer et al.| (2014); |Badrinarayanan et al.| (2015)); |Chen et al.| (2017);
Touvron et al.| (2020); (Cheng et al.| (2021)); [Minaee et al.| (2020); [L1 et al.| (2023); Xiong et al.
(2019); |Cheng et al|(2019) is a key task in computer vision that involves partitioning an image
into distinct regions or segments to simplify content analysis and interpretation. A more advanced
form of this task is instance segmentation |He et al.| (2017b); [Li et al.| (2020); [Neven et al.|(2019);
Brabandere et al.| (2017)), which aims to distinguish individual instances of the same object class.
Unlike semantic segmentation, which labels each pixel without differentiating between instances
of the same object class, instance segmentation provides a finer level of detail by distinguishing
each instance. To improve segmentation efficiency, previous research has focused on developing
learnable input downsampling techniques that adjust sampling resolution in a selective manner. In
Recasens et al.|(2018)), the authors propose a saliency-based distortion layer for convolutional neural
networks that enhances spatial sampling of input data in image classification tasks. Subsequent works,
such as|Jin et al.| (2021)); Thavamani et al.| (2021)); Marin et al.| (2019); [Zeng et al.| (2025)), follow
similar approaches by learning a saliency score for each pixel to guide the downsampling process.
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Previous approaches perform image downsampling at the pixel level using Convolutional Neural
Networks (CNNs). In contrast, FOSAM is a transformer-based model that adaptively selects tokens
of input image at token level, guided by the user’s gaze location and the shape of the IOI. Prior work
Marin et al.[(2023)) shows that performing naive downsampling on the token map severely degrades
performance. Therefore, porting pixel level downsampling methods to the token level is not feasible.
Our FoSAM is fundamentally different from these approaches. Furthermore, previous studies |Yang
et al.| (2019); Wang et al.| (2021); [Yan et al.| (2023)); [Raji¢ et al.| (2023); |Lin et al.| (2021)); Wu et al.
(2022) on video instance segmentation process consecutive frames together. This methods leverage
temporal correlations across frames to improve performance; however, it introduces considerable
latency, as processing can only begin once all frames are available.

2.2 HUMAN EYE BEHAVIOR IN AR/VR ENVIRONMENT

The human eye operates in three main modes of
movement: fixation, where the eye remains sta-
tionary and focuses on a single point; saccadic
movements, rapid, jerky shifts in gaze from one
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Figure [l| (c-e) present the Meta Aria AR tion of the image differences.

glasses [Engel et al.[ (2023)) and Meta Quest Pro [Inc.| (2022), respectively. Both devices feature
an outward-facing camera that continuously captures high-resolution images of the user’s front view,
along with an inward-facing eye-tracking (ET) camera that records monochrome images of the
user’s eyes. Most modern AR devices are equipped with eye trackers that takes the eye images and
provide highly precise gaze direction estimates with minimal latency. To investigate human gaze
behavior while using AR devices, we perform an in-depth analysis using the Aria Everyday Activities
Dataset|Lv et al.|(2024). This dataset contains 143 sequences of frames captured by the AR device.

As the user adjusts their head orientation, the front view also changes. To quantify these head move-
ments, we calculate the image difference by measuring the Euclidean distance between corresponding
pixels of consecutive frames. If the pixel difference is below a certain threshold, the frames are
considered highly similar and nearly indistinguishable to the human eye. These frames are grouped
into a single video fragment (VF), as shown in Figure E] (b) and Figure E] (a). As shown in Figure@]
(¢), 32% of consecutive frames exhibit less than 9% pixel value changes, suggesting a similarity
between the consecutive frames and potential for reusing segmentation results across frames.

Furthermore, within each VF, segmentation results can be reused if the gaze remains relatively stable
and consistently points to the same IOI. To support this, we analyze the distances (in pixels) between
consecutive gaze locations within a VF. Our analysis reveals that a threshold of 22 pixels effectively
groups gaze locations during the fixation phase, where the user focuses on a single IOI. Gaze distances
exceeding this threshold indicate a saccade, as seen with the rapid gaze changes in VF2 of Figure 2]
(a). As shown in Figure (b), 87% of the frames within each VF have a gaze distance of less than 22
pixels, indicating that AR users typically focus on one or two IOIs during each VF. This provides
an opportunity to enhance image segmentation efficiency by focusing processing on the I0I and
reusing segmentation results when gaze shifts are minimal.

2.3  SEGMENTATION TASK LATENCY

Despite its significance, the segmentation task presents Table 1: Processing latencies of segmen-
considerable computational challenges, especially on tation models on AR platform.
resource-constrained AR devices, primarily because of
the high resolution of images these devices capture. This ~ ImageSize | SAM-B | ESAM-S | ESAM-T
heavy data load leads to significant computational latency, 1024 ‘ 1897.4ms | 600.3 ms | 279.7 ms
severely limiting performance and responsiveness. To ex- 640° 4418ms | 102.6ms | 46.7ms
plore this issue, we evaluate the processing latency of the
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image segmentation task using well-established neural networks, including Segment Anything Base
model (SAM-B) [Kirillov et al.| (2023); Ravi et al.| (2024), Efficient SAM Tiny (ESAM-T) Xiong
et al.|(2024)), and ESAM Small (ESAM-S). The latencies are profiled on the Qualcomm XR2 Gen2
platform |Qualcomm Technologies, Inc.|(2024b) using the Qualcomm AI Hub toolkit Qualcomm
Technologies, Inc.|(2024a), which is equipped by Meta Quest Pro [Inc.| (2022) and Meta Aria AR
glasses Engel et al.[(2023). Table T] shows that the processing latencies for 1024 x 1024 input images
are 1897.4ms, 600.3ms, and 279.7ms for SAM-base (SAM-B), Efficient SAM-small (ESAM-S), and
Efficient SAM-tiny (ESAM-T), respectively. Furthermore, even with a smaller input resolution of
640 x 640, the latency still ranges from 441.8ms to 46.7ms. These latency fall short of the threshold
required for a seamless visual experience, as prior studies indicate that latencies below 30 ms are
essential for maintaining optimal visual fluidity Kaaresoja et al.| (2014); |vis; |Albert et al.| (2017).

3 METHODOLOGY

Figure [3]illustrates the computational pipeline

of the FoOSAM framework. During runtime, the Gaze T| 9 Gazedirection

inward-facing sensor of the AR/VR device con- tracker »*%a m Gaze-based
tinuously captures images of the user’s eye and L O— :agsmkenr:’laﬁon
sends them to the gaze tracker, which estimates ’ & oSAM ‘

the gaze direction instantaneously with high ac-

curacy (5 to 10 milliseconds) |Stein et al.|(2021); 4
Hou et al.|(2024). At timestep ¢, this estimated Passthrough "V‘ n»@_,ﬂ ?ulf;l::y
gaze direction g, along with a high-resolution camera AW |1,

image I, captured by the front-facing camera,
is provided as input to FOSAM. FoSAM then
produces a segmentation map M; focused on
the IOI, which can be reused across frames where the gaze location remains similar. To simplify
notation, we omit the subscript ¢ in the following sections. The core idea of FoSAM is to employ
a lightweight token selector to identify and select a subset of image tokens, which are then passed
to the segmentation network. By processing only the selected tokens, the segmentation network
significantly reduces its computational overhead.

Figure 3: System Deployment of FOSAM.

3.1 PRELIMINARIES

FoSAM builds on ESAM |Xiong et al.| (2024)), which includes three main components: an image
encoder E(.), a prompt encoder R(.), and a mask decoder D(.). Given an input RGB image
I € REXWX3 it is first tokenized and positionally embedded into a set of tokens X = {z;;}
with a size of H. x W,, where each token z;; € R'*%. H, and W, equal £ and %, where P
is the patch size of the tokenizer. These tokens are passed through the image encoder to produce
Y = {y;;} = E(X), which retains the same spatial resolution. In parallel, a point-based gaze prompt
g is processed by the prompt encoder R(V.‘), and its output is fused with Y in the decoder to generate
the final segmentation mask M € R7*W In ESAM, the image encoder E(.) is a 12-layer Vision
Transformer, and the decoder D(.) consists of a pre-trained two-layer CNN and a two-layer ViT.
Since E(.) dominates the computational cost, we focus on optimizing it by introducing a gaze-guided
Token Importance Encoder (TIEncoder) S(.), a Gaussian Predictor G(.), and an Adaptive Sampling
module. Together, they will selects a subset of K important tokens from X based on the gaze direction
g, reducing the input size to E(.) from H, x W, to K and greatly decrease the computational cost
of the segmentation task. The entire selection process is end-to-end trainable, resulting in strong
accuracy performance. Next is the design of our TIEncoder S(.).

3.2 FOSAM FRAMEWORK
3.2.1 GAZE-GUIDED TOKEN IMPORTANCE ENCODER

The gaze-guided TIEncoder is designed to assign a Token Importance Score (TIScore) to each token
X based on the user’s gaze direction g. A common approach predicts token-wise importance scores
independently for each token [Liu et al.| (2021} 2023)); Kockwelp et al.| (2025); Rao et al.| (2021);
Tang et al.| (2022)), and then removes those with low scores. However, this strategy often leads to
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Figure 4: An overview of FOSAM framework.

poor accuracy because it lacks spatial coherence. The independently predicted scores can result in
fragmented TIScore map with missing regions, which negatively affect the segmentation quality of the
image decoder. Additionally, this approach requires computing a TIScore for every token, resulting
in computational complexity that grows linearly with the number of tokens. This significantly limits
the potential for reducing model size and improving efficiency.

To address these limitations, we propose estimating the TIScores of tokens using a 2D Gaussian
distribution. The top portion of Figure [ illustrates the overall pipeline, with the black and blue
arrows show the inference flow. The input image I is first uniformly downsampled from H x W
to % X %, resulting in a lower-resolution image I, where v denotes the downsampling ratio. This
step effectively reduces the computational cost of the TIEncoder function S(.). Next, I" is passed
through a pre-trained ESAM tokenizer and a positional embedding module to generate token features
X" = {x};} with dimensions H x W/. X" is then processed by the TIEncoder S(.), which outputs
Z = S(X') containing the same number of tokens. Tokens Z are selected based on their spatial
proximity to the gaze point g obtained from the gaze tracker. The token nearest to g, denoted as
zgq € Z, captures essential information about the I0], such as its shape and scale, and serves as the
foundation for predicting a bounding window that encloses the TOI.

To simplify the window generation process while preserving spatial continuity, we introduce a
Gaussian predictor to estimate the TIScore of each token z € X. This predictor, G(-), takes Zg
as input and outputs the parameters of a 2D Gaussian distribution: the mean (u, i, ), standard
deviations (0, 0, ), and correlation coefficient p. Let fq(.,)(.,.) represent the probability density
function of Gaussian distribution with the parameter specified by G(z,). The TIScore for each token
x € X is then computed as its likelihood under the predicted 2D Gaussian distribution, denoted as
fa(z,)(ci(), cj(x)), where ¢;(z) and ¢; () is the 2D coordinate of  within the token map.

3.2.2 ADAPTIVE TOKEN SAMPLING MECHANISM

Based on the TIScores generated by the 2D Gaussian map, only a subset of tokens with the highest
scores are retained. Specifically, a larger IOI results in more tokens receiving high TIScores,
corresponding to a Gaussian distribution with lower variance. Conversely, smaller IOIs produce
higher-variance distributions and fewer high-importance tokens. As a result, we retain the top K
tokens, where K is determined adaptively based on the Gaussian distribution. Specifically, let
7 € [0, 1] denotes a threshold of the token elimination, token x; are kept only if specified as follows:

fa(zy)(ci(x), cj(x)) > glea;g[fc(zg>(ci($):cj ()] x T €9)

Here, 7 denotes the threshold applied to the TIScores. Additionally, we define a minimum token
count € to ensure a sufficient number of tokens are selected. If the number of tokens satisfying the
condition in Equation [I] falls below ¢, the top-e tokens are selected based on their TIScores. By
setting 7 to a predefined value (e.g., 0.01), Equation |l| enables adaptive token selection, allowing
the number of retained tokens to vary according to the size of the IOI. Let X; C X represent set of
tokens selected under equation[I} The selected tokens are passed through the image encoder, yielding
E(X,), which is then fed into the mask decoder D(.) as shown by the low portion of Figure|4] As
noted in Section 3.1} D(.) expects a fixed input size of H, x We. To satisfy this requirement, £(X)
is zero-padded to the target dimensions, the results is denoted as Y. The decoder then generates the
predicted segmentation mask M,,,..q. The following section details the training procedure.
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3.2.3 TRAINING AND LOSS FUNCTION

Figure []illustrates the training and inference workflows of FoOSAM, with data flows for inference and
training shown in black+blue and black+red, respectively. During inference, only the token z,, which
is closest to the gaze location g, is used to predict the TIScore. Let M, represent the ground-truth
binary mask corresponding to the input I, where Mg ;; = 1 indicates that the pixel lies within the
101, and O otherwise. Additionally, let X My © X denote the subset of tokens whose spatial positions
fall within the IOI as defined by My, and let Zy;,, = S(Xs,, ) represent the outputs of the S(.) of
the corresponding tokens. The loss function used during training comprises three components: the
negative log-likelihood, £, the classification loss L5, and the Dice loss Lgic.. The objective of
Ly is to train the TIEncoder module S(-) and the Gaussian predictor G(+) to generate a 2D Gaussian
map fa(s(z)) (), where z € Xyy,,, that closely approximates the ground-truth mask Mg, as follows:

gt?

La=— Y D loglfacsmy (Ci(@m), ci(@m))] @)

Tm €X M E%EXMM

gt

where Zx’meXMgt log[fa(s(my) (ci(x),), c;j(x,))] represents the sum of the log-probabilities for

each token z,, within the ground truth mask M. These probabilities are computed using a 2D
Gaussian distribution, where the distribution parameters are generated based on the reference token
Zm. In other words, we aim to ensure that each token x,,, within the ground truth mask Mg, can
generate a 2D Gaussian distribution that effectively covers the intended IOI.

In practice, obtaining an accurate Gaussian distribution that closely mimic the ground-truth mask
poses a granular alignment challenge. For example, when the gaze point lands on the headlight of a car,
it is often ambiguous whether the target object is the headlight itself or the entire vehicle. Similarly,
if the gaze fixed on a chess piece, it is unclear whether the segmentation should cover the individual
piece or the whole chessboard. To mitigate this ambiguity, we introduce an additional classification
loss L5, which leverages category labels to enforce granular alignment. Beyond alignment, L5
also provide clustering effect, markedly enhancing the inter-class diversity of the Gaussian maps.
As an auxiliary supervision signal, it encourages the TIEncoder S(.) to learn class-specific features,
leading to a better Gaussian maps. Therefore, as shown in Figure a shallow neural network U(.) is
attached to the output of S(.) for classification task. Let M;s(x;) denote the class label associated
with the I0I where x,,, is mapping to, L.s can be expressed as:

Las=— Y CE[US(@m), Mes(zm)] 3)

Tm E€X gy

Here, CE(-) denotes the cross-entropy loss. Finally, to ensure that the output M4 of the image
decoder D(-) aligns with the ground-truth mask Mg, we apply the Dice loss.

Ldice = DIOE[MpredaMgt] @

The overall loss function can be calculated as Liota1 = A1 Lun + AaLels + A3Ldice, Where Aq,Ao and
A3 represent the relative importance of the loss functions. During training, only the TIEncoder S(-),
classification head U (-), Gaussian head G(-), and image decoder D(-) are updated, while the image
encoder E(-) remains frozen, significantly reducing the training cost of FOSAM.

3.3 FOSAM STREAMING ALGORITHM

Building on the FOSAM architecture introduced in Section [3.2] this section 0)
explains how FOSAM can be extended for efficient instance segmentation W

across consecutive video frames. As motivated by the study in Section[2.2] ® No q
FoSAM is triggered during real-time operation only when the input image
1, captured by the front-facing camera, shows a significant change or when
a shift in the user’s gaze direction is detected. The logic flow of the FoSAM
Streaming Algorithm (FSA) is shown in Figure[5] Let I;,,; and I represent
the input images at the initial frame and at time step ¢, respectively. A simple
criterion is used to determine whether the current view remains within the
previous segment by computing the relevant difference between I; and Ii,; (Condition 1). Instead of
computing pixel-wise differences over the entire images [; and I;,,;, we restrict the computation to
the masked regions, focusing only on the relevant areas across the two frames. Instead of using a fixed

Figure 5: FSA flow.
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« threshold, we times o by the area of M),,.q. This allows the threshold to adapt automatically based
on the size of the gazed object, making the segmentation decision more robust across varying object
sizes. If this difference surpasses the threshold 7' = o x > | i Mpred,ij, it signals a substantial change
in the previous gazed area, prompting a full re-execution of FOSAM, and I;,,; will be updated with I;.
If no big change is observed, the current gaze location g, is examined to determine whether it remains
in IOI region defined by the segmentation mask M,;.cq of I;5,; (Condition 2). If it does, Mp,..q can be
reused; otherwise FOSAM must be executed with g; and M,,,.q will be updated accordingly. Details
of the FSA are in the supplementary materials.

4 EVALUATION

We evaluate FoSAM using publicly
available datasets: ADE20K [Zhou
et al[(2019), LVIS Gupta et al.|(2019),
and Cityscapes (Cordts et al.| (2016).

Table 2: IoU and FLOP comparison of FOSAM and baseline
algorithms. K denotes the token budget.

s Method | K | ADE20K | LVIS | Cityscape | GFLOP

As these datasets are originally de- g v BRavierall@024] | 4096 | 0511 | 0537 | 0347 | 744
signed for generic segmentation tasks ~ ESAM-S[Xiong etal.[Z024) | 4096 | 0411 | 0359 | 0304 188.2
. : : ESAM-T Xiong et al.|(2024) | 4096 | 0.350 | 0.236 | 0.248 56.1

to cover all the objects in the image, g caNChen eral (0077) | 409 | 0477 | 0474 | 0293 15.1
we introduce a gaze-aware masking  FSNet-DL[Zeng etal.|(2025) | NA | 034 | 038 | 024 18.8
preprocessing step to enable segmen- FSNet-SF|Zeng et al. [(2025) | NA 0.33 0.36 0.21 12.6
; : AD-S 200 | 0273 | 0350 | 0221 14.6
tation over t'he' 101 only. Spec1ﬁcally, Les 50 | 0362 | 0377 | 0385 Y
for each training and testing sample, FoSAM-S 200 0.495 | 0.487 | 0.404 14.6
a gaze location is randomly selected AD-S 100 | 0252 | 0343 | 0203 104
within the image, and the correspond- LC-S 100 | 0294 | 0444 ) 0.339 10.4
) .t . FoSAM-S 100 | 0465 | 0.461 | 0.362 104

ing IOI region is defined based on this

) . . . AD-T 200 | 0256 |0322] 0.198 74
location. The size of the Input 1mages LC-T 200 0.327 0.453 0.371 7.4
is 640 x 640 for all datasets. FoSAM-T 200 0.471 0.469 0.377 7.4
. . . AD-T 100 | 0239 |0318| 0.176 53

We use a lightweight two-layer ViT as LC-T 100 | 0264 | 0421 | 0302 5.3
the TIEncoder S(.). The input images FoSAM-T 100 | 0457 | 0435 | 0.328 53

have a resolution of H x W = 640 x

640, and are average downsampled to H. x W/ = 160 x 160 prior to processing. The FoSAM
framework is integrated with ESAM Small Xiong et al.| (2024) and ESAM Tiny, referred to as
FoSAM-S and FoSAM-T, respectively. Two baseline methods are developed for comparison. The first
method, Average Downsampling (AD), enhances segmentation efficiency by directly applying average
pooling to the original input X, reducing its spatial resolution and thus lowering computational cost.
The second method, Local Cropping (LC), improves efficiency by extracting a fixed-size patch
centered around the gaze point g, thereby narrowing the focus to a smaller input region. These
baselines are evaluated on both ESAM Small and ESAM Tiny, resulting in AD-S, AD-T, LC-S,
and LC-T configurations. Furthermore, we evaluate performance against SAM Base (SAM-B),
ESAM Small (ESAM-S), ESAM Tiny (ESAM-T), and SIimSAM |Chen et al.| (2024)), which improves
segmentation efficiency through a combination of knowledge distillation, embedding pruning, and
bottleneck pruning. We also compare FoOSAM with FSNet, which integrates DeepLab He et al.
(2016) and Segformer Xie et al.|(2021)) backbones to enable efficient segmentation via learnable input
downsampling strategies, referred to as FSNet-DL and FSNet-SF, respectively. During training, the
weights for the loss terms L1, Lc1s, and Lgice are all set to 1. We evaluate segmentation performance
using the Intersection over Union (IoU) metric, which measures the overlap between the predicted
segmentation and the ground truth IOI region. To control the average number of retained tokens K,
we adjust the TIScore threshold 7 and the minimum token count ¢ as defined in Equation[I} More
evaluation results are shown in the supplementary materials.

4.1 EVALUATION RESULTS OF FOSAM

Table [2] presents the evaluation results. The compared methods, FoOSAM, AD, and LC, all operate on
input images at their original resolution. FOSAM adopts an adaptive token sampling strategy with
average token budgets of K = 200 and K = 100 across the entire test dataset. To ensure a fair
comparison, the input sizes of AD and LC are adjusted so that their computational cost aligns with
that of FOSAM. For ESAM, SlimSAM, and SAM, regardless of the original input size, the built-in
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resizing layer by default resizes all inputs to 1024 x 1024, resulting in a fixed number of 4096 tokens.
For SIimSAM, we tune its pruning ratio to achieve a similar computational cost to FOSAM. In the
case of FSNet-DL and FSNet-SF, input images are downsampled to a resolution of 80 x 80, which
is the default setting of it. As shown in the results, FOSAM consistently outperforms the AD and
LC baselines across all datasets. In contrast to different versions of ESAM, SlimSAM and FSNet,
FoSAM achieves both higher accuracy and reduced computation. For instance, in Cityscape datasets,
FoSAM-T with 100 token budget achieves 3.5% higher IoU than SlimSAM with only one third of the
computation cost. This highlights the effectiveness of I0I guided adaptive token sampling in FOSAM.
Moreover, FOSAM demonstrates strong generalizability across datasets, with minor performance
variations attributed to dataset-specific characteristics. Compared to SAM, although FoSAM does not
achieve equally high IoU, it provides comparable accuracy while reducing computational cost by
over 50x. As shown in the user study in Section[d.4] FoSAM also offers a significantly better visual
experience, whereas SAM introduces noticeable processing delays that degrade user experience.

To assess FOSAM’s processing latency on AR device, we profile the performance of FoSAM-
S and FoSAM-T with average token budgets of K=200 and 100 on the Qualcomm XR2 Gen2
platform |Qualcomm Technologies, Inc.| (2024b), utilizing the Qualcomm AI Hub toolkit Qualcomm
Technologies, Inc.[(2024a). It is important to note that the Qualcomm XR2 Gen?2 is integrated into the
Meta Quest Pro for AR/VR task processing |[Inc.|(2022); Engel et al.|(2023). The average latencies,
computed over 100 profiling runs on a single LVIS sample, are reported in Table 3] Compared to
the latency of SAM and ESAM shown in Table[I} FOSAM achieves an average of 24 x reduction in
inference time and meets the 30 ms latency threshold required for a seamless visual experience, as
indicated by prior research |[Kaaresoja et al.|(2014); jvis; |Albert et al.[(2017).

4.2 EVALUATION RESULTS OF FOSAM STREAMING ALGORITHM

The FSA mechanism introduced in Section [3.3]reduces segmentation overhead by reusing results
from previous frames. However, as illustrated in Figure 5] varying the parameter can influence
the average IoU across frames. To evaluate this effect, we analyze the performance of FoSAM-S
and FOSAM-T with FSA evaluated on the Cityscapes dataset under different settings of o, which
represent the threshold for image difference shown in Figure[5] The token budget is set to 200 for both
FoSAM-S and FoSAM-T. We use 10 video sequences which contain 5000 images in total. However,
since the Cityscapes dataset lacks gaze location data, we incorporate gaze traces described in|Lv et al.
(2024) into each frame of the Cityscapes dataset. The results are described in Figure[6] as o increases
from 0.01 to 0.1, more frames are skipped by reusing segmentation results of previous frames. For
instance, skipping 40% of the frames leads to only a 0.03 reduction in average IoU across frames for
both FoSAM-S and FOSAM-T, showing that FSA can greatly reduce segmentation computation with
negligible impact on the accuracy.

4.3 ABLATION STUDY

Impact of TIEncoder Size In this section, we examine Table 4: Impact of the TIEncoder.
how the computational cost of the TIEncoder S(-) influ-

ences FOSAM’s accuracy under an average token budget 7 -cNimper [ Tmage Size | IoU | SEGFLOPs
of K = 200 on the ADE20K dataset. Specifically, we

i ) 3 640 x 640 | 0.499 10.4
evaluate the impact on FOSAM performance by varying 3 320 x 320 | 0.499 28
both the parameter size of S(-) and the input resolution 2 320 x 320 | 0497 1.88
of X’ fed into S(-). As shown in Table[d] increasing the ; robval Il I
number of encoder layers from 2 to 3 and raising the input N 320320 | 0492 | 094

resolution from 160 x 160 to 640 x 640 leads to only a
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slight improvement in IoU, while the computational cost rises substantially from 0.48 GFLOPs to
10.4 GFLOPs for the TIEncoder processing. Additionally, reducing the number of encoder layers
results in a more significant accuracy drop than downsampling the input image. The TIEncoder
design in FOSAM strikes an effective balance between computational efficiency and performance.

Impact of the Token Budget As described in Section 3.2.2] Tuple 5: Performances with
FoSAM adopts an adaptive token sampling mechanism that adjusts
the number of retained tokens according to the size of the IOI. In
contrast, the LC algorithm applies a fixed token count regardless of Dataset | Budget (K) | FoSAMS _LC-S

varying token budgets.

I0I size, which can lead to too few tokens for large IOIs, reducing 400 0499 0490
accuracy, or too many tokens for small IOIs, causing unnecessary LVIS o o
computation. Table [5|compares the performance of FOSAM and 25 0371 0318
LC under varying token budgets K on different datasets. For _ 400 0417 0.39%4
FoSAM, the number of retained tokens varies across frames, with % | 10 0 03
an average of K. On the LVIS, FOSAM-S achieves an average 25 0269 0243
1 - — 400 0.517 0.442
of 0.9% higher IoU than LC-S when K = 4OQ, an'd outperform,s ADE 00 030 038
LC-S by 5.5% when K = 25. These results highlight FoSAM’s 100 0472 0.293
ability to adapt the token budget to the size of the 10I, allowing » 031 0227
it to maintain accuracy even under constrained token budgets.
TIEncoder design: Gaussian vs..Token-wise Selectigg Table 6: Gaussian vs. Token-wise
tokens based on assigned scores is a common concept in
computer vision, bpt most of them use a token-wise design, Mothod | Lvis (200 token budget) (IoU)
which means .predlct;ng a score for each token separately, Gaussian (ours) 0487
as described in Section In contrast, FOSAM only  Token-wise design 0.231

predict a single Gaussian distribution and use it to assign
all TIScores at once. Table [6] provides a comparison to demonstrate the effect of switching to a
common token-wise design in our case by adding Importance Head for each token. As shown,
the token-wise approach performs significantly worse under the same token budget. It is because
unlike the smooth and concentrated Gaussian TIScore map, the token-wise design often produces
fragmented and discontinuous token selection, and the SAM’s mask decoder is very vulnerable to
this discontinuity.

4.4 USER STUDY

To assess the user experience benefits of FOSAM over the standard ., B FeSAM & SAM

SAM method on AR device, we conduct a two-interval forced-choice .,
(2IFC)|Yeshurun et al.|(2008) user study simulating both methods’ effects oy,

on the Meta Quest Pro headset|Inc.|(2022)). Segmentation masks were pre- g, I
computed and gaze-contingent visualizations were rendered with artificially  go9

introduced latencies reflecting each method’s runtime profiled on the Qual-
comm XR2 Gen2’s NPU|Qualcomm Technologies|(2025). Each of the seven  Figure 8: Preference
participants compared results across four test images, selecting the preferred  rates of the seven par-
output in 32 trials, as shown in Figure[7} As shown in Figure[8] FOSAM was ticipants.

preferred in 96.9%=+4.8% of trials overall, consistently outperforming SAM

across all images. Although FoOSAM incurs a slight drop in segmentation accuracy compared to SAM,
its greatly lower latency and better temporal alignment with gaze location result in a significantly
improved user experience. See supplementary materials for implementation details.

123 4567

5 CONCLUSION AND LIMITATION

We presented FOSAM, a gaze-guided segmentation framework optimized for AR/VR. By focusing
computation on user-relevant regions, FoOSAM achieves over 50 x speedup with minimal accuracy
loss. Experiments and user studies validate its effectiveness for real-time deployment on AR devices.
While FSA achieves substantial latency reduction, it relies on heuristic thresholds for result reuse,
which could be further optimized in future work. Additionally, potential risks include privacy
concerns related to eye-tracking data and reliance on model accuracy in sensitive applications, which
needs to be solved as future work.
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Ethics Statement We affirm that all authors have read and will adhere to the ICLR Code of Ethics.
Our work includes a user study with seven adult participants using a head-mounted AR devices to
compare gaze-contingent segmentation latency/quality. All participants provided informed consent
prior to participation. The study involved minimal risk, and participants could withdraw at any
time without penalty. No personally identifiable information (PII) was collected; no raw eye images
were stored; only anonymized preference choices and aggregate metrics were retained. The study
complied with our institution’s human-research guidelines and applicable laws. We use only public
datasets for training/evaluation. All data are used under their respective licenses/terms; no attempt
was made to re-identify individuals or to reconstruct any personally sensitive attributes. We will
release code, configuration files, and evaluation scripts sufficient for reproducibility. We will not
release any user-study raw data or raw eye-tracking images.

Reproducibility Statement We aim to make all results fully reproducible. We provide an
anonymized repository athttps://anonymous.4open.science/r/FoSAM-D627 which
contains the full source code. The model architecture and inference pipeline are specified in Sec-
tion [3] (with the streaming procedure detailed in Appendix [A.T)), and the learning objective is given
by Equation P3J4] Detailed Hyperparameter settings for experiments can be find in the provided
anonymized repository. Datasets preprocessing are described in Section [}
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A APPENDIX

A.1 DETAILS OF FOSAM STREAMING ALGORITHM

FoSAM streaming algorithm is out-

lined in Algorithm [T} a simple crite- Algorithm 1: FoOSAM Streaming Algorithm

rion is applied to detect if the view Input: I;,; is the initial frame of current VE. M4 is
is still in the previous video fragment the buffered segmentation mask of I;,;. IOl is the
(VF) by calculating the relative dif- instance of interest region defined by Mp,ed. gt,

I, and M, represent the current gaze direction,

the current input frame, and the segmentation

mask at time ¢. « is the threshold of result reuse.
1 Initiation

ference between I; and I;,; (line 4).
If this difference exceeds a thresh-
odT = a x Zij Mprea,ij» it indi-

cates a significant change in the front 5 Lini = B, Mprea = @
scene, triggering a full re-execution of 3 for1 <t<Tdo
FoSAM (line 5). Iini and Mpycq will . it ZHEH;*HH > ax Y Mprea,ij then
be updated accordingly (line 6). If not, ig tindij ’
A 5 Run FoSAM with [; and g, get M;

the current gaze location is analyzed ”

d . if i . ithin th 6 Lini + I, Mpred — My,
to etermme. 1t 1t .remams yv1t 1n the . return M,
same IOl region (line 9). If it does, the s else
last segmentation mask Mp,.q can be ° if g; in 101 then
reused (line 10). Otherwise, FoOSAM 10 | return Mj,cq
must be executed with the new input 11 else
frame I; and gaze location g; (line 12 Run FoSAM with I; and g, get My;
12), I;n; and M,,.q will be updated 13 Lini < It, Mprea < Mt;
accordingly (line 13). “ return M,

A.2 EXTRA EVALUATION

Noise and latency sensitivity study

Relevant studies show that gaze jitter keeps most of the gaze points within 1° of visual angle from the
target center. Including the eyetracker’s error, the overall gaze error remains within 2°. Therefore,
We add random angular noise into the gaze location and report the performance under the same token
budget. As shown in Table[7} on LVIS (with many small objects), slight gaze noise can push fixation
outside the target boundary and modestly reduce accuracy. On ADE, FoSAM remains robust.

A typical eye tracker’s refresh rate is 100 Hz,

introducing 10ms of gaze latency. Therefore, Table 7: Impact of the Gaze Noise.
we use the gaze point from 10 ms earlier as
the current frame’s gaze to simulate this delay, Gaze exror (deg) | Omoerror) | 1 | %2

and report its impact on Aria with the same t0- [ :7500 tokens budgen) (loU) 0487 | 0461 | 0.437
ken budget. As shown in Table([8] the accuracy ~ ADE (200 tokens budget) (loU) |~ 0495 | 0.488 | 0.479
degradation from the gaze latency is minimal,
highlighting the robustness of FOSAM to gaze

Table 8: Impact of the Latency.

latency.
As described in Section [3.2.3] during training Gaze latency | negligible latency | 10ms
we supervise all tokens within the ground-truth ~_AriaEveryday (400 token budget) (Io) | 0.588 | 0.564

mask to produce the same target Gaussian. This

means any fixation locations within the object are encouraged to yield the same target Gaussian
TIScore map. This training technique (like data augmentation) ensures that as long as the gaze
remains on the object, FOSAM produces consistent predictions.

Impact of Adaptive Token Sampling Hyperparameters The saliency score threshold 7 and
the minimum token count € are used to determine how many tokens are retained, as detailed in
Section[3.2.2] Different combinations of 7 and e can result in the same average number of tokens
being retained across the samples in a dataset. In Table[9] we evaluate the effects of varying 7 and
€ under different token budgets using FOSAM-S over the Cityscape dataset. A larger 7 reduces the
number of tokens selected based on saliency scores; to maintain the target token budget, e must be
increased accordingly.
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When the Token Budget is held constant—i.e., the mean of | X, is T | ¢ | FoSAMS | Token Budget (K)

fixed—a smaller 7 and ¢ result in a larger variance of | X| across 02 | 30| 0404 400
. . . . b 417

different samples. In this setting, X most faithfully reflects the o1 | 100! 0416 400

Gaussian distribution predicted by the model. However, our exper- o4 | 150 | 039 200

iments reveal that FOSAM may produce overly extreme Gaussian 55 | s | i Eot

distribution, especially when the predicted Gaussian has a very small "7 | 75 | 0355 100

standard deviation, overall performance deteriorates markedly. As ' | 3 | 93¢ 100

shown in Table [0 a smaller € indeed causes a slight drop in per-
formance, underscoring the necessity of introducing the e term. Taple 9: Evaluation results of
Conversely, larger 7 and € prevent X from accurately reflecting  adaptive token sampling set-
predicted Gaussian distribution, constraining FoSAM’s capacity to  tings.

allocate token budgets in proportion to IOI size and resulting in a

pronounced performance degradation.

Impact of Loss Weights During the training of FOSAM, the over-

. ; . o A1 | A2 | Token Budget | IoU
all loss is computed as a weighted sum of the negative log-likelihood 1| A | Token Budget | lo

loss, classification loss, and Dice loss, with weights A;, Az, and A3, ; i %gg 8:383
respectively, as defined in Equation[2] Equation[3] and Equationd 1 | o 200 0.381

Dice loss plays a critical role in the segmentation task, while the
negative log-likelihood loss and classification loss help the saliency Table 10: Impact of the
encoder in FOSAM better adapt the saliency score distribution based weights of the nll loss (\;) and
on the IOI. In Table[I0] we evaluate the contributions of the negative classification loss (o).
log-likelihood loss and the classification loss to the overall perfor-

mance of FOSAM by varying their weights A\; and Ao, using the

FoSAM-S model on the Cityscapes dataset.

The setting A\; = 1, A\ = 1 is used as the baseline for our main evaluation results. Increasing \;
reduces the relative contribution of the classification loss, which leads to a decrease in segmentation
accuracy. When Ao = 0, the classification loss is completely removed, resulting in a further drop in
accuracy. This highlights the importance of the classification loss in achieving good segmentation
performance.

A.3 DETAILS OF USER STUDY

To evaluate the enhancement in user experience S WEEE—

offered by FOSAM compared to the conven- \ 2

tional SAM approach, we simulate their visual 4 ” : b @P .

effects on the Meta Quest Pro HMD [Inc.| (2022) &
]

due to HMD'’s restrictions on direct access to its
NPU [Qualcomm Technologies| (2025). Image 1 Image 2 Image 3 Image 4

For each test image, segmentation masks for Figure 9: Four sample images.

the IOIs were precomputed using FOSAM-S and

SAM-B [Kirillov et al.| (2023)). During the user study, the HMD displays the mask of the currently
observed IOI according to gaze locations obtained by the HMD’s gaze tracker, simulating the visual
effects of both algorithms.

To account for system performance, we profile the latency of FOSAM-S (200 token budget) and
SAM-B on the Qualcomm XR2 Gen2 platform |Qualcomm Technologies, Inc.| (2024b) using the
Qualcomm AI Hub toolkit|Qualcomm Technologies, Inc.|(20244a)), and artificially introduce the delay
between the moment the user’s gaze identifies the IOI and when the segmentation mask is displayed
on the VR screen. Due to its efficient design, FOSAM-S exhibited significantly lower latency (21.6
ms) compared to SAM-B (1897.4 ms). Figure E] illustrates these differences: in Image 1, FoSAM
maintains low latency, ensuring masks closely align with current gaze location, whereas in Image 2,
SAM’s higher latency results in noticeable misalignment between the mask and current gaze location,
negatively impacting user experience.

Seven participants take part in the study (in Figure[7} where the computer monitor display the HMD-
cast content), and interact using the HMD controllers. The stimuli consists of four images (Figure [J).
The two methods, denoted as my (FOSAM-S) and mo (SAM-B), are directly compared. Participants
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perform a two-interval forced-choice (2IFC) task|Yeshurun et al.|(2008), viewing two segmentation
results (1 and ) per image, with masks and latency applied as described. The test conditions (%1
and t3) are randomly assigned to m; and mg. Using the HMD controller buttons, participants switch
between t; and ¢, while observing different objects. After comparing both at least once, they select
the one with higher perceived quality. Each participant completes 32 trials, consisting of 4 images,
each tested with both ¢ and m pairs across 4 repetitions, presented in a random sequence.

Figure 8] presents the results. Across participants, FOSAM was preferred in 96.9%=4.8% of trials
overall, consistently outperforming SAM across all images (98.2%=4.7% for Image 1, 96.4%=+6.1%
for Image 2, 96.4%=+9.4% for Image 3, and 96.4%=+9.4% for Image 4). These results evidence that
the superior performance of FOSAM can potentially improve user experience for AR/VR applications
due to lower processing latency and precise segmentation accuracy.

A.4 USE OF LARGE LANGUAGE MODELS (LLMS)
In accordance with the ICLR Author Guide, we disclose that we used LLM-based assistants only for

English-language editing (grammar, wording, and minor rewrites for clarity/flow). LLMs did not
generate ideas, methods, analyses, figures/tables, code, experiments, or results.
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