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Abstract

Detecting the treatment response of radiotherapy for rare cancers such as soft-tissue
sarcomas (STS) is difficult due to the intratumoral heterogeneity of the disease within
tumors. STS are a group of diseases with more than 70 recognized subtypes with each
of them having distinctive histological and clinical-pathological characteristics. Apparent
Diffusion Coefficient (ADC) mapping provides a quantitative measure of the magnitude of
water diffusion in biological tissues which can provide insight into the microstructure of
tissues. An unsupervised deep representation learning pipeline that can learn disentangled
and interpretable radiomics features from the Apparent Diffusion Coefficient (ADC) maps
of patients has been developed and the learnt latent features have been assessed for baseline
test-retest repeatability as well as for outcome prediction in a pilot cohort.
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1. Introduction

Soft tissue sarcomas (STS) demonstrate intratumoral heterogeneity, making it difficult to
successfully monitor response to treatment using conventional size-based criteria. Radiomics
(Gillies et al., 2016) can offer opportunities to find novel biomarkers of treatment response
by quantifying the level of intra-tumoral heterogeneity within tumours via the measurement
of “hand-crafted” features that aim to represent tumour image statistics, shape, and texture.

A potential disadvantage of these features is that they are not necessarily data-driven
and thus may miss characteristics within the image that could be important for demonstrat-
ing tumour response. Deep learning (Sum Hon Mun et al., 2022) has also been shown to be
able to extract interesting features but it can be hard to interpret these features especially
if they are extracted directly from the layers of convolutional neural networks (CNNs).

In this work, we explore the use of generative models known as Variational Autoencoders
(VAEs) (Kingma and Welling, 2013) which learn a mapping between the original image

© 2023 CC-BY 4.0, T.S.H. Mun et al.

https://creativecommons.org/licenses/by/4.0/


Mun Arthur Thrussell Winfield Koh Huang Messiou Doran

and latent feature representation that can accurately reconstruct the image. We apply
this approach to maps of apparent diffusion coefficient (ADC) as derived from diffusion-
weighted MR-imaging of a pilot cohort of patients with retroperitoneal soft-tissue sarcoma
(STS). To determine the potential sensitivity of the derived latent features to potential post-
therapeutic change, we investigate their test-retest repeatability. We subsequently evaluate
their predictive potential in a multivariate regression model of recurrence-free survival when
combined with the patient demographic features.

2. Data and Methods

Dataset Description: Baseline and repeat baseline scans for 22 patients were acquired
using axial diffusion-weighted imaging (DWI) (b = 50,600,900 s/mm2); ADC maps were
extracted from these images using a least-squares monoexponential fit. A single radiologist
outlined tumour regions-of-interest (ROIs) on T2-weighted images, which were subsequently
transferred to the ADC maps. Augmentation techniques including rotation, translation,
scaling, and flipping were performed independently for each slices to generate 2313 images
in total from baseline scans, split into 2082 training and 231 validation. Input data consisted
of two channels: (i) the complete ADC map slice, and (ii) the ADC map slice masked by
the tumour ROI. The second channel allowed the network to focus on the features that
represent the tumour region, whilst the first provided information about tissue surrounding
the tumour. Both channels were resized using bilinear interpolation to 64 x 64.

Model: Our VAEmodel architecture consisted of a 3-layer, 2D convolution encoder/decoder
with a kernel size of three with the following channels [16, 32, 64] (encoder) → 7 (latent
features) → [64, 32, 16, 2] (decoder).

We used the beta-VAE (Higgins et al., 2017) variant to tune emphasis on the Kullback-
Leibler divergence loss of the features (β = 0.5), using the following parameters: learning
rate = 0.0001, epochs = 1000, Adam optimizer. After training, we evaluate the encoded
features derived from the middle tumour slice of each patient (containing the largest tumour
cross-section). As our goal is to derive a set of useful features, we train the model on the
first baseline scans of all patients to capture as much information as possible given our small
cohort.

Feature analysis: Hierarchical agglomerative clustering on the pairwise Pearson cor-
relation (r) between all extracted features from the first baseline scan identified linearly
independent feature subgroups (independence was determined where r2 > 0.5). The intr-
aclass correlation coefficient (ICC) was used to compare the repeatability of features (ICC
= 1 indicating perfect repeatability, ICC > 0.5 indicating poor repeatability). Clinical
features were combined with VAE features after normalization, and time to tumour recur-
rence was modelled using multivariate Cox proportional hazard models with elastic-net L1
penalty ratio = 0.9 and alpha = 0.17. The model was trained using 2-fold validation.

3. Results

Feature analysis: Bland-Altman (BA) plots in Figure 1a demonstrate excellent test-
retest repeatability for all features (ICC = 0.86 – 0.98). These plots also demonstrate no
systematic bias or any outliers in features generated from the second baseline measurements,
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potentially providing further evidence that the VAE is not-overtraining. Furthermore, a
correlation heatmap for baseline features demonstrated in Figure 1b indicates there are
no clear correlations between any of the 7 features, suggesting that the VAE successfully
enforces this important characteristic in the derived features.

Recurrence-free survival analysis: A feature importance plot is provided in 1c,
summarising the coefficients for features in descending order; features 2 and 6 from the
VAE rank highly alongside other clinical factors. To further demonstrate the predictive
power of feature 6, we demonstrate survival curves of four patient groups (1d) obtained by
discretized feature 6 into four groups with equal patient sizes. It is evident that the final
bin (high value of feature 6) is associated with a higher risk of recurrence.

Figure 1: (a) Bland Altman plot (b) Correlation Heatmap (c) Feature importance (d) Ka-
plan Meier curve
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