
Letters from the past: modeling historical sound change through
diachronic character embeddings

Anonymous ACL submission

Abstract

While a great deal of work has been done on001
NLP approaches to Lexical Semantic Change002
detection, other aspects of language change003
have received less attention from the NLP com-004
munity. In this paper, we address the detection005
of sound change through historical spelling.006
We propose that a sound change, a→b / c, can007
be captured by comparing the relative distance008
through time between the distributions of the009
corresponding characters, a and b. We model010
these distributions using PPMI character em-011
beddings. We verify this hypothesis in syn-012
thetic data and then test the method’s ability013
to trace the well-known historical change of le-014
nition of plosives in Danish historical sources.015
We show that the models are able to identify016
several of the changes under consideration and017
to uncover meaningful contexts in which they018
appeared. The methodology has the potential019
to contribute to the study of open questions020
such as the relative chronology of sound shifts021
and their geographical distribution.022

1 Introduction023

The study of sound change goes back to the be-024

ginnings of modern linguistics in early nineteenth025

century, when scholars such as Rask and Grimm026

started making hypotheses about the way sound027

changes over time, which in turn lead to the dis-028

covery of regular sound correspondences between029

ancient languages and the identification of cognates030

in modern ones (Murray, 2015).031

Since spoken language from the past is not avail-032

able, however, sound change in ancient languages033

must be deduced from written records by consider-034

ing development in spelling through time. In addi-035

tion, while we may be able to see from the written036

records that a change did occur, less is known on037

the specific dynamics of the change. Details of038

these dynamics include knowledge of when the039

change started to appear, how long it took for it to040

be complete, what was the relative chronology of041

individual sounds in a larger shift, what was the 042

geographical distribution of a change and so forth. 043

Due to the sparsity of linguistic evidence, de- 044

tailed empirical studies of chronological sound 045

change are difficult to conduct. This is especially 046

the case for older stages of languages, where little 047

written text was produced, and much of what did 048

exist has been lost in transmission. However, as we 049

move forward in history to the rise of bureaucracy, 050

for example in medieval Europe, we see that an ex- 051

tensive amount of written records were made. Text 052

from this period of time is interesting in the context 053

of a study of sound change because it shows great 054

variability in spelling patterns. With the digitaliza- 055

tion of such archives1, therefore, new opportunities 056

arise to apply computational methods to the study 057

of sound change through written text. 058

Considerable effort has already been devoted 059

to the development of computational approaches 060

aimed at discovering lexical semantic change 061

(LSC) in historical corpora. However, change re- 062

lated to phonology, morphology and syntax has 063

remained out of the spotlight in NLP research. In 064

this study, we seek to bridge this gap as regards 065

phonology: Inspired by the work on LSC, we pro- 066

pose a method whereby sound change is traced via 067

spelling change in historical text and modeled by 068

training diachronic character embeddings over text 069

from different time periods. 070

We start by reviewing previous approaches to the 071

automatic detection of semantic shifts and spelling 072

modification due to sound change. Then we for- 073

mulate our hypothesis that a sound change can be 074

traced using diachronic distributional embeddings. 075

While sound change is not completely analogous to 076

word meaning change, we argue that similar meth- 077

ods can be used for both. To verify our hypothe- 078

1A list of available resources for different languages is pro-
vided in the Guide to Medieval Manuscript Research from the
University of Chicago Library: https://guides.lib.
uchicago.edu/c.php?g=813534&p=5805534.
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sis, we conduct three studies on simulated sound079

change. First, we test the methods on the phono-080

logical environment of a simple artificial language.081

Then, we apply the same methods to a more com-082

plex scenario created by simulating sound change083

in a corpus of synchronic Danish text. Having es-084

tablished the suitability of the methods on these085

two datasets, we finally experiment with tracing086

a well-known sound change in real historical lan-087

guage data, again in Danish.088

2 Related work089

The application of NLP methods to automatic LSC090

detection is already a rather well-developed sub-091

field of NLP research (Tahmasebi et al., 2018; Ku-092

tuzov et al., 2018). In particular, the emergence093

of word embeddings as a viable way to model094

the distributional hypothesis in semantics (Firth,095

1957) has paved the way for an application of word096

embeddings to LSC modeling (Kim et al., 2014;097

Hamilton et al., 2016b; Eger and Mehler, 2016;098

Yao et al., 2018). Synchronically, the meaning of a099

word is characterized by word embeddings in terms100

of the contexts it appears in. LSC is captured by101

training word embeddings at different time points102

and comparing these distributions typically using103

cosine distance.104

The main issues in this comparison is the align-105

ment of temporal embeddings spaces, especially106

for neural embeddings as these are initialized and107

trained stochastically, which means that separate108

runs – on even the same data – will yield different109

embeddings spaces. Thus, work has focused on the110

development of methods to perform alignments to111

make embedding spaces comparable across time112

(see Kutuzov et al. (2018) for an overview). As113

an alternative to neural embeddings, scholars have114

also used purely count-based measures, which are115

naturally aligned across dimensions. Normalisation116

techniques are also applied, e.g. based on positive117

pointwise mutual information (PPMI) (Hamilton118

et al., 2016b; Yao et al., 2018).119

Most studies of LSC do not rely on a control120

dataset against which to validate their conclusions.121

In Dubossarsky et al. (2017), on the contrary, it122

is argued that any claims about putative laws of123

semantic change in diachronic corpora must be124

evaluated against a relevant control condition. The125

authors propose a methodology in which a control126

condition is created artificially from the original127

diachronic text collection by reshuffling the data.128

No systematic LSC is expected in the artificially 129

developed control dataset. 130

The distributional hypothesis has also been pro- 131

posed as an explanatory model within the domain 132

of phonology suggesting that phonological classes 133

are acquired through distributional information 134

(Chomsky and Halle, 1968; Mielke, 2008). Driven 135

by this hypothesis, recent work has focused on test- 136

ing how distributional properties can be learned 137

by phoneme embeddings (see Mayer 2020 for an 138

overview). Silfverberg et al. (2018) investigated 139

to what extent learned vector representations of 140

phonemes align with their respective representa- 141

tions in a feature space in which dimensions are 142

articulatory descriptors (e.g., ±plosive). Recently, 143

Mayer (2020) has shown that phonological classes, 144

such as long and short vowels, can be deduced from 145

phoneme embeddings normalised using PPMI by 146

iteratively performing PCA on candidate classes. 147

Thus, while the distributional hypothesis for 148

phonology is well-established, one notable issue is 149

the fact that the empirical evidence to study sound 150

change is relatively inaccessible since it requires 151

recorded speech or phonologically transcribed data. 152

Simulation is therefore used as a tool for study- 153

ing the underlying mechanisms of sound change 154

by creating computational models based on lin- 155

guistic theory (Wedel, 2015). Through simulation, 156

questions pertaining to e.g., what factors influence 157

the (in)stability of vowel systems across genera- 158

tions (de Boer, 2003) can be modeled by control- 159

ling the assumptions made by the model. Work 160

on simulation ranges from implementing theoreti- 161

cal approaches using mathematical models (Pierre- 162

humbert, 2001; Blythe and Croft, 2012) to iterated 163

learning and neural networks (Hare and Elman, 164

1995; Beguš, 2021). 165

While the output of such models can be tested 166

empirically on what we observe at a synchronic 167

level, they are primarily theoretically driven. In this 168

paper, we wish to take a data-driven approach and 169

utilize some of the methods reviewed above to track 170

historical sound change in writing. Rather than 171

using word embeddings as done to model lexical 172

change, we will use character embeddings, that are 173

better suited to the task of sound change modeling. 174

3 Modeling sound change 175

Within the field of LSC detection, change in word 176

semantics is traditionally measured by computing 177

pairwise similarity (Hamilton et al., 2016b) over 178
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a time series, (t, ..., t+ δ), in which a shift in the179

meaning of a word, wi, can be measured by its180

relative distance to another word, wj . In this way,181

hypotheses about specific shifts may be tested. An-182

other measure is semantic displacement, in which183

semantic change for a given word is quantified by184

measuring its temporal displacement. For both185

measures, looking at consecutive time steps pro-186

vides a measure to the rate of change of a word –187

in relation to another word, or independently.188

While LSC is about meaning shifts of unchanged189

word forms, sound change is a change of form, i.e.,190

a given phoneme changes to another one within191

certain contexts. We denote such a change a →192

b / c. While changes of either a or b will be re-193

flected in changes to their individual distributions194

(displacement), looking at them independently of195

one another will not tell us whether one of the196

phonemes is becoming similar to the other. There-197

fore, we suggest to look at the pairwise similarity198

between a and b. More specifically, given a time199

series (t1, ..., tn), in which t1 denotes a time before200

a sound change was in effect and tn denotes a time201

where a sound change is completed, we expect bi202

to move towards a1 as i → n, in other words to203

become similar to a1, since it will begin to appear204

in the same contexts.205

As was noted earlier, sound is not accessible206

in historical text, to which we would like to be207

able to apply our methodology. Therefore, we take208

graphemes as a proxy for sound, and model sound209

change through changes in the distance between210

pairs of character distributions. In addition, be-211

fore assuming that an observed decrease in the dis-212

tance between two such distributions reflects a real213

change, we also want to see that the same decrease214

is not visible in a control corpus in which no such215

change has indeed taken place.216

4 Experimental setup217

In order to verify the hypothesis that sound change218

can be traced using distributional information with219

the methodology proposed above, we test whether220

we are able to trace simulated change in synthetic221

data. As a first synthetic setting, we restrict our-222

selves to track change in a synthetic language with223

simple phonotactics. In this way, we get a sense224

of whether the proposed hypothesis works under225

perfect conditions, i.e., one in which characters cor-226

respond with phonemes one-to-one . In the second227

synthetic setting, we seek to imitate the condition228

of tracing change in an orthographic setting by 229

simulating change in a corpus of synchronic text 230

in which character distributions interact with the 231

noise added by spelling and lexicon. 232

In both synthetic settings, we compare the simu- 233

lated change to a control setting where no change 234

has occurred. 235

Finally, we will test the hypothesis on real data. 236

Our goal is to trace the lenition after vowels of 237

voiceless plosives, p t k, to their voiced counter- 238

parts, b d g, in historical Danish. While this change 239

is believed to have initiated around the beginning of 240

the 14th century, details about the relative chronol- 241

ogy of the series and geographical distribution of 242

the change are difficult to account for (Frederiksen, 243

2018). Therefore, in an attempt to discover inter- 244

esting patterns of this change, we train character 245

embeddings on historical sources from the periods 246

following the time when the change is believed to 247

have started. As we did for the synthetic data, and 248

again following Dubossarsky et al. (2017), we also 249

introduce a control setting to test the significance 250

of the observed changes. 251

4.1 Data 252

Parupa is an artificial language introduced by 253

Mayer (2020). It is characterized by a small phono- 254

logical inventory2, and simple phonotactic rules for 255

how sounds combine: 256

• only CV syllables are allowed 257

• /p t k/ occur before high vowels, /i u/ 258

• /b d g/ occur before non-high vowels, 259

/e o/ 260

• only /b p/ occur word-initially 261

• /r/ occurs before all vowels 262

• all consonants can occur before /a/ 263

We created five corpora of Parupa using the 264

Hidden Markov Model provided by Mayer (2020)3: 265

While the first corpus, parupa1, preserves the 266

phonotactic rules listed above, the remaining four 267

include a sound change, p → b /_ u, i 4 which 268

happens gradually (linearly) and is fully completed 269

in parupa5. Additionally, we created five control 270

corpora (one for each of the target ones and with 271

the same vocabulary) which do not include any 272

2C: /p t k b d g r/ V: /i e u o a/
3https://github.com/connormayer/

distributional_learning
4i.e., p changes into b when preceding u or i.
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simulated sound change. Each of the corpora273

consists of 50, 000 words.274

275

The Danish UD treebank To collect a corpus of276

synchronic language, we extracted the training sen-277

tences from the Danish UD treebank (Johannsen278

et al., 2015). From this collection of sentences,279

we created five sub-corpora (UD-Danish1-5)280

in which we simulated a sound change, g → k281

/ V_{V # t#}5. As done in the case of Parupa,282

the sound change was simulated gradually, with283

linear increase in change probabilities (i.e.,284

0, 0.25, 0.50, 0.75, 1). To create the control con-285

dition, we also kept a version of the sub-corpora286

where no change was simulated. The five control287

versions are thus identical to the five target corpora288

in terms of vocabulary and distributions, except for289

the simulated change.290

291

Historical spellings of geographical names292

Danmarks Stednavne is a on-going lexicographic293

book series creating a register of geographical294

names in Denmark. The register also serves as295

a philological resource by listing attestations of the296

names coming from various historical resources.297

For example, the entry for Copenhagen includes298

over 700 historical attestations listed by date6. In299

addition to the printed volumes (Danmarks Sted-300

navne, 1922–2013), geographical names and their301

connected metadata (e.g., geographical location302

and historical attestations) have been digitized, and303

can be found in an online edition7 which comprises304

over 210, 000 names and 900, 000 historical attes-305

tations. To study the lenition of /p t k/, we extracted306

historical attestations of names ranging from the307

12th to the 18th century. Using the attestation be-308

fore the 14th century as a reference to the time309

before the change was initiated (t1), we divided the310

list of names into bins of half a century to track311

the development of character embeddings through312

time8, This provides us with eleven sub-corpora313

with 31, 000 (±15, 000) name tokens on average.314

5i.e., g between vowels, word-final after vowel, or after
vowel preceding word-final t. The latter condition was created
in order to capture adverbial forms of adjectives ending in -g.

6e.g., Kopmanahafn (1247), Køpmannehafn (1249), Kiøp-
nehaffn (1388), Kiøbendehaffn (1429).

7https://danmarksstednavne.
navneforskning.ku.dk

8The choice of bin size is an important issue (Kutuzov
et al., 2018). From a philological perspective, 50 years cor-
respond to two generations of writers (’spellers’), which is
considered a realistic bin size to track development in writing.

In order to create a control setting, we gener- 315

ated a corresponding number of sub-corpora by 316

stratifying the names with respect to their date of 317

attestation, following the approach by Dubossarsky 318

et al. (2017). 319

4.2 Character embedding model 320

To represent characters in a distributional space, 321

we use PPMI embeddings. Contrary to dense em- 322

beddings, these are easy to interpret and when com- 323

pared across different initializations, they are natu- 324

rally aligned, so we do not introduce noise caused 325

by the alignment process. 326

For the synthetic settings, we limit the context 327

windows to the modeling of trigrams, which should 328

be sufficient to model the context of where a sound 329

change occurs. For the tracking of lenition in Dan- 330

ish, we expand to context to 4-grams. Using the 331

implementation by Mayer (2020), the sliding win- 332

dow is directional, and thus we distinguish contexts 333

preceding and following the target character. While 334

this directionality is neglected when creating PPMI 335

word embeddings, the direction matters when using 336

character embeddings to test the intuition behind 337

the distributional hypothesis, in which direction in 338

a context is meaningful. 339

4.3 Measuring change 340

We measure sound change in terms of a decrease 341

in the distance between two character distribu- 342

tions over time. In other words, given two char- 343

acter distributions A and B corresponding to any 344

two phonemes /a/ and /b/, we should see that 345

distance(A(1), B(n)) gets smaller for greater val- 346

ues of n if there is a change A→ B. 347

While most studies use cosine distance to mea- 348

sure the difference between distribution (Kutuzov 349

et al., 2018), we chose to use Euclidean distance as 350

it directly reflects our hypothesis by taking the sum 351

of differences in each dimension (context). 352

For each of the corpora being investigated, we 353

use the R software (R Core Team, 2021) and the 354

’effects’ package (Fox and Weisberg, 2019) to build 355

linear regression models that predict the distribu- 356

tional distance between two sounds per temporal 357

interval in the target and the control versions of 358

the corpus. The advantage of employing linear re- 359

gression in this case is that we can test the effect 360

of multiple factors as well as their interaction9. In 361

9See also (Shoemark et al., 2019) on the advantages of
using linear regression in semantic change detection.
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Figure 1: Interaction of Bin and Corpus on Distance in
Parupa (a) and the Danish UD treebank (b)

our case, distance between the two sounds being362

investigated is the dependent variable, and we want363

to predict main effects of temporal interval and cor-364

pus as well as the interaction between them. To365

argue that there has been a sound change across366

time, there must be a significant effect of temporal367

interval on distance. In addition, we would like to368

see an interaction between this effect and the effect369

of the corpus variable in that the change should370

be absent, or at least significantly smaller, in the371

control corpus.372

5 Results373

Table 1 shows the results of the linear regression374

models we developed to test whether any evidence375

of sound change discovered in the target corpora,376

where sound change is either simulated or histori-377

cally present, stands the comparison with the con-378

trol corpora. The ‘intercept’ estimate corresponds379

to the distance predicted between the two sounds380

being investigated in the initial temporal interval.381

The ‘Bin’ effect shows by how much the distance is382

expected to change for every temporal interval. A383

negative effect means that the distance between the384

two sounds is becoming smaller. The ‘Control’ ef-385
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Figure 2: Interaction of Bin and Corpus on Distance in
the Danish Geographical Names: Looking at p→ b (a),
k→ g (b) and t→ d (c)
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Effect Estimate Std. Error p-value
(Intercept) 15.13 0.23 <.001 ***

Parupa Bin -0.74 0.07 <.001 ***
Control -1.01 0.33 <.05 *
Bin:Control 0.73 0.10 <.001 ***
(Intercept) 45.50 0.80 <.001 ***

UD Danish Bin -1.64 0.24 <.001 ***
Control -1.32 1.13 0.28
Bin:Control 1.52 0.34 <.01 **
(Intercept) 105.36 0.63 <.001 ***

Geo Names Bin 0.21 0.09 <.05 *
p→ b Control -0.64 0.89 0.48

Bin:Control -0.14 0.13 0.28
(Intercept) 111.86 0.52 <.001 ***

Geo Names Bin -0.64 0.08 <.001 ***
k→ g Control -6.28 0.74 <.001 ***

Bin:Control 0.62 0.11 <.001 ***
(Intercept) 114.92 0.87 <.001 ***

Geo Names Bin -0.39 0.13 <.01 **
t→ d Control -7.81 1.23 <.001 ***

Bin:Control 0.41 0.18 <.05 *

Table 1: Coefficients of linear regression models predicting increase of distance between the investigated sounds
in two simulated corpora.

fect shows the predicted change to the initial Inter-386

cept in the control corpus, and finally ‘Bin:Control’387

shows the interaction between temporal bin and388

corpus type.389

In both the corpora where change is simulated,390

there is a significant effect of temporal interval.391

This is expected given the fact that gradual change392

has been induced in the data. The effect of the393

control corpus on the initial sound distance is sig-394

nificant for Parupa but not for UD Danish. More im-395

portantly, the interaction between the effect of the396

temporal bin and the control corpus is significant in397

both cases. The interaction supports the hypothesis398

that we see a pattern of change in the simulated399

corpora that is significantly different compared to400

the control data. The interactions are shown in the401

plots in Figure 1.402

Turning to the results for the Danish Geographi-403

cal Names corpus, while the models show signif-404

icant effects of Bin, Control and interaction be-405

tween the two for the k→ g and the t→ d changes,406

only the effect of Bin is significant for the p→ b407

change. When we look at the corresponding inter-408

action plots in Figure 2, we see that the distance409

between p and b in the corpus seems to increase410

rather than diminish (as also shown by the positive411

Bin effect), and to do so in a rather non-linear way. 412

The changes displayed in the plots in (b) and (c), 413

on the contrary, follow the expected trend. The 414

observed consonant is moving towards its voiced 415

version in the real corpus but not in the control. 416

6 Discussion 417

The results from the two simulation studies sug- 418

gest that sound change can be traced with our pro- 419

posed methodology of measuring the distance be- 420

tween pairs of character distributions over time. We 421

showed this both in a simplified setting (Parupa), 422

and in the orthographically noisy environment pro- 423

vided by synchronic Danish data (UD Danish). 424

The main assumption in these simulation studies 425

was that change could be modeled linearly. How- 426

ever, as discussed by scholars, change is most often 427

not linear, but rather follows an s-shaped curve 428

through a community (Denison, 2003). In a similar 429

study on synthetic data, nevertheless, Shoemark 430

et al. (2019) showed for LSC detection that trac- 431

ing the change under a linear assumption, such as 432

ours, still performs well. The results obtained in 433

our study seem to confirm this finding in the case 434

of sound change. 435

Moving on to the results on the tracing of leni- 436
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tion in historical sources, we were able to identify437

a change from /t k/→ /d g/. However, this gen-438

eral result does not tell us much about what patterns439

the model picked up. To get a sense of this, instead440

of looking at the euclidean distance for the full em-441

bedding, we ran linear regression on the target data442

looking at differences between character distribu-443

tions for each dimension. We then extracted the444

patterns corresponding to the dimensions showing445

significant differences and considered those with446

the highest Pearson’s r coefficient (Tables 2-4).447

Starting with the resulting patterns for Parupa448

and UD Danish, in both cases we are able to iden-449

tify the exact contexts where the change was simu-450

lated: In Parupa before i/u and in the UD Danish451

corpus, between vowels and in the frequent suffix452

-ig(t) (although the end-of-word is not captured due453

to n-gram size restrictions).454

Moving on to the tracing of sound change in455

real data, we focus our analysis on k→ g, which456

showed the greatest change. Considering first the457

word-final patterns, wi_# and vi_#, to spellings458

of the word vig ‘inlet’, commonly used as a suffix459

in the formation of geographical names in Dan-460

ish. Descending from a Proto-Germanic word with461

final -k (wı̄kwan ‘to give way; to turn (away)’, com-462

pare German weichen ‘id.’ and Dutch wijken ‘id.’463

(Kroonen, 2013)), the suffix is in early sources at-464

tested with a -k: For example, out of the six written465

sources of the geographical name Rørvig before466

the 14th century (corresponding to bin 1-3 in our467

study), four were written with a -k, while in later468

sources forms with -g became predominant, with469

the latest attestation of -k appearing in 1465. All470

of the patterns can be attributed to spellings related471

to similar changes10,11 with the exception of oli_472

and ri_#, which do not have comparable ances-473

tors with -k: These will have to be explained by474

later innovations, the first by the emergence of the475

word bolig ‘home;dwelling’ in geographical name476

formation, and the latter possibly indicating later477

spellings of names ending -rg.478

This latter example is related to an important479

issue in language evolution: When language lan-480

guage changes through generations, we also ob-481

serve shifts in culture. Different types of ‘data drift’482

are in fact discussed by Hamilton et al. (2016a) in483

10Danish sig ‘bog; mire’ from Old Danish sik, compare
Norwegian and Swedish (dialectal) sik (Danmarks Stednavne,
1922–2013)

11Danish ager ‘field’ from Proto-Germanic akra, compare
English acre and Swedish åker (Kroonen, 2013).

the context of LSC. The authors suggest that they 484

may be modeled independently of each other by 485

means of different measures of change. The ef- 486

fect of cultural change has yet to be discussed for 487

sound change. However, it is an important discus- 488

sion, since phonology, when looking at it from a 489

corpus-based perspective, is not only governed by 490

phonotactic constraints, but also a by-product of 491

word usage, which is in turn dependent on cultural 492

patterns. 493

In this respect, another important point to note 494

about the retrieved patterns – both from the sim- 495

ulation of UD Danish and the tracing of k → g – 496

is that many of them reflect derivational or inflec- 497

tional suffixes, and are thus characterized by high 498

frequency of occurrence across word forms. While 499

the observation that frequent patterns are more eas- 500

ily captured may seem trivial, it cannot be ignored 501

that the model may be less sensitive to infrequent 502

patterns.12 503

The same mechanism is reflected in the model’s 504

lack of generalisation, which explains treating 505

forms like vig, wig and viig as separate entries. 506

This is a design consequence, in that we use PPMI 507

weighting on raw n-gram counts. This method en- 508

abled us to interpret the exact inner workings of the 509

model and find the contexts in which a change has 510

happened. If we had used neural methods, in which 511

characters are represented by dense embeddings, 512

similar characters would have shared similar rep- 513

resentations, thereby perhaps allowing the model 514

to generalise e.g., to sound change occurring af- 515

ter a vowel. In this study, we wanted to privilege 516

explainability, but dense representations should be 517

explored in the future. 518

7 Conclusion and future work 519

In this paper we presented a novel method for the 520

modeling of sound change through the use of di- 521

achronic character embeddings. Sound change is 522

modeled in terms of increasing similarity between 523

character distributions across time intervals. The 524

proposed method was tested on synthetic data with 525

promising results, and then applied to a real world 526

scenario with the goal of tracing the lenition of 527

12Whether frequency could explain the lack of evidence
for observing p → b is to be investigated further. Germanic
p descends from Proto-Indo-European (PIE) *b, which has a
special place in the PIE phoneme inventory, being the black
sheep that some scholars do not believe to have existed due to
its few attestations. Thus, the attestations of Germanic p most
often come from loan words and are not seen in morphemes.
Thus the evidence for p → b is inherently scarcer.
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4-gram Slope Pearson’s r
i_i -0.30 -0.93
o_u -0.29 -0.96
_u# -0.29 -0.95
a_u -0.28 -0.95
e_i -0.28 -0.94

Table 2: Analysis of the simulated change from p to
b in Parupa. Five most important dimensions after fil-
tering 3-grams with respect to Pearson’s r (<-0.2) and
p-value(<0.05). The table is ordered by slope. ’#’ indi-
cates word boundaries.

4-gram Slope Pearson’s r
li_ -0.71 -0.92
i_e -0.63 -0.89
i_t -0.58 -0.93
di_ -0.58 -0.97
a_e -0.57 -0.95

Table 3: Analysis of the simulated change from g to k
in synchronic Danish. Five most important dimensions
after filtering 3-grams with respect to Pearson’s r (<-
0.2) and p-value(<0.05). The table is ordered by slope.
’#’ indicates word boundaries.

/p t k/→ /b d g/ in Danish by looking at spelling528

in historical sources. The method was able to de-529

tect the changes for two of the sound pairs, and530

also to point at specific contexts of occurrence that531

influenced the changes.532

For scholars interested in sound change, there are533

a number of important open questions, such as the534

relative chronology and geographical distribution535

of sound shifts. Although we have not addressed536

these questions here, we believe our methodology537

can be further developed in ways that would allow538

to do so, e.g., by adding geographical location as an539

additional factor in the models. Both issues would540

constitute interesting avenues for future research.541

In this paper we have used purely count-based542

methods. While this approach enables us to di-543

rectly interpret the results of the models, it also suf-544

fers from its inability to generalise across contexts.545

This drawback motivates experimenting with neu-546

ral methods that make use of dense character rep-547

resentations, to test whether they can make similar548

generalisations as done by historical linguists, par-549

ticularly as regards infrequent patterns that could550

be captured across word forms.551

4-gram Slope Pearson’s r
rvi_ -0.50 -0.85
sii_ -0.45 -0.79
æ_er -0.43 -0.78
m#a_ -0.40 -0.80
vi_# -0.40 -0.79
oli_ -0.40 -0.84
ri_# -0.38 -0.83
wi_# -0.31 -0.83
ara_ -0.31 -0.62
a_re -0.28 -0.71

Table 4: Analysis of the change from k to g in histori-
cal records of geographical names. Ten most important
dimensions after filtering 4-grams with respect to Pear-
son’s r (<-0.2) and p-value(<0.05). The table is ordered
by slope. ’#’ indicates word boundaries.
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