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Abstract

With the proliferation of large pre-trained models in various domains, transfer learning has
gained prominence where intermediate representations from these models can be leveraged
to train better (target) task-specific models, with possibly limited labeled data. Although
transfer learning can be beneficial in many applications, it can transfer undesirable informa-
tion to target tasks that may severely curtail its performance in the target domain or raise
ethical concerns related to privacy and/or fairness. In this paper, we propose a novel ap-
proach for suppressing the transfer of user-determined semantic concepts (viz. color, glasses,
etc.) in intermediate source representations to target tasks without retraining the source
model which can otherwise be expensive or even infeasible. Notably, we tackle a bigger
challenge in the input data as a given intermediate source representation is biased towards
the source task, thus possibly further entangling the desired concepts. We evaluate our
approach qualitatively and quantitatively in the visual domain showcasing its efficacy for
classification and generative source models. Finally, we provide a concept selection approach
that automatically suppresses the undesirable concepts.

1 Introduction

Deep neural networks (DNN) have achieved unprecedented performance in various computer vision and
natural language (NLP) problems such as image classification (Sun et al., 2017; Mahajan et al., 2018),
object detection (Girshick, 2015; Ren et al., 2015), segmentation (Long et al., 2015; He et al., 2017), question
answering (Min et al., 2017; Chung et al., 2017), and machine translation (Zoph et al., 2016; Wang et al.,
2018) etc. One of their strengths is learning task-specific hidden representations rather than relying on
predefined image features. In an ideal scenario, there are abundant labeled training samples to learn a good
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Figure 1: Illustration of our proposed approach on rotated-MNIST dataset. We show how the rotation concept is
suppressed from the image before transferring it to the target task. First, hidden representation zs from a pre-trained
source network is factorized using a concept disentangling network (CDN) into zs

k, k ∈ K = {digit, rotation, residue}.
To suppress the rotation concept, the factor for zs

rotation is set to a rotation prototype, pr generated using a few sample
images with no rotation. Now the CDN is used to invert the modified factors to z̃s which can either be directly used
Controllable Concept Transfer-source (CCT-s) or concatenated with the target representation zT Controllable Concept
Transfer-concatenate (CCT-cat) to train the target task.

hidden representation. However, collecting sufficient training data is often expensive, time-consuming, or
unrealistic. In such scenarios, transfer learning (Pan & Yang, 2009) has emerged as one of the promising
learning paradigms. Transfer learning utilizes knowledge from information-rich source tasks to learn a specific
(often information-poor) target task.

One of the most widely used approaches for transfer learning is fine-tuning (Sharif Razavian et al., 2014)
where the target DNN being trained is initialized with the weights of a source DNN that has been pre-
trained on a large dataset from a related task. Another popular approach involves combining (matching)
the hidden representation (output gradient) of the target model with that of the source model (Jang et al.,
2019; Li et al., 2018; Murugesan et al., 2022). These approaches are extensively used in improving prediction
performance and robustness of many vision and NLP tasks (Hendrycks et al., 2019; Devlin et al., 2018) while
reducing training time and resources. This effectiveness is partially attributed to the capability of DNNs to
repurpose features and concepts for new tasks, as discussed by Neyshabur et al. (2020).

In the realm of image classification, for example, visual concepts such as shapes, colors, or textures learned
while distinguishing between cats and dogs might be transferred to differentiate between tigers and wolves in
a new task. While concept transfer can enhance the efficiency of models on related tasks, it could propagate
undesirable concepts encoded in source models to downstream tasks. For example, a source model, trained to
classify cats vs dogs, with most cat images in gray-scale and dog images in color, could incorrectly associate
the concept of color to the images of the dog and pass this biased knowledge to downstream tasks. In
real-world applications, this could have serious consequences. Among several examples, Steed & Caliskan
(2021) showed that embeddings extracted from pre-trained image models exhibit racial and gender bias that
they learn from training datasets.
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While there are several approaches to mitigate the impact of unintended knowledge transfer in target
models, ranging from data augmentation that balances target datasets (Park et al., 2018; Dixon et al., 2018)
to adversarial training for generating robust hidden representations against certain spurious concepts (Zhang
et al., 2018; Wang et al., 2020; Fan et al., 2021), suppressing undesirable information in the intermediate
representation of the source model has been largely unexplored. Typically, large pre-trained (source) models
are learned with imbalanced/biased data, and retraining these models to remove undesirable concepts
might not be ideal. For one, it is expensive to retrain the source model, and access to the data used in
source model pretraining could be limited. Additionally, one can suppress the visual concepts in the input
data (i.e., masking pixels in input image), but latent concepts such as color, rotation, smiling, etc cannot
be blocked without affecting other concepts. Our work takes a novel concept-based knowledge transfer
approach where we address the following question:

How can we most effectively control the intermediate representation of a source model by suppress-
ing a specific concept while keeping other concepts (largely) intact before transferring to downstream
tasks?

Toward this goal, we propose a transfer learning method, Controllable Concept Transfer (CCT), to sup-
press the undesirable concepts (visual and latent) in the hidden representation of the source model before
transferring them to a downstream task.

We introduce a novel method that utilizes a Concept Disentangling Network (CDN) to disentangle the con-
cepts within the intermediate source representation and selectively transmit or suppress them for the target
task. To the best of our knowledge, this disentanglement process has not been previously explored in the
context of transfer learning. Our approach for CDN adapts recent works in interpretable disentanglement of
images such as Invertible Interpretable Network (IIN) (Esser et al., 2020), Concept Activation Vectors (Kim
et al., 2018; Zhou et al., 2018; Chen et al., 2020). We propose two transfer learning settings and demon-
strate our approach to image classification tasks using three real-world datasets. Our system successfully
suppresses concepts from the source intermediate representation in both settings. In addition, we propose
a mutual information-based metric based on Belghazi et al. (2018) to quantify the measure of concept sup-
pression. Figure 1 illustrates our approach to suppress the concept of rotation from the source model using
CDN explained later. We evaluate the performance of controllable concept transfer both qualitatively and
quantitatively. Our qualitative analysis presents decoded images with different concepts suppressed.

2 Related Work

Transfer Learning from a large pre-trained source model is a well-known approach to learning target
tasks with limited labels (Pan & Yang, 2009). One of the most common transfer learning techniques is
finetuning a pre-trained source model (Sharif Razavian et al., 2014), where network layers from the source
model are frozen, and a new classifier head is trained for the target task. Recent works align the source and
target features to transfer relevant knowledge - either by matching network weights (Xuhong et al., 2018;
Jang et al., 2019), attention maps (Li et al., 2018; Zagoruyko & Komodakis, 2016), Jacobians (Srinivas &
Fleuret, 2018) or model reprogramming (Chen, 2022). Another line of work uses the source model to better
guide the target network by transferring feature maps automatically to improve the target task performance
(Murugesan et al., 2022). In all the above methods, the transferred knowledge is typically not interpretable.
To understand what knowledge is being transferred from source and target networks, a few methods use
attention maps to visualize the key features from the source model useful for the target task (Murugesan
et al., 2022; Jang et al., 2019) or a series of experimental analyses on the finetuned target model to study the
importance of transferred knowledge (Neyshabur et al., 2020). In this paper, we take a different approach
to transfer learning and propose a principled way of controlling what semantically meaningful concepts can
be transferred from the source model to the target task.

With an increasing interest in Model Interpretability, several approaches have been proposed to under-
stand the inner workings of deep neural classifiers, specifically through human understandable high-level
concepts as activation vectors (Kim et al., 2018; Zhou et al., 2018; Chen et al., 2020), or individual neurons
(Erhan et al., 2009; Olah et al., 2017; Zeiler & Fergus, 2014; Bau et al., 2017). However, the representation
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of the semantic concepts is distributed across the hidden layers of the network (Fong & Vedaldi, 2018), and
none of these methods can (confidently) claim that the features (i.e., neurons) identified from intermediate
representations are associated only with the specific concept and are largely independent of other concepts
(Montavon et al., 2017; Yosinski et al., 2015). A related line of work trains the models that explicitly en-
code concepts in their intermediate representations (Koh et al., 2020; Chen et al., 2020; Losch et al., 2019).
However, this approach alters the network architecture and typically deteriorates overall performance (Zhou
et al., 2016). Unlike these works, we propose a novel method to transfer learning by blocking or allowing
the relevant concepts from the source model to the target model for better interpretability.

Unlike DNNs, Generative Models are trained to produce images from samples of a specific distribution.
Variational auto-encoders (Kumar et al., 2018; Higgins et al., 2017) reconstruct images from a represen-
tation whose marginal distribution is matched to a standard normal distribution. Generative Adversarial
Networks (GAN) (Goodfellow et al., 2020; Hoang et al., 2018) map samples from a standard normal dis-
tribution to realistic images as judged by a discriminator. While these approaches are invertible, they are
not interpretable, are limited to representations with a linear structure, and cannot be applied to arbitrary
representations from a source network. This motivates our choice for adapting frameworks such as Invertible
Neural Networks (Dinh et al., 2014; Jacobsen et al., 2018; Kingma & Dhariwal, 2018; Esser et al., 2020) for
our setup as they can identify disentangled concepts for interpretability, invert them and map them back to
relevant features in the intermediate representations of the source model. StyleGAN (Karras et al., 2020)
is a generative model that generates images with different “styles". However, this is inappropriate for our
setup since latent directional vectors need to be known for concepts one wishes to manipulate. Although
these are known for certain concepts in specific datasets (viz., age and eye ratio in the FFHQ dataset), they
are not readily available for arbitrary ones that one might want to manipulate. Moreover, finding the latent
representation for a given real image, which would be required for the StyleGAN, is still a topic of active
research (Li et al., 2022) as the reconstructions from these patients can be imperfect.

Most state-of-the-art disentangled representation learning methods are based on the framework of vari-
ational auto-encoders (VAE) (Kingma & Welling, 2013; Rezende et al., 2014). However, these works do
not enforce any structure on the latent space and many regularization techniques have then been proposed
(Kumar et al., 2018; Higgins et al., 2017; Eastwood & Williams, 2018). Among works that enforce structure
are those that learn structural causal models (Shen et al., 2022; Huang et al., 2023; Zhang et al., 2023), but
they are used primarily for discriminative tasks. Xiao et al. (2020) takes a different approach to disentan-
gling within contrastive learning literature by embedding different semantic concepts in latent spaces, where
each space is invariant to one semantic concept. A key differentiator between Xiao et al. (2020) and our
approach is that we propose to suppress desired semantic concepts while keeping other concepts (largely)
intact. On the contrary, their approach can transfer embeddings of one/few/all concepts to a downstream
task. This is a limitation, considering that it is impossible to pre-define embedding space for all possible
semantic concepts. Lastly, data augmentation (Mitrovic et al., 2021; von Kügelgen et al., 2021) can also
be viewed as an approach to mitigating features but generally assumes knowledge of the data generating
process.

3 Controllable Concept Transfer Method

It has been widely observed that machine learning models learn context-specific correlations in datasets. For
example, a model trained to classify different indoor scenes would learn to associate the presence of a bed to
the output class of “bedroom” vs couch to the output class of “living-room”. However, spurious associations
in the transferred knowledge could hinder the performance of a target task. For instance, an accent chair
could be exclusively associated with “living-room” and when the model encounters a novel environment
where it is present in “bedroom”, the source representation could be biased to classify the input as “living-
room”. A transfer learning method to modify the source intermediate representation to suppress a certain
concept would prove useful in such situations. The canonical way to suppress a certain concept from hidden
representation would be to retrain the model with new images that satisfy the desired constraint. However,
predicting how the retraining affects other related concepts is hard. Our work aims to tackle this problem
directly and modify the hidden representation of the source model in a targeted manner. For instance,
in our earlier example, we would ideally want to suppress the concept of accent chair without affecting
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other concepts in the hidden representation of the source model before transferring it to the downstream
task. Next, we provide a brief overview of the Concept Disentangling Network based on recent work on
interpretable disentanglement of input representations by Esser et al. (2020), after which we detail our work.
This paper uses the terms “intermediate representation” and “hidden representation” interchangeably.

3.1 Background: Disentangling semantic concepts in intermediate representation

Let f be the given neural network with L layers that maps the input image x ∈ Rh×w×c1 through a series
of hidden layers to the final output f(x). Often, intermediate representation E(x) ∈ RH×W ×C 2 at a hid-
den layer does not convey any semantic meaning and the mapping from the intermediate representation to
semantically meaningful representation is well-defined, whereas the inverse is not straightforward. This pa-
per is interested in invertible representation learning that maps intermediate representation to semantically
meaningful concepts and vice verse. Esser et al. (2020) developed such approach to factorize the hidden
representation from a model into user-defined semantic concepts. Specifically, they map arbitrary repre-
sentations into a space of interpretable representations – a non-linear mapping between the two domains.
This mapping is invertible, i.e., any modification in the domain of semantic concepts concurrently alters
the original representation. In this scenario, it takes the flattened version of E(x), denoted z ∈ RN (where
N = H · W · C), and factorize it into z̃ = (z̃k)K

k=0 ∈ RN , where each of the K + 1 factors of z̃k ∈ RNk

with
∑K

k=0 Nk = N represents an interpretable concept that is normally distributed N (z̃k|0, 1). Calling this
transformation I, we have z̃ = I(z).

To encode semantic representation into each factor z̃k, they constrain (i) each factor z̃k to vary with exactly
one interpretable concept and (ii) z̃k to be invariant to all other variations. This is ensured through training
pairs (xa, xb), which specify semantics through similarity, i.e., image pairs with a semantic concept of accent
chair. Each semantic concept, indexed by F ∈ {1, ..., K}, has image pairs (xa, xb) ∼ p(xa, xb|F ) to the
corresponding factor z̃F . To capture the remaining variability that is not captured by the K concepts, a
residual concept z̃0 is introduced. This ensures that the original representation space reflects any change
made to the factorized semantic concept z̃k. Calling this transformation I−1, we have I−1(z̃) = z. Intuitively,
the goal is to have a bijective mapping so that modifications of the disentangled semantic factors correctly
translate back to the original representation. Please refer to Algorithm 2 in Appendix and Esser et al. (2020)
for further details.

3.2 Concept suppression and transfer

In this section, we focus our attention on controlling the concept transfer by suppressing undesirable concepts
in the hidden representation of the source classifier and transferring relevant concepts to the downstream
task. Let’s continue our running example of classifying “bedroom” vs “living-room” to describe our approach.
At the high level, the goal is to take the hidden representation at a layer L− 1 of the pre-trained model and
suppress the accent-chair concept without affecting other concepts.

How to suppress a concept using prototype? Let us assume that we have a pre-trained source network
fs that takes input images x from a target task and produces hidden representation at layer L−1, fs

L−1(x) =
zs, i.e., the layer before classifier head cs

L. Let us define a few semantic concepts specific to the target task
as accent-chair, bed, and couch. We first train the CDN I to take the hidden representation zs and factorize
it according to concepts such that z̃s

k = (I(zs))k, where k ∈ {accent − chair, bed, couch}. Training is done
using pairs of images that contain a common concept, i.e., the same bed to map z̃s

bed or the same couch for
z̃s

couch. In addition, there is a residue factor z̃s
residue that encodes all other variations unaccounted by these

concepts. Since the CDN imposes a one-to-one mapping from the original representation space (zs) to a
factorized space (z̃s), we can edit the factorized representation z̃s

rotation without affecting the other factors.
Given the CDN I, suppose one wants to suppress the accent-chair concept. We sample a few example
images {r1, ..., rn} which do not have accent-chair and pass them through our pre-trained source network
and CDN to obtain their accent-chair embedding and take the mean to create a prototype embedding,
pchair = 1

n

∑n
i=1(I(fs

L−1(ri))accent−chair), which is indicative of absence of the accent-chair concept. One
1Where h, w, c are height, width and channel dimensions of input image
2Where H, W, C are height, width, and channel dimensions of intermediate representation
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can now substitute accent-chair latent embedding of any image using the generated prototype to suppress
its presence.

How to transfer? Next, we proceed to training the target model f t that takes as input images x and
maps to a hidden representation at layer L − 1, f t

L−1(x) = zt, the layer before target task classifier head
ct

L. The input image is also passed through the source model to get the source intermediate representation,
which is then fed to CDN. The accent-chair concept is suppressed by replacing the corresponding factor
z̃s

accent−chair with the prototype, pchair. The updated hidden representation I−1(z̃s) is then transferred to
the target classifier ct

L. We consider two variations of transferring knowledge from the source model to the
target task,

1. Controllable Concept Transfer – source (CCT-s) where we freeze the layers up to L − 1 of source
network, attach a classifier head for target task ct

L and train the classifier head for the target task with
updated source representation, ct

L(I−1(z̃s)).
2. Controllable Concept Transfer – concatenate (CCT-cat) where we concatenate the updated source

representation with that of the pre-trained target network before passing it through the target classifier,
ct

L([I−1(z̃s)⊕ zt]) where ⊕ represents concatenation operation.

The entire pipeline is presented in Figure 1 and Algorithm 1 as CCT-cat (CCT-s follows similarly but would
remove the target network f t and combination operation in Step 15). Note that this approach works for
multiple concepts by generating each prototype, pi and editing the corresponding factorized representation
z̃s

i for concept i. The above descriptions are for when one knows which concepts are to be blocked (in which
lines 18-20 of Algorithm 1 should be ignored).

How to suppress undesirable concepts automatically? It may sometimes be the case that there are
too many concepts for a human to decide what concepts to transfer/suppress manually. Some concepts may
introduce noise to the target task, or one may desire to get insights into which concepts offer performance
improvements over the target model. We consider two additional extensions of our framework: 1) Control-
lable Concept Transfer – source with concept search (CCT-s(cs)) and 2) Controllable Concept
Transfer – concatenate with concept search (CCT-cat(cs)). Both involve a procedure that searches for
the optimal subset of concepts (from a predefined set) to suppress (see Algorithm 3 in Appendix). In prac-
tice, we learn a Gumbel-softmax distribution for each concept independently to decide whether the concept
should be suppressed or not (line 19 of Algorithm 1). We can also use one Gumbel-softmax for all combi-
nations of the concepts, but it may be infeasible when we have a large number of concepts. While we use
Gumbel-Softmax sampling, other differentiable methods could also be applied to sample from a structured
discrete space (e.g., stochastic softmax (Paulus et al., 2020)).

4 How well does Concept Suppression work?

Before we study concept suppression’s influence on downstream tasks, we explore how well the concepts are
suppressed from source hidden representation. In particular, we consider two sets of experiments. (i) In the
quantitative experiments, we adopt mutual information (MI) based metric based on Belghazi et al. (2018) to
measure the MI between concept and hidden representation before and after suppressing a concept. In both
cases, we edit the model using a single prototype to suppress one concept at a time. (ii) In the qualitative
experiments, we use an autoencoder architecture as a source model, which facilitates visualization of concept
suppression by decoding CDN-edited hidden representations to human-understandable images.

4.1 Mutual Information Experiment

This experiment aims to quantitatively assess whether information about undesired concepts is contained
or “hiding" in transferred representations. We consider two approaches popular in the interpretable disen-
tanglement of input representations: Invertible Interpretable Network (IIN) (Esser et al., 2020), Concept
Activation Vectors (Kim et al., 2018; Zhou et al., 2018; Chen et al., 2020). To formally evaluate the perfor-
mance of concept suppression in this scenario, we employ an information-theoretic analysis of the transferred
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Algorithm 1 Controllable Concept Transfer - Concatenate with Concept Search method (CCT-cat(cs))
1: Inputs: Target training dataset DT ; Target classifier loss Lct (·); Combination operation

⊕
; Seed weight

parameters: Wct [0]; Source pre-trained network fs; Target pre-trained network f t; Number of Epochs E; Layer
L; C List of K Concepts; Number of Epochs M between Concept Searches.

2: I ← TRAIN-CDN
3: C̃ ← C
4: for c ∈ C do
5: Randomly sample n images {r1, r2, ...rn} without concept c.
6: pc ← 1

n

∑n
j=1 (I(fs

L(rj))c)
7: end for
8: Randomly shuffle DT .
9: for epoch ∈ [1 : E] do

10: for batch ∈ DT do
11: x← DT [batch].
12: z̃s ← I(fs

L(x))
13: for c ∈ C̃ do
14: z̃s

c ← pc

15: end for
16: Update Wct [batch]←Wct [batch− 1]− ηbatch∇WctLct(f t

L(x)
⊕

I−1(z̃s))
17: end for
18: if epoch mod M == 0 then
19: C̃ ← CONCEPT-SEARCH(C)
20: end if
21: end for
22: Output: Trained model ct

L with last iterate of Wct

representations. Specifically, we measure the mutual information between a specific concept and the hidden
representations. To compute mutual information between concepts and neural network representations, we
adapt the mutual information based neural estimator (MINE) proposed by Belghazi et al. (2018), where the
authors present a way to estimate mutual information between high dimensional random variables using a
trainable neural network that they term a statistics network. In simple words, given two random variables
C for concept and Z for hidden representation,

IΘ(C, Z) = sup
θ∈Θ

EPCZ [Tθ]− log(EPC

⊗
PZ

[eTθ ])

where the expectations are estimated using samples drawn from PCZ and PC

⊗
PZ while the objective is

maximized by gradient ascent. Please refer to Belghazi et al. (2018) for more details.

In particular, we estimate the MI between the concept C and original hidden representation zs, I(C, zs),
and compare with the MI between concept C and edited hidden representation z̃s, I(C, z̃s). We start with
a heterogeneous setup where the source model is trained on the rotated-colored-EMNIST dataset (Cohen
et al., 2017), where each colored image is rotated by a random angle drawn from r ∈ {90, 180, 270}. However,
we probe the source model with the rotated-colored-MNIST dataset for MI estimation. Here, MI is measured
for color, rotation, and digit for hidden representations – before and after suppressing color and rotation
concepts. To estimate MI, we use the color RGB vector and angle of rotation as concept random variables
C. These results are presented in Figure 2(a). The MI for digit does not change much when suppressing the
other two concepts—however, the MI for color and rotation drop significantly when the respective concepts
are suppressed.

We proceed to conduct experiments on the CelebA (Liu et al., 2015) dataset, a large-scale dataset of celebrity
faces with attributes. First, a source model is trained on a multi-label classification task to identify four dif-
ferent concepts {Smiling, Wearing_Lipstick, Heavy_Makeup, High_Cheekbones}. Next, each concept
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Figure 2: Experiments on mutual information (MI) between concepts and intermediate representation. Each group of
bars represents a concept and the color of the bars represents the suppressed concept. MI for rotated-colored-MNIST
dataset digit, color, and rotation concepts when color and rotation are suppressed using (a) CDN (IIN) method
and (b) CDN (CAS) method. MI for CelebA dataset where source model is trained on a multi-label classification
task to identify 4 different concepts {Smiling, Wearing_Lipstick, Heavy_Makeup, High_Cheekbones}. Each concept
is then suppressed individually and MI is reported for all concepts using (c) CDN (IIN) method and (d) CDN (CAS)
method.

is suppressed, and MI is measured for every concept. To estimate MI, we use the binary value of the pres-
ence/absence of each concept as a random variable. Results are presented in Figure 2(b). As demonstrated
by the plots, the MI for the suppressed concept reduces (almost) to zero in most cases. These findings
suggest that the selected concept is suppressed from the updated hidden representation without significantly
affecting the other concepts. Additionally, our choice of suppressing concepts by editing the source’s final
layers is justified by looking at Figure 8, where we see that more complex concepts appear only in the later
layers of the source network.

4.2 Comparing against concept activation based suppression (CAS)

To test the need for disentanglement to suppress concepts in hidden representations (IIN), we experiment
with concept activation-based suppression (CAS) at the source intermediate representation motivated by
previous works (Kim et al., 2018; Zhou et al., 2018; Chen et al., 2020). In this experiment, we train a
linear classifier based on logistic regression for each concept. The hidden representation from the source
network is used as input, and each model predicts if the concept is present/absent. We then identify the
top neurons for each concept based on model coefficients and use them to create the prototypes, pi, for each
concept. To suppress a concept i, we just set those candidate neurons to the corresponding pi. We tested this
approach in rotated-colored-MNIST and CelebA by measuring MI values similar to previous experiments.
Results are presented in Figure 2(b, d). As demonstrated, the MI for all concepts remains high even after
using CAS to suppress them. This suggests that the information about the concept is still present after
directly suppressing the hidden representation space. On the other hand, suppressing through the factorized
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Figure 3: Visualization of concept suppression using an autoencoder as source network. (a) In the first column, we
present randomly drawn colored-MNIST images. We then proceed to suppress the concept of color from these images
and show them in the second row. (b) For CelebA dataset, we consider randomly drawn samples with the Eyeglasses
attribute and proceed to suppress them. Examples of other concepts being suppressed are in the appendix.

representation of IIN leads to much less mutual information. Hence, we chose to use IIN-based CDN for the
remaining experiments.

4.3 Qualitative experiments using autoencoder architecture

We replace the source model classifier with an autoencoder to visually evaluate concept suppression. Consider
that fs takes the input image x ∈ Rh×w×c and encodes it into the hidden representation z = fs(x) ∈
RN , N = H ·W · C. Decoder ds is then used to map the hidden representation back to the original image
space x̃ = ds(z) ∈ Rh×w×c. First, we consider a simple dataset where we add the concept of color to the
MNIST dataset (colored-MNIST) (LeCun et al., 1998). A source model is trained to reconstruct the input
images, and CDN is trained to disentangle the concepts of digit and color. We then edit the color factor
of a few randomly drawn sample images with the prototype pc of color and present results in Figure 3(a).
As demonstrated in Figure 3(a), our method can suppress the concept of color without affecting the digit
concept.

Next, we proceed to CelebA dataset. We train the source model to reconstruct CelebA images and then train
the CDN to disentangle three concepts – Eyeglasses, No_Beard, and Smiling. We then edit these concepts
using corresponding prototypes, pi. Results for suppressing the Eyeglasses concept in a few randomly drawn
sample images are presented in Figure 3(b). Additional figures for suppressing the concept of Smiling and
No_Beard are presented in Figure 9. In Figure 3(b), we see that the concept of Eyeglasses is successfully
suppressed from sample images, demonstrating that this approach can suppress complicated concepts.

5 Evaluation on Classification tasks

The analysis presented in the previous section demonstrates that concept blocking is feasible. In this section,
we consider how concept suppression affects the performance of a downstream target task. In particular,
we present two scenarios of image classification tasks: (i) Transfer from the rotated-EMNIST trained source
model to the rotated-MNIST classification task, and (ii) Transfer between CelebFaces attribute classifiers.
For the former task, we use a deep 6-layer convolutional neural network (CNN) for the source model and a
shallow 3-layer CNN for the target model. For the CelebFaces task, we used a ResNet34 (He et al., 2016)
pre-trained on ImageNet for the source model and ResNet18 for the target model. Additional details about
the experimental setup and datasets can be found in Appendix A.3. For each experiment, we consider two
variants of transfer: Controllable Concept Transfer – source (CCT-s) and Controllable Concept Transfer –
concatenate (CCT-cat) and compare the performance against training the target model independently (TG).

5.1 Transfer between heterogeneous datasets

In this experiment, we study the effect of suppressing the concept of rotation in a rotated-EMNIST trained
source model to a rotated-MNIST transfer task. First, we pre-train the source model with the rotated-
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EMNIST dataset, aiming to classify 26 English letters. Next, we train the CDN to factorize the concepts of
digit and rotation using layer L−1 representation of the pre-trained source model by probing it with rotated-
MNIST images as inputs. Finally, we train the target task of classifying ten digits without suppressing any
concepts, termed CCT-s(noedit) and CCT-cat(noedit), and compare the performance to rotation suppressed
transfer, termed CCT-s(edit) and CCT-cat(edit). To force the target model to rely on the source model
for the rotation concept, we vary the amount of rotated training samples in the target dataset from 1%
to 75%. Top-1 accuracy for these experiments is presented in Table 1 with maximum accuracy in bold
for each column. Each experiment is repeated thrice, and the mean accuracy is presented. As expected,
at lower percentages of rotated samples (≤ 10), we see that suppressing the concept of rotation boosts
the performance of transfer with CCT-s(edit) and CCT-cat(edit) performing best. We postulate that, at
lower percentages of rotated training samples in the target dataset, the target model relies on the source
model for a good representation of the rotation concept, and suppressing this concept makes the target task
easier. As the percentage of rotated samples in the training data increases, the target model learns a better
representation of the rotation concept and relies less on the source model. This is evidenced by TG and
CCT-cat(noedit) having a comparable performance at a higher percentage of rotated samples.

Table 1: Mean accuracy (over three runs) for rotated-EMNIST to rotated-MNIST transfer task. Experiments are
conducted by varying the proportion (%) of rotated samples {90, 180, 270} in the training dataset from 1% to 75%.
We compare the performance of three models: Target only (TG), CCT-s and CCT-cat. For CCT-s and CCT-cat we
conduct experiments without suppressing any concept (noedit) vs suppressing rotation (edit).

Method Fraction (%) of rotated images in target task dataset
1 2 3 4 5 6 7 8 9 10 25 50 75

TG 0.52 0.58 0.62 0.65 0.68 0.70 0.71 0.73 0.74 0.75 0.84 0.88 0.90
CCT-s(noedit) 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.75 0.80 0.81
CCT-cat(noedit) 0.61 0.65 0.68 0.70 0.72 0.73 0.75 0.76 0.77 0.78 0.86 0.90 0.91
CCT-s(edit) 0.68 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.70 0.73 0.75 0.77
CCT-cat(edit) 0.64 0.68 0.71 0.73 0.74 0.76 0.76 0.77 0.78 0.79 0.85 0.89 0.90

5.2 Evaluation on CelebFaces Attributes

In this experiment, we consider a homogeneous setup where the transfer is done between two CelebA tasks.
We train the source model to identify four different concepts, Smiling, Wearing_Lipstick, Heavy_Makeup,
and High_Cheekbones, based on a multi-label classifier. We then train a CDN to factorize these concepts
using layer L − 1 representation of the source network. Finally, we train the target binary gender clas-
sification task. Specifically, we train several models with/without suppressing concepts, CCT-s(noedit),
CCT-cat(noedit), CCT-s(edit), and CCT-cat(edit), and compare against an independently trained target
model (TG).

Table 2: Mean accuracy (over three runs) for CelebA transfer task. Experiments are conducted by suppressing
concepts Smiling, Wearing_Lipstick, Heavy_Makeup, High_Cheekbones one at a time and suppreesing both Wear-
ing_Lipstick, Heavy_Makeup at once (Both_Makeup). As before we compare the performance of three models: TG,
CCT-s, and CCT-cat. For CCT-s and CCT-cat we perform experiments with (edit) and without (noedit) concept
suppression.

Suppressed concept
Wearing Heavy High Both

Method Smiling Lipstick Makeup Cheekbones Makeup
TG 0.8463
CCT-s (noedit) 0.9173
CCT-s (edit) 0.9096 0.8310 0.8493 0.9106 0.7393
CCT-cat (noedit) 0.9243
CCT-cat (edit) 0.9196 0.8746 0.8830 0.9190 0.8353
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Figure 4: Top-1 accuracy of concept selection methods versus noedit methods in CelebA experiment. Each bar group
represents several attributes considered, i.e., four vs ten. Each color represents the model under consideration.

As seen in Table 2, just using the source model CCT-s(noedit) improves performance in comparison to
the independently trained target model (TG). We notice that suppressing the concepts of Smiling and
High_Cheekbones did not yield a significant impact on CCT-s(edit) performance, suggesting that these
concepts are less relevant to the target task. However, suppressing Wearing_Lipstick and Heavy_Makeup
individually causes a drop in CCT-s(edit) performance. Next, we suppressed both concepts simultaneously
and found that the performance dropped further. This suggests that the target classifier is relying on
concepts such as Wearing_Lipstick and Heavy_Makeup for classifying Male vs Not_Male. We also see
that combining source and target representations in CCT-cat(edit) improves the performance compared to
CCT-s(edit) while suppressing each concept.

Concept search based experiments. We next add concept search to the same experimental setup and
consider additional concepts (up to 10) to account for a situation where the user cannot easily select concepts
to suppress themselves. Results are illustrated in Figure 4 using ten concepts (left) and four concepts
(right). We see here that concept search can offer similar performance with insights to be gained from
examining which concepts are suppressed (most often), which we present in Figure 10. We observe that in 4
concepts experiment, both Heavy_Makeup and Wearing_Lipstick are suppressed less, and in 10 concepts
experiment, Wearing_Lipstick, No_Beard and Heavy_Makeup are top 3 least suppressed concepts.

6 Evaluation on co-occurring concepts

Vision datasets often contain concepts that appear together more often than others, and training models
using such datasets lead to a phenomenon called co-occurrence bias. For instance, a “person” always co-
occurs in images with “ski” or “skateboard” (Singh et al., 2020), and hence, a model trained to identify these
objects would suffer in the absence of a “person” in them. In this section, we study such scenario where the
source dataset has co-occurrence bias and aim to suppress this bias from transferring to a downstream task.

Specifically, it has been shown that object recognition models can spuriously rely on the image background
instead of the objects themselves (Ribeiro et al., 2016). We study this phenomenon using the WaterBirds
dataset (Sagawa et al., 2019), where waterbirds (or landbirds) are placed against water (or land) more often
in training set. In contrast, the test set has an equal number of waterbirds (or landbirds) placed against
water (or land). In this experiment, we use an ImageNet pre-trained source model and train our CDN to
factorize Background and BirdType. We then evaluate our downstream waterbirds task with Background
suppressed source representation and present results in Table 3. We see that suppressing the background
information from source representation improves downstream task performance in both CCT-s (edit) and
CCT-cat (edit) models, further validating our approach in co-occurring concept tasks.
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Table 3: Mean accuracy (over three runs) for WaterBirds transfer task. Experiments are conducted by suppressing
Background concept. As before we compare the performance of three models: TG, CCT-s, and CCT-cat. For CCT-s
and CCT-cat we perform experiments with (edit) and without (noedit) concept suppression.

Accuracy
TG 0.6592
CCT-s(noedit) 0.7812
CCT-cat(noedit) 0.8459
CCT-s(edit) 0.7956
CCT-cat(edit) 0.8464

7 Conclusions

We have seen in this paper how one can effectively suppress certain semantic concepts from being transferred
from a source model to a target model while allowing other concepts and information to be transferred. While
we were (largely) successful in this endeavor, there may be situations where it is difficult to suppress a certain
concept while allowing others to pass. This is because concepts can be (statistically or causally) correlated,
so suppressing one will lead to (at least partially) suppressing the other. For instance, it may be impossible
to suppress the Wearing Lipstick concept while allowing Heavy Makeup to be transferred. In the future, it
would be interesting to consider cases where the user determines which concepts to suppress, which to pass
specifically and to arrive at a strategy that best satisfies these requirements. The strategy may also involve
informing the user that the constraints are impossible to satisfy.

Additionally, we suppressed concepts by setting the corresponding latent vector in the IIN disentangled
representation to mean/median values based on images lacking that concept and then inverting back to the
source intermediate representation. However, there may be other ways to set these values, possibly taking
inspiration from the explainable AI and fairness literature (Došilović et al., 2018; Mehrabi et al., 2021),
where methods such as SHAP (Lundberg & Lee, 2017) and MACEM (Dhurandhar et al., 2019), there are
different ways to determine null/base values indicative of no information.

8 Limitations and Future Work

A drawback of our proposed approach is the need for concept attributes (or labels) required to train CDN.
However, if the concepts are well-defined, fewer examples could be needed to encode these concepts. When
transferring from a pre-trained source model that provides a rich representation to improve the target task,
ensuring that these representations are not biased towards a particular concept by suppressing it outweighs
the cost of annotating. Additionally, image attribute recognition methods such as (Cheng et al., 2018; Zhang
et al., 2022) can be used to identify attributes in a given image as a pre-processing step, but that is out of the
scope of this work. An interesting, albeit challenging, direction for future work is learning which concepts
are most relevant for transferring to downstream task on the fly.

Most datasets in typical benchmarks used for transfer learning do not provide concept-level attribution, and
annotating them is outside the scope of this work. This limited our choice of experimental datasets to those
that come with annotated attributes, such as CelebFaces, WaterBirds, etc. We also considered datasets
such as MS-COCO, where each image is labelled with person, animal, object, etc., labels. However, we find
that the concepts in the CelebFaces dataset are richer in latent concepts. For instance, concepts such as
Heavy_makeup are more complex, and suppressing them is nontrivial compared to attributes present in MS-
COCO, where blocking the pixels of the person bounding box can be considered suppression of the person
attribute. Although we demonstrated our work on image datasets, one can easily extend our approach to
transfer learning setups in tabular and NLP tasks, where each feature can be considered as a concept. We
demonstrate such transfer using a proof of concept experiment on a tabular dataset in Appendix A.4. We
leave additional exploration of this direction for future work.
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A Appendix

A.1 Datasets

For the bulk of our experiments in Sections 4 and 5 we use the MNIST (LeCun et al., 1998), EMNIST
(Cohen et al., 2017) and CelebFaces Attributes (CelebA) (Liu et al., 2015) datasets. Few examples from
each dataset and corresponding concepts are presented in Figure 5

MNIST. MNIST is a handwritten digits classification dataset with 10 digits. There are 60,000 training
examples and 10,000 testing examples. It is a subset of a larger set from National Institute of Standards and
Technology (NIST) where each image is size-normalized and centered in a fixed-size image. We introduce
concept of rotation to these images by rotating 75% (unless otherwise specified) of images by one of 4
possible values {90, 180, 270}. Concept of color is added to images by multiplying each image channel with
corresponding [R,G,B] values drawn from a uniform distribution.

EMNIST. EMNIST is a set of handwritten characters derived from NIST Special Database 19. For our
experiments we use the EMNIST Letters dataset, which is a 26 class classification of english letters. There
are 88,800 training examples and 14,800 testing examples. We introduce concept of rotation to these images
by rotating 75% (unless otherwise specified) of images by one of 4 possible values {90, 180, 270}. Concept of
color is added to images by multiplying each image channel with corresponding [R,G,B] values drawn from
a uniform distribution.

CelebFaces Attributes. CelebA is a large-scale face attributes prediction dataset with more than
200,000 images. Each image has 40 different attribute annotations. There are 162,770 train-
ing examples, 19962 test examples and 19867 validation examples. For our experiments, in Sec-
tions 4 we use concepts of {Eyeglasses, No_Beard, Smiling} and for experiments in 5 we use
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Figure 5: Example images for rotated-colored-MNIST, rotated-colored-EMNIST and CelebFaces Attributes.

{Smiling, Wearing_Lipstick, Heavy_Makeup, High_Cheekbones}. For concept search experiment in-
volving 10 concepts, we chose {”Smiling”, ”Heavy_Makeup”, ”Wearing_Lipstick”, ”High_Cheekbones”,
”Mouth_Slightly_Open”, ”Wearing_Necklace”, ”Oval_Face”, ”Eyeglasses”, ”No_Beard”, ”Bangs”}.

WaterBirds. Waterbirds dataset combines bird photographs from the Caltech-UCSD Birds-200-2011 (CUB)
dataset (Wah et al., 2011) with image backgrounds from the Places dataset (Zhou et al., 2017). Each bird is
labelled as one of Y = waterbird, landbird and place it on one of A = water background, land background,
In the training set waterbirds (landbirds) more frequently (90%) appear against a water (land) background,
however in the test set there are equal number of samples in each four possible scenarios (waterbird-water,
waterbird-land, landbird-water, landbird-land).

A.2 Models

To describe the architecture used in these experiments, we use the following notation:

• Conv2d(cin, cout, k, s, p): A two dimensional convolution operation that takes cin input channels and
produce cout output channels. A square kernel of size k is used. s is the stride and p is the padding.

• ConvT2d(cin, cout, k, s, p): A two dimensional transposed convolution operation that takes cin input
channels and produce cout output channels. A square kernel of size k is used. s is the stride and p is the
padding.

• Linear(cin, cout): A linear layer that maps an input vector v1 ∈ Rcin to an output vector v2 ∈ Rcout .

Autoencoder Architecture
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The architecture for our Autoencoder experiment presented in 4 is based on Lucic et al. (2018). Similar to
Esser et al. (2020), we replace the batch normalization (Ioffe & Szegedy, 2015) by activation normalization
(Kingma & Dhariwal, 2018). Details regarding the architecture can be found in Table 4.

Table 4: Architecture of autoencoder model. Input images have size of h × w × c and are quadratic in nature h = w

Encoder Decoder
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(z, 512, h/16, 1, 0), ActNorm, LeakyReLU(0.2)
Conv2d(64, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(512, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(128, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(256, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(256, 512, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(128, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(512, 2 · z, h/16, 1, 0) ConvT2d(64, 3, 4, 2, 1), Tanh

MNIST/EMNIST experiments

We use two different architectures for this transfer learning setup. A larger 6 layer network for source model
which is the same as the encoder block of auto-encoder presented in Table 4 with a fully connected layer as
classifier attached at the end (see Table 5). A smaller 3 layer network for target model (see Table 6).

Table 5: Architecture of source model

Encoder Classification Head
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) Linear(zs, nclasses)
Conv2d(64, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(128, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(256, 512, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(512, zs, h/16, 1, 0)

Table 6: Architecture of source model

Encoder Classification Head
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) Linear(zt, nclasses)
Conv2d(64, zt, h/16, 1, 0)

CelebFaces and Waterbirds experiments

We use two different architectures for this transfer learning setup. A larger ResNet34 for source model with
a fully connected layer as classifier attached at the end. A smaller ResNet18 network for target model with
a fully connected layer attached at the end.

Concept Distentangling Network

As described in Section 3.1, we use the Invertible Neural Network proposed in Esser et al. (2020) - Invertible
Interpretable Network. In this implementation, the network consists of three invertible layers stacked one
on to of another to create an invertible block: coupling blocks (Dinh et al., 2016), actnorm (Kingma &
Dhariwal, 2018) blocks and shuffling blocks. After the input representation zs is passed through several
invertible blocks, the output is split into K factors (z̃s

k)K
k=0. We refer readers to Esser et al. (2020) for

further details.

Algorithm for training CDN
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Algorithm 2 TRAIN-CDN: Train Concept Disentangling Network
1: Inputs: CDN training dataset DI ; CDN loss LI(·); Seed weight parameters: WI [0]; Source pre-trained

network fs; Number of Epochs E′, Layer L, K List of Concepts C to factorize.
2: Randomly shuffle DI .
3: for epoch ∈ [1 : E′] do
4: for batch ∈ DI do
5: (xa, xb|c)← DI [batch]. Where (xa, xb) are pairs of samples encoding concept c ∈ C.
6: (zs

a, zs
b )← (fs

L(xa), fs
L(xb)).

7: WI [batch]←WI [batch− 1]− ηbatch,I∇WI
LI((zs

a, zs
b )|c).

8: end for
9: end for

10: Output: Trained model I with last iterate of WI

Algorithm for Concept Search

Algorithm 3 CONCEPT-SEARCH: Search Concepts to Suppress
1: Inputs: List of K Concepts C ; Number of Epochs E′′; Wcs from previous epoch.
2: Initialize Gumbel-Softmax weights Wc

cs randomly if not initialized, ∀c ∈ C.
3: for epoch ∈ [1 : E′′] do
4: for batch ∈ DT do
5: C̃ ← Gumbel-Softmax (Wcs).
6: x← DT [batch].
7: z̃s ← I(fs

L(x)).
8: for c ∈ C̃ do
9: z̃s

c ← pc

10: end for
11: Wcs[batch]←Wcs[batch− 1]− ηbatch,cs∇Wcs

Lct(f t
L(x)

⊕
I−1(z̃s)).

12: end for
13: end for
14: Output: Selected Concepts C̃.

Statistics Network

For mutual information based experiments in Section 4, we adapt a statistics network proposed in Belghazi
et al. (2018). We use a custom sequence of 4 layer network that takes intermediate representation Z and
concept vector C to estimate the mutual information between them. Details about the architecture is
presented in Table 7.

Table 7: Architecture of statistics network for mutual information estimation.

Statistics Network
ConcatLayer(Z,C)
Linear(|Z|+ |C|, 100), ReLU()
Linear(100, 100), ReLU()
Linear(100, 1), ReLU()

A.3 Experimental details

For our experimental analysis in the main paper, we set the number of epochs for training to E = 50 for all
models. We train all models using a batch size of 25 and a learning rate of 10−4 for the Adam optimizer
(Kingma & Ba, 2014). All models were randomly initialized before training. While training source classifier,
CDN, target classifier, we use different samples to ensure that each model is trained with non-overlapping
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samples. For example, we train the source network in CelebA experiments with the standard training dataset,
CDN and target classifier with a split of validation samples. Testing is done on the standard test dataset.
Statistics network is trained by querying pre-trained source model with standard validation dataset and
testing on standard test dataset. For creating prototypes for concepts, we use 100 samples.

The models were trained in parallel with the specifications shown in Table 8.

Resource Setting
CPU IBM Power 9 CPU @ 3.15GHz
Memory 512GB
GPUs 1 x NVIDIA Tesla V100 16 GB
Disk 1.2 TB
OS RedHat8

Table 8: Resources used for training

A.4 Additional experiments

Choosing the operation for creating prototypes

In order to to create prototypes for each concept, we first query the pre-trained source model and CDN
with 100 images that don’t have a concept, and aggregate the corresponding concept factor in CDN output.
To choose the right aggregation factors, we experimented with simple operations such as mean, median,
mode and setting the factor to zero. In order to visualize how effective each aggregation is at suppressing a
concept, we visualize a few images reconstructed by using auto-encoder based source network as detailed in
Section 4.1. We present these results for colored-MNIST images with color concept suppressed in Figure 6
and CelebA images with Eyglasses concept suppressed in Figure 7. We find the mean and median performs
the best and we chose mean for rest of the experiments presented in Sections 4 and 5.

Figure 6: Visualization of color concept suppression using prototypes created by different aggregation operators in
colored-MNIST images. We find that median and mean performs the best.
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Figure 7: Visualization of Eyeglasses concept suppression using prototypes created by different aggregation operators
in CelebA images. We find that median and mean performs the best.

Concept suppression at different layers of the network

In this experiment, we compute mutual information for each concept in rotated-colored-MNIST images at
different layers of the source network. As demonstrated in Figure 8, we observe that only concept of color is
learned at layer 2, which is successfully suppressed. More complicated concepts such as digit and rotation are
only learned in later layers. It is thus best to intervene (i.e. suppress) in the final layer (i.e. layer 6), where
the model has a good representation of all concepts before transferring the representation to downstream
tasks.

Figure 8: Experiment comparing concept suppressing using hidden representations from different layers for the
rotated-colored-MNIST dataset. As can be seen the color concept is learned first followed by digit and rotation. It is
thus best to intervene (i.e. suppress) in the final layer (i.e. layer 6) where the model has learned the critical concepts
such as digit which we want to transfer.
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Autoencoder based concept removal images

Figure 9: Visualization of concept suppression using an autoencoder as source network. For CelebA dataset, we
consider randomly drawn samples with Beard & Smiling attributes and proceed to suppress them individually.
These results are presented in (a) and (b) respectively

Distribution of suppressed concepts in concept search experiments

Figure 10: Distribution of concept suppression in the concept search experiments (i.e., CCT-s(cs) and CCT-cat(cs)).
We find that the suppressed concepts were meaningful for the task of Male vs. not Male classification, i.e., concepts
not related to the task such as Smiling, High_Cheekbones, and Oval_F ace were more heavily suppressed. The
concept suppression rate (a higher value indicates more suppression) is plotted.

Experiment using tabular data

In this section, we discuss a proof of concept experiment using tabular data. Specifically, we consider the CDC
Diabetes Health Indicators Dataset (CDC, 2017) available on the UC Irvine Machine Learning Repository.
The Diabetes Health Indicators Dataset contains healthcare statistics and lifestyle survey information about
people along with their diagnosis of diabetes. This balanced dataset has 70692 samples and we sample 7
features that have high correlation with the diabetes variable.
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Table 9: Test accuracy of source and target task using CDC Diabetes Health Indicators dataset.

Model Test Accuracy
Source 74.13 (±0.001)
Target (scratch) 60.70 (±0.031)
Target (fine-tune) 73.20 (±0.035)

We first divide the dataset into source and target tasks, where the source task has 69,692 samples leaving
the target task with 1000 samples. For our source task, we train a simple 2 layer multi-layer perceptron
(MLP) to diagnose diabetes. Next, we train the target task using a similar 2 layer MLP to diagnose heart
disease. Finally, we finetune the pre-trained source model for the target task. Results for this experiment
are presented in Table 9. We see that finetuning improves the accuracy of target task in comparison to a
target model trained from scratch.

Next, we proceed to edit each independent features by setting the feature values to zero, random, mean
and median values. We present these results in Figure 11. Each bar plot group represents the feature
that is removed, whereas the color indicates which operation was used to edit the corresponding feature.
Additionally, we plot the Target (scratch) and Target (finetune) results for reference along with their average
value plotted as dotted line. We see that even after editing features, accuracy of the scratch model is improved
on the target task while remaining lower than the accuracy of the finetuned model without editing. Notably,
relevant features such as High Cholesterol, General Health, High Blood Pressure and Age have high impact
on heart disease prediction.

Figure 11: Experimental results for feature suppression on a tabular dataset. Each group of bar plots corresponds to
the feature that is edited. The color of each bar represents the operation used for editing. For reference, we add the
accuracy of Target(scratch) and Target(finetune) model along with the average accuracy plotted as dotted line.
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