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Abstract

Emotion Recognition in Conversations (ERC)
requires modeling the temporal context of
multi-turn dialogues and the complemen-
tary information across modalities. We pro-
pose Mixture of Speech-Text Experts for
Recognition of Emotions (MiSTER-E), a mod-
ular Mixture-of-Experts (MoE) framework that
decouples modality-specific context modeling
from multimodal integration. MiSTER-E incor-
porates LLM-based representations for speech
and text, uses a convolutional-recurrent layer
for context modeling, and integrates unimodal
and cross-modal information through a gating
mechanism. We introduce a supervised con-
trastive loss between aligned speech and text
representations and a KL-divergence-based reg-
ularization to encourage agreement across ex-
pert predictions. Notably, our method does
not rely on speaker identity during training
or inference. Experiments on two bench-
mark datasets—IEMOCAP and MELD—show
that our proposal achieves 70.9% and 69.5%
weighted F1-scores respectively, outperform-
ing prior speech-text ERC models. We also
provide various ablations to highlight the con-
tributions made in the proposed approach.

1 Introduction

Emotion Recognition in Conversation (ERC) seeks
to infer emotional states from multi-turn, multi-
modal interactions. As a core task for building
socially aware Al, ERC enables a range of appli-
cations including dialogue systems (Pantic et al.,
2005), social media analysis (Gaind et al., 2019),
and mental health monitoring (Ghosh et al., 2019).
Emotions are conveyed through diverse modali-
ties—textual content, vocal prosody, and visual
cues—and evolve across conversational contexts.
This layered complexity of multimodal expression
of emotions makes ERC challenging.

Prior work has advanced ERC through contex-
tual modeling (Hazarika et al., 2018; Majumder

et al., 2019), speaker-aware representations (Hu
et al., 2021; Shen et al., 2025), and fusion strategies
ranging from early concatenation (Han et al., 2021)
to attention-based and tensor methods (Zadeh et al.,
2017; Hazarika et al., 2020; Dutta and Ganapa-
thy, 2022). Most existing approaches conflate the
two distinct modeling challenges: temporal con-
text modeling and cross-modal fusion. This de-
sign choice, especially under the small size of
ERC datasets, risks overfitting. This raises a core
research question: Can architectural modularity,
which disentangles context modeling from modality
fusion, enable improved ERC?

In this work, we explore this question by design-
ing an ERC framework that separates modality-
specific contextual modeling from multimodal fu-
sion. Our architecture, Mixture of Speech-Text
Experts for Recognition of Emotions (MiSTER-E),
is structured not to optimize performance alone, but
to segregate the contributions of each modality and
their interactions via a Mixture-of-Experts (MoE)
design. Our approach trains large language models
for enhanced utterance level modeling, followed
by convolutional-BiGRU networks for modeling
conversational dynamics of each modality. A third
branch performs multimodal modeling using cross-
attention and self-attention layers. These three ex-
pert branches — speech, text, and speech-text —
are then integrated through a gating mechanism
that adaptively weighs each expert’s prediction. To
encourage cross-modal alignment, we introduce a
modality-aware contrastive loss that aligns text and
speech embeddings for the same emotion class.
We also propose a consistency loss to regulate
the agreement between expert predictions — each
trained with focal loss for class imbalance. The
following are the contributions from the work:

* We propose MiSTER-E—a modular frame-
work for ERC that separates modality-specific
context modeling from cross-modal fusion us-



ing a Mixture-of-Experts architecture.

* We fine-tune LLMs for speech and text, model
conversational dynamics via temporal incep-
tion networks and BiGRUs, and integrate pre-
dictions using a gating mechanism.

* We introduce a speech-text contrastive loss to
enhance cross-modal alignment for utterances
belonging to the same emotion class. Further,
to promote agreement between the experts we
introduce a KL-divergence based consistency
regularization loss.

* Our proposed method is shown to achieve
state-of-the-art performance on two standard
ERC benchmarks—IEMOCAP (Busso et al.,
2008) and MELD (Poria et al., 2019a).

2 Related Work

Text embedding extraction: Early approaches to
ERC relied on static word embeddings such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), to encode utterances (Po-
ria et al., 2015; Zadeh et al., 2017; Mai et al.,
2019). With the advent of transformer-based lan-
guage models like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), ERC systems be-
gan adopting contextual encoders (Hazarika et al.,
2020; Chudasama et al., 2022; Hu et al., 2023), re-
sulting in improved text features. Recent text-only
methods (Lei et al., 2023; Fu, 2024) pose ERC as
a generative task, where they fine-tune LLMs in
an autoregressive manner. However, the efficient
use of LLMs when text is used alongside speech is
unexplored. Towards this, we adapt LLMs as text
encoders for the task of text emotion recognition,
thereby harnessing the power of these models and
also enabling fusion with other modalities.

Speech embedding extraction: Speech features in
ERC have traditionally relied on hand-crafted de-
scriptors like OpenSMILE (Eyben et al., 2010) and
COVAREP (Degottex et al., 2014), which, while ef-
fective, often fail to generalize across datasets with
diverse acoustic conditions (Majumder et al., 2019;
Poria et al., 2015). Recent efforts have moved to-
ward learnable frontends such as LEAF (Zeghidour
et al., 2021) and self-supervised models like Hu-
BERT (Hsu et al., 2021) and wav2vec (Baevski
et al., 2020), with demonstrated success (Dutta and
Ganapathy, 2022; Lian et al., 2022). However, the
utilization of multi-modal LLMs for ERC is rela-
tively unexplored. Thus, we fine tune large speech

language models (SLLMs) directly for emotional
inference—an approach that has not been explored
for multimodal ERC before.

MoE in ERC: While Mixture-of-Experts (MoE) ar-
chitectures have shown promise in scaling both lan-
guage (Shazeer et al., 2017; Lepikhin et al., 2021)
and vision models (Riquelme et al., 2021), their
role in ERC has been limited. One recent exam-
ple, MMGAT-EMO (Zhang et al., 2025), combines
MoE with graph attention for emotion modeling.
In contrast, we use MoE to structure our model
around three specialized experts—speech, text, and
fused modalities—explicitly targeting the separa-
tion of context modeling and cross-modal fusion.
Loss functions for ERC: Supervised contrastive
learning (Khosla et al., 2020) was introduced for
ERC by Li et al.(Li et al., 2022) and extended in
later works (Song et al., 2022; Yu et al., 2024), us-
ing emotion class prototypes. Some approaches
extend this to align modalities—e.g., aligning au-
dio and visual cues to textual anchors (Hu et al.,
2022b). In contrast, we adopt a multimodal su-
pervised contrastive loss, where positives are intra-
and inter-modality representations of utterances be-
longing to the same emotion classes, encouraging
better alignment across modalities for each of the
emotion categories. We further introduce a consis-
tency loss to encourage agreement among experts,
reinforcing modular cooperation.

3 Proposed Method

A block diagram of our proposed method is shown
in Fig. 1.

3.1 Problem Description

Let us consider an ERC dataset D consisting of
P conversations, C = {c¢1,¢2,¢3,...,cp}, where
each conversation c¢; consists of a set of utter-
ances, U; = {uw;1,u;9,,...,u;5}. In this work,
only the speech and text modalities are considered,
which is notated as w;x = {s;x, tix}, & = 1..N,
where s;; and t;;, are speech and text data respec-
tively. Each utterance u;; is associated with a
corresponding emotion label y;;, € Y, with ) de-
noting the label set of emotion categories in D.
The task of ERC is to map a sequence of utter-
ances {u;1, ..., u;y} to their corresponding labels

Yi = {yihyiz, e 7yiN}'
3.2 Unimodal Feature Extraction

Text embeddings: While large language models
(LLMs) excel in text generation, their use in emo-
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Figure 1: (a) Training of the unimodal feature extraction module (Sec. 3.2) (b) The entire pipeline of MiSTER-E.
The speech and text embedding modules are frozen during training of the rest of the pipeline. Two context addition
networks (Sec. 3.3.1) are trained for the two modalities along with a multimodal network (Sec. 3.3.2). Finally, a
mixture of experts gating network (Sec. 3.4) is trained to predict the emotion category for each utterance.

tion recognition has been limited. Prior work typi-
cally uses them in autoregressive mode or as frozen
feature extractors (BehnamGhader et al., 2024).
In this work, we fine-tune an LLM—specifically,
LLaMA-3.1-8B—to act as an text encoder rather
than a generator. Each utterance transcript t; is
tokenized and processed through the LLM. Token-
level hidden states are then pooled and passed
through a two-layer feedforward classifier trained
with task-specific supervision. To preserve the pre-
training knowledge while enabling efficient adapta-
tion, we apply LoRA (Hu et al., 2022a) to fine-tune
the weights. We denote the resulting text embed-
ding as:

el, = Text-Embed(t;;) (1)

where e/, is extracted from the first fully connected
layer of the classifier.

Speech embeddings: For speech, we adopt a simi-
lar approach using SALMONN-7B (Tang et al., 2024),
a speech large language model (SLLM) compris-
ing a speech encoder, Q-former (Li et al., 2023b),
and an LLM backbone. For ERC, we fine-tune this
model by updating the Q-former, the LLM, and a
classification head via LoRA. This allows the sys-
tem to learn emotionally salient acoustic patterns
while retaining the semantic features of the LLM

backbone. Given a speech signal s;;, we extract its
representation as:

ej, = Speech-Embed(s;) 2)

where the embedding is taken from the first fully
connected layer of the speech classification head.
Comparisons with alternative LLM and SLLM vari-
ants are provided in Appendix A.8.

3.3 Conversational Modeling

For a conversation ¢;, the text and speech embed-

. t
dlrig seque?ces (Sec. 3.2) are denoted by E;y =
{ely,...,e/y} and Ej = {ef},..., ey} respec-
tively. As shown in Figure 1, the fine-tuned speech
and text embedding extractors are frozen.

3.3.1 Context Addition Network

To make utterance representations context-aware,
we introduce a Context Addition Network (CAN)
that enhances both text and speech embeddings
(Sec. 3.2) with conversational context. At its core
is a Temporal Inception Network (TIN), which ap-
plies 1D convolutions with kernel sizes of 1, 3, and
5 to capture short-range dependencies—simulating
varying receptive fields across local utterance
neighborhoods. Inspired by the Inception archi-
tecture (Szegedy et al., 2015) originally developed
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Figure 2: (a) The context addition network (for the speech modality) and (b) the multimodal network used in
MiSTER-E. The inputs to both the blocks are derived from the uni-modal feature extractor modules. TIN stands for

Temporal Inception Network, MHA stands for multi-head attention.

for image classification, this is, to the best of our
knowledge, the first application of an inception-
style network for contextual modeling in ERC.
However, emotional signals in dialogue often
evolve over longer durations. To capture such
global dependencies, we append a Bi-GRU layer,
allowing the model to integrate information across
the entire conversational span. A residual connec-
tion links the original embedding with its context-
enhanced version, enabling additive refinement
while preserving the semantic grounding of the
base LLM features. Finally, a FC layer is used to
map each utterance u;j to its corresponding emo-
tion category y;,. We train two similar networks for
the speech and text modalities, respectively. These
operations are denoted as:

,Uin} = CAN(EZ) (3)
,Jin} = CAN(E}) 4)

yi = Ao
1 = {1, - --

A schematic of the speech-side CAN is shown in
Fig. 2(a). Detailed ablation results and perfor-
mance of an alternative attention-based architecture
are discussed in Appendix A.9.

3.3.2 Multimodal Network

To integrate information across modalities, we de-
sign a fusion module based on cross-attention be-
tween speech and text. This mechanism allows
the model to align semantic cues from text with
affective signals from audio. The speech and text
embeddings, E and E;“, are first projected into
query, key, and value spaces. Cross-attention is

then applied bidirectionally:

M§—>s = LN(FC(E}) + MHA(Q?, K:;7Vf)) o)
M5~ = LN(FC(E}) + MHA(QY, K$, VE))  (6)

Here, MHA and LN refer to multi-head attention and
layer normalization, respectively.

While this enables inter-modal alignment, it over-
looks cues from the conversational context that
are essential for ERC. To address this, we ap-
ply modality-specific self-attention layers over the
aligned representations, capturing temporal context
across the conversation (See Appendix A.10):

M = Self-attn. (M!™9) @)
M} = Self-attn. (M%) ®)

The outputs M§ and M} are concatenated and
passed through a fully connected (FC) layer:

9 = (G5 05, ) = FO(IME ME]) 9)

An overview is presented in Fig. 2(b).

3.4 Mixture-of-Experts Gating

We obtain outputs from the three experts: the
speech expert (§7), the text expert (yit), and the
multimodal expert (§;").

To combine the outputs, we dynamically fuse the
experts’ decisions using a gating mechanism that
learns to weigh the decisions based on its confi-
dence for the given utterance. To compute these



weights, we concatenate the expert predictions and
feed them into a fully connected (FC) layer:

Sl

gi = FC([¥%; 913 91 (10)

The outputs from the gating network, g; € RYV*3,
are transformed via a softmax operation to produce
adaptive mixture weights 8; = 35, 8¢, 8], which
indicate the relative importance of each expert. The
final prediction is computed as a weighted sum of
the expert predictions:

=6 gi+ By 63 A
This gating network is trained end-to—end, em-

powering the model to flexibly integrate modalities
by emphasizing the most reliable expert.

3.5 Model Training
3.5.1 Loss Function

ERC is typically characterized by severe class im-
balance, where rare emotion classes are often mis-
classified (Poria et al., 2019b). To address this,
we employ the focal loss (Lin et al., 2017), which
modulates the contribution of each training exam-
ple based on its complexity, reducing the relative
loss for well-classified examples while focusing
on hard (possibly minority class) instances. In
MIiSTER-E, this loss is applied during the training
of the uni-modal embedding extractors for text and
speech as well as their respective context addition
networks (CANSs). The loss for the speech and text
CAN networks is given by:

Lian = ZFL ik vik) + ZFL e yir) (12)

Here, FL(-) represents the focal loss function. De-
scription of the focal loss and related ablations are
provided in Appendix. A.1.

3.5.2 Multimodal Contrastive Loss

In many cases, speech and text provide com-
plementary signals about a speaker’s emotion.
To exploit this, we incorporate a supervised
contrastive loss that structures the joint repre-
sentation space based on emotion labels, draw-
ing together utterances with shared emotional
intent across modalities. Consider the multi-
modal speech and text representations denoted by
M; = {mf,mf, m, ..., miy} and M} =
{mf{;, mfy, mf;, ..., miy} respectively. These
embeddings are batched to get,

~ ~ ~t ~t
Zi = {misl> . '7misN7mi17 . -amiN} (13)

where m;, = % denotes the normalized em-
iN

beddings. Let z, € Z; fora € {1,2,...,2N},
and let y, be the emotion label associated with z,.

The contrastive loss is given by:

j{: 2{: log exp (2, 2,/7)
COn ‘

2N
21 exp (24 2q/7)
q:
q7a
(14)
where 7 is the temperature and P(a) = {p €

{1,2,...,2N}\{a}|yp, = ya} is the set of posi-
tives for anchor z,. This objective pulls together
utterances with the same emotion class across both
speech and text, while pushing apart other samples,
thereby guiding the model to learn emotionally co-
herent, modality-invariant representations.

Total multimodal loss: The final loss used to train
the multimodal model combines the classification
and contrastive objectives:

N

= FL, yik) + Moo
k=1

(15)

A
multi

where 7;}! denotes the multimodal prediction, and
A controls the contribution of the contrastive loss.

3.5.3 MoE Gating Loss

To train the mixture-of-experts (MoE) gating
network, we combine two objectives: (i) focal
loss for emotion classification, and (ii) a reg-
ularization term to promote consistency among
the expert predictions. Specifically, we enforce
similarity in the predicted distributions of the
three experts—speech-only, text-only, and mul-
timodal—using the Kullback-Leibler (KL) diver-
gence. The total loss for the MoE layer is:

N

moe Z FL kaH yzk) + - ‘CKL
k=1

(16)

where ;. is defined in Eq. 11, a controls the
strength of the consistency regularization, and the
KL term is given by:

N
L = Y [KL@R I3+ +KL G54 |
k=1
(17)
This encourages the expert branches to produce

aligned output distributions, enabling the gating
mechanism to combine them effectively.



Method Modalities Used | IEMOCAP | MELD
be-LSTM (Poria et al., 2017) T.S.V 54.9% 55.9%
UniMSE (Hu et al., 2022b) T.S,V 70.7% 65.5%
SCMM (Yang et al., 2023) T.S.V 67.5% 59.4%
GraphSmile (Li et al., 2024b) T,S.V 72.8% 66.7%
SMIN (Lian et al., 2022)## T.S 70.5% 63.7%
MultiEmo (Shi and Huang, 2023)# T.S 66.9%*%0 | 65.3%*0-5
HCAM (Dutta and Ganapathy, 2023) T,S 70.5% 65.8%
DF-ERC (Li et al., 2023a) T.S 69.5% 64.5%
Mamba-like-model (Shou et al., 2024) T,S 70.2% 65.6%
CEN-ESA (Li et al., 2024a) T.S 68.7% 67.2%
MMGAT-EMO (Zhang et al., 2025)# T.S 65.5%10-6 | 66.1%10-4
MiSTER-E | TS | 70.9%°% | 69.5% """

Table 1: Comparison of different methods on IEMOCAP and MELD datasets on weighted-F1 scores. We mention
the modalities used by the methods (T:Text, S:Speech, V:Video). Further we compare with only those methods
which do not use any speaker information. ## we report the numbers when no external emotional data is used for
training SMIN. # we ran the public implementation provided by the authors on the datasets for our own settings.
The superscript results are the mean and standard deviation over 3 random initializations, whenever performed.

3.5.4 Total Loss

The context addition networks, the multimodal net-
work, and the MoE gating layer are trained together.
The total loss is:

P
Lo=Y" [ﬁcAN L+ L

=1

(18)

4 Experiments

4.1 Datasets

We evaluate the proposed method on two bench-
mark ERC datasets - IEMOCAP (Busso et al.,
2008) and MELD (Poria et al., 2019a). More de-
tails are available in Appendix A.2.

IEMOCAP consists of conversational data split
into b sessions, 151 dialogues and 7433 utterances.
Following prior work (Lian et al., 2022), we con-
sider session 5 for testing, while session 1 is used
for validation. The remaining 3 sessions are used
for training, which is identical to the setup followed
in prior works. Each utterance is classified as one
of six emotions: “angry”, “happy”, “sad”, “frus-
trated”, “excited” and “neutral”.

MELD is a multi-party conversational dataset con-
sisting of 1433 dialogues and 13708 utterances
from the TV show Friends. This dataset has pre-
defined train, validation, and test splits which are
used in this work. Each utterance is categorized as
one of seven emotion classes: “angry”, “joy”, “sad-

ness”, “fear”, “disgust”, “surprise” and “neutral”.

4.2 Implementation details

The two unimodal feature extractors (SALMONN-7B
and LLaMA-3.1-8B) are trained using LoRA with
a rank of 8 and the scaling parameter of 32 with
a dropout of 0.1. Both models are trained with
a batch size of 8 and a learning rate of le — 5,
with the focal loss. The hidden dimension in the
FC (Sec. 3.2) is set to 2048. For the rest of the
MiSTER-E pipeline, we use a batch size of 8 for
IEMOCAP and 32 for MELD. The learning rate
is set to 1le — 5 for both datasets. For MELD, A
(Eq. 15) is set to 1 , while for IEMOCAP it is
set to 2. The consistency regularization term, o
(Eq. 16), is set to 0.1 for IEMOCAP, while it is
kept at 1e — 3 for MELD (See Appendix A.12). We
report the weighted F1-score on the test data as the
performance metric with 3 random initializations.
More hyperparameter and implementation details
are given in Appendix A.3. Code and trained mod-
els will be made public upon acceptance.

4.3 Comparison with prior work

We compare the proposal with several baseline ap-
proaches, described in Appendix A.4. While many
existing systems leverage all three modalities, we
focus on comparisons with those using only speech
and text. We note that for IEMOCAP, due to the
lack of a standardized validation set, model selec-
tion for many of the prior works is often performed
on the test set (see Appendix A.6 for discussion on
this aspect). Some of the prior works also exploit



Method ‘ # Params | Text Feats. | Speech Feats. ‘ IEMOCAP ‘ MELD
MultiEmo (Shi and Huang, 2023) ~ 450M RoBERTa | OpenSMILE 66.9% 65.3%
+ LLM/SLLM ~ 14B LLaMA SALMONN 66.5% 68.2%
HCAM (Dutta and Ganapathy, 2023) | ~ 750M RoBERTa wav2vec 70.5% 65.8%
+ LLM/SLLM ~ 14B LLaMA SALMONN 70.3% 68.4%
MMGAT-EMO (Zhang et al., 2025) | ~ 430M | EmoBERTa | OpenSMILE 65.5% 66.1%
+ LLM/SLLM ~ 14B LLaMA SALMONN 66.9% 66.1%
MiSTER-E | ~14B | LLaMA | SALMONN | 70.9% | 69.5%

Table 2: Comparison of some of the baseline methods when re-designed with LLM features.

speaker information, and we analyze this effect in
Appendix A.S.

Table 1 reports the performance of MiSTER-
E and other prior approaches. It is seen that our
proposed method achieves state-of-the-art perfor-
mance among other prior works, with a weighted
F1 score of 70.9% on IEMOCAP and 69.5% on
MELD. Detailed class-wise results are given in Ap-
pendix A.13 and a case study is reported in A.14.

Recent LLM-based text-only ERC systems (e.g.,
InstructERC (Lei et al., 2023), CKERC (Fu, 2024),
BiosERC (Xue et al., 2024)) incorporate speaker
roles or external knowledge, making direct com-
parison to MiSTER-E challenging. However, we
include a controlled comparison on a text-only
dataset in Appendix A.7.

4.4 Why is modularity crucial?

We replace the modular design of our proposal with
a monolithic architecture that feeds the contextual
representations into the fusion module without sep-
arating the experts. This results in a significant
performance drop: from 70.9% to 67.8% on IEMO-
CAP, and from 69.5% to 67.9% on MELD. These
results confirm that disentangling context model-
ing from multimodal fusion—as done in MiSTER-
E—is not only conceptually sound but also empiri-
cally crucial for effective emotion recognition.

4.5 Are LLM embeddings the panacea?

One might ask whether the gains of our ap-
proach stem solely from the use of LLM/SLLM
features. Towards this, we replace the original
features in several prior models with the same
LLM/SLLM embeddings used in our method and
retrain them (Table 2). While MELD sees modest
gains, [IEMOCAP is impacted marginally (or even
negatively)—suggesting that LLM representations
alone are not sufficient. Notably, MiSTER-E still
outperforms all baselines, underscoring that its ef-
fectiveness lies not just in LLM features, but in its

B feat-MoE M No-Loss-MoE B MiSTER-E
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Figure 3: Performance of MiSTER-E with changes in
the MoE gating strategy for IEMOCAP and MELD.

architectural design that separates context model-
ing from multimodal fusion.

4.6 Is decision-level MoE gating crucial?

To evaluate our gating strategy, we compare two
architectural variants. First, instead of fusing
expert predictions at the decision level, we per-
form Mixture-of-Experts fusion at the feature
level (feat-MoE) before classification. Second,
we remove expert-specific supervision by train-
ing only on the gated output with a focal loss
(No-Loss-MoE), omitting individual losses for the
audio, text, and multimodal experts. As shown
in Fig. 3, both variants degrade performance:
feat-MoE results in a 2.6% drop on IEMOCAP
and 0.6% on MELD, while No-Loss-MoE leads to
similar degradation. These results confirm that
decision-level fusion preserves modality-specific
discriminative cues, and that expert-level training
is essential for enabling each expert to specialize.

5 Discussion

5.1 Importance of the Contrastive Loss

We analyze the impact of the contrastive loss
(Eq. 14) on model performance in Fig. 4.
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Figure 4: Performance of MiSTER-E with varying val-
ues of A\ (Eq. 18) for the two datasets. The validation
set performance (not shown above) mirrors the trends of
the test set. For IEMOCAP, validation set performance
is 63% for A = 0 and 63.6% for A\ = 2. For MELD, the
highest validation set performance is achieved for A = 1
(65.6%) as compared to 65.4% for A\ = 0.

Key Takeaways: 1) On MELD, performance im-
proves from 68.2% (with A=0) to 69.5% at \=1,
while IEMOCAP experiments suggest an improve-
ment from 70.2% to 70.9% with A = 2. This
suggests that the contrastive loss enhances the abil-
ity of the fusion module to align emotion-relevant
cues across modalities beyond what focal loss can
achieve alone. 2) Increasing the value of A is seen
to degrade the performance. This indicates that,
although the proposed contrastive loss aids in clas-
sification, it leads to a drop in performance without
the focal loss.

5.2 Analysis of Expert Weights

We analyze the expert weights assigned by the MoE
gating network on IEMOCAP and MELD (Fig. 5).
Key Takeaways: 1) The gating mechanism ex-
hibits dataset-specific preferences—favoring the
multimodal expert for IEMOCAP and the text ex-
pert for MELD—demonstrating its adaptability to
dataset characteristics (see Appendix A.11 for in-
dividual expert performance). 2) MELD displays
higher variance in expert weights, likely reflecting
its greater variability compared to the more con-
trolled IEMOCAP dataset. 3) A case study from
MELD (Fig. 6) illustrates dynamic expert selection:
for a four-utterance conversation with distinct emo-
tions per turn. The gating prioritizes speech and
multimodal experts for the first utterance, shifting
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Figure 5: Distribution of weights for the experts for the
different datasets.
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Figure 6: Distribution of weights for an example con-
versation from MELD. S: Speech expert, T: Text expert,
M: Multimodal expert. The predictions by MiSTER-E
are also shown. Refer Fig. 12 for another example.

to the text expert for subsequent utterances. This
highlights the model’s ability to adapt the emphasis
on the experts at a fine-grained, per-utterance level.

6 Conclusion

We proposed MiSTER-E, a modular framework
for ERC that explicitly separates contextual mod-
eling from multimodal fusion. Leveraging LL.M-
based representations for both speech and text, we
model context in the conversations using a tem-
poral inception block followed by a Bi-GRU, and
perform modality fusion via an attention-based net-
work. A Mixture-of-Experts (MoE) gate adaptively
integrates decisions from context-aware and mul-
timodal experts. MiSTER-E achieves new state-
of-the-art performance on IEMOCAP and MELD,
without using speaker identity, demonstrating the
efficacy of modular context-fusion and decision-
level gating. The different design choices are fur-
ther justified by means of extensive ablations.



7 Limitations

While MiSTER-E achieves strong performance,
some limitations remain. First, the LLM/SLLM
encoders introduce some computational overhead.
Second, although we avoid explicit speaker identity
modeling, some prior works suggest that speaker-
aware models can capture interpersonal dynamics
more effectively. Using the speaker information
in an unsupervised way is an avenue unexplored
in this work. Finally, we focus exclusively on
the speech and text modalities, omitting the vi-
sual channel available in datasets like [IEMOCAP
and MELD. Integrating visual cues could further
enhance model performance.
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A Appendix

A.1 Focal Loss

Focal loss (Lin et al., 2017) is generally used to
handle class imbalance. Since both ERC datasets
considered in this paper are imbalanced, we use
focal loss in place of the cross-entropy loss.

Denoting the predicted probability for the sam-
ple with logits y;, as p;,, the focal loss is given
as,

y
FL(Dikr vin) = — Y (1 — 5i5.) log(9i5) (19)

c=1


https://doi.org/10.18653/v1/P17-1081
https://doi.org/10.18653/v1/P17-1081
https://doi.org/10.18653/v1/P17-1081

where y5; = 1 for the true class and 0 otherwise.
pj5, is the predicted probability for class c for the
sample with logits ¢, (- is replaced by s, ¢ or m)
and ~y is the hyperparameter associated with the
focal loss.

The performance of our proposed method for
different values of v (Eq. 19) is shown in Fig. 7.
We note that for cross-entropy loss (y = 0), the
performance drops for both datasets, indicating the
need for utilizing a loss function more suited for
imbalanced datasets. The value of 7 is set to 3 for
both datasets.

A.2 More details about datasets

For IEMOCAP, we use 92 conversations for train-
ing, 28 conversations for validation and the 31 con-
versations in Session 5 for testing. There are a total
of 5810 utterances for training and validation while
1623 utterances are used for testing the model.

In the case of MELD, the training and validation
data together amount to 1153 conversations (11098
utterances), while the test data comprises 280 con-
versations (2610 utterances).

A.3 More Implementation details

All our experiments are run using a NVIDIA
RTX A6000 GPU card with Pytorch 2.7.0 ! with
CUDA 12.6. The number of trainable parameters
in our model amounts to 97M (8M each for the
LLM/SLLM LoRA training and 81M for the con-
versational modeling). Training the LLM takes
about 10 minutes per epoch, while the SLLM takes
about 20 minutes per epoch. The rest of the model
after feature encoders takes approximately 10 min-
utes for 100 epochs. We mention further hyperpa-
rameter choices for both datasets below:

e The BiGRU used in the CAN network
(Sec. 3.3.1) has a hidden dimension of 512
and we use 3 layers for IEMOCAP and 2 for
MELD. We use a dropout of 0.2 between each
fully connected layer for regularization.

For the multimodal fusion network, we use 4
layers with hidden dimension of 120 and 4 at-
tention heads. We use a dropout regularization
of 0.5 in the multimodal fusion network. The
same network is used for both the datasets.

* The temperature parameter for the contrastive
loss (Eq. 14) is kept at 1 for IEMOCAP and
0.05 for MELD.

"https://pytorch.org/blog/pytorch-2-7/
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Figure 7: Performance of MiSTER-E with different
values of the focal loss hyperparameter.

* While training the context addition networks,
the multimodal network, and the MoE gat-
ing network, we use gradient clipping with
norm 1.0 for both the datasets and train for
100 epochs. While training the LLM and the
SLLM feature encoders, we run for 50 epochs
for both datasets.

A.4 Baselines

We mention the performance of four prior works us-
ing the three modalities-text, speech, and video-for
ERC: 1) be-LSTM (Poria et al., 2017): A hier-
archical model is proposed that combines modal-
ities by simple concatenation. 2) UniMSE (Hu
et al., 2022b): The tasks of sentiment and emo-
tion recognition are combined with a contrastive
loss between the modality representations with text
as the anchor modality. 3) SCMM (Yang et al.,
2023): The authors design adaptive paths for dif-
ferent modality interactions and hence effective fu-
sion. 4) GraphSmile (Li et al., 2024b): Modality
interactions are modeled as a graph and sentiment
prediction and emotion prediction tasks are com-
bined.

We now mention the baselines using speech and
text that we have compared with: 1) SMIN (Lian
et al., 2022): A semi-supervised learning frame-
work is provided for ERC, where the speech and
text representations are reconstructed on a differ-
ent dataset. 2) MultiEMO (Shi and Huang, 2023):
A cross-attention fusion method is provided along
with a sample weighted focal loss for addressing
the class imbalance in the ERC datasets. Using


https://pytorch.org/blog/pytorch-2-7/

Method | Modalities used | Speaker Info. | IEMOCAP | MELD

MMGCN TS,V v 66.2% 58.7%
MMGCN TS,V X 65.8% 58.4%
SDT TS,V v 74.1% 66.6%
SDT TS,V X 72.0% 66.2%
GS-MCC TS,V v 73.3% 69.0%
GS-MCC TS,V X 70.6% 64.6%

Table 3: Impact of speaker information in ERC datasets.

their public implementation 2, we train and test
this model for both of our datasets and report the
numbers. 3) HCAM (Dutta and Ganapathy, 2023):
A hierarchical model for modeling the different
aspects of ERC has been explored - first adding
context and then adding the multimodal fusion step.
4) DF-ERC (Li et al., 2023a): A technique to disen-
tangle the importance of context and multimodality
for ERC is proposed following which the fusion
is carried out. 5) Mamba-like-model (Shou et al.,
2024): State-space models are explored for mul-
timodal ERC for the first time in this paper. 6)
CFN-ESA (Li et al., 2024a): Cross-attention net-
works are proposed for fusion of the modalities
and the shifting of emotions from one utterance to
another is modeled for effective ERC performance.
7) MMGAT-EMO (Zhang et al., 2025): A MoE
approach is proposed for the multiple modalities in
a graph-attention fusion framework. We replicate
the results for this method for the datasets using
their public implementation 3.

A.5 Speaker Information in ERC

For understanding the role that speaker informa-
tion plays for ERC, we report the performance of
three recent works, MMGOCN (Hu et al., 2021),
SDT (Yang et al., 2023) and GS-MCC (Ai et al.,
2025) with and without speaker information in Ta-
ble 3. We note that for all these works, the perfor-
mance drops when the speaker information is not
used. The drop is most significant in the case of GS-
MCC with a 4.4% drop in the case of MELD. Since
MELD does not have a speaker-independent test
split, using speaker information in ERC modeling
risks an over-estimation of the model performance
in the case of MELD.

A.6 Performance on IEMOCAP

IEMOCAP (Busso et al., 2008) is one of the most
widely used datasets for evaluating ERC systems. It

Zhttps://github.com/TaoShi1998/MultiEMO
Shttps://github.com/tdfxlyh/MMGAT_EMO
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Figure 8: Performance comparison on EmoryNLP
dataset.

has conversations split into 5 sessions, and the gen-
eral evaluation protocol consists of training mod-
els on conversations in Session 1 to 4 and testing
on Session 5 conversations. However, in the ab-
sence of a validation split, we find that many prior
works use the test data for validating and saving
their models. This often leads to misleading num-
bers, and hence hurts reproducibility. Thus, for our
experiments (wherever we could find a working
implementation), we use our train, validation, and
test splits, and hence some of our reported num-
bers for [IEMOCAP in Table 1 may vary from those
reported in the respective papers.

A.7 Text Only Experiment

MiSTER-E is a speech-text model, suitable for mul-
timodal ERC. However, recently, many methods
based on LLMs have been proposed for ERC af-
ter framing it as a generative task. While using
the text transcripts for fine-tuning the LLMs, they
use the speaker information as well. We there-
fore select a recently proposed method, Instruc-
tERC (Lei et al., 2023) and adapt it for our task
without using any speaker information for fair com-
parison with our proposed method. We use the
EmoryNLP dataset (Zahiri and Choi, 2018) for this
experiment, which consists of 7 emotion classes
and has only text transcripts. The text embeddings
are extracted as for the other datasets, while the
speech embeddings are also replaced by those for
the text transcripts. The entire model is trained as
before with same hyperparameters as MELD (with
A = 0 (Eq. 15)). The comparative performance of
our proposed method with InstructERC is shown
in Fig. 8. We note that our proposed method out-


https://github.com/TaoShi1998/MultiEMO
https://github.com/tdfxlyh/MMGAT_EMO

performs InstructERC on this dataset by a slim
margin of 0.2%. However, InstructERC adapts a
LLaMA-2-7B-chat* for this task. Since MiSTER-
E uses the LLaMA-3.1-8B model, we also modify
InstructERC by using this model. This system,
called Instruct-ERC-LLaMA-3.1-8B (see Fig. 8),
is seen to perform worse than both InstructERC and
MiSTER-E. This shows the utility of our training
methodology over other LLM fine-tuning methods.

A.8 Performance of Other LLMs/SLLMs

We experiment with other SLLMs and LLMs for en-
coding speech and text, respectively. For all these
choices, we train the models with exactly the same
hyperparameters as we did for LLaMA-3.1-8B°
and SALMONN-7BS. For encoding text, we ex-
periment with Qwen2.5-7B7 and Gemma-78B%
while for speech we use Qwen2-Audio-7B° and
SALMONN-13B!°. The results of this experiment are
shown in Table 4.

Modality | Model | IEMOCAP | MELD

Gemma-7B 48.2% 58.1%
Text Qwen-2.5 53.1% 65.5%
LLaMA-3.1-8B 55.3% 67.1%
SALMONN-7B 59.7% 54.3%
Speech Qwen2-Audio-7B 59.2% 54.9%
SALMONN-13B 58.7% 53.2%

Table 4: Performance of different SLLM/LLMs on the
two datasets when the unimodal feature encoders are
trained (Sec. 3.2).

We note that for speech, the different speech
large language models perform similarly with
SALMONN-7B performing the best for IEMOCAP
and Qwen2-Audio-7B outperforming others in the
case of MELD. Interestingly, the much bigger
SALMONN-13B model performs relatively poorly for
both datasets. For the text encoder, LLaMA-3.1-8B
performs the best for both datasets. Based
on these results, we choose SALMONN-7B and
LLaMA-3.1-8B for encoding speech and text re-
spectively in MiSTER-E.

4https://huggingface.co/meta—llama/
Llama-2-7b-chat
5https://huggingface.
1-8B
®https://huggingface.
SALMONN-7B
"https://huggingface.
8https://huggingface.
9https://huggingface.
Ohttps://huggingface.

co/meta-1lama/Llama-3.
co/tsinghua-ee/

co/Qwen/Qwen2.5-7B
co/google/gemma-7b
co/Qwen/Qwen2-Audio-7B
co/tsinghua-ee/SALMONN
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A.9 The Context Addition Network

We make the following modifications to the pro-
posed CAN network (Fig. 2(a)).

* We remove the temporal inception network
(TIN) from the network.

* We remove the skip connection between the
input and the output of the CAN architecture.

* Bi-GRU+Attn.: Instead of the TIN network
before the Bi-GRU, we append a self-attention
block (2 blocks, 120 hidden dimension and 4
heads) after the Bi-GRU for effective contex-
tual modeling.

The weighted F1-scores for the two datasets are
shown in Table 5 with these modifications. The dif-

Method | IEMOCAP | MELD
CAN 70.9% 69.5%
- TIN 69.8% 67.8%
- Skip 69.9% | 68.8%
Bi-GRU+Attn. |  70.2% | 68.5%

Table 5: Performance of MiSTER-E with changes in the
CAN network.

ferent parts of the proposed CAN network are seen
to be important towards the performance of our
proposed method. The local contextual dependen-
cies captured by the temporal inception network
are seen to benefit [IEMOCAP by 1.1% and MELD
by 1.7%. The skip connection is also seen to have
a positive impact for both datasets. Interestingly,
the combination of Bi-GRU with self-attention is
outperformed by CAN for both datasets. We no-
tice an overfitting problem in this case - partially
explaining this observation.

A.10 Removal of the Self-Attention Layers

We remove the self-attention layers after the cross-
attention block in the multimodal network (See
Fig. 2(b)). On removal of this block, the perfor-
mance of our proposed method drops to 70.5%
for IEMOCAP and 68.7% for MELD. The drop
of 0.4% and 0.8% for IEMOCAP and MELD re-
spectively indicates the utility of the self-attention
layers in the multimodal network.

A.11 Individual expert performance

The performance of the three experts varies across
the three datasets. This manifests in the distribu-


https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/tsinghua-ee/SALMONN-7B
https://huggingface.co/tsinghua-ee/SALMONN-7B
https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/google/gemma-7b
https://huggingface.co/Qwen/Qwen2-Audio-7B
https://huggingface.co/tsinghua-ee/SALMONN

Yeah, but what if it's not? What if there is a reason

why we can't have a baby?

Oh, Chandler, look. You and Monica are meant to
have children. | am sure it's gonna be just fine.

oh, oh, yeah, ok, thanks.

| guess | was just so worried about having to...
come here and do... 'that'...

.
L
Py &

What, you can do it in the parking lot of a Taco Bell,
but you can't do it at a doctor's office?

A
*l
>

%

It was a "Wendy's!!"

Speech Text Multimodal Prediction
Expert Expert Expert
Neutral Fear Fear Fear J

Neutral
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| can't believe | didn't even think of that. |
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Neutral Neutral Neutral
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Fear Fear
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Figure 9: A case study from MELD where there are emotion shifts throughout the conversation. Out of the 7
utterances in the conversation, MiSTER-E correctly predicts 6.
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Figure 10: Performance of the experts on the two
datasets.

tion of the weights assigned by the gating strat-
egy (Sec. 5). We further report the performance
of the individual experts in Fig. 10. For MELD,
the performance of the audio expert is the lowest
(55.8%). The multimodal expert is seen to slightly
under-perform as compared to the text modality
(by 0.3%) as it tries to align two modalities with
significantly different capabilities. In the case of
IEMOCAP, since both the modalities perform sim-
ilarly, the multimodal expert is able to fuse the two
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representations to give the best performance. In
this case, it outperforms the best unimodal expert
(speech) by 2.5%.

Interestingly, we note that MiSTER-E outperforms
the best expert (by 1% for both datasets). This
indicates the effectiveness of our gating strategy
and its ability to give more importance to the more
dominant modality for improved ERC.

A.12 The Expert Consistency Loss

The value of a (Eq. 16) decides on how much con-
sistency we desire in the output of the three experts.
Since for IEMOCAP, the speech and text modali-
ties perform similarly, we use o = 0.1 in this case.
This improves the performance of MiSTER-E on
IEMOCAP from 70.4% (a = 0) to 70.9%. Further
increase in the value of « hurts the performance of
our proposed method.

MELD, on the other hand, is a dataset where the
textual modality far outperforms the speech modal-
ity. Hence, enforcing a strong consistency regular-
ization hurts the model performance significantly.
Thus we use a small value of &« = le — 3 in the
case of MELD, and this leads to a 0.1% increase in
the overall performance.
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Figure 11: Confusion matrix for the IEMOCAP dataset.

A.13 Class-wise Performance of MiSTER-E

The class-wise performance of our proposed
method for the two datasets is shown in Table 6.
We note that for IEMOCAP the worst perform-
ing class is “happy” - likely because it is the least
frequent class and it is most confused with the “ex-
cited” category (Fig. 11). Similarly, for MELD, the
model performs most poorly on the “fear” category
- again the least frequent class. However, we note
that for both datasets, the model performs quite
well on most emotion classes, thereby leading to
an improved overall performance.

IEMOCAP MELD
Category | F1 | Category | F1
Angry 68.4% | Angry 62.5%
Excited 77.9% | Disgust 42.9%
Frustrated | 69.0% | Fear 30.6%
Happy 40.2% | Joy 65.4%
Neutral 80.2% | Neutral 81.3%
Sad 83.8% | Sad 50.3%
- - Surprise | 61.5%

Table 6: Class wise performance of MiSTER-E on the
two datasets. F1 stands for F1-score

A.14 Case Study

We provide a case study from the MELD dataset
in Fig. 9. A number of key points that we wish to
highlight from this example are as follows:

* MiSTER-E does not fail when there are emo-
tion shifts. E.g., the conversation has 6 emo-
tions in 7 utterances. Although, the model
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incorrectly predicts the third utterance to be
neutral (instead of joy), it is able to predict
the emotion shift from surprise to sadness to
anger.

Another interesting point is the output of the
fifth utterance. None of the experts predict
sadness, yet the MoE strategy correctly marks
the utterance as sad. This indicates the utility
of the MoE gating strategy in our proposed
method and differentiates it from static ensem-
bling techniques.

A.15 License

SALMONN, the Qwen models and Gemma are dis-
tributed under Apache License 2.0, while LLaMA
is distributed under the LLaMA license !'. The
IEMOCAP dataset is available for use for academic
purposes, while MELD is distributed under the
GNU General Public License v3.0.

"https://www.1llama.com/1lama3/license/


https://www.llama.com/llama3/license/

Rachel was just helping me out. My head got all sunburned. ‘

’ Oh, you're welcome a million. .
Yeah- .

Neutral

Prediction
&
|, s

Al

Joy

Thanks a million. ‘ Joy

Neutral

Okay, I'll see you in our room. ‘

Neutral

Surprise

Oh my God.

v
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v
v
Joy
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v

Neutral

| know. .
Okay, | gotta go.

Neutral

Surprise

. ‘ Whoa! What?! Why?! ‘

’ Well, |- gotta go break up with Bonnie. J .
8]
Well, yeah. J .
>

’ | can't-l can't stay here all night, and if | go in there she's-she's gonna wanna... do stuff. ‘ .

Surprise
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Figure 12: A case study from MELD where there are 16 utterances in the conversation. The weights assigned to the
different experts are shown. In most cases, text is assigned the highest weight (except utterance 2 and 9. S: Speech
Expert, T: Text Expert, M: Multimodal Expert. The predictions of MiSTER-E are also shown. The model correctly
predicts all the utterances in the conversation, inspite of the emotion shifts present.
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