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Abstract001

Emotion Recognition in Conversations (ERC)002
requires modeling the temporal context of003
multi-turn dialogues and the complemen-004
tary information across modalities. We pro-005
pose Mixture of Speech-Text Experts for006
Recognition of Emotions (MiSTER-E), a mod-007
ular Mixture-of-Experts (MoE) framework that008
decouples modality-specific context modeling009
from multimodal integration. MiSTER-E incor-010
porates LLM-based representations for speech011
and text, uses a convolutional-recurrent layer012
for context modeling, and integrates unimodal013
and cross-modal information through a gating014
mechanism. We introduce a supervised con-015
trastive loss between aligned speech and text016
representations and a KL-divergence-based reg-017
ularization to encourage agreement across ex-018
pert predictions. Notably, our method does019
not rely on speaker identity during training020
or inference. Experiments on two bench-021
mark datasets—IEMOCAP and MELD—show022
that our proposal achieves 70.9% and 69.5%023
weighted F1-scores respectively, outperform-024
ing prior speech-text ERC models. We also025
provide various ablations to highlight the con-026
tributions made in the proposed approach.027

1 Introduction028

Emotion Recognition in Conversation (ERC) seeks029

to infer emotional states from multi-turn, multi-030

modal interactions. As a core task for building031

socially aware AI, ERC enables a range of appli-032

cations including dialogue systems (Pantic et al.,033

2005), social media analysis (Gaind et al., 2019),034

and mental health monitoring (Ghosh et al., 2019).035

Emotions are conveyed through diverse modali-036

ties—textual content, vocal prosody, and visual037

cues—and evolve across conversational contexts.038

This layered complexity of multimodal expression039

of emotions makes ERC challenging.040

Prior work has advanced ERC through contex-041

tual modeling (Hazarika et al., 2018; Majumder042

et al., 2019), speaker-aware representations (Hu 043

et al., 2021; Shen et al., 2025), and fusion strategies 044

ranging from early concatenation (Han et al., 2021) 045

to attention-based and tensor methods (Zadeh et al., 046

2017; Hazarika et al., 2020; Dutta and Ganapa- 047

thy, 2022). Most existing approaches conflate the 048

two distinct modeling challenges: temporal con- 049

text modeling and cross-modal fusion. This de- 050

sign choice, especially under the small size of 051

ERC datasets, risks overfitting. This raises a core 052

research question: Can architectural modularity, 053

which disentangles context modeling from modality 054

fusion, enable improved ERC? 055

In this work, we explore this question by design- 056

ing an ERC framework that separates modality- 057

specific contextual modeling from multimodal fu- 058

sion. Our architecture, Mixture of Speech-Text 059

Experts for Recognition of Emotions (MiSTER-E), 060

is structured not to optimize performance alone, but 061

to segregate the contributions of each modality and 062

their interactions via a Mixture-of-Experts (MoE) 063

design. Our approach trains large language models 064

for enhanced utterance level modeling, followed 065

by convolutional-BiGRU networks for modeling 066

conversational dynamics of each modality. A third 067

branch performs multimodal modeling using cross- 068

attention and self-attention layers. These three ex- 069

pert branches — speech, text, and speech-text — 070

are then integrated through a gating mechanism 071

that adaptively weighs each expert’s prediction. To 072

encourage cross-modal alignment, we introduce a 073

modality-aware contrastive loss that aligns text and 074

speech embeddings for the same emotion class. 075

We also propose a consistency loss to regulate 076

the agreement between expert predictions — each 077

trained with focal loss for class imbalance. The 078

following are the contributions from the work: 079

• We propose MiSTER-E—a modular frame- 080

work for ERC that separates modality-specific 081

context modeling from cross-modal fusion us- 082
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ing a Mixture-of-Experts architecture.083

• We fine-tune LLMs for speech and text, model084

conversational dynamics via temporal incep-085

tion networks and BiGRUs, and integrate pre-086

dictions using a gating mechanism.087

• We introduce a speech-text contrastive loss to088

enhance cross-modal alignment for utterances089

belonging to the same emotion class. Further,090

to promote agreement between the experts we091

introduce a KL-divergence based consistency092

regularization loss.093

• Our proposed method is shown to achieve094

state-of-the-art performance on two standard095

ERC benchmarks—IEMOCAP (Busso et al.,096

2008) and MELD (Poria et al., 2019a).097

2 Related Work098

Text embedding extraction: Early approaches to099

ERC relied on static word embeddings such as100

Word2Vec (Mikolov et al., 2013) and GloVe (Pen-101

nington et al., 2014), to encode utterances (Po-102

ria et al., 2015; Zadeh et al., 2017; Mai et al.,103

2019). With the advent of transformer-based lan-104

guage models like BERT (Devlin et al., 2019) and105

RoBERTa (Liu et al., 2019), ERC systems be-106

gan adopting contextual encoders (Hazarika et al.,107

2020; Chudasama et al., 2022; Hu et al., 2023), re-108

sulting in improved text features. Recent text-only109

methods (Lei et al., 2023; Fu, 2024) pose ERC as110

a generative task, where they fine-tune LLMs in111

an autoregressive manner. However, the efficient112

use of LLMs when text is used alongside speech is113

unexplored. Towards this, we adapt LLMs as text114

encoders for the task of text emotion recognition,115

thereby harnessing the power of these models and116

also enabling fusion with other modalities.117

Speech embedding extraction: Speech features in118

ERC have traditionally relied on hand-crafted de-119

scriptors like OpenSMILE (Eyben et al., 2010) and120

COVAREP (Degottex et al., 2014), which, while ef-121

fective, often fail to generalize across datasets with122

diverse acoustic conditions (Majumder et al., 2019;123

Poria et al., 2015). Recent efforts have moved to-124

ward learnable frontends such as LEAF (Zeghidour125

et al., 2021) and self-supervised models like Hu-126

BERT (Hsu et al., 2021) and wav2vec (Baevski127

et al., 2020), with demonstrated success (Dutta and128

Ganapathy, 2022; Lian et al., 2022). However, the129

utilization of multi-modal LLMs for ERC is rela-130

tively unexplored. Thus, we fine tune large speech131

language models (SLLMs) directly for emotional 132

inference—an approach that has not been explored 133

for multimodal ERC before. 134

MoE in ERC: While Mixture-of-Experts (MoE) ar- 135

chitectures have shown promise in scaling both lan- 136

guage (Shazeer et al., 2017; Lepikhin et al., 2021) 137

and vision models (Riquelme et al., 2021), their 138

role in ERC has been limited. One recent exam- 139

ple, MMGAT-EMO (Zhang et al., 2025), combines 140

MoE with graph attention for emotion modeling. 141

In contrast, we use MoE to structure our model 142

around three specialized experts—speech, text, and 143

fused modalities—explicitly targeting the separa- 144

tion of context modeling and cross-modal fusion. 145

Loss functions for ERC: Supervised contrastive 146

learning (Khosla et al., 2020) was introduced for 147

ERC by Li et al.(Li et al., 2022) and extended in 148

later works (Song et al., 2022; Yu et al., 2024), us- 149

ing emotion class prototypes. Some approaches 150

extend this to align modalities—e.g., aligning au- 151

dio and visual cues to textual anchors (Hu et al., 152

2022b). In contrast, we adopt a multimodal su- 153

pervised contrastive loss, where positives are intra- 154

and inter-modality representations of utterances be- 155

longing to the same emotion classes, encouraging 156

better alignment across modalities for each of the 157

emotion categories. We further introduce a consis- 158

tency loss to encourage agreement among experts, 159

reinforcing modular cooperation. 160

3 Proposed Method 161

A block diagram of our proposed method is shown 162

in Fig. 1. 163

3.1 Problem Description 164

Let us consider an ERC dataset D consisting of 165

P conversations, C = {c1, c2, c3, . . . , cP }, where 166

each conversation ci consists of a set of utter- 167

ances, Ui = {ui1,ui2, , . . . , uiN}. In this work, 168

only the speech and text modalities are considered, 169

which is notated as uik = {sik, tik}, k = 1..N , 170

where sik and tik are speech and text data respec- 171

tively. Each utterance uik is associated with a 172

corresponding emotion label yik ∈ Y , with Y de- 173

noting the label set of emotion categories in D. 174

The task of ERC is to map a sequence of utter- 175

ances {ui1, . . . ,uiN} to their corresponding labels 176

yi = {yi1, yi2, . . . , yiN}. 177

3.2 Unimodal Feature Extraction 178

Text embeddings: While large language models 179

(LLMs) excel in text generation, their use in emo- 180
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Figure 1: (a) Training of the unimodal feature extraction module (Sec. 3.2) (b) The entire pipeline of MiSTER-E.
The speech and text embedding modules are frozen during training of the rest of the pipeline. Two context addition
networks (Sec. 3.3.1) are trained for the two modalities along with a multimodal network (Sec. 3.3.2). Finally, a
mixture of experts gating network (Sec. 3.4) is trained to predict the emotion category for each utterance.

tion recognition has been limited. Prior work typi-181

cally uses them in autoregressive mode or as frozen182

feature extractors (BehnamGhader et al., 2024).183

In this work, we fine-tune an LLM—specifically,184

LLaMA-3.1-8B—to act as an text encoder rather185

than a generator. Each utterance transcript tik is186

tokenized and processed through the LLM. Token-187

level hidden states are then pooled and passed188

through a two-layer feedforward classifier trained189

with task-specific supervision. To preserve the pre-190

training knowledge while enabling efficient adapta-191

tion, we apply LoRA (Hu et al., 2022a) to fine-tune192

the weights. We denote the resulting text embed-193

ding as:194

etik = Text-Embed(tik) (1)195

where etik is extracted from the first fully connected196

layer of the classifier.197

Speech embeddings: For speech, we adopt a simi-198

lar approach using SALMONN-7B (Tang et al., 2024),199

a speech large language model (SLLM) compris-200

ing a speech encoder, Q-former (Li et al., 2023b),201

and an LLM backbone. For ERC, we fine-tune this202

model by updating the Q-former, the LLM, and a203

classification head via LoRA. This allows the sys-204

tem to learn emotionally salient acoustic patterns205

while retaining the semantic features of the LLM206

backbone. Given a speech signal sik, we extract its 207

representation as: 208

esik = Speech-Embed(sik) (2) 209

where the embedding is taken from the first fully 210

connected layer of the speech classification head. 211

Comparisons with alternative LLM and SLLM vari- 212

ants are provided in Appendix A.8. 213

3.3 Conversational Modeling 214

For a conversation ci, the text and speech embed- 215

ding sequences (Sec. 3.2) are denoted by Et
i = 216

{eti1, . . . , etiN} and Es
i = {esi1, . . . , esiN} respec- 217

tively. As shown in Figure 1, the fine-tuned speech 218

and text embedding extractors are frozen. 219

3.3.1 Context Addition Network 220

To make utterance representations context-aware, 221

we introduce a Context Addition Network (CAN) 222

that enhances both text and speech embeddings 223

(Sec. 3.2) with conversational context. At its core 224

is a Temporal Inception Network (TIN), which ap- 225

plies 1D convolutions with kernel sizes of 1, 3, and 226

5 to capture short-range dependencies—simulating 227

varying receptive fields across local utterance 228

neighborhoods. Inspired by the Inception archi- 229

tecture (Szegedy et al., 2015) originally developed 230
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Figure 2: (a) The context addition network (for the speech modality) and (b) the multimodal network used in
MiSTER-E. The inputs to both the blocks are derived from the uni-modal feature extractor modules. TIN stands for
Temporal Inception Network, MHA stands for multi-head attention.

for image classification, this is, to the best of our231

knowledge, the first application of an inception-232

style network for contextual modeling in ERC.233

However, emotional signals in dialogue often234

evolve over longer durations. To capture such235

global dependencies, we append a Bi-GRU layer,236

allowing the model to integrate information across237

the entire conversational span. A residual connec-238

tion links the original embedding with its context-239

enhanced version, enabling additive refinement240

while preserving the semantic grounding of the241

base LLM features. Finally, a FC layer is used to242

map each utterance uik to its corresponding emo-243

tion category yik. We train two similar networks for244

the speech and text modalities, respectively. These245

operations are denoted as:246

ŷs
i = {ŷsi1, . . . , ŷsiN} = CAN(Es

i ) (3)247

ŷt
i = {ŷti1, . . . , ŷtiN} = CAN(Et

i ) (4)248

A schematic of the speech-side CAN is shown in249

Fig. 2(a). Detailed ablation results and perfor-250

mance of an alternative attention-based architecture251

are discussed in Appendix A.9.252

3.3.2 Multimodal Network253

To integrate information across modalities, we de-254

sign a fusion module based on cross-attention be-255

tween speech and text. This mechanism allows256

the model to align semantic cues from text with257

affective signals from audio. The speech and text258

embeddings, Es
i and Et

i , are first projected into259

query, key, and value spaces. Cross-attention is260

then applied bidirectionally: 261

Mt→s
i = LN(FC(Es

i ) + MHA(Qs
i ,K

t
i ,V

t
i )) (5) 262

Ms→t
i = LN(FC(Et

i ) + MHA(Qt
i ,K

s
i ,V

s
i )) (6) 263

Here, MHA and LN refer to multi-head attention and 264

layer normalization, respectively. 265

While this enables inter-modal alignment, it over- 266

looks cues from the conversational context that 267

are essential for ERC. To address this, we ap- 268

ply modality-specific self-attention layers over the 269

aligned representations, capturing temporal context 270

across the conversation (See Appendix A.10): 271

Ms
i = Self-attn.(Mt→s

i ) (7) 272

Mt
i = Self-attn.(Ms→t

i ) (8) 273

The outputs Ms
i and Mt

i are concatenated and 274

passed through a fully connected (FC) layer: 275

ŷm
i = {ŷmi1 , ŷmi2 , . . . , ŷmiN} = FC([Ms

i ;M
t
i ]) (9) 276

An overview is presented in Fig. 2(b). 277

3.4 Mixture-of-Experts Gating 278

We obtain outputs from the three experts: the 279

speech expert (ŷs
i ), the text expert (ŷt

i ), and the 280

multimodal expert (ŷm
i ). 281

To combine the outputs, we dynamically fuse the 282

experts’ decisions using a gating mechanism that 283

learns to weigh the decisions based on its confi- 284

dence for the given utterance. To compute these 285
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weights, we concatenate the expert predictions and286

feed them into a fully connected (FC) layer:287

gi = FC([ŷs
i ; ŷ

t
i ; ŷ

m
i ]) (10)288

The outputs from the gating network, gi ∈ RN×3,289

are transformed via a softmax operation to produce290

adaptive mixture weights βi = [βs
i , β

t
i , β

m
i ], which291

indicate the relative importance of each expert. The292

final prediction is computed as a weighted sum of293

the expert predictions:294

ŷi = βs
i · ŷs

i + βt
i · ŷt

i + βm
i · ŷm

i (11)295

This gating network is trained end-to-end, em-296

powering the model to flexibly integrate modalities297

by emphasizing the most reliable expert.298

3.5 Model Training299

3.5.1 Loss Function300

ERC is typically characterized by severe class im-301

balance, where rare emotion classes are often mis-302

classified (Poria et al., 2019b). To address this,303

we employ the focal loss (Lin et al., 2017), which304

modulates the contribution of each training exam-305

ple based on its complexity, reducing the relative306

loss for well-classified examples while focusing307

on hard (possibly minority class) instances. In308

MiSTER-E, this loss is applied during the training309

of the uni-modal embedding extractors for text and310

speech as well as their respective context addition311

networks (CANs). The loss for the speech and text312

CAN networks is given by:313

Li
CAN =

N∑
k=1

FL(ŷsik, yik) +
N∑
k=1

FL(ŷtik, yik) (12)314

Here, FL(·) represents the focal loss function. De-315

scription of the focal loss and related ablations are316

provided in Appendix. A.1.317

3.5.2 Multimodal Contrastive Loss318

In many cases, speech and text provide com-319

plementary signals about a speaker’s emotion.320

To exploit this, we incorporate a supervised321

contrastive loss that structures the joint repre-322

sentation space based on emotion labels, draw-323

ing together utterances with shared emotional324

intent across modalities. Consider the multi-325

modal speech and text representations denoted by326

Ms
i = {ms

i1,m
s
i2,m

s
i3, . . . ,m

s
iN} and Mt

i =327

{mt
i1,m

t
i2,m

t
i3, . . . ,m

t
iN} respectively. These328

embeddings are batched to get,329

Zi = {m̃s
i1, . . . , m̃

s
iN, m̃t

i1, . . . , m̃
t
iN} (13)330

where m̃·
ik =

m·
iN

||m·
iN|| denotes the normalized em- 331

beddings. Let za ∈ Zi for a ∈ {1, 2, . . . , 2N}, 332

and let ya be the emotion label associated with za. 333

The contrastive loss is given by: 334

Li
con =

2N∑
a=1

−1

|P (a)|
∑

p∈P (a)

log
exp

(
z⊤a zp/τ

)
2N∑
q=1
q ̸=a

exp (z⊤a zq/τ)

(14) 335

where τ is the temperature and P (a) = {p ∈ 336

{1, 2, . . . , 2N}\{a}|yp = ya} is the set of posi- 337

tives for anchor za. This objective pulls together 338

utterances with the same emotion class across both 339

speech and text, while pushing apart other samples, 340

thereby guiding the model to learn emotionally co- 341

herent, modality-invariant representations. 342

Total multimodal loss: The final loss used to train 343

the multimodal model combines the classification 344

and contrastive objectives: 345

Li
multi =

N∑
k=1

FL(ŷmik , yik) + λLi
con (15) 346

where ŷmik denotes the multimodal prediction, and 347

λ controls the contribution of the contrastive loss. 348

3.5.3 MoE Gating Loss 349

To train the mixture-of-experts (MoE) gating 350

network, we combine two objectives: (i) focal 351

loss for emotion classification, and (ii) a reg- 352

ularization term to promote consistency among 353

the expert predictions. Specifically, we enforce 354

similarity in the predicted distributions of the 355

three experts—speech-only, text-only, and mul- 356

timodal—using the Kullback-Leibler (KL) diver- 357

gence. The total loss for the MoE layer is: 358

Li
moe =

N∑
k=1

FL(ŷik, yik) + α · Li
KL (16) 359

where ŷik is defined in Eq. 11, α controls the 360

strength of the consistency regularization, and the 361

KL term is given by: 362

Li
KL =

N∑
k=1

[
KL(ŷmik |ŷsik)+KL(ŷmik |ŷtik)+KL(ŷsik|ŷtik)

]
(17) 363

This encourages the expert branches to produce 364

aligned output distributions, enabling the gating 365

mechanism to combine them effectively. 366
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Method Modalities Used IEMOCAP MELD

bc-LSTM (Poria et al., 2017) T,S,V 54.9% 55.9%
UniMSE (Hu et al., 2022b) T,S,V 70.7% 65.5%
SCMM (Yang et al., 2023) T,S,V 67.5% 59.4%
GraphSmile (Li et al., 2024b) T,S,V 72.8% 66.7%

SMIN (Lian et al., 2022)## T,S 70.5% 63.7%
MultiEmo (Shi and Huang, 2023)# T,S 66.9%±2.0 65.3%±0.5

HCAM (Dutta and Ganapathy, 2023) T,S 70.5% 65.8%
DF-ERC (Li et al., 2023a) T,S 69.5% 64.5%
Mamba-like-model (Shou et al., 2024) T,S 70.2% 65.6%
CFN-ESA (Li et al., 2024a) T,S 68.7% 67.2%
MMGAT-EMO (Zhang et al., 2025)# T,S 65.5%±0.6 66.1%±0.4

MiSTER-E T,S 70.9%±0.2 69.5%±0.3

Table 1: Comparison of different methods on IEMOCAP and MELD datasets on weighted-F1 scores. We mention
the modalities used by the methods (T:Text, S:Speech, V:Video). Further we compare with only those methods
which do not use any speaker information. ## we report the numbers when no external emotional data is used for
training SMIN. # we ran the public implementation provided by the authors on the datasets for our own settings.
The superscript results are the mean and standard deviation over 3 random initializations, whenever performed.

3.5.4 Total Loss367

The context addition networks, the multimodal net-368

work, and the MoE gating layer are trained together.369

The total loss is:370

Ltot =

P∑
i=1

[
Li

CAN + Li
moe + Li

multi

]
(18)371

4 Experiments372

4.1 Datasets373

We evaluate the proposed method on two bench-374

mark ERC datasets - IEMOCAP (Busso et al.,375

2008) and MELD (Poria et al., 2019a). More de-376

tails are available in Appendix A.2.377

IEMOCAP consists of conversational data split378

into 5 sessions, 151 dialogues and 7433 utterances.379

Following prior work (Lian et al., 2022), we con-380

sider session 5 for testing, while session 1 is used381

for validation. The remaining 3 sessions are used382

for training, which is identical to the setup followed383

in prior works. Each utterance is classified as one384

of six emotions: “angry”, “happy”, “sad”, “frus-385

trated”, “excited” and “neutral”.386

MELD is a multi-party conversational dataset con-387

sisting of 1433 dialogues and 13708 utterances388

from the TV show Friends. This dataset has pre-389

defined train, validation, and test splits which are390

used in this work. Each utterance is categorized as391

one of seven emotion classes: “angry”, “joy”, “sad-392

ness”, “fear”, “disgust”, “surprise” and “neutral”.393

4.2 Implementation details 394

The two unimodal feature extractors (SALMONN-7B 395

and LLaMA-3.1-8B) are trained using LoRA with 396

a rank of 8 and the scaling parameter of 32 with 397

a dropout of 0.1. Both models are trained with 398

a batch size of 8 and a learning rate of 1e − 5, 399

with the focal loss. The hidden dimension in the 400

FC (Sec. 3.2) is set to 2048. For the rest of the 401

MiSTER-E pipeline, we use a batch size of 8 for 402

IEMOCAP and 32 for MELD. The learning rate 403

is set to 1e − 5 for both datasets. For MELD, λ 404

(Eq. 15) is set to 1 , while for IEMOCAP it is 405

set to 2. The consistency regularization term, α 406

(Eq. 16), is set to 0.1 for IEMOCAP, while it is 407

kept at 1e−3 for MELD (See Appendix A.12). We 408

report the weighted F1-score on the test data as the 409

performance metric with 3 random initializations. 410

More hyperparameter and implementation details 411

are given in Appendix A.3. Code and trained mod- 412

els will be made public upon acceptance. 413

4.3 Comparison with prior work 414

We compare the proposal with several baseline ap- 415

proaches, described in Appendix A.4. While many 416

existing systems leverage all three modalities, we 417

focus on comparisons with those using only speech 418

and text. We note that for IEMOCAP, due to the 419

lack of a standardized validation set, model selec- 420

tion for many of the prior works is often performed 421

on the test set (see Appendix A.6 for discussion on 422

this aspect). Some of the prior works also exploit 423
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Method # Params Text Feats. Speech Feats. IEMOCAP MELD

MultiEmo (Shi and Huang, 2023) ≈ 450M RoBERTa OpenSMILE 66.9% 65.3%
+ LLM/SLLM ≈ 14B LLaMA SALMONN 66.5% 68.2%

HCAM (Dutta and Ganapathy, 2023) ≈ 750M RoBERTa wav2vec 70.5% 65.8%
+ LLM/SLLM ≈ 14B LLaMA SALMONN 70.3% 68.4%

MMGAT-EMO (Zhang et al., 2025) ≈ 430M EmoBERTa OpenSMILE 65.5% 66.1%
+ LLM/SLLM ≈ 14B LLaMA SALMONN 66.9% 66.1%

MiSTER-E ≈ 14B LLaMA SALMONN 70.9% 69.5%

Table 2: Comparison of some of the baseline methods when re-designed with LLM features.

speaker information, and we analyze this effect in424

Appendix A.5.425

Table 1 reports the performance of MiSTER-426

E and other prior approaches. It is seen that our427

proposed method achieves state-of-the-art perfor-428

mance among other prior works, with a weighted429

F1 score of 70.9% on IEMOCAP and 69.5% on430

MELD. Detailed class-wise results are given in Ap-431

pendix A.13 and a case study is reported in A.14.432

Recent LLM-based text-only ERC systems (e.g.,433

InstructERC (Lei et al., 2023), CKERC (Fu, 2024),434

BiosERC (Xue et al., 2024)) incorporate speaker435

roles or external knowledge, making direct com-436

parison to MiSTER-E challenging. However, we437

include a controlled comparison on a text-only438

dataset in Appendix A.7.439

4.4 Why is modularity crucial?440

We replace the modular design of our proposal with441

a monolithic architecture that feeds the contextual442

representations into the fusion module without sep-443

arating the experts. This results in a significant444

performance drop: from 70.9% to 67.8% on IEMO-445

CAP, and from 69.5% to 67.9% on MELD. These446

results confirm that disentangling context model-447

ing from multimodal fusion—as done in MiSTER-448

E—is not only conceptually sound but also empiri-449

cally crucial for effective emotion recognition.450

4.5 Are LLM embeddings the panacea?451

One might ask whether the gains of our ap-452

proach stem solely from the use of LLM/SLLM453

features. Towards this, we replace the original454

features in several prior models with the same455

LLM/SLLM embeddings used in our method and456

retrain them (Table 2). While MELD sees modest457

gains, IEMOCAP is impacted marginally (or even458

negatively)—suggesting that LLM representations459

alone are not sufficient. Notably, MiSTER-E still460

outperforms all baselines, underscoring that its ef-461

fectiveness lies not just in LLM features, but in its462
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Figure 3: Performance of MiSTER-E with changes in
the MoE gating strategy for IEMOCAP and MELD.

architectural design that separates context model- 463

ing from multimodal fusion. 464

4.6 Is decision-level MoE gating crucial? 465

To evaluate our gating strategy, we compare two 466

architectural variants. First, instead of fusing 467

expert predictions at the decision level, we per- 468

form Mixture-of-Experts fusion at the feature 469

level (feat-MoE) before classification. Second, 470

we remove expert-specific supervision by train- 471

ing only on the gated output with a focal loss 472

(No-Loss-MoE), omitting individual losses for the 473

audio, text, and multimodal experts. As shown 474

in Fig. 3, both variants degrade performance: 475

feat-MoE results in a 2.6% drop on IEMOCAP 476

and 0.6% on MELD, while No-Loss-MoE leads to 477

similar degradation. These results confirm that 478

decision-level fusion preserves modality-specific 479

discriminative cues, and that expert-level training 480

is essential for enabling each expert to specialize. 481

5 Discussion 482

5.1 Importance of the Contrastive Loss 483

We analyze the impact of the contrastive loss 484

(Eq. 14) on model performance in Fig. 4. 485
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Figure 4: Performance of MiSTER-E with varying val-
ues of λ (Eq. 18) for the two datasets. The validation
set performance (not shown above) mirrors the trends of
the test set. For IEMOCAP, validation set performance
is 63% for λ = 0 and 63.6% for λ = 2. For MELD, the
highest validation set performance is achieved for λ = 1
(65.6%) as compared to 65.4% for λ = 0.

Key Takeaways: 1) On MELD, performance im-486

proves from 68.2% (with λ=0) to 69.5% at λ=1,487

while IEMOCAP experiments suggest an improve-488

ment from 70.2% to 70.9% with λ = 2. This489

suggests that the contrastive loss enhances the abil-490

ity of the fusion module to align emotion-relevant491

cues across modalities beyond what focal loss can492

achieve alone. 2) Increasing the value of λ is seen493

to degrade the performance. This indicates that,494

although the proposed contrastive loss aids in clas-495

sification, it leads to a drop in performance without496

the focal loss.497

5.2 Analysis of Expert Weights498

We analyze the expert weights assigned by the MoE499

gating network on IEMOCAP and MELD (Fig. 5).500

Key Takeaways: 1) The gating mechanism ex-501

hibits dataset-specific preferences—favoring the502

multimodal expert for IEMOCAP and the text ex-503

pert for MELD—demonstrating its adaptability to504

dataset characteristics (see Appendix A.11 for in-505

dividual expert performance). 2) MELD displays506

higher variance in expert weights, likely reflecting507

its greater variability compared to the more con-508

trolled IEMOCAP dataset. 3) A case study from509

MELD (Fig. 6) illustrates dynamic expert selection:510

for a four-utterance conversation with distinct emo-511

tions per turn. The gating prioritizes speech and512

multimodal experts for the first utterance, shifting513

Speech Text Multimodal

0.0

0.2

0.4

0.6

0.8

Ex
pe

rt 
W

ei
gh

t

Expert Weights Across Datasets
IEMOCAP
MELD

Figure 5: Distribution of weights for the experts for the
different datasets.

0.41 0.15What happened? 0.44

He�s not gonna make it, he�s 
stuck in Chicago. 0.23 0.62 0.15

Ohh, man! Chicago, is sooo lucky! 0.17 0.56 0.28

0.21 0.74 0.05Stupid, useless Canadian money!

Surprise

Anger

Joy

Sadness

S T M Prediction

Figure 6: Distribution of weights for an example con-
versation from MELD. S: Speech expert, T: Text expert,
M: Multimodal expert. The predictions by MiSTER-E
are also shown. Refer Fig. 12 for another example.

to the text expert for subsequent utterances. This 514

highlights the model’s ability to adapt the emphasis 515

on the experts at a fine-grained, per-utterance level. 516

6 Conclusion 517

We proposed MiSTER-E, a modular framework 518

for ERC that explicitly separates contextual mod- 519

eling from multimodal fusion. Leveraging LLM- 520

based representations for both speech and text, we 521

model context in the conversations using a tem- 522

poral inception block followed by a Bi-GRU, and 523

perform modality fusion via an attention-based net- 524

work. A Mixture-of-Experts (MoE) gate adaptively 525

integrates decisions from context-aware and mul- 526

timodal experts. MiSTER-E achieves new state- 527

of-the-art performance on IEMOCAP and MELD, 528

without using speaker identity, demonstrating the 529

efficacy of modular context-fusion and decision- 530

level gating. The different design choices are fur- 531

ther justified by means of extensive ablations. 532
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7 Limitations533

While MiSTER-E achieves strong performance,534

some limitations remain. First, the LLM/SLLM535

encoders introduce some computational overhead.536

Second, although we avoid explicit speaker identity537

modeling, some prior works suggest that speaker-538

aware models can capture interpersonal dynamics539

more effectively. Using the speaker information540

in an unsupervised way is an avenue unexplored541

in this work. Finally, we focus exclusively on542

the speech and text modalities, omitting the vi-543

sual channel available in datasets like IEMOCAP544

and MELD. Integrating visual cues could further545

enhance model performance.546
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A Appendix 851

A.1 Focal Loss 852

Focal loss (Lin et al., 2017) is generally used to 853

handle class imbalance. Since both ERC datasets 854

considered in this paper are imbalanced, we use 855

focal loss in place of the cross-entropy loss. 856

Denoting the predicted probability for the sam- 857

ple with logits ŷ·ik as p̂·ik, the focal loss is given 858

as, 859

FL(ŷ·ik, yik) = −
Y∑

c=1

ycik(1− p̂·cik)
γ log(p̂·cik) (19) 860
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where ycik = 1 for the true class and 0 otherwise.861

p̂·cik is the predicted probability for class c for the862

sample with logits ŷ·ik (· is replaced by s, t or m)863

and γ is the hyperparameter associated with the864

focal loss.865

The performance of our proposed method for866

different values of γ (Eq. 19) is shown in Fig. 7.867

We note that for cross-entropy loss (γ = 0), the868

performance drops for both datasets, indicating the869

need for utilizing a loss function more suited for870

imbalanced datasets. The value of γ is set to 3 for871

both datasets.872

A.2 More details about datasets873

For IEMOCAP, we use 92 conversations for train-874

ing, 28 conversations for validation and the 31 con-875

versations in Session 5 for testing. There are a total876

of 5810 utterances for training and validation while877

1623 utterances are used for testing the model.878

In the case of MELD, the training and validation879

data together amount to 1153 conversations (11098880

utterances), while the test data comprises 280 con-881

versations (2610 utterances).882

A.3 More Implementation details883

All our experiments are run using a NVIDIA884

RTX A6000 GPU card with Pytorch 2.7.0 1 with885

CUDA 12.6. The number of trainable parameters886

in our model amounts to 97M (8M each for the887

LLM/SLLM LoRA training and 81M for the con-888

versational modeling). Training the LLM takes889

about 10 minutes per epoch, while the SLLM takes890

about 20 minutes per epoch. The rest of the model891

after feature encoders takes approximately 10 min-892

utes for 100 epochs. We mention further hyperpa-893

rameter choices for both datasets below:894

• The BiGRU used in the CAN network895

(Sec. 3.3.1) has a hidden dimension of 512896

and we use 3 layers for IEMOCAP and 2 for897

MELD. We use a dropout of 0.2 between each898

fully connected layer for regularization.899

• For the multimodal fusion network, we use 4900

layers with hidden dimension of 120 and 4 at-901

tention heads. We use a dropout regularization902

of 0.5 in the multimodal fusion network. The903

same network is used for both the datasets.904

• The temperature parameter for the contrastive905

loss (Eq. 14) is kept at 1 for IEMOCAP and906

0.05 for MELD.907

1https://pytorch.org/blog/pytorch-2-7/
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Figure 7: Performance of MiSTER-E with different
values of the focal loss hyperparameter.

• While training the context addition networks, 908

the multimodal network, and the MoE gat- 909

ing network, we use gradient clipping with 910

norm 1.0 for both the datasets and train for 911

100 epochs. While training the LLM and the 912

SLLM feature encoders, we run for 50 epochs 913

for both datasets. 914

A.4 Baselines 915

We mention the performance of four prior works us- 916

ing the three modalities-text, speech, and video-for 917

ERC: 1) bc-LSTM (Poria et al., 2017): A hier- 918

archical model is proposed that combines modal- 919

ities by simple concatenation. 2) UniMSE (Hu 920

et al., 2022b): The tasks of sentiment and emo- 921

tion recognition are combined with a contrastive 922

loss between the modality representations with text 923

as the anchor modality. 3) SCMM (Yang et al., 924

2023): The authors design adaptive paths for dif- 925

ferent modality interactions and hence effective fu- 926

sion. 4) GraphSmile (Li et al., 2024b): Modality 927

interactions are modeled as a graph and sentiment 928

prediction and emotion prediction tasks are com- 929

bined. 930

We now mention the baselines using speech and 931

text that we have compared with: 1) SMIN (Lian 932

et al., 2022): A semi-supervised learning frame- 933

work is provided for ERC, where the speech and 934

text representations are reconstructed on a differ- 935

ent dataset. 2) MultiEMO (Shi and Huang, 2023): 936

A cross-attention fusion method is provided along 937

with a sample weighted focal loss for addressing 938

the class imbalance in the ERC datasets. Using 939
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Method Modalities used Speaker Info. IEMOCAP MELD

MMGCN T,S,V ! 66.2% 58.7%

MMGCN T,S,V % 65.8% 58.4%

SDT T,S,V ! 74.1% 66.6%

SDT T,S,V % 72.0% 66.2%

GS-MCC T,S,V ! 73.3% 69.0%

GS-MCC T,S,V % 70.6% 64.6%

Table 3: Impact of speaker information in ERC datasets.

their public implementation 2, we train and test940

this model for both of our datasets and report the941

numbers. 3) HCAM (Dutta and Ganapathy, 2023):942

A hierarchical model for modeling the different943

aspects of ERC has been explored - first adding944

context and then adding the multimodal fusion step.945

4) DF-ERC (Li et al., 2023a): A technique to disen-946

tangle the importance of context and multimodality947

for ERC is proposed following which the fusion948

is carried out. 5) Mamba-like-model (Shou et al.,949

2024): State-space models are explored for mul-950

timodal ERC for the first time in this paper. 6)951

CFN-ESA (Li et al., 2024a): Cross-attention net-952

works are proposed for fusion of the modalities953

and the shifting of emotions from one utterance to954

another is modeled for effective ERC performance.955

7) MMGAT-EMO (Zhang et al., 2025): A MoE956

approach is proposed for the multiple modalities in957

a graph-attention fusion framework. We replicate958

the results for this method for the datasets using959

their public implementation 3.960

A.5 Speaker Information in ERC961

For understanding the role that speaker informa-962

tion plays for ERC, we report the performance of963

three recent works, MMGCN (Hu et al., 2021),964

SDT (Yang et al., 2023) and GS-MCC (Ai et al.,965

2025) with and without speaker information in Ta-966

ble 3. We note that for all these works, the perfor-967

mance drops when the speaker information is not968

used. The drop is most significant in the case of GS-969

MCC with a 4.4% drop in the case of MELD. Since970

MELD does not have a speaker-independent test971

split, using speaker information in ERC modeling972

risks an over-estimation of the model performance973

in the case of MELD.974

A.6 Performance on IEMOCAP975

IEMOCAP (Busso et al., 2008) is one of the most976

widely used datasets for evaluating ERC systems. It977

2https://github.com/TaoShi1998/MultiEMO
3https://github.com/tdfxlyh/MMGAT_EMO
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Figure 8: Performance comparison on EmoryNLP
dataset.

has conversations split into 5 sessions, and the gen- 978

eral evaluation protocol consists of training mod- 979

els on conversations in Session 1 to 4 and testing 980

on Session 5 conversations. However, in the ab- 981

sence of a validation split, we find that many prior 982

works use the test data for validating and saving 983

their models. This often leads to misleading num- 984

bers, and hence hurts reproducibility. Thus, for our 985

experiments (wherever we could find a working 986

implementation), we use our train, validation, and 987

test splits, and hence some of our reported num- 988

bers for IEMOCAP in Table 1 may vary from those 989

reported in the respective papers. 990

A.7 Text Only Experiment 991

MiSTER-E is a speech-text model, suitable for mul- 992

timodal ERC. However, recently, many methods 993

based on LLMs have been proposed for ERC af- 994

ter framing it as a generative task. While using 995

the text transcripts for fine-tuning the LLMs, they 996

use the speaker information as well. We there- 997

fore select a recently proposed method, Instruc- 998

tERC (Lei et al., 2023) and adapt it for our task 999

without using any speaker information for fair com- 1000

parison with our proposed method. We use the 1001

EmoryNLP dataset (Zahiri and Choi, 2018) for this 1002

experiment, which consists of 7 emotion classes 1003

and has only text transcripts. The text embeddings 1004

are extracted as for the other datasets, while the 1005

speech embeddings are also replaced by those for 1006

the text transcripts. The entire model is trained as 1007

before with same hyperparameters as MELD (with 1008

λ = 0 (Eq. 15)). The comparative performance of 1009

our proposed method with InstructERC is shown 1010

in Fig. 8. We note that our proposed method out- 1011
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performs InstructERC on this dataset by a slim1012

margin of 0.2%. However, InstructERC adapts a1013

LLaMA-2-7B-chat4 for this task. Since MiSTER-1014

E uses the LLaMA-3.1-8B model, we also modify1015

InstructERC by using this model. This system,1016

called Instruct-ERC-LLaMA-3.1-8B (see Fig. 8),1017

is seen to perform worse than both InstructERC and1018

MiSTER-E. This shows the utility of our training1019

methodology over other LLM fine-tuning methods.1020

A.8 Performance of Other LLMs/SLLMs1021

We experiment with other SLLMs and LLMs for en-1022

coding speech and text, respectively. For all these1023

choices, we train the models with exactly the same1024

hyperparameters as we did for LLaMA-3.1-8B51025

and SALMONN-7B6. For encoding text, we ex-1026

periment with Qwen2.5-7B7 and Gemma-7B81027

while for speech we use Qwen2-Audio-7B9 and1028

SALMONN-13B10. The results of this experiment are1029

shown in Table 4.

Modality Model IEMOCAP MELD

Text
Gemma-7B 48.2% 58.1%
Qwen-2.5 53.1% 65.5%
LLaMA-3.1-8B 55.3% 67.1%

Speech
SALMONN-7B 59.7% 54.3%
Qwen2-Audio-7B 59.2% 54.9%
SALMONN-13B 58.7% 53.2%

Table 4: Performance of different SLLM/LLMs on the
two datasets when the unimodal feature encoders are
trained (Sec. 3.2).

1030

We note that for speech, the different speech1031

large language models perform similarly with1032

SALMONN-7B performing the best for IEMOCAP1033

and Qwen2-Audio-7B outperforming others in the1034

case of MELD. Interestingly, the much bigger1035

SALMONN-13B model performs relatively poorly for1036

both datasets. For the text encoder, LLaMA-3.1-8B1037

performs the best for both datasets. Based1038

on these results, we choose SALMONN-7B and1039

LLaMA-3.1-8B for encoding speech and text re-1040

spectively in MiSTER-E.1041

4https://huggingface.co/meta-llama/
Llama-2-7b-chat

5https://huggingface.co/meta-llama/Llama-3.
1-8B

6https://huggingface.co/tsinghua-ee/
SALMONN-7B

7https://huggingface.co/Qwen/Qwen2.5-7B
8https://huggingface.co/google/gemma-7b
9https://huggingface.co/Qwen/Qwen2-Audio-7B

10https://huggingface.co/tsinghua-ee/SALMONN

A.9 The Context Addition Network 1042

We make the following modifications to the pro- 1043

posed CAN network (Fig. 2(a)). 1044

• We remove the temporal inception network 1045

(TIN) from the network. 1046

• We remove the skip connection between the 1047

input and the output of the CAN architecture. 1048

• Bi-GRU+Attn.: Instead of the TIN network 1049

before the Bi-GRU, we append a self-attention 1050

block (2 blocks, 120 hidden dimension and 4 1051

heads) after the Bi-GRU for effective contex- 1052

tual modeling. 1053

The weighted F1-scores for the two datasets are 1054

shown in Table 5 with these modifications. The dif-

Method IEMOCAP MELD

CAN 70.9% 69.5%
- TIN 69.8% 67.8%
- Skip 69.9% 68.8%

Bi-GRU+Attn. 70.2% 68.5%

Table 5: Performance of MiSTER-E with changes in the
CAN network.

1055

ferent parts of the proposed CAN network are seen 1056

to be important towards the performance of our 1057

proposed method. The local contextual dependen- 1058

cies captured by the temporal inception network 1059

are seen to benefit IEMOCAP by 1.1% and MELD 1060

by 1.7%. The skip connection is also seen to have 1061

a positive impact for both datasets. Interestingly, 1062

the combination of Bi-GRU with self-attention is 1063

outperformed by CAN for both datasets. We no- 1064

tice an overfitting problem in this case - partially 1065

explaining this observation. 1066

A.10 Removal of the Self-Attention Layers 1067

We remove the self-attention layers after the cross- 1068

attention block in the multimodal network (See 1069

Fig. 2(b)). On removal of this block, the perfor- 1070

mance of our proposed method drops to 70.5% 1071

for IEMOCAP and 68.7% for MELD. The drop 1072

of 0.4% and 0.8% for IEMOCAP and MELD re- 1073

spectively indicates the utility of the self-attention 1074

layers in the multimodal network. 1075

A.11 Individual expert performance 1076

The performance of the three experts varies across 1077

the three datasets. This manifests in the distribu- 1078
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Speech
Expert

Text
Expert

Multimodal
Expert Prediction

Neutral Fear
Yeah, but what if it's not? What if there is a reason 
 why we can't have a baby? Fear Fear

Oh, Chandler, look. You and Monica are meant to
 have children. I am sure it's gonna be just fine. Neutral Neutral Neutral Neutral

oh, oh, yeah, ok, thanks.
Neutral Neutral Neutral Neutral

I can't believe I didn't even think of that. Surprise Surprise Surprise Surprise

I guess I was just so worried about having to...   
 come here and do... 'that'... Neutral Fear Fear Sadness

What, you can do it in the parking lot of a Taco Bell,
 but you can't do it at a doctor's office?

Anger Surprise AngerAnger

It was a "Wendy's!!" Anger AngerAngerJoy

Figure 9: A case study from MELD where there are emotion shifts throughout the conversation. Out of the 7
utterances in the conversation, MiSTER-E correctly predicts 6.
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Figure 10: Performance of the experts on the two
datasets.

tion of the weights assigned by the gating strat-1079

egy (Sec. 5). We further report the performance1080

of the individual experts in Fig. 10. For MELD,1081

the performance of the audio expert is the lowest1082

(55.8%). The multimodal expert is seen to slightly1083

under-perform as compared to the text modality1084

(by 0.3%) as it tries to align two modalities with1085

significantly different capabilities. In the case of1086

IEMOCAP, since both the modalities perform sim-1087

ilarly, the multimodal expert is able to fuse the two1088

representations to give the best performance. In 1089

this case, it outperforms the best unimodal expert 1090

(speech) by 2.5%. 1091

Interestingly, we note that MiSTER-E outperforms 1092

the best expert (by 1% for both datasets). This 1093

indicates the effectiveness of our gating strategy 1094

and its ability to give more importance to the more 1095

dominant modality for improved ERC. 1096

A.12 The Expert Consistency Loss 1097

The value of α (Eq. 16) decides on how much con- 1098

sistency we desire in the output of the three experts. 1099

Since for IEMOCAP, the speech and text modali- 1100

ties perform similarly, we use α = 0.1 in this case. 1101

This improves the performance of MiSTER-E on 1102

IEMOCAP from 70.4% (α = 0) to 70.9%. Further 1103

increase in the value of α hurts the performance of 1104

our proposed method. 1105

MELD, on the other hand, is a dataset where the 1106

textual modality far outperforms the speech modal- 1107

ity. Hence, enforcing a strong consistency regular- 1108

ization hurts the model performance significantly. 1109

Thus we use a small value of α = 1e − 3 in the 1110

case of MELD, and this leads to a 0.1% increase in 1111

the overall performance. 1112
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Figure 11: Confusion matrix for the IEMOCAP dataset.

A.13 Class-wise Performance of MiSTER-E1113

The class-wise performance of our proposed1114

method for the two datasets is shown in Table 6.1115

We note that for IEMOCAP the worst perform-1116

ing class is “happy” - likely because it is the least1117

frequent class and it is most confused with the “ex-1118

cited” category (Fig. 11). Similarly, for MELD, the1119

model performs most poorly on the “fear” category1120

- again the least frequent class. However, we note1121

that for both datasets, the model performs quite1122

well on most emotion classes, thereby leading to1123

an improved overall performance.

IEMOCAP MELD

Category F1 Category F1

Angry 68.4% Angry 62.5%
Excited 77.9% Disgust 42.9%
Frustrated 69.0% Fear 30.6%
Happy 40.2% Joy 65.4%
Neutral 80.2% Neutral 81.3%
Sad 83.8% Sad 50.3%
- - Surprise 61.5%

Table 6: Class wise performance of MiSTER-E on the
two datasets. F1 stands for F1-score

1124

A.14 Case Study1125

We provide a case study from the MELD dataset1126

in Fig. 9. A number of key points that we wish to1127

highlight from this example are as follows:1128

• MiSTER-E does not fail when there are emo-1129

tion shifts. E.g., the conversation has 6 emo-1130

tions in 7 utterances. Although, the model1131

incorrectly predicts the third utterance to be 1132

neutral (instead of joy), it is able to predict 1133

the emotion shift from surprise to sadness to 1134

anger. 1135

• Another interesting point is the output of the 1136

fifth utterance. None of the experts predict 1137

sadness, yet the MoE strategy correctly marks 1138

the utterance as sad. This indicates the utility 1139

of the MoE gating strategy in our proposed 1140

method and differentiates it from static ensem- 1141

bling techniques. 1142

A.15 License 1143

SALMONN, the Qwen models and Gemma are dis- 1144

tributed under Apache License 2.0, while LLaMA 1145

is distributed under the LLaMA license 11. The 1146

IEMOCAP dataset is available for use for academic 1147

purposes, while MELD is distributed under the 1148

GNU General Public License v3.0. 1149

11https://www.llama.com/llama3/license/
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0.07Hi!

Hi! 0.05

Rachel was just helping me out. My head got all sunburned. 0.55 0.27 Neutral

0.20

Thanks a million.

Oh, you're welcome a million.

Okay, I'll see you in our room.

Awww.

Yeah.

Oh my God.

I know.

Okay, I gotta go.

Whoa! What?! Why?!

Well, I-I gotta go break up with Bonnie.

Here?! Now?!

Well, yeah.

I can't-I can't stay here all night, and if I go in there she's-she's gonna wanna... do stuff.

0.48 0.45 Joy

0.42 0.53 Joy

0.17

0.50 0.30 Joy

0.09 0.69 0.22 Joy

0.61 0.28 Joy0.11

0.69 0.14 Neutral0.17

0.63 0.18 Neutral0.19

0.26 0.32 Surprise

0.59 0.18 Neutral0.24

Neutral

0.29 0.51 0.19 Surprise

0.22 0.130.65 Sadness

0.19 0.64 0.17 Surprise

0.59 0.25 Neutral0.16

0.19 0.72 0.09 Fear

0.42

0.18 0.69 0.12

S T M Prediction

Figure 12: A case study from MELD where there are 16 utterances in the conversation. The weights assigned to the
different experts are shown. In most cases, text is assigned the highest weight (except utterance 2 and 9. S: Speech
Expert, T: Text Expert, M: Multimodal Expert. The predictions of MiSTER-E are also shown. The model correctly
predicts all the utterances in the conversation, inspite of the emotion shifts present.
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