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ABSTRACT

The link function, which characterizes the relationship between the preference for
two trajectories and their cumulative rewards, is a crucial component in designing
RL algorithms that learn from preference feedback. Most existing methods, both
theoretical and empirical, assume that the link function is known (often a logistic
function based on the Bradley-Terry model), which is arguably restrictive given
the complex nature of preferences, especially those of humans. To avoid mis-
specification, this paper studies preference-based RL with an unknown link function
and proposes a novel zeroth-order policy optimization algorithm called ZSPO.
Unlike typical zeroth-order methods, which rely on the known link function to
estimate the value function differences and form an accurate gradient estimator,
ZSPO only estimates the sign of the value function difference. It then constructs a
parameter update direction that is positively correlated with the true policy gradient,
eliminating the need to know the link function exactly. Under mild conditions,
ZSPO provably converges to a stationary policy with a polynomial rate in the
number of policy iterations and trajectories per iteration. Empirical evaluations
further demonstrate the robustness of ZSPO under link function mis-specifications.

1 INTRODUCTION

Reinforcement learning (RL), as a paradigm for online sequential learning via interactions with the
environment (Sutton et al., 1998), has achieved success in many fields (Kohavi et al., 2009; Christiano
et al., 2017; Kiran et al., 2022; Ouyang et al., 2022). An RL problem is typically formulated as an
episodic stochastic Markov decision process (MDP), where at each step, the agent observes the current
state, takes an action, and then receives a numerical reward to reflect the action’s quality (Bellman,
1958; Puterman, 2014). The desired behavior featuring the optimal policy is learned by maximizing
the return (cumulative reward) of episodes. It is believed that for each RL problem, a true reward
function exists, but often not known. Learning the reward, also known as the inverse reinforcement
learning (IRL) problem, is extremely non-trivial (Ng & Russell, 2000). In reality, a hand-crafted
reward proxy is designed by domain experts in the hope that learning from the proxy would induce the
same behavior as learning from the true reward function (Hadfield-Menell et al., 2017; Kwon et al.,
2023). However, this is often not the case where the reward proxy is likely to induce undesirable
agent behaviors known as reward hacking (Skalse et al., 2022). In general, it is difficult to design a
good reward proxy for complex RL environments that is both goal-achieving and easy to optimize.

RL from Preference. In recent years, reinforcement learning from human feedback (RLHF) has
been proposed to avoid reward proxy design in many areas (Kaufmann et al., 2023), where the
easiest to collect and most commonly used form of human feedback is the preference over a pair of
trajectories. In these settings, the agent will not receive the numerical reward. Instead, it regularly
queries preferences on pairs of trajectories from a noisy comparison oracle and then uses preferences
to infer the quality of the policy. Two main approaches have been studied for policy optimization from
preferences: (i) reward inference and (ii) direct policy optimization. The first approach (Christiano
et al., 2017) learns an intermediate reward model compatible with the preferences to approximate the
true reward function through a maximum likelihood loss, and then optimizes the learned reward via
standard RL algorithms such as PPO (Schulman et al., 2017). The quality of the learned policy heavily
depends on the quality of the reward model, which usually suffers from insufficient state-action
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coverage, overfitting, and poor evaluation without the ground truth (Casper et al., 2023). The second
approach (Rafailov et al., 2023) avoids these drawbacks by directly optimizing the policy from
preferences, which delivered promising results both theoretically and empirically.

Link Function. Most algorithms assume the preference is generated via a known process. For
example, the Bradley-Terry model (Bradley & Terry, 1952) widely used in the literature assumes the
probability that a trajectory τ1 is preferred over τ0 is a logistic function of the return difference:

P (τ1 ≻ τ0) = (1 + exp (−γ[r(τ1)− r(τ0)]))
−1

,

where r(τ1) and r(τ0) are returns of the two trajectories and γ is a known constant representing
the expertise. Importantly, the maximum likelihood loss for reward model learning and the loss for
policy optimization algorithms such as DPO (Rafailov et al., 2023) are both constructed explicitly
using the Bradley-Terry relation. One may replace the logistic function with another admissible
function σ(·), referred to as the link function, but the expression needs to be known. Moreover,
these preference-based methods like DPO often require an explicit expression between reward and
the optimal policy, a special structure only valid for bandits or deterministic MDPs, limiting their
applicability to general RL problems despite their success in some sub-fields. For general MDPs
and link functions, a recent work (Zhang & Ying, 2025) shows the effectiveness of a zeroth-order
approach called ZPG from preferences for general MDPs and link functions, which again assumes
the link function is known to estimate the trajectory reward difference.

Given the complex nature of preferences, such as variability and diversity in time and population,
which inspired the rich literature on sensory, social choice, and behavior (Azari et al., 2012; Greene,
2010; Lawless & Heymann, 2010; Meilgaard et al., 1999), it is not adequate to characterize the
preference with a single known function. Most preference-based RL methods suffer from preference
mis-specification, similar to classic RL suffering from reward mis-specification. Therefore, it remains
an open question:

Without knowing the link function exactly, can we still design provable policy opti-
mization algorithms to learn from preferences that work for general RL problems?

Our paper answers this question. We relax the requirement only to assume that the preference is
positively related to the rewards, while the exact formula is unknown and subject to variability.
Inspired by ZPG, this paper proposes a new zeroth-order policy optimization method. The key idea is
to estimate the sign of the value function difference instead of the exact value function difference
from preferences over trajectories, for which the link function is not needed. The algorithm then uses
the sign to identify a direction for policy improvement with a provable convergence guarantee.

Related Works. The study of preference learning without a known link function has a long history,
where dueling bandit (Bengs et al., 2021) and heuristic evolution algorithms (Busa-Fekete et al.,
2014) are among the early attempts. However, most of these methods are often suitable only in tabular
problems or are inefficient without theoretical guarantees. Most recent works (Christiano et al.,
2017) overlooked the role of the preference model and the link function. Some Works (Munos et al.,
2024; Azar et al., 2024) also studied policy optimization with an unknown link function from the
viewpoint of a dynamic game, assuming no relation between preferences and rewards. Consequently,
the learned policy is usually quite pessimistic and is far from the optimal policy due to the limitations
of preferences (Knox et al., 2024; Zhang et al., 2024a). Our work is most related to (Zhang & Ying,
2025), where our proposed ZSPO improves over their ZPG to eliminate the need of the link function.

1.1 OUR CONTRIBUTIONS

We propose Zeroth-Order Sign Policy Optimization (ZSPO) from trajectory preference. Under mild
conditions and the correct choice of the hyperparameters, ZSPO enjoys the following convergence
rate (in terms of the gradient norm) to a stationary policy:

√
d · Õ

(√
H

T
+max

{
1

σ′(0)
, 1

}
1

N
1
4

+
√
ε∗D

)
,

where T is the number of policy iterations, H is the episode length, N is the number of trajectory
batches for comparison in each iteration. σ′(0) is the derivative of the link function at the origin, which
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characterizes the expertise of the preference oracle. As the oracle has more expertise, σ′(0) becomes
larger to constitute a faster convergence rate. ε∗D captures the distinguishability by the preference
oracle when the batch size is D. The first term matches the rate for classic zeroth-order methods. The
second term captures the error of estimating the expected preference from finite evaluators. The third
term characterizes the hardness to infer the value function sign through trajectory preferences, which
decreases as the batch size D increases. To the best of our knowledge, in utility-based preference
models (Bengs et al., 2021; Wang et al., 2023) for general MDPs with an unknown link function,
ZSPO is the first policy optimization algorithm with a provable convergence guarantee.

Remark. The focus of this paper is to answer the fundamental question associated with the unknown
link function in theory and develop provable algorithms targeting broader preference-based RL, i.e.,
with stochastic transitions, and not tied to LLMs. The empirical validation of their practicality in
these specific domains will be our future work, which we also briefly discuss in this paper.

2 PRELIMINARIES

We first introduce the preliminaries of the problem. For a scalar a, sign[a] denotes its sign. For two
vectors a and b, ⟨a, b⟩ denotes the inner product. Ex[·] denotes the expectation taken over x.

Episodic RL: We consider an episodic MDP instance M = (S,A, H,P ,µ0), where S is the state
space and A is the action space (both may be uncountable). H is the planning horizon, P = {Ph}Hh=1
is the set of transition kernels, and µ0 is the initial distribution of states. The agent interacts with the
environment in episodes. At the beginning of each episode, the agent chooses a policy π, a set of
functions {πh : S → P(A)}Hh=1, where P(A) denotes the set of all probability distributions over A.
Then, nature samples an initial state s1 from the initial distribution µ0. At each step h, the agent takes
an action ah sampled from the distribution πh(sh) after observing the state sh. The environment
consequently moves to a new state sh+1 sampled from the distribution Ph(·|sh, ah) without revealing
any reward feedback. We use τ = {(sh, ah)}Hh=1 to denote a trajectory. We assume the expected
return of τ is a function r(τ) which maps any trajectory to a value in [0, H], which is more general
than classic MDPs where the return is the sum of per-step rewards. For any given policy π, we define
the value function V π

1 (s) as the expected return of trajectories starting from s and using policy π:
V π
1 (s) =Eπ [r(τ)| s1 = s] = E [r(τ)| s1 = s, {a1, · · · , aH} ∼ π] .

We define the expected value function over the initial state distribution µ0 as V (π) = Es∼µ0
[V π

1 (s)].

Policy Parameterization. The agent’s policy is parameterized by a policy network as a function
class N = {πθ : S× [H] → P(A)|θ ∈ Rd}, which takes a state s and a decision-making step h as
input and then outputs the probability distribution of the next action. Here θ is the parameter of the
policy network. Each parameter θ induces a policy which we abuse the notation to denote as πθ.

Preference Feedback. The agent has access to a preference oracle, for example, a black-box
mechanism, a human evaluator, or a language model. In each episode, the agent can choose two
batches of trajectories D0 = {τ0,i}Di=1 and D1 = {τ1,i}Di=1 to query the oracle to obtain a one-bit
feedback o ∈ {0, 1}, where D is the batch size. If o = 1, the oracle prefers D1, and if o = 0, the
oracle prefers D0. The feedback o is generated according to a preference model characterized by an
unknown link function σ : R → [0, 1] of the average reward difference between trajectories:

P(D1 ≻ D0) = σ(r̄(D1)− r̄(D0)) = σ

(
1

D

D∑
i=1

r(τi,1)−
1

D

D∑
i=1

r(τi,0)

)
, (1)

where r̄(·) denotes the average return of a batch. If σ(·) is a logistic function, it becomes the Bradley-
Terry model. In reality, most preference oracles like humans may not accurately aggregate the returns
of a large batch, so a smaller D is preferred. Generally, for reasonable and learnable link functions,
we expect the preference probability to be positively correlated with the average reward difference,
so we assume the following fundamental regularity of the link function, which is commonly noted in
dueling bandits (Bengs et al., 2021) and preference-based RL (Wang et al., 2023).

Assumption 1 The link function σ : [−H,H] → [0, 1] is strictly monotonically increasing with
σ(0) = 1/2 and σ(−x) = 1− σ(x).

We aim to design a policy-optimization algorithm from preferences to find a parameter θ ∈ Rd that
maximizes the value function, i.e., maxθ∈Rd V (πθ). Let θ∗ be the global optimizer.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Zeroth-Order Sign Policy Optimization from Trajectory Preference
Require: initialize the actor-network parameter θ1, learning rate {αt}Tt=1, perturbation distance

{µt}Tt=1, size of trajectory batches D;
1: for iteration t = 1 : T do
2: sample a random vector vt from a normal distribution N (0, Id);
3: obtain perturbed parameter θ′

t = θt + µtvt;
4: for n = 1 : N do
5: sample a batch of D trajectories Dn,0 ∼ πθt

;
6: sample a batch of D trajectories Dn,1 ∼ πθ′

t
;

7: query the preference oracle with the two batches (Dn,1,Dn,0) and obtain results ot,n;
8: estimate the ascent direction with a majority vote as follows:

ĝt = sign

[
N∑

n=1

(
ot,n − 1

2

)]
vt;

9: update the actor network θt+1 = θt + αtĝt;

3 ZEROTH-ORDER SIGN POLICY OPTIMIZATION FROM PREFERENCE

We propose ZSPO for preference learning with an unknown link function. The algorithm is summa-
rized in Algorithm 1. At each policy iteration, say round t, it consists of the following steps:

1. Perturb the current policy πθt
with a randomly sampled vector vt from a standard normal

distribution and distance µt to obtain the perturbed policy πθ′
t

(line 2-3).
2. Sample N pairs of trajectory batches with size D under both policies πθt

and πθ′
t

(line 4-6).
3. For each pair of batches, query the oracle for preference feedback (line 7).
4. Use the majority vote over the preference of N pairs to estimate ascent direction ĝt (line 8).
5. Update the current policy πθt

with learning rate αt and ascent direction ĝt (line 10).

Two main components are used to build ZSPO: (i) estimate the sign of the value function difference
between the current policy πθt

and the perturbed policy πθ′
t
, which is controlled by the perturbation

distance µt at each iteration, and (ii) use the sign of the value function difference to construct a
gradient estimator ĝt that has a positive correlation with the policy gradient ∇θV (πθt

) in expectation,
and then use gradient ascent to find the optimal policy. We illustrate both aspects in more detail.

Policy Optimization from Signed Feedback. Suppose we have a policy oracle that can compare
the value function of πθt and πθ′

t
and obtain sign[V (πθ′

t
) − V (πθt)]. Then, we can construct the

gradient direction estimator ĝt from the perturbation direction vt as: ĝt = sign[V (πθ′
t
)−V (πθt

)]vt.
Intuitively, ĝt aligns with the gradient ∇θV (πθt

): suppose the perturbation distance µ is small, so
under mild conditions, we can linearize the value function difference around the neighborhood of θt:

V (πθ′
t
)− V (πθt

) ≈ ⟨∇θV (πθt
),θ′

t − θt⟩ = µ⟨∇θV (πθt
),vt⟩. (2)

Therefore, the sign of the value function difference can be approximated as follows:

sign[V (πθ′
t
)− V (πθt

)] ≈ sign[⟨∇θV (πθt
),vt⟩]. (3)

In other words, if the sign of the value function difference is positive, then the perturbation vector vt

is likely to have a positive inner product with the gradient ∇θV (πθt
), and if the sign of the value

function difference is negative, −vt will be positively aligned with the gradient, which ensures
a convergence dynamic similar to stochastic gradient. This function difference sign approach is
unconventional in the zeroth-order literature, which we further discuss in appendix D.1.

Value Function Preference Approximation. The value-function-based preference oracle is usually
unrealistic (D = +∞ in equation 1). Therefore, we use batched trajectory preferences to estimate
the value function difference sign with a majority vote rule. Specifically, we ask the preference oracle
to compare different pairs of trajectory batches generated from the two policies with a proper batch
size. Then, we perform a majority vote on which policy has a higher value function and take the
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policy with more votes. The majority vote rule helps tackle the unknown link function setting and
resembles the preference based on value functions under mild conditions.

Link Function for Reward Estimation. The link function σ(·) plays an important role in preference
learning problems. In reward inference, the agent fine-tunes the reward model parameters to maximize
the likelihood of the preference outcomes for the offline dataset. This can only be achieved when the
preference generation mechanism, i.e., the link function σ(·), is known. DPO uses almost the same
idea, and additionally views the reward function as an intermediate step, expressed as a function of
the optimal policy π∗. Similarly, ZPG uses the inverse link function σ−1(·) to recover the reward
difference of trajectories to estimate the zeroth-order gradient. Almost all algorithms in the literature
explicitly use the link function, and therefore, become inapplicable when the link function σ(·) is
unknown, It becomes difficult, if not impossible, to recover the true reward function from preference.

Link Function Agnostic Sign Estimation. The main reason ZSPO can be applied with unknown
link functions is that ZSPO does not attempt to recover the full numerical reward information from
preference. Specifically, for each trajectory pair (τ1, τ0), ZPG from (Zhang & Ying, 2025) queries
each trajectory pair with multiple oracles to estimate the preference probability P(τ1 ≻ τ0), and then
plug it into the inverse link function σ−1(·) to estimate the return difference r(τ1)− r(τ0). This step
is required for value function difference estimation and policy gradient approximation. On the other
hand, ZSPO in this paper only estimates the sign of the reward difference and then uses a majority
vote rule to reconstruct the sign of the value function difference. The information is much more
compressed, but is much easier to recover from preferences, which does not require knowledge of
the link function. In the meantime, this piece of information turns out to be sufficient to infer the
landscape of the value function and guarantees the convergence of policy gradient algorithms.

4 MAIN RESULTS

In this section, we theoretically analyze the performance of ZSPO. We first introduce the assumptions
on the landscape of value functions, the preference model, and the distinguishability with preferences.

4.1 DEFINITIONS AND ASSUMPTIONS

We impose the following assumption on the link function σ(·), satisfied by the BT model. A weaker
version is justified in (Wang et al., 2023) as the minimal requirement to learn the optimal policy.

Assumption 2 The link function σ(·) is L-smooth with σ′(0) > 0.

We also require the landscape of the value function and the policy network to be “regular”, and
impose the following standard smoothness assumption in nonconvex optimization (Liu et al., 2019;
Bernstein et al., 2018; Reddi et al., 2018) and reinforcement learning (Zhang & Ying, 2025). Notice
that linearly realizable MDPs (Weisz et al., 2023; Li et al., 2021), including linear MDPs (Jin et al.,
2020), naturally satisfy this assumption when the policy parameterization πθ is smooth.

Assumption 3 The value function V (πθ) for the network parameter θ is L-smooth on Rd.

For simplicity, we use L to represent the upper bound of the smoothness constants in both assumptions.
With the assumption, if the perturbed parameter θ′

t is close to the original parameter θt, the value
function of the two policies will also be close. However, in this case, the preference oracle may
have difficulty finding the better policy from comparing trajectories with a finite batch size D. Let
ς(x) = σ(x)− 1/2 be the (preference) deviation function we define distinguishability as follows:

Definition 1 (Distinguishability) For any RL problem M and deviation function ς(·), define the
preference distinguishability ε∗D under batch size D to be the maximum constant ε, such that for any
two policies π0 and π1 with V (π1)− V (π0) ≥ ε, we have:

ED0∼π0,D1∼π1
[ς (r̄ (D1)− r̄ (D0))] ≥

1

2
ς

(
V (π1)− V (π0)

2

)
.

where D0 is the trajectory batch generated from policy π0, and D1 is the trajectory batch generated
from policy π1 with |D0| = |D1| = D.

5
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When two policies with a value function difference smaller than ε∗D are compared, the preference
oracle may not distinguish the better policy, which reveals a fundamental limit of learning from
preference. So, to effectively compare the policy πθt

and its perturbation, we need to control the
distance µt and make sure they are distinguishable. We can derive an upper bound for ε∗D as follows.

Proposition 1 For any RL problem M and any deviation function ς(·) that satisfy assumption 1
and 2, the distinguishability ε∗D under batch size D satisfies ε∗D = Õ(H/

√
D).

The proof is based on concentration and is deferred to the appendix section E. This shows that when
the batch size is large, the average rewards of each batch D0 and D1 are concentrated around the
value function, so the preference over the trajectory batches is almost the preference over the policies.
More discussions of the limit of distinguishability are provided in the appendix section D.2.

4.2 CONVERGENCE RATE

In this section, we present the theoretical guarantees under the assumptions in the previous sections.
We aim to learn an ϵ-stationary policy πθ with ∥∇θV (πθ)∥2 ≤ ϵ, and study the convergence rate.

Theorem 1 Choose the perturbation distance to be time homogeneous, i.e., µt = µ and the learning
rate to be αt = Θ(

√
H/dt). If we randomly pick θR from {θ1,θ2, · · · ,θT } with P (θR = θt) =

αt/
∑T

i=1 αi, then the convergence rate of ZSPO satisfies:

E [∥∇θV (πθR
)∥2] = Õ

(√
Hd

T
+

1

µ

(
ς−1

(√
2

N

)
+ ε∗D

)
+ µd

)
.

The complete proof is provided in the appendix section F. We first illustrate the insight of the
convergence rate, the choice of the hyperparameters, and the technical novelties and challenges.

Insights. The convergence rate of ZSPO has three components: the convergence rate of zeroth order
optimization, the preference distinguishability ε∗D, and the majority vote approximation error:√

Hd

T
+ µd︸ ︷︷ ︸

Zeroth-Order Optimization

+
ε∗D
µ︸︷︷︸

Distinguishability

+
1

µ
ς−1

(√
2

N

)
︸ ︷︷ ︸

Majority Vote Approximation Error

.

The first term resembles zeroth-order stochastic gradient descent (Nesterov & Spokoiny, 2017),
stochastic coordinate descent (Cai et al., 2021), and sign gradient descent (Liu et al., 2019). If we
choose µ = O(1/

√
dT ) as in the literature, this term matches the state-of-the-art O(

√
d/T ) result

for non-convex smooth function optimization. The second term comes from the distinguishability
limit of the preference oracle: when the current policy θt is close to stationary, i.e., the gradient
norm is smaller than ε∗D/µ, the perturbed policy and the current policy have similar value functions
with difference smaller than ε∗D according to equation 2, which becomes indistinguishable. One
could also view the parameter θR learned by ZSPO as the policy most preferred by oracle in the
ε∗D-neighborhood of a stationary policy. The third term comes from approximating the expected
preference probability with a majority vote. As the number of batches N increases, the approximation
error would decrease since ς−1(

√
2/N) → ς−1(0) = 0, since the majority vote becomes more

accurate and reflects the population-level preference.

Optimizing the Convergence Rate Upper Bound. The rate of convergence in Theorem 1 trades
off the zeroth-order optimization error with both the distinguishability limit and the majority vote
approximation error. Optimizing the upper bound results in:

E [∥∇θV (πθR
)∥2] =

√
d · Õ

√H

T
+

[
ς−1

(√
2

N

)] 1
2

+
√
ε∗D

 .

However, this requires the knowledge of ς(·) and ε∗D to set the perturbation distance to satisfy:

µ2 = Θ

(
d−1 max

{
ς−1

(√
2

N

)
, ε∗D

})
, (4)
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which can only be fine-tuned in practice. Nonetheless, some insights are offered. First, µ cannot
be too large because the zeroth-order estimator of the ascent direction is only accurate when the
perturbation distance is small, as shown in non-convex optimization (Nesterov & Spokoiny, 2017; Liu
et al., 2019). Second, µ also cannot be arbitrarily small as chosen in vanilla zeroth-order optimization
algorithms because, in that case, the perturbed policy πθ′

t
may be indistinguishable by the preference

oracle, and the convergence is not guaranteed. The moderate perturbation requirement is similar
to ZPG (Zhang & Ying, 2025), because in both algorithms, the gradient bias is amplified by the
inverse of perturbation distance. However, the reasons are different: in ZSPO, the bias comes from
the distinguishability of preference and approximating the population-level preference via majority
vote, and in ZPG, it comes from recovering the reward difference using a non-linear link function.

Preference Oracle Quality. The convergence rate in Theorem 1 depends on the preference model,
i.e., the deviation function ς(·), which constitutes the majority vote error. If the preference oracle is
more sensitive to distinguish candidates with similar average returns, ς(·) is closer to a step function.
Then, the majority vote error will decrease faster, resulting in a better convergence rate. On the
other hand, for the same pair of trajectories, we can also query multiple different preference oracles
(multiple evaluators) to provide preferences and then aggregate the results via another majority vote.
This is equivalent to querying a preference oracle with a more step-like deviation function, i.e., with
more expertise, and a better convergence rate is anticipated.

Choice of Perturbation. To obtain a practical choice of perturbation distance µ which does not rely
on unknown quantities such as ε∗D and ς(·), we seek to construct an upper bound for the optimal
choice of µ in equation 4. The distinguishability ε∗D can be bounded with Proposition 1, and the
majority vote approximation error is bounded under the smoothness assumption of the link function,
i.e., ς−1(

√
2/N) = O(1/

√
N). Then, we have the following corollary:

Corollary 1 Choose αt = Θ(
√
H/dt) and µ2 = Θ(d−1 max{1/

√
N,H/

√
D}), If we randomly

pick θR the same way as Theorem 1, then the convergence rate of ZSPO satisfies:

E [∥∇θV (πθR
)∥2] =

√
d · Õ

(√
H

T
+max

{
1

σ′(0)
, 1

}
1

N
1
4

+

√
H

D
1
4

)
.

The proof is in appendix G. The canonical Bradley-Terry model has derivative σ′(0) = 1/4. It
implies that we need to choose the batch size D as large as possible (within the capacity of the
preference oracle) to maintain distinguishability when the parameter θt is around the neighborhood
of convergence. We also choose the number of batches N to be large so that the majority vote result is
accurate and reflects the value function sign. Finally, we prefer preference oracles with more capacity
and a larger σ′(·), which reflects the sharpness of oracles towards trajectories with similar returns.

4.3 TECHNICAL CHALLENGES AND PROOF NOVELTIES

In this section, we provide a proof roadmap for Theorem 1 and discuss its novelty compared to results
for zeroth-order optimization (Nesterov & Spokoiny, 2017; Liu et al., 2019).

Smoothing Function Framework. Assume the perturbation distance µt = µ is time-homogeneous.
Classic proofs in the zeroth-order optimization literature, including the convergence of ZPG, make use
of a smoothing function Vµ(πθt) whose derivative is the expectation of the gradient estimator ĝt. For
example, in zeroth-order stochastic gradient descent or sign gradient descent, the smoothing function
is defined as the expected value function of the perturbed parameter: Vµ(πθ) = Ev [V (πθ+µv)],
where v follows some distribution in Rd. Moreover, when µ is small, the smoothing function will
behave almost the same as the original value function. Then, using the smoothing value function as
the Lyapunov function and combining it with the smoothness assumption, we can obtain the following
inequality, neglecting problem-independent constants:

Vµ(θt)− Vµ(θt+1) ≤− αt ∥∇θVµ(πθt)∥22︸ ︷︷ ︸
Drift

+αt ⟨∇θVµ(πθt
),∇θVµ(πθt

)− ĝt︸ ︷︷ ︸
1st Order: bias

⟩

+ α2
t ∥ĝt −∇θVµ(πθt)∥22︸ ︷︷ ︸

2nd Order: var

.
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Since in the classic setting, the expectation of ĝt is the gradient for the smoothing function, the first
order term bias is 0 in expectation, and the second order term var is much smaller than the drift
term when the learning rate αt is small. Taking a telescoping sum over both sides and dividing by
the sum of learning rates, we can obtain a bound for the gradient of the smoothing function Vµ(πθ),
which can be transferred to the bound for the original value function V (πθ) when µ is small.

Proof Roadmap for ZSPO. However, it is difficult to construct a smoothing function for the ascent
direction estimator ĝt in ZSPO, since it involves feedback with an unknown link function and thus
can only preserve the information of the value function sign. The smoothing function framework
cannot be directly applied, and we use the value function as the Lyapunov function. Nonetheless, this
would lead us to the following drift analysis, neglecting problem-independent constants:

V (πθt
)− V (πθt+1

) ≤− αt sign
[
V (πθ′

t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩︸ ︷︷ ︸
D1

+α2
tE[∥vt∥22]

− αt

(
sign

[
N∑

n=1

ot,n − 1

2

]
− sign

[
V (πθ′

t
)− V (πθt)

])
⟨∇θV (πθt),vt⟩︸ ︷︷ ︸

D2

.

Ideally, we envision D1 to constitute a negative drift since the sign of the value function difference
resembles the sign of ⟨∇θV (πθt

),vt⟩ due to the linear approximation in equation 2, i.e.,

sign
[
V (πθ′

t
)− V (πθt)

]
= sign [⟨∇θV (πθt),vt⟩] , (5)

and therefore the expectation of D1 will be approximated as follows:

E[D1] ≈ E [sign [⟨∇θV (πθt
),vt⟩] ⟨∇θV (πθt

),vt⟩] = E [|⟨∇θV (πθt
),vt⟩|] ,

which is proportional to the expected norm of gradient E[∥∇θV (πθt)∥2] from Khintchine’s inequal-
ity (Vershynin, 2018). Then, a negative drift is constructed. However, the sign alignment between
the value function difference and the inner product is not guaranteed due to the linear approximation
error, and equation 5 is true only when the value function difference is large. So we would need to
separately analyze the event depending on whether the sampled vector vt constitutes a large value
function difference. Characterizing D2, the approximation error of using the preference to estimate
the sign of the value function difference, is similar. Due to the limit of distinguishability ε∗D, the
signs of both values only coincide with one another when the function difference is large, and we
would also need to separate the events depending on the vector vt to bound the approximation error.

5 EMPIRICAL EVALUATION WITH LINK FUNCTION MIS-SPECIFICATION

To empirically validate our theoretical findings and evaluate the potential of ZSPO, we con-
sider three widely-used Gymnasium (Towers et al., 2024) environments: CartPole-v1,
HalfCheetah-v5, and Hopper-v5. To isolate and measure the effect of link function mis-
specification, we use a synthetic preference oracle with a linear link function of the environmental
reward differences, while all algorithms assume a logistic link function. We use a fully-connected
neural network as the actor. We compare ZSPO to four baseline algorithms: (1) RM+PPO (Chris-
tiano et al., 2017), which trains a reward model and trains a PPO over the reward model without
regularization, (2) Online DPO (Dong et al., 2024; Guo et al., 2024), which optimizes the DPO
loss and updates the reference policy for each policy iteration, (3) ZPG (Zhang & Ying, 2025), which
uses the link function inverse to estimate the zeroth-order policy gradient, and (4) ES as evolution
strategy (Busa-Fekete et al., 2014; Salimans et al., 2017), where the agent constantly “mutate” to
obtain new policies and maintain the one most preferred by the preference oracle. All algorithms
start from a pretrained policy in CartPole-v1 and Hopper-v5, and train from the random ini-
tialization in HalfCheetah-v5. Each algorithm collects 200 trajectories for each policy iteration
in CartPole-v1, and each algorithm collects only 10 trajectories in HalfCheetah-v5 and
Hopper-v5. After that, the preference feedback over trajectories are gathered from 100 oracles, and
we make sure each preference oracle will evaluate each trajectory exactly once, so the total preference
query budgets are the same for all algorithms. Details are provided in the appendix. We train for
50 policy iterations in CartPole-v1, 170 iterations in HalfCheetah-v5, and 120 iterations
in Hopper-v5. The average returns over the training iterations are shown in Fig. 1, and the final
policy performances (averaged over the last 5 iterations) are shown in Tab. 5.
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(b) HalfCheetah-v5
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Figure 1: Empirical evaluations on Gymnasium environments with link function mis-specification.
Shaded areas represent 95% confidence intervals.

Environments Online DPO RM+PPO ES ZPG ZSPO

CartPole-v1 338± 15 482± 10 475± 7 357± 14 500± 0
HalfCheetah-v5 1934± 13 2593± 41 2267± 13 2683± 51 3455± 228

Hopper-v5 2132± 285 2194± 3 2203± 127 2285± 65 2651± 284

Table 1: Summary of average return for the final policy (mean ± 95% over sampled trajectories)

Final Policy Performance. We first compare the reward of the final learned policies. As shown in
Tab. 5, ZSPO achieves the highest average return in all three environments compared to all baseline
algorithms. Specifically, ZSPO achieves a return of 500 in CartPole-v1 (the highest possible
return of the environment) for all trajectories sampled by the last five policies, which demonstrates
it has stably learned the optimal policy. For the other two environments, ZSPO also achieves an
average return much higher than the baselines (even measured through the lower confidence bound).
Interestingly, the standard deviation of ZSPO is somewhat higher. This is because the agent rolls
over a few times during training, and the returns for these episodes are extremely small. However,
even with these bad trajectories, ZSPO still maintains the best average performance, which shows
ZSPO is learning from mistakes. This demonstrates the practicality of ZSPO in complex tasks and its
robustness to the preference model mismatch, even with limited trajectories and preference feedback.

Training Dynamic. We then zoom in on the training dynamics in Fig. 1 to understand the influence of
link function mismatch. Especially, the DPO loss is not valid, and thus Online DPO exhibits either
unstable or slow training dynamics in all three environments, resulting in a poor final policy. RM+PPO
suffers from the same reason, where the reward model does not accurately learn the true environmental
reward function due to the link function mis-specification. Therefore, it usually has a slow training
dynamic and cannot maintain the best performance achieved in previous policy iterations. Moreover,
the best policies learned by these two methods are inferior to ZSPO since the intermediate reward,
either implicitly or explicitly learned from the preference with a mis-specification, deviates from
the true reward function, and thus shifts the learned policy. The link function mis-specification also
influences the convergence of ZPG. The sign of the value function difference recovered by ZPG is still
accurate, but the difference is not estimated accurately and could be arbitrary in essence. Therefore,
compared to ZSPO, ZPG fails to use the correct distance to move into the ascent direction, resulting
in constant overshoots and undershoots in the training dynamic.

6 CONCLUSION

In this paper, we studied preference-based RL with an unknown link function. We developed
ZSPO, which estimates the sign of the value function difference from preferences and constructs
an ascent direction from it. ZSPO has a provable convergence guarantee with polynomial sample
and preference-query complexities, validated also by numerical experiments. The future direction
involves combining ZSPO with successful zeroth-order algorithms such as MeZO (Malladi et al.,
2023) for LLMs to evaluate its practicality in more complex real-world RL tasks,
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B RELATED WORKS

In this section, we review the literature on preference-based RL and zeroth-order optimization that
is relevant to our paper. One could refer to (Kaufmann et al., 2023) and (Casper et al., 2023) for a
thorough survey on these topics.

Empirical Studies on RL from Preference. Reinforcement learning from human feedback has
been used in various fields such as training robotics (Christiano et al., 2017) and large language
models (Ouyang et al., 2022), where the preference is used to align their behavior with human interest.
The typical pipeline consists of three steps: (i) pre-train a actor network with supervised learning, (ii)
generate multiple pairs of trajectories to query human experts for preference and then use the human
feedback to train a reward model to infer the true reward of the RL task, and (iii) use off-the-shell
classic RL algorithms to train the actor network with the help of the reward model. So far, most works
in the literature of empirical RLHF follow this pipeline and focus on either improving the quality of
the reward model (Gao et al., 2023; Wirth et al., 2016), or developing better RL algorithms tailored
for learning the optimal policy from an imperfect reward proxy in each application field (Guo et al.,
2025; Rae et al., 2021; Ahmadian et al., 2024). However, it is commonly observed that training agents
from reward models is prone to reward hacking (Skalse et al., 2022) and overfitting (Zhu et al., 2024),
and therefore, direct RLHF approaches such as DPO (Rafailov et al., 2023; 2024; Dong et al., 2024;
Xiong et al., 2024) and SLiC-HF (Zhao et al., 2023) are also studied to avoid reward model training,
which utilizes a direct relationship between the optimal policy and the reward function in some
specific settings such as contextual bandits or deterministic MDPs with KL regularization. These
approaches, as pointed out in (Zhang & Ying, 2025), are difficult to generalize to settings beyond
LLMs with stochastic transitions. An essential step in the aforementioned works that relates the
human preference with the true reward of each state-action pair is to make use of the Bradley-Terry
model (Bradley & Terry, 1952):

P (τ1 ≻ τ0) =
1

1 + exp (r(τ0)− r(τ1))
.

Therefore, one could formulate the likelihood of observing the human feedback when the reward is
unknown, i.e., a cross-entropy loss. Then, by minimizing this loss function, we could either estimate
the reward function through approximations or utilize the relation between the optimal policy and the
reward function and directly learn the optimal policy. However, when used in real tasks where the
human preference does not exactly follow the Bradley-Terry model, these approaches suffer from
model misspecification, and the performance loss could be non-negligible.

Provable Preference-Based RL with Known Link Function. Even though empirical studies
have been conducted for some time, it was not until recent years that provable preference-based
RL algorithms were studied. For both reward inference and direct methods, previous works have
attempted to characterize their provable performance and provide insights for developing better
algorithms. In (Wang et al., 2023) and (Du et al., 2024), a preference-to-reward intermediate module
was considered to infer the reward function from preference feedback with an MLE loss. Both
value-based and policy-based RL algorithms are analyzed when learning from the approximated
reward. Both works convey the message that with a reward model, preference-based RL should not
be significantly harder than standard RL. Similar analysis has also been conducted in contemporary
theoretical preference-based RL papers such as (Saha et al., 2023; Zhan et al., 2024a;b; Zhu et al.,
2023; Kong & Yang, 2022; Wu & Sun, 2024) for offline, online, and hybrid RL problems. The
analysis usually characterizes the error of the reward model parameters using the concentration
property of the MLE estimator and then integrates the error into the sample complexity proof for
standard RL algorithms. On the other hand, the analysis of direct approaches receives less attention
due to the non-standard analysis framework of each method (Li et al., 2023; Chakraborty et al., 2024;
Kausik et al., 2024). (Azar et al., 2024) attempts to analyze the theoretical performance of DPO,
but only shows the existence of loss function optima. For deterministic MDPs, (Xie et al., 2024)
combines DPO with optimistic exploration to provide a provable convergence to the KL-constrained
optimal policy. (Xu et al., 2020) and (Zhang et al., 2024a) reduce the tabular MDP problem into a
sequence of dueling bandit problems and provide both instance-independent and instance-dependent
sample complexity guarantees. For general MDPs with infinite state-action pairs, (Zhang & Ying,
2025; Tang et al., 2024b) establishes the relation between human preference and zeroth-order gradient
to design an algorithm with a provable convergence guarantee. However, the theoretical guarantees
of the works mentioned above require the preference to be either generated from the Bradley-Terry
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model or a preference model with a known link function. This assumption is likely to fail in reality,
and the convergence guarantee may not be meaningful.

RL with Unknown Relation between Reward and Preference. Some previous researches also
recognize the complex nature of humans and studies preference-based RL without exactly knowing
how preference is generated. In this setting, the classic MLE loss cannot be formulated, and it is
difficult to infer the complete reward information from preference data. Most studies around this
topic change the definition of optimality. They define the optimal policy as the one most preferred by
evaluators instead of the policy with maximum cumulative reward. Specifically, in dueling bandits
literature, (Yue & Joachims, 2009; 2011) specifies a preference over all pairs of arms and assumes
properties such as transitivity and triangle inequality so that one will be able to learn the most
preferred arm via comparisons (Bengs et al., 2021). In the RL setting, (Azar et al., 2024) and (Tang
et al., 2024a) propose to optimize a general non-decreasing loss function of the population-level
preference probability instead of the cumulative reward, and (Chen et al., 2022) proposes to learn the
mapping between trajectory pairs and the preference. Recently, a line of work named Nash learning
from preference feedback (Munos et al., 2024) has been considered, where they define the best policy
in a game-theoretic manner to avoid assumptions such as transitivity. In their definition, the best
policy is the one that achieves the largest population-level preference probability when competing
against any other policy using preference feedback as a mechanism. Works have extended this idea
both theoretically (Ye et al., 2024; Zhou et al., 2025) and empirically (Rosset et al., 2024; Zhang
et al., 2024c). However, all previous works in this field do not aim to learn the reward maximization
policy. As shown by (Zhang & Ying, 2025) and this paper, the reward maximization policy could be
different from the policy most preferred by the preference oracle. Therefore, completely ignoring the
reward structure of the RL problem may result in performance loss since real human feedback can
be misleading or indifferent among candidates. Moreover, the performance gap between the policy
learned by these works and the optimal return is not characterized.

Zeroth-Order Optimization and Evolutionary Strategy. When the first-order information, such
as the gradient, cannot be easily obtained due to the limitation of the optimization problem itself or
the high computation requirement, zeroth-order methods are usually considered for both convex and
non-convex problems (Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017), where the authors used a
two-point method to estimate the gradient through the function value difference and then proceed
with stochastic gradient descent. Variants of the zeroth-order stochastic gradient descent have also
been studied (Liu et al., 2018a;b; Cai et al., 2021; Gao et al., 2018) with block-coordinate descent
and variance reduction tricks. These methods have also been used in optimizing the loss function in
LLMs (Malladi et al., 2023; Zhang et al., 2024b) as well. However, in ordinary zeroth-order problems,
the function value can be queried or estimated in the presence of noise, which is used to approximate
the gradient via difference, i.e.,

∇f(x) ≈ Ev

[
f(x+ µv)− f(x)

µ

]
,

where f is the loss function, x is a point, v is a randomly sampled vector from some symmetric
distribution, and µ is a perturbation distance which should be chosen small. This idea is also adopted
in (Zhang & Ying, 2025) for developing preference-based RL algorithms. However, in our setting
with an unknown link function, we have no access to estimate the function value, and therefore,
this approach can not be directly applied. One approach to circumvent this dilemma is to use the
evolutionary strategy (Rechenberg, 1973), which does not estimate the gradient to proceed with
gradient descent, but to update the current policy with a perturbed policy that has a better performance.
As long as there is a way to verify the superiority of the perturbed policy versus the current policy,
the value function difference would be of no significance. The evolutionary strategies have also been
studied in classic RL (Salimans et al., 2017; Conti et al., 2018), preference-based RL (Busa-Fekete
et al., 2014; Akrour et al., 2011), and language model optimizations (Malladi et al., 2023) as well.
However, the theoretical guarantees of evolutionary algorithms are much less clear compared to
zeroth-order optimization, and provable algorithms are underdeveloped. Another approach that
does not rely on the value function difference is to replace gradient descent with sign gradient
descent (Bernstein et al., 2018; Liu et al., 2019). But to estimate the element-wise sign of the gradient
vector without using the value function difference, one needs to perturb each entry of the policy
parameter one by one to obtain a perturbed policy for each entry, and compare the performance of
each policy pair. This proves to be difficult when dealing with complex policy approximations such as
neural networks. Our work is inspired by both fields, and closely related to zeroth-order optimization
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with one-bit feedback (Cheng et al., 2020; Cai et al., 2022; Zhang & Li, 2024), which receives much
less attention compared to classic settings. However, these works assume a perfect preference oracle,
but in our paper, we estimate the sign of the value function difference from noisy feedback and then
plug it into the zeroth-order gradient descent framework.

Link Function and Preference Model. It has been a long-standing effort to understand the rationale
for how humans make decisions, and establish models to predict human behaviors (Thurstone, 1927;
Train, 2009; Greene, 2000; Meilgaard et al., 1999; Lawless & Heymann, 2010) from both social
science, economics, and behavioral science fields. Despite the complexity of humans, the most
dominant models that have been adopted in the literature are the random utility model in social
choice theory (Azari et al., 2012), developed as early as the 1920s (Thurstone, 1927). The random
utility model assumes each person is associated with a utility function for all candidates and will
choose the action that maximizes the utility. Therefore, how the utility of each person is generated or
distributed, which is characterized by the link function (Bengs et al., 2021), gives rise to different
preference models. Even though the logistic link function, i.e., the Bradley-Terry model (Bradley &
Terry, 1952), is mostly adopted in the literature due to the closed expression and easy-to-manipulate
nature, other preference models such as the Probit model (Thurstone, 1927), the Cauchy model, the
complementary log-log model, and the Weibull model (Greene, 2000) have also been studied in the
literature. Any cumulative distribution function for continuous distributions would be a valid link
function, and the best model to describe human behavior is yet debatable. Therefore, in this paper,
we explore the common traits of admissible preference models and develop algorithms applicable to
any preference model without knowing the link function.

C EMPIRICAL EXPERIMENTS

In this section, we first describe the important details of the Gymnasium experiments conducted in
section 5. Then, we performed additional empirical experiments to evaluate the influence of stochastic
transitions in a stochastic GridWorld environment (Zhang & Ying, 2025). We then demonstrate
the robustness of ZSPO to stochastic environments.

C.1 DETAILS OF GYMNASIUM ENVIRONMENT EXPERIMENTS

We first demonstrate the implementation details of the experiments conducted in 5 for three
robotic tasks from Gymnasium (Towers et al., 2024): HalfCheetah-v5, CartPole-v1, and
Hopper-v5. The benchmark is widely used in classic RL problems to show the efficiency of
algorithms for complex environments. The information about the three environments could be found
in Towers et al. (2024). We set the planning horizon H to be the default value of each environment,
i.e., H = 500 for CartPole-v1, H = 1000 for both HalfCheetah-v5 and Hopper-v5.

Policy Network. Each algorithm trains a policy network for decision making. In this experiment,
we use a fully-connected neural network with two hidden layers as the policy network, where each
hidden layer contains 64 neurons. In addition to the policy network, the RM+PPO baseline also uses
both a reward network and a critic network, and we use a structure similar to the policy network. Both
networks use a fully-connected neural network with two hidden layers with 64 neurons, but the input
and output layers are different from the policy network. For the reward network, we concatenate the
state vector and action vector as input. Therefore, the RM+PPO baseline requires a parameterization
with the number of parameters three times the parameterization used in other algorithms.

Pretrained Policy. For CartPole-v1 and Hopper-v5 environments, all algorithms are warm-
started with the same pretrained policy, which has a moderate cumulative reward. To obtain the
pretrained policy, we first use the environmental reward to train a standard PPO algorithm until it
converges. Then, we randomly pick a policy from the training iterations so that the return of the
picked policy is approximately 20% to 50% of the best policy obtained by PPO. The pretrained policy
is used to mimic the modern machine learning pipeline in empirical RL works, and avoids the extreme
difficulty of building up rewards in the initial training period due to the sparsity of feedback and the
lack of coverage. Surprisingly, to train a good policy on the HalfCheetah-v5 environment, we
do not need to warm-start from a pretrained policy.

Preference Feedback. In all three Gymnasium environments, we assume the algorithms have
access to 100 synthetic preference oracles (representing different human or language models in
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reality). Each preference oracle will generate the preference over trajectory batches based on a link
function over the trajectory returns.For example, for two trajectories τ0 and τ1, the linear model
would have a preference probability as follows:

P(τ1 ≻ τ0) = max

{
min

{
γ [r(τ1)− r(τ0)] +

1

2
, 1

}
, 0

}
.

For the expertise constant γ, we choose γ = 0.001 for CartPole-v1, and γ = 0.01 for both
HalfCheetah-v5 and Hopper-v5. It is worth noting that by default, different algorithms query
the preference oracles in different ways. For example, both the Online DPO and RM+PPO baseline
samples multiple pairs of trajectories and query the oracles for the preference over each pair. On
the other hand, ZPG and ZSPO sample several batches of trajectories for each policy and then query
the oracles for preference over the batches. In general, each trajectory is only evaluated once by a
preference oracle, so the total complexity of preference evaluation is the same for all algorithms.

Hyperparameters. In ZSPO and ZPG, the main hyperparameters to finetune are the learning rates and
the perturbation distances. We choose different perturbation distances for different layers depending
on the Frobenius norm of the parameters in each layer. Specifically, we let the perturbation vector
µtvt only change the norm of the parameters by approximately 10%, and the learning rate is around
10% of the perturbation distance. For ES, we choose the perturbation distance similar to ZSPO and
ZPG. For DPO and PPO, we choose the KL regularization weight to be 0.1 and tune the learning rates
to around 10−5 ∼ 10−4 for each environments.

Implementation. In the CartPole-v1 environment, we start from a pretrained policy with a
return of approximately 250. Then we train each algorithm for 50 policy iterations. For pure online
algorithms such as DPO, ZSPO, ZPG, and ES, we sample 200 trajectories for each policy iteration.
DPO samples all 200 trajectories with the current policy. ZSPO, ZPG, and ES samples 100 trajectories
for the current policy and 100 trajectories for the perturbed policy. In the HalfCheetah-v5
environment, we start from a randomly initialized policy and train the algorithms for 170 policy
iterations until convergence. For pure online algorithms, we sample 10 trajectories for each policy
iteration. Similarly, DPO samples all 10 trajectories with the current policy. ZSPO, ZPG, and ES
split them in half and allocate each half to the perturbed policy and the original policy. For the
Hopper-v5 environment, we start training from a pretrained policy with returns around 1100, and
sample the same number of trajectories per iteration as in the HalfCheetah-v5 environment to
train for 120 iterations. For RM+PPO, since it is not a pure online algorithm, we separate the total
number of samples into two sets of equal size: one for training the reward model, and one for training
the policy network. Therefore, RM+PPO only samples half of the trajectories in each policy iteration,
and the rest half is sampled offline to train the reward model. Except for ES, all other algorithms
use the Adam optimizer to optimize the policy network. For ZSPO and ZPG, we first estimate the
ascent direction using zeroth-order methods, and then treat it as the gradient estimator in the Adam
optimizer, which demonstrated improvement for both algorithms compared to their vanilla versions.

C.2 STOCHASTIC GRIDWORLD ENVIRONMENT EXPERIMENTS

This section provides experimental results demonstrating the empirical performance of ZSPO under
link function mismatch with stochastic transitions. We consider a stochastic GridWorld environ-
ment in (Zhang & Ying, 2025) with H = 10. We used different unknown link functions (logistic
and linear (Chen & Frazier, 2017; Bengs et al., 2021)) to generate preferences, and considered four
baselines algorithms: (1) RM+PPO (Ouyang et al., 2022), (2) DPO (Rafailov et al., 2024), (3) Online
DPO (Dong et al., 2024; Guo et al., 2024), and (4) ZPG (Zhang & Ying, 2025), where all of them
assume the link function is logistic. In our experiment, ZPG uses a logistic link function instead of
the true link function for evaluating the impact of link function mismatch. both DPO and Online
DPO are only for deterministic MDPs. All algorithms collect N = 1, 000 trajectories between policy
updates. 100 preference oracles evaluate each trajectory. For ZSPO, we choose D = 1 to study the
effect of distinguishability, and the preference for a trajectory is aggregated via a majority vote.

Environment. The environment has 5× 5 blocks, denoted as (1, 1) to (5, 5). For each block, with
probability 1/2, a random reward is sampled from a standard normal distribution and is assigned
as the reward of the state. So on average, half of the blocks will have a reward 0. Each episode
consists of H = 10 steps, and at the start of each episode, an agent is positioned in block (3, 3),
i.e., the center of the GridWorld environment. At each step, the agent can choose to go up, down,
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(a) Bradley-Terry Preference Model
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(b) Linear Preference Model

Figure 2: GridWorld: (a) comparison of ZSPO and baselines without link function mismatch, and
(b) comparison of ZSPO and baselines with link function mismatch. Results are averaged over 103
repetitions, and shaded areas are 95% confidence intervals.

left, or right. However, the action may be changed due to environmental disturbances. Each state
has a disturbance action probability distribution over the four actions, which is randomly generated.
For each action taken, with probability 1/2 the state will transition according to the selected action,
and with probability 1/2 the action will be rechosen according to the disturbance action probability
distribution. The motivation for imperfect control arises naturally from designing agents for turbulent
environments, where wind or a bump may shift the agent’s action. The goal of the agent is to
maximize the cumulative reward, and the interaction is conducted episodically.

Policy Parameterization. For all algorithms implemented in our experiment, we used tabular policy
softmax parameterization, i.e., each state-action pair (s, a) is equipped with a parameter ξs,a and the
policy π(a|s) of taking action a at state s would follow:

π(a|s) = exp(ξs,a)∑
a exp(ξs,a)

.

Preference Feedback. In this experiment, we assume access to 100 oracles. Each will generate
a preference either based on the standard Bradley-Terry model or based on a linear link function
over the trajectory rewards. For example, for two trajectories τ0 and τ1, each oracle would provide
feedback following the Bradley-Terry model distribution as follows:

P(τ1 ≻ τ0) =
exp(γr(τ1))

exp(γr(τ1)) + exp(γr(τ0))
.

And the linear model would have a preference probability as follows:

P(τ1 ≻ τ0) = max

{
min

{
γ [r(τ1)− r(τ0)] +

1

2
, 1

}
, 0

}
.

We use γ = 1 for the Bradley-Terry model, and γ = 1/50 for the linear model.

Algorithms. The implementation of ZSPO and baselines is as follows, where we finetune the
learning rate and perturbation distance of each algorithm so that they achieve the highest return while
exhibiting a stable training dynamic:

1. ZSPO. We implement algorithm 1 with T = 1, 000 iterations, N = 1, 000 batches per
iteration, and batch size D = 1. After collecting 1, 000 pairs of batches, we ask the 100
oracles to compare each pair of them, and vote on which batch has a higher reward. The
preference result ot,n is the batch with a higher number of votes, and ot,n = 0 if there is a
tie. Then, we follow algorithm 1 to construct a zeroth-order gradient for policy optimization.

2. ZPG. The baseline is implemented according to (Zhang & Ying, 2025), and we choose the
same parameters, including iterations T = 1, 000, number of trajectories N = 1, 000 per
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iteration, and trim size 0.001. Each trajectory is evaluated by all 100 oracles, and the results
are averaged to estimate the value function difference. Then, we use the value function
difference to construct the zeroth-order gradient for policy optimization.

3. RM+PPO. We use tabular parameterization for the reward model. We first collect 5× 105

trajectory pairs, and then query all oracles for preferences and formulate the MLE loss
in (Christiano et al., 2017). Then, we use SGD to optimize the loss for 5 epochs and obtain
the reward model. Then, we use PPO with a KL regularization weight equal to 0.1 to train
the policy from the reward model for T = 1, 000 iterations. We also collect N = 1, 000
trajectories between policy updates and the PPO loss is optimized via SGD for 5 epochs.

4. DPO. We use KL regularization weight 0.1 for DPO and the initial policy as the reference
policy. We conduct T = 1, 000 policy iterations where N = 1, 000 trajectories are collected
between updates. Each pair is evaluated by all oracles to obtain the population-level
preference and formulate the MLE loss similar to the reward model. Then, we optimize the
DPO loss at each iteration via SGD for 5 epochs.

5. Online DPO. We use the same implementation detail as DPO except replacing the refer-
ence policy with the current policy after each update.

Performance. We first compare ZSPO to the baselines in the Bradley-Terry model so that the
underlying preference link function matches the one used by baselines, as shown in Fig. 2(a). In this
setting, all algorithms know the true link function, except ours. We observe that even though our
proposed ZSPO does not know the link function and may suffer from the distinguishability, it has
almost the same performance as the best baselines. This confirms the correctness of our design, i.e.,
ZSPO continues to improve the policy with sign-information of value-function difference and does
not need to explicitly know or learn the link function.

Link Function Mismatch. We then experimented with the setting with a link function mismatch, i.e.,
the true link function is linear while the baseline algorithms adopt a logistic link function, as shown in
Fig. 2(b). It shows that ZSPO (our algorithm) is more robust compared to the baselines and converges
quickly. DPO has a poor performance in both cases since the KL regularization to the reference
policy restrains the possibility of finding a near-optimal policy. When a link function mismatch
exists, DPO and PPO suffer severely from the mismatch, where the return of the learned policy
is much inferior compared to Fig. 2(a). This is because the intermediate reward, either implicitly
or explicitly learned from the preference with a mis-specification, deviates from the true reward
function, and thus shifts the optimal policy learned from it. Online DPO avoids the drawback of
the KL regularization, but still suffers from link function mismatch with a worse final policy than
that under ZSPO. ZPG, on the other hand, has a similar final policy return as ZSPO and demonstrates
some robustness. This is because both algorithms are based on similar ideas, where the information
of value function differences is recovered to estimate the gradient via zeroth-order approximation.
However, when the preference is generated from a linear function instead of the logistic function,
where both are anti-asymmetric, the sign of the value function difference recovered by ZPG is still
accurate, and the algorithm is equivalent to ZSPO with an inappropriate non-stationary learning rate.
Thus, the convergence speed of ZPG in this setting is much slower than ZSPO, which is due to the
mismatch of the link function. The observation from the GridWorld environment coincides with
the Gymnasium environment.

D DISCUSSIONS

In this section, we provide an additional discussion of the proposed ZSPO algorithm. We discuss the
distinguishability constant ε∗D, the zeroth-order algorithm itself, and other related aspects.

D.1 SIGN-BASED ZEROTH-ORDER OPTIMIZATION ALGORITHM

The sign-based estimator has been understudied in the zeroth-order literature. To be more specific
and illustrate the novelty, we consider a setting where the value function V (πθ) can be directly
queried, similar to the non-convex optimization setting. Classic two-point zeroth-order optimization
algorithm (Ghadimi & Lan, 2013), i.e., the zeroth-order stochastic gradient descent (ZO-SGD)
algorithm, perturbs the current parameter θt with a small distance µ and a randomly sampled vector
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vt from a d-dimensional normal distribution to obtain the perturbed parameter θ′
t = θt + µvt. Then,

it constructs the gradient estimator based on the difference of the two points as follows:

ĝt,ZO-SGD =
V (πθ′

t
)− V (πθt

)

µ
vt,

and then proceeds with gradient ascent as θt+1 = θt + αĝt,ZO-SGD, where α is the learning rate.
Researchers have shown that this version of the zeroth-order method converges to the stationary point
with a convergence rate

√
d/T (Nesterov & Spokoiny, 2017) when the learning rate and perturbation

distance satisfy α = µ = 1/
√
dT . Some researchers also studied the zeroth-order sign gradient

descent (ZO-signSGD) (Liu et al., 2019) to achieve more robustness against adversarial attacks.
This algorithm uses the same gradient estimator ĝt as ZO-SGD, but only uses the sign of the gradient
estimator to obtain the parameter for the next iteration, i.e., θt+1 = θt + α sign[ĝt,ZO-SGD], where the
sign operator here takes the sign of each entry and combine them into a vector in the same dimension
as ĝt. The algorithm perturbs the current policy multiple times at each iteration, and achieves the
same convergence rate as ZO-SGD if the number of perturbations is large. Variants of both algorithms
have also been studied, such as variance-reduced gradient and ADMM (Liu et al., 2018b;a).

Our algorithm ZSPO is different from both approaches. ZSPO uses a different gradient estimator,
which uses only the sign of the value function difference as follows:

ĝt,ZSPO = sign
[
V (πθ′

t
)− V (πθt

)
]
vt,

where the sign operates on scalars, where vt is sampled from a random normal distribution. Then,
ZSPO uses classic ascent procedure to obtain the parameter for the next iteration θt+1 = θt+αĝt,ZSPO.
It can be observed from our Corollary 1 that when N → ∞ and D → ∞, ZSPO achieves the same
convergence rate as classic zeroth-order methods. However, ZSPO has multiple advantages. First, it
only requires the sign of the value function to construct the gradient estimator, which is the reason
it can be applied in our preference-based RL problem with an unknown link function. In general,
the sign is much easier to obtain than the full difference information. Second, it may be more
suitable for distributed optimization settings since only the component related to the value function
to be optimized is the sign information, which can be easily transmitted through channels since it
only consists of a single bit. Moreover, since the gradient estimator is different from the classic
zeroth-order stochastic gradient descent, we cannot directly use the smoothing function framework
in (Ghadimi & Lan, 2013) to prove its convergence, and therefore, a new framework is developed.

D.2 DISTINGUISHABILITY FROM PREFERENCE ORACLE

In this section, we discuss the distinguishability constant ε∗D for batches of trajectories with size D.
Specifically, we discuss the regularity of the preference model, the policies to be compared, and the
underlying RL problem that affects the distinguishability constants, so that the expected preference
based on batches of trajectories aligns with the value function difference.

D.2.1 AN EXAMPLE TO DEMONSTRATE FACTORS INFLUENCING DISTINGUISHABILITY

We consider an RL problem example with planning step H = 2 and two policies π0 and π1 as shown
in figure 3. The first step h = 1 has only one state s0 with three actions {a1, a2, a3} and the MDP
will always initialize to s0. The second step consists of four states {s1, s2, s3, s4}, and each state
only has one action. The true reward of the MDP depends on the state on the second planning step,
and since the planning step H = 2, the transition only happens when the agent chooses an action
at state s0 in the first planning step h = 1. If action a1 is chosen in s0, the state deterministically
transits to s1 with reward r(s1) = 1. If action a2 is chosen, the state deterministically transits to s2
with reward r(s2) = 2. If action a3 is chosen, the state transits to s3 with probability 0.2 and reward
r(s3) = 5, or it transits to s4 with probability 0.8 and reward r(s4) = 0.

For simplicity of demonstration, we assume the link function σ(·) is the 0-1 step function, i.e., the
oracles would deterministically prefer the trajectory batch with a larger average return. Even though
this link function is not smooth or strictly increasing, we can construct a series of smooth and strictly
increasing link functions, such as logistic functions, to approximate it, and the step function is the
limit of such a series of approximating functions. We consider two policies π0 and π1, where the
only difference is the strategy on the first planning step when choosing actions at state s0. Policy π0
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Figure 3: a two-step MDP example: the reward depends on the state at the second planning step with
two deterministic actions and one random action. Policy π0 selects action a1 deterministically and
policy π1 randomizes over action a2 and a3. Notice that V (π1)− V (π0) = ε ≥ 0.

chooses a1 deterministically, so the state will always transit to s1. Policy π1 randomizes between
a2 and a3. Specifically, it chooses a2 on state s0 with probability ε and chooses action a3 with
probability 1−ε. We also assume the batch size D = 1, i.e., for each policy, we sample one trajectory
τ0 ∼ π0 and τ1 ∼ π1 and then query a oracle for feedback.

We can easily verify that the value function of π0 is V (π0) = 1 since it is the state that deterministi-
cally transits to s1 with reward 1. For policy π1, we can also calculate its value function:

V (π1) =P (a2|s0)P (s2|a2, s0) r(s2) + P(a3|s0) (P (s3|a3, s0) r(s3) + P (s4|a3, s0) r(s4))
=1 + ε.

Therefore, policy π1 would have a larger value function and therefore a better performance than
policy π0 with V (π1) − V (π0) = ε ≥ 0. We would also hope that the preference probability
P(τ1 ≻ τ0) ≥ 0.5 since τ1 is generated from the better policy π1 and τ0 is generated by the worse
policy. We could characterize this event, which is the event that the state transits to s2 or s3 after
taking action a3 following policy π1, which happens with probability:

P(τ1 ≻ τ0|τ0 ∼ π0, τ1 ∼ π1) = P (a2|s0)P (s2|a2, s0) + P(a3|s0)P (s3|a3, s0) = 0.8 · ε+ 0.2.

Therefore, when ε is large, i.e., when ε > 3/8, the two policies π1 and π0 will be distinguishable for
oracles, since the preference probability P(τ1 ≻ τ0) is larger than half. However, when ε is small,
the two policies may not be distinguishable since the oracles in expectation may prefer the trajectory
generated from the worse policy π0, and the expected preference over the trajectories is contradictory
to the true value function, which measures the authentic quality of the policy. Therefore, we have
the distinguishability ε∗1 ≥ 3/8. This example demonstrates that the distinguishability constant from
oracles could be non-zero, and it comes from the asymmetric randomness of the policy, reward of
each state, and MDP transitions. Notice that if we change the link function from a step function to
the standard logistic function, we can also verify that to obtain P(τ1 ≻ τ0) > 0.5, it would require
ε > 0.277. So the distinguishability constant ε∗D is dependent on the link function σ(·).

D.2.2 CHARACTERIZATION OF DISTINGUISHABILITY CONSTANT

If the distinguishability constant ε∗D is positive, the oracles may not be able to distinguish two policies
based on the trajectories sampled from them, which causes mistakes. Therefore, when we implement
ZSPO, which uses trajectory batches and oracle preferences to approximate the sign of the value
function, we need to be cautious in choosing the perturbation, so that the perturbed policy and the
original policy are distinguishable. Therefore, we must understand this constant ε∗D and the factors
that influence it. In general, the constant ε∗D depends on multiple factors such as (i) the transition
kernel and reward of the MDP, (ii) the link function, and (iii) the batch size used to query oracles.
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RL Problem. The limit of distinguishability in the example of figure 3 results from the fact that even
though action a3 has the same expected reward as action a1, the probability of obtaining a reward
larger than r(s1) is much smaller than half. In most of the trajectories, the state will transit to s4 with
a reward r(s4) = 0, and thus the policy would be less preferred by the oracles. On the other hand, we
can revise the transition kernel and reward function so that under action a3, the MDP would transit
to state s3 with probability 0.5 and reward r(s3) = 2, and transits to s4 with probability 0.5 and
reward r(s4) = 0. Then, the probability of preferring the trajectory generated by π1 would become
P(τ1 ≻ τ0) = 0.5(1 + ε) which is larger than half for all ε. Then, when only comparing these two
classes of policies, the limit of distinguishability would be 0 and the preference of the trajectory
batches exactly reflects the relationship between value functions.

Link Function. Moreover, if we switch the 0-1 step link function to the logistic function under the
Bradley-Terry model, the minimum ε for the probability P (τ1 ≻ τ0) to reflect the value function
difference, i.e., P (τ1 ≻ τ0) ≥ 1/2, will also be different, i.e., 0.277 versus 0.375. Furthermore, if
the link function σ(·) is linear on the interval [−H,H], then according to definition 1, we could push
the expectation inside the deviation function as follows:

ED0,D1
[ς (r̄ (D1)− r̄ (D0))] =ς (ED1

[r̄ (D1)]− ED0
[r̄ (D0)])

=ς (V (π1)− V (π0))

≥1

2
ς

(
V (π1)− V (π0)

2

)
.

Therefore, for batch size D, the limit of distinguishability ε∗D = 0 and the expected oracle preference
will always point to the policy with a larger value function. In general, for the same batch size D, the
distinguishability constant ε∗D measures the skewness of the link function σ(·) compared to the linear
function. When the link function is closer to a step function, which is highly non-linear, ε∗D may be
larger. If the link function is more linear, then ε∗D is likely to be smaller since the linearization of
the deviation function would be close to the deviation function itself. If we recall the convergence
rate of ZSPO in Theorem 1, the link function controls the trade-off between the distinguishability
and the majority vote approximation error. Specifically, to achieve a better approximation error, one
would hope the oracles possess a link function which is very close to a step function, so that for the
same number of trajectory batches N , the approximation error would be smaller. This link function
is likely to be non-linear. However, to reduce the distinguishability error, one would prefer a linear
link function over the aforementioned non-linear close-to-step function since it helps to estimate the
sign of the value function from the oracle’s preference.

Batch Size. The limit of distinguishability ε∗D is dependent on the batch size D of trajectories
that we use to query oracles for comparison results. In general, if we consider a pair of trajectory
batches (D1,D0) generated from π1 and π0 in figure 3 respectively with large enough batch size D,
the average return r̄(D1) of policy π1 would be concentrated around its expectation V (π1) with a
distribution converging to a normal distribution. Since the return of policy π0 is deterministic and
V (π1)− V (π0) = ε > 0, by the symmetric nature of the normal distribution, the probability that the
oracle prefers batch D0 over D1 will be less than half, because the average return r̄(D1) < r̄(D0).
Even though increasing the batch size D is generally helpful to decrease the distinguishability
constant ε∗D, the oracles may have an upper limit for the number of trajectories to aggregate and
compare at the same time. This implies that if we want to obtain a better policy, we should also
employ better oracles with a larger capacity to aggregate trajectories.

Structure of Policies. If the policy π1 in figure 3 is a randomization between action a1 and a2 instead
of the randomization between action a2 and a3, the probability P (τ1 ≻ τ2) will be larger than half
for all ε > 0. This demonstrates that the structure of the policies being compared by the oracle
influences whether one can distinguish a better policy by comparing trajectories. However, in our
proposed algorithm ZSPO, we intend to compare the value function between the perturbed policy πθ′

t

and the current policy πθt
using preference feedback, and the structure of the two policies could be

arbitrary. Therefore, the convergence result will be dependent on the distinguishability for the most
difficult pair of policies, as defined in definition 1.

D.3 OTHER ASPECTS AND LIMITATIONS

Distinguishability in Convergence Rate. Due to the approach that ZSPO uses oracles, i.e., use
trajectories generated by different policies to query oracles to infer which policy has a larger value
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function, the method we propose suffers from the oracle distinguishability limit ε∗D, which limits
the convergence rate of the proposed ZSPO algorithm. The influence may depend on multiple
factors that the RL agent cannot control, as specified in section D.2. These factors may include the
underlying RL problem itself, the true reward function, and the nature of the oracles being used. To
mitigate it, we could either employ oracles of higher quality and let them compare larger batches of
trajectories, or we could regularize the policy being explored so that the comparison suffers less from
this distinguishability. It also remains an open question whether the way ZSPO uses the preference
oracles is the optimal approach to train RL agents from preference feedback.

Local Convergence. Our main result in Theorem 1 states the convergence rate for ZSPO to a station-
ary policy instead of the global optimal policy. The results can be extended to global convergence
under regular assumptions in optimization, such as convexity (Boyd & Vandenberghe, 2004) or the
Polyak-Łojasiewicz (PL) condition (Karimi et al., 2016). However, these assumptions usually do not
hold in reality when general function approximation is considered. It remains an interesting question
whether the global convergence of ZSPO can be proved without these assumptions, even for tabular
parameterization as in (Mei et al., 2020). We conjecture that combining the analysis in this paper
with the convergence analysis of classic policy gradient algorithms, the global convergence rate of
ZSPO for tabular parameterization could be proved.

Practicality in Real-World RL Tasks. It has been widely believed that zeroth-order optimization
methods are not efficient in real-world experiments, since their complexity is usually dependent on
the dimension of the parameters, which could be huge in real-world tasks such as large language
model finetuning, let alone ZSPO only uses a one-bit feedback. However, as counterintuitive as it
may be, recent advances such as Mezo (Malladi et al., 2023) have shown the opposite that zeroth-
order optimization could also achieve competitive performance in these complex tasks, with the
merits of memory and computational efficiency without the need for backpropagation. This is
partly because the dependence on the number of parameter dimensions is based on the worst-case
optimization instance, but practical problems usually have much benign landscapes. These tasks are
over-parameterized, and a low-rank finetuning of the full model is sufficient to achieve competitive
performance, so the effective dimension of the parameters is much lower. Moreover, in other real-
world tasks involving preference-based reinforcement learning, such as autonomous driving and
human-robot co-operation, the gradient of a meaningful objective function simply cannot be obtained
without restrictive assumptions, and therefore, one cannot hope to use first-order methods. The same
situation is encountered with preference-based RL when the mechanism of preference generation
is unknown or variable over time. In these cases, zeroth-order methods such as ZSPO is the only
resolution that could make things work. Moreover, as shown in the empirical experiments in this
paper, accurately estimating the gradient is usually not necessary to optimize the policy. A policy
improvement direction correlated with the gradient direction is empirically enough, as we only use
fewer than 10 trajectories for each policy update in some of our experiments in section 5. Therefore,
we conjecture that the full potential of zeroth-order methods in practice is still largely underexplored.
We consider evaluating the performance of ZSPO with real preference feedback in real-world tasks
such as robotics and language models our future direction.

E PROOF OF PROPOSITION 1

We first define the following positive constant:

ε0 ≡ 4H√
D

√√√√√2 log

 2

ς
(
H/

√
D
)
. (6)

Let us consider two arbitrary policies π0 and π1. Without loss of generality, we assume the value
function V (π1) is larger than the other policy V (π0), and their difference is larger by ε0, i.e.,
V (π1)− V (π0) ≥ ε0. Let D0 be a batch of trajectories generated from policy π0, and let D1 be a
batch of trajectories generated from policy π1 with |D0| = |D1| = D. Since the reward function r(·)
is bounded in [0, H], we obtain that r̄ (D1)− r̄ (D0) is a sub-Gaussian random variable. Notice that:

E[r̄ (D1)− r̄ (D0)] = V (π1)− V (π0).
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For simplicity, define the random variable ∆ to be the difference of the empirical reward as follows:

∆ = r̄ (D1)− r̄ (D0) =
1

D

∑
τ∈D1

r(τ)− 1

D

∑
τ∈D0

r(τ).

Now, we analyze the expectation of the deviation function for the empirical reward difference in
definition 1. First, from assumption 1, the link function is monotonically increasing, so the deviation
function is also monotonically increasing, and we have:

E [ς (∆)]

=E
[
ς (∆)1

∆≥V (π1)−V (π2)
2

]
+ E

[
ς (∆)1

∆≤V (π1)−V (π2)
2

]
≥ς

(
V (π1)− V (π0)

2

)
P
(
∆ ≥ V (π1)− V (π0)

2

)
+ ς (−H)P

(
∆ ≤ V (π1)− V (π0)

2

)
≥ς

(
V (π1)− V (π0)

2

)
P
(
∆ ≥ V (π1)− V (π0)

2

)
− 1

2
P
(
∆ ≤ V (π1)− V (π0)

2

)
,

where the last inequality uses the fact that the deviation function is bounded below by −1/2. By
Hoeffding’s inequality, we can use concentration to characterize the probability that the empirical
reward difference deviates from the value function difference as follows:

P
(
∆ ≤ V (π1)− V (π0)

2

)
≤P
(
r̄ (D1)− r̄ (D0)− V (π1) + V (π0) ≤ −ε0

2

)
≤ exp

(
−Dε20
8H2

)
,

where the first inequality uses the fact that V (π1) − V (π0) ≥ ε0. So we can lower bound the
expectation of the deviation function as follows:

E [ς (∆)] ≥
(
1− exp

(
−Dε20
8H2

))
ς

(
V (π1)− V (π0)

2

)
− 1

2
exp

(
−Dε20
8H2

)
. (7)

Notice that by the construction of ε0 in equation 6 and the fact that the deviation function ς(·) is
upper bounded by 1/2, we can lower bound ε0 by:

ε0 =
4H√
D

√√√√√2 log

 2

ς
(
H/

√
D
)
 ≥ 4H√

D

√
2 log 4 ≥ 4H√

D
. (8)

Since the value function difference V (π1)− V (π0) is positive, the deviation function in the first term
of equation 7 is positive and therefore the first term is lower bounded as follows:(

1− exp

(
−Dε20
8H2

))
ς

(
V (π1)− V (π0)

2

)
≥
(
1− e−2

)
ς

(
V (π1)− V (π0)

2

)
≥3

4
ς

(
V (π1)− V (π0)

2

)
.

On the other hand, for the second term of equation 7, we want to provide an upper bound and relate it
to the deviation function of the value function difference. Therefore, we first characterize a slightly
tighter lower bound on ε20 as follows:

ε20 = 32
H2

D
log

 2

ς
(
H/

√
D
)
 ≥ 8

H2

D
log

 2

ς
(
H/

√
D
)
 .

The last inequality is because the deviation function ς(·) is upper bounded by 1/2 and therefore the
element inside the logarithm is lower bounded by 4. Therefore, the logarithm is positive, and we can
divide the coefficient by 4. This implies:

1

2
exp

(
−Dε20
8H2

)
≤ 1

2
exp

log

 ς
(
H/

√
D
)

2

 =
1

4
ς

(
H√
D

)
.
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Again, as shown in the equation 8, we have:

H√
D

≤ ε0
2
.

By the monotonicity of the preference deviation function ς(·), we can upper bound the second term
in equation 7 as follows:

1

2
exp

(
−Dε20
8H2

)
≤ 1

4
ς

(
H√
D

)
≤ 1

4
ς
(ε0
2

)
≤ 1

4
ς

(
V (π1)− V (π0)

2

)
,

where the last inequality uses our assumption that V (π1)− V (π0) ≥ ε0. Therefore, substitute the
bound for both terms back to equation 8, and we have:

E [ς (r̄ (D1)− r̄ (D0))] ≥
3

4
ς

(
V (π1)− V (π0)

2

)
− 1

4
ς

(
V (π1)− V (π0)

2

)
≥1

2
ς

(
V (π1)− V (π0)

2

)
.

Therefore, for any two policies π1 and π0 whose value function is separated by ε0, the requirement
presented in definition 1 is satisfied, which means the limit of distinguishability ε∗D should be even
smaller. Then, we can conclude:

ε∗D ≤ ε0 =
4H√
D

√√√√√2 log

 2

ς
(
H/

√
D
)
.

According to the link function smoothness assumption in assumption 2, we have the deviation
function ς(·) is also smooth with the same constant L. Then, when D ≥ L2H2/(σ′(0))2, we have:

ς

(
H√
D

)
= ς

(
H√
D

)
− ς(0) ≥σ′(0)H√

D
− LH2

2D
≥ σ′(0)H

2
√
D

.

This implies the distinguishability ε∗D is upper bounded by:

ε∗D = O

(
H√
D

√
log

(
D

σ′(0)H

))
.

On the other hand, when we have D ≤ L2H2/(σ′(0))2, the smoothness approximation is vacuous,
and by the monotonicity of the preference deviation function, we have:

ς

(
H√
D

)
≥ ς

(
σ′(0)

L

)
.

This implies the distinguishability ε∗D is upper bounded by:

ε∗D = O

(
H√
D

√
log

(
1

ς (σ′(0)/L)

))
.

Combining both bounds, we conclude that:

ε∗D = O

(
H√
D

√
log

(
max

{
1

ς (σ′(0)/L)
,

D

σ′(0)H

}))
.

F PROOF OF THEOREM 1

In this section, we prove our main result on the convergence rate of ZSPO. Before we start, we first
provide a few lemmas that will be important for the proof.
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F.1 FUNDAMENTAL LEMMAS

We first present and prove a few fundamental lemmas that will be repeatedly used in the proof of
Theorem 1. Since the perturbation vector vt is sampled from a normal distribution in Rd, we have
the following two lemmas to characterize the Euclidean norm:

Lemma 1 Let v ∈ Rd be a random vector sampled from a d-dimensional normal distribution
N (0, Id), then we have:

E
[
∥v∥22

]
= d.

Proof. Let v = [v1, v2, · · · , vd]. Since the vector v is sampled from N (0, Id), its coordinates v1,
v2, · · · , vd are independent of each other and follow the same standard normal distribution N (0, 1).
Therefore, we would have:

E
[
∥v∥22

]
= E

[
d∑

i=1

v2i

]
= dE

[
v21
]
= d,

where the second last step comes from the identically distributed nature of the coordinates, and the
last equality is because each coordinate is zero-mean with unit variance. ■

Lemma 2 Let v ∈ Rd be a random vector sampled from a d-dimensional normal distribution
N (0, Id), and let a ∈ Rd be any deterministic vector, we have:

E [|⟨v,a⟩|] =
√

2

π
∥a∥2.

Proof. Let v = [v1, v2, · · · , vd] and a = [a1, a2, · · · , ad]. Since the vector v is sampled from
N (0, Id), its coordinates v1, v2, · · · , vd are independent of each other and follow the same standard
normal distribution N (0, 1). Therefore, we have:

⟨v,a⟩ =
d∑

i=1

aivi ∼ N
(
0, ∥a∥22

)
,

by the property of jointly normal random variables. Therefore, to characterize the expectation of its
absolute value, we have:

E [|⟨v,a⟩|] = 1√
2π∥a∥2

∫ +∞

−∞
|x| exp

(
− x2

2∥a∥2

)
dx =

2√
2π∥a∥2

∫ +∞

0

x exp

(
− x2

2∥a∥22

)
dx.

Let u = x2/(2∥a∥22), and substitute it into the integral, we have:

E [|⟨v,a⟩|] =
√

2

π

1

∥a∥2

∫ +∞

0

∥a∥22 exp (−u) du =

√
2

π
∥a∥2.

This concludes the proof of the lemma. ■.

We also assume that both the link function σ(·) and the value function V (πθ) are L-smooth, and
therefore the function value difference of two points can be approximated by the first-order Taylor’s
expansion with controllable error, which is stated in the following lemma.

Lemma 3 (Lemma 7 in (Liu et al., 2018b)) For any L-smooth function f : Rd → R, and any pair
of points x ∈ Rd and y ∈ Rd, we have:

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥22.

F.2 PROOF OF CONVERGENCE RATE

Now, we follow the Lyapunov drift analysis framework to analyze ZSPO in algorithm 1. For
simplicity, let the perturbation distance µt = µ to be time-homogeneous. Since the value function
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V (πθ) is L-smooth, by Lemma 3, we can approximate the value function increment at each gradient
step as follows:

V (πθt
)− V (πθt+1

) ≤⟨−∇θV (πθt
),θt+1 − θt⟩+

L

2
∥θt+1 − θt∥22

=− αt⟨∇θV (πθt), ĝt⟩+
α2
tL

2
∥ĝt∥22

=− αt sign

[
N∑

n=1

ot,n − 1

2

]
⟨∇θV (πθt),vt⟩+

α2
tL

2
E
[
∥vt∥22

]
,

where the first equality is due to the ascent update in line 9 of algorithm 1 and the second equality is
due to the expression of ĝt in line 8 of algorithm 1 and the fact that the sign is either 1 or −1, so it
would not affect the norm. By Lemma 1, the expected squared norm of the perturbation vector vt is
exactly the dimension d, so we can proceed as:

V (πθt
)− V (πθt+1

) ≤− αt sign

[
N∑

n=1

ot,n − 1

2

]
⟨∇θV (πθt

),vt⟩+
α2
tLd

2

=− αt sign
[
V (πθ′

t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩︸ ︷︷ ︸
D1

+
α2
tLd

2

− αt

(
sign

[
N∑

n=1

ot,n − 1

2

]
− sign

[
V (πθ′

t
)− V (πθt

)
])

⟨∇θV (πθt
),vt⟩︸ ︷︷ ︸

D2

,

where in the last equality, we add and subtract the sign of the value function difference sign[V (πθ′
t
)−

V (πθt)]. The first term D1 does not involve any preference feedback. The second term D2 character-
izes the difference between the majority vote result and the sign of the value function, which we hope
they coincide in most cases. In order to efficiently bound the gradient norm, we would need to extract
a negative drift from either D1 or D2, which directly relates to the gradient of the value function.
Indeed, it comes from D1. From a high-level, if the perturbation vector vt has a positive inner product
with the gradient, the perturbed policy πθ′

t
should have a larger value function, since the parameter

shifts towards the gradient ascending direction, then we will have sign[V (πθ′
t
)− V (πθt

)] ≥ 0 and as
a consequence D1 ≥ 0. The following lemma relates D1 to the gradient norm:

Lemma 4 For ZSPO, conditioned on the information filtration Ft of any time t, the negative drift
term D1 can be upper bounded as follows:

E [D1|Ft] =Evt
[sign [V (πθt+µvt

)− V (πθt
)] ⟨∇θV (πθt

),vt⟩] ≥
√

2

π
∥∇θV (πθt

)∥2 − µLd.

The proof of Lemma 4 is deferred. With its help, we can obtain the following drift upper bound:

E
[
V (πθt

)− V (πθt+1
)|Ft

]
≤ −αt

√
2

π
∥∇θV (πθt

)∥2 + αtµLd+
α2
tLd

2
+ αt |E [D2|Ft]| .

Then, it suffices to bound the error D2 that uses preference feedback to estimate the sign of the value
function difference. The following lemma characterizes this error and implies that it will not be larger
than the negative drift except for some additional positive terms that can be made small if the number
of batches N increases and the perturbation distance µ is chosen properly.

Lemma 5 For ZSPO, conditioned on the information filtration Ft of any time t, the preference error
term D2 can be upper bounded as follows:

|E [D2|Ft] | =

∣∣∣∣∣E
[(

sign

[
N∑

n=1

ot,n − 1

2

]
− sign

[
V (πθ′

t
)− V (πθt

)
])

⟨∇θV (πθt
),vt⟩

]∣∣∣∣∣
≤2

e

√
2

π
∥∇θV (πθt)∥2 + 4

(
µLd+

ε∗D
µ

)
+

8

µ
ς−1

(√
2

N

)
.
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With the help of both Lemma 4 and Lemma 5, we can derive the drift upper bound as follows:

E
[
V (πθt

)− V (πθt+1
)|Ft

]
≤−

(
1− 1

e

)√
2

π
αt∥∇θV (πθt)∥2 + 5αtµLd+

α2
tLd

2
+

4αtε
∗
D

µ
+

8αt

µ
ς−1

(√
2

N

)
.

Let c0 = (1− e−1)
√

2/π > 0 be the coefficient of the negative drift, and we have:

E
[
V (πθt

)− V (πθt+1
)|Ft

]
≤− c0αt∥∇θV (πθt

)∥2 + α2
tLd

+ 8αt

[
µLd+

ε∗D
µ

+
1

µ
ς−1

(√
2

N

)]
.

Finally, we take the expectation over the filtration Ft and then take a telescoping sum over the time
horizon t, and with some manipulation over the terms, we will obtain:

1∑T
τ=1 ατ

T∑
t=1

αtE [∥∇θV (πθt)∥2] ≤
1

c0

(
V (θ1)− V (θT+1)∑T

τ=1 ατ

+

∑T
t=1 α

2
t∑T

τ=1 ατ

Ld

)

+
8

c0

[
µLd+

ε∗D
µ

+
1

µ
ς−1

(√
2

N

)]
.

Since we choose the learning rate αt = Θ(
√

H/dt), this implies the following relationship:

T∑
t=1

αt = Θ

(√
HT

d

)
,

T∑
t=1

α2
t = Θ

(
H log T

d

)
.

Recall the mechanism of choosing θR for output, we have:

E [∥∇θV (πθR
)∥2] = O

√Hd log2 T

T
+

1

µ

(
ς−1

(√
2

N

)
+ ε∗D

)
+ µd

 .

F.3 PROOF OF LEMMA 4

In this section, we prove the lower bound on the negative drift term D1. Notice that D1 does not
involve any randomness from the preference feedback mechanism, and therefore the randomness
only comes from both θt and the choice of vt. We take a conditional expectation over the filtration
Ft, where θt is viewed as a conditionally given, then the only randomness is the choice of vt:

E[D1|Ft] = Evt

[
sign

[
V (πθ′

t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩
]
.

According to Lemma 3, the value function difference can be approximated by its linearization, and
therefore neglecting the approximation error, the sign of the value function difference will be the
same as the sign of ⟨∇θV (πθt

),vt⟩. This motivates us the separate vt into the following three events
depending on how close the sampled perturbation vector is to the gradient of the value function.
Define:

Evt,+ =

{
⟨∇θV (πθt),vt⟩ ≥

µL

2
∥vt∥22

}
,

Evt,− =

{
⟨∇θV (πθt

),vt⟩ ≤ −µL

2
∥vt∥22

}
,

Evt,0 =

{
|⟨∇θV (πθt),vt⟩| ≤

µL

2
∥vt∥22

}
.

We call them the positive event, the negative event, and the margin event, respectively, since the inner
product of the gradient and perturbation vector vt would be positive, negative, and close to 0. On the
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positive event Evt,+, we use Lemma 3 to lower bound the value function difference as follows:

V (πθ′
t
)− V (πθt) ≥⟨∇θV (πθt),θ

′
t − θt⟩ −

L

2
∥θ′

t − θt∥22

≥µ⟨∇θV (πθt
),vt⟩ −

µ2L

2
∥vt∥22

≥µ2L

2
∥vt∥22 −

µ2L

2
∥vt∥22

=0,

where the last inequality is due to the definition of the positive event Evt,+. Since the sign of the
inner product is also positive on this event, we can conclude that:

sign
[
V (πθ′

t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩ = ⟨∇θV (πθt
),vt⟩ = |⟨∇θV (πθt

),vt⟩|.

Similarly, on the negative event Evt,−, we also use Lemma 3 to upper bound the value function
difference as:

V (πθ′
t
)− V (πθt

) ≤⟨∇θV (πθt
),θ′

t − θt⟩+
L

2
∥θ′

t − θt∥22

≤µ⟨∇θV (πθt
),vt⟩+

µ2L

2
∥vt∥22

≤− µ2L

2
∥vt∥22 +

µ2L

2
∥vt∥22

=0,

where the last inequality is due to the definition of the negative event Evt,−. So the sign of the value
function is negative, and we also have the inner product being negative, so overall, the product of the
value function sign and the inner product is still positive, i.e.,

sign
[
V (πθ′

t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩ = −⟨∇θV (πθt
),vt⟩ = |⟨∇θV (πθt

),vt⟩|.

Now, we analyze the negative drift term D1 under separated events as follows. Since on the filtration
Ft, the variable θt is given and the randomness only comes from sampling the vector vt, so we omit
the filtration and denote the expectation over vt.

E[D1|Ft] =Evt

[
D11Evt,+

]
+ Evt

[
D11Evt,−

]
+ Evt

[
D11Evt,0

]
=Evt

[
|⟨∇θV (πθt

),vt⟩|1E∁
vt,0

]
+ Evt

[
D11Evt,0

]
=Evt

[|⟨∇θV (πθt
),vt⟩|]− Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0

]
+ Evt

[
D11Evt,0

]
=

√
2

π
∥∇θV (πθt

)∥2 − Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0

]
+ Evt

[
D11Evt,0

]
≥
√

2

π
∥∇θV (πθt

)∥2 − Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0

]
− Evt

[
|D1|1Evt,0

]
,

where in the second last step, we use Lemma 2 to relate the inner product to the gradient norm of
the value function, and in the last inequality, we used the fact that the absolute value is no less than
the original value. Then, it remains to analyze the additional terms. Notice that the sign of the value
function difference in D1 is either −1 or 1, so we have:

Evt

[
|D1|1Evt,0

]
=Evt

[∣∣sign [V (πθ′
t
)− V (πθt

)
]
⟨∇θV (πθt

),vt⟩
∣∣1Evt,0

]
=Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0

]
,

which is the same as the other additional term. By the definition of the margin event Evt,0, we have:

Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0

]
≤ µL

2
E
[
∥vt∥22

]
=

µLd

2
,

where the last equality uses Lemma 1. Substituting it back to the lower bound of D1, we conclude:

E[D1|Ft] ≥
√

2

π
∥∇θV (πθt)∥2 − µLd.
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F.4 PROOF OF LEMMA 5

In this section, we prove Lemma 5 to bound D2, which characterizes the approximation error of
preference feedback with majority vote to estimate the value function sign. Notice that the randomness
of D2 comes from four sources: the current policy parameter θt, the perturbation distance vt, the
trajectory batches Dn,1 and Dn,0, and the preference feedback ot,n. Therefore, we first take a
conditional expectation over the first two sources to fix the policies πθt

and πθ′
t

and analyze D2 as:

|E [D2|θ′
t,θt]| ≤

∣∣∣∣∣E
[
sign

[
N∑

n=1

ot,n − 1

2

]
− sign

[
V (πθ′

t
)− V (πθt)

]∣∣∣∣∣θ′
t,θt

]∣∣∣∣∣ |⟨∇θV (πθt),vt⟩|

=2P

(
sign

[
N∑

n=1

ot,n − 1

2

]
̸= sign

[
V (πθ′

t
)− V (πθt

)
])

|⟨∇θV (πθt
),vt⟩|,

where in the last step, we notice that the term will only be non-zero if the two signs inside the
expectation disagree with each other. Then, it is sufficient to study the event where the signs of the
majority vote and the value function difference disagree. Again, this probability would depend on
how large the gap in the value function difference is. If the value function difference is bounded away
from 0, then the oracles would find it easier to distinguish the two policies and thus it is more likely
that the sign of the majority vote will be the same as the sign of the value function. So we consider
the following three events:

Evt,+,ε∗D
=

{
⟨∇θV (πθt

),vt⟩ ≥ µL∥vt∥22 +
ε∗D
µ

}
,

Evt,−,ε∗D
=

{
⟨∇θV (πθt),vt⟩ ≤ −µL∥vt∥22 −

ε∗D
µ

}
,

Evt,0,ε∗D
=

{
|⟨∇θV (πθt

),vt⟩| ≤ µL∥vt∥22 +
ε∗D
µ

}
.

We abuse the name and call the three events the positive event, the negative event, and the margin
event, respectively. On the positive event Evt,+,ε∗D

, we can lower bound the value function difference
according to Lemma 3 as follows:

V (πθ′
t
)− V (πθt

) ≥⟨∇θV (πθt
),θ′

t − θt⟩ −
L

2
∥θ′

t − θt∥22

=µ⟨∇θV (πθt),vt⟩ −
µ2L

2
∥vt∥22

≥µ2L

2
∥vt∥22 + ε∗D.

Notice that this implies the value function difference is positive and thus the sign is positive, so D2

will be non-zero over this event if the following event happens:{
sign

[
N∑

n=1

ot,n − 1

2

]
= −1

}
⊂

{
N∑

n=1

ot,n ≤ N

2

}
.

Notice that ot,n is the preference feedback for the n-th pair of trajectory batches. Therefore, it is a
Bernoulli random variable with expectation pt as follows:

pt = ED1∼πθ′
t
,D2∼πθt

[σ (r̄(D1)− r̄(D0))] =
1

2
+ ED1∼πθ′

t
,D2∼πθt

[ς (r̄(D1)− r̄(D0))] ,

where the last equality uses the definition of the deviation function. Recall that we not only obtained
the value function difference is larger than 0, we also obtained V (πθ′

t
)− V (πθt

) ≥ ε∗D, and by the
definition of the distinguishability ε∗D, the expected deviation function over batches should be lower
bounded by the deviation function of the value function difference. This is because the value function
difference is large enough so that oracles can distinguish the better one from the two in expectation
when looking at trajectory batches. Therefore, the deviation from half can be bounded as:

pt −
1

2
= ED1∼πθ′

t
,D2∼πθt

[ς (r̄(D1)− r̄(D0))] ≥
1

2
ς

(
V (πθ′

t
)− V (πθt

)

2

)
.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

We can also revisit the lower bound of the value function difference to obtain a finer one using
Lemma 3 as follows:

V (πθ′
t
)− V (πθt

) ≥⟨∇θV (πθt
),θ′

t − θt⟩ −
L

2
∥θ′

t − θt∥22

=
µ⟨∇θV (πθt

),vt⟩
2

+
µ⟨∇θV (πθt

),vt⟩
2

− µ2L

2
∥vt∥22

≥µ⟨∇θV (πθt),vt⟩
2

+
ε∗D
2
,

where we used the definition of the positive event Evt,+,ε∗D
in the last inequality. So substitute it into

the deviation of pt, we can have:

pt −
1

2
≥ 1

2
ς

(
µ⟨∇θV (πθt),vt⟩

4
+

ε∗D
4

)
.

Therefore, by Hoeffding’s concentration inequality, we can bound the probability that D2 is non-zero
on the positive event as follows:

P

(
sign

[
N∑

n=1

ot,n − 1

2

]
= −1

)
=P

(
N∑

n=1

ot,n ≤ N

2

)

≤ exp

(
−N

2
ς2
(
µ⟨∇θV (πθt

),vt⟩
4

+
ε∗D
4

))
.

So, on the positive event, we can upper bound D2 as follows:

|E [D2|θ′
t,θt]| ≤2P

(
sign

[
N∑

n=1

ot,n − 1

2

]
= −1

)
|⟨∇θV (πθt),vt⟩|

≤2 exp

(
−N

2
ς2
(
µ⟨∇θV (πθt

),vt⟩
4

+
ε∗D
4

))
|⟨∇θV (πθt

),vt⟩|

On the negative event Evt,−,ε∗D
, we can also perform the same analysis. Using the anti-symmetric

nature of the preference deviation function, we can obtain the same upper bound as follows:

|E [D2|θ′
t,θt]| ≤ 2 exp

(
−N

2
ς2
(
µ |⟨∇θV (πθt

),vt⟩|
4

+
ε∗D
4

))
|⟨∇θV (πθt

),vt⟩| .

On the margin event Evt,0,ε∗D
, the absolute value of the inner product between the gradient and the

perturbation vector is upper bounded even though the sign of the value function difference may
disagree, so we will have:

|E [D2|θ′
t,θt]| ≤2P

(
sign

[
N∑

n=1

ot,n − 1

2

]
̸= sign

[
V (πθ′

t
)− V (πθt

)
])

|⟨∇θV (πθt
),vt⟩|

≤2

(
µL∥vt∥22 +

ε∗D
µ

)
,

where in the last inequality, we use the definition of the margin event. Finally, we can combine the
three events and take an expectation over the perturbation vector vt as follows:

|E [D2|Ft]| ≤Evt [|E [D2|θ′
t,θt]|]

=Evt

[
|E [D2|θ′

t,θt]|1E∁
vt,0,ε

∗
D

]
+ Evt

[
|E [D2|θ′

t,θt]|1Evt,0,ε
∗
D

]
.

On the margin event Evt,0,ε∗D
, we have the expected absolute value of D2 bounded as follows:

Evt

[
|E [D2|θ′

t,θt]|1Evt,0,ε
∗
D

]
≤Evt

[
2

(
µL∥vt∥22 +

ε∗D
µ

)
1Evt,0,ε

∗
D

]
≤2

(
µLE

[
∥vt∥22

]
+

ε∗D
µ

)
=2

(
µLd+

ε∗D
µ

)
,
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where the last equality uses Lemma 1. On the event E∁
vt,0,ε∗D

= Evt,+,ε∗D
∪ Evt,−,ε∗D

, we use the
following notation to denote the exponential term in the upper bound of D2 for simplicity:

ft (vt) = exp

(
−N

2
ς2
(
µ |⟨∇θV (πθt),vt⟩|

4
+

ε∗D
4

))
≤ 1.

Then, the expectation over the positive and negative events E∁
vt,0,ε∗D

can be bounded as follows:

Evt

[
|E [D2|θ′

t,θt]|1E∁
vt,0,ε

∗
D

]
≤2Evt

[
ft(vt) |⟨∇θV (πθt),vt⟩|1E∁

vt,0,ε
∗
D

]
=2Evt

[ft(vt) |⟨∇θV (πθt
),vt⟩|]− 2Evt

[
ft(vt) |⟨∇θV (πθt

),vt⟩|1Evt,0,ε
∗
D

]
≤2Evt

[ft(vt) |⟨∇θV (πθt
),vt⟩|] + 2Evt

[
|⟨∇θV (πθt

),vt⟩|1Evt,0,ε
∗
D

]
≤2Evt

[ft(vt) |⟨∇θV (πθt
),vt⟩|] + 2

(
µLE

[
∥vt∥22

]
+

ε∗D
µ

)
=2Evt [ft(vt) |⟨∇θV (πθt),vt⟩|] + 2

(
µLd+

ε∗D
µ

)
,

where in the second last inequality, we used ft(vt) ≤ 1 and in the last inequality, we used the
definition of the margin event Evt,0,ε∗D

. The last equality is due to Lemma 1. Then, collecting the two
terms, we conclude:

|E [D2|Ft]| ≤ 2Evt [ft(vt) |⟨∇θV (πθt),vt⟩|] + 4

(
µLd+

ε∗D
µ

)
.

Then, it remains to construct an upper bound for the first term. Let wt = ⟨∇θV (πθt),vt⟩, and we
use D3 to denote the first term as follows:

D3 = Evt [ft(vt) |⟨∇θV (πθt),vt⟩|] =Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

+
ε∗D
4

))
|wt|

]
≤Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

))
|wt|

]
,

where we used the fact that ε∗D ≥ 0 and ς(·) is monotonically increasing. We also separate the event
into two cases depending on |wt| as follows:

D3 ≤Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

))
|wt|1|wt|≥ 4

µ ς−1
(√

2
N

)]
+ Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

))
|wt|1|wt|≤ 4

µ ς−1
(√

2
N

)] .
In the first event where |wt| is large, we can obtain that the exponential is upper bounded as:

exp

(
−N

2
ς2
(
µ|wt|
4

))
≤ 1

e
.

So we can upper bound the first term as follows:

Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

))
|wt|1|wt|≥ 4

µ ς−1
(√

2
N

)] ≤1

e
Evt

[|⟨∇θV (πθt
),vt⟩|]

=
1

e

√
2

π
∥∇θV (πθt

)∥2,

where the last equality uses Lemma 2. In the second event, we know that |wt| is upper bounded and
the exponential is smaller than 1, so we obtain:

Evt

[
exp

(
−N

2
ς2
(
µ|wt|
4

))
|wt|1|wt|≤ 4

µ ς−1
(√

2
N

)] ≤ 4

µ
ς−1

(√
2

N

)
.
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Finally, summarizing the two cases immediately gives us an upper bound on D3 as follows:

D3 ≤ 4

µ
ς−1

(√
2

N

)
+

1

e

√
2

π
∥∇θV (πθt

)∥2.

And it naturally leads to the bound on the approximation error term D2 as follows:

|E [D2|Ft]| ≤2D3 + 4

(
µLd+

ε∗D
µ

)
≤2

e

√
2

π
∥∇θV (πθt)∥2 + 4

(
µLd+

ε∗D
µ

+
2

µ
ς−1

(√
2

N

))
.

G PROOF OF COROLLARY 1

In this section, we show that with the smoothness assumption on the link function, we can use a pertur-
bation distance µ that doesn’t require the knowledge of the link function itself or the distinguishability
ε∗D to achieve a good convergence guarantee. First, combining Theorem 1 and Proposition 1, we
have:

E [∥∇θV (πθR
)∥2] = Õ

(√
Hd

T
+

1

µ
ς−1

(√
2

N

)
+

H

µ
√
D

+ µd

)
.

Since the link function is smooth, the deviation function ς(·) is also smooth with Lipchitz constant L,
then we have for any points x ∈ R,∣∣∣(ς−1

)′
(x)−

(
ς−1
)′
(0)
∣∣∣ = ∣∣∣∣ 1

ς ′(x)
− 1

ς ′(0)

∣∣∣∣ = |ς ′(x)− ς ′(0)|
|ς ′(x)| |ς ′(0)|

≤ L|x|
|ς ′(x)|σ′(0)

.

In the last step, we used the assumption 2 that the derivative of the link function at 0 is positive. And on
the other hand, we have by the smoothness of ς(·), we have |ς ′(x)− ς ′(0)| = |ς ′(x)− σ′(0)| ≤ L|x|,
and this implies |ς ′(x)| ≥ σ′(0) − L|x| ≥ σ′(0)/2 when |x| ≤ ς ′(0)/(2L). Therefore, we can
conclude that in the σ′(0)/(2L) neighborhood of the origin, we have:∣∣∣(ς−1

)′
(x)−

(
σ−1

)′
(0)
∣∣∣ ≤ 2L

(ς ′(0))
2 |x|,

so the inverse of deviation function is smooth with parameter 2L/(σ′(0))2. Then, suppose the number
of batches N is large enough such that the argument is inside the neighborhood of the origin, i.e.,
N ≥ 8L2/(σ′(0))2, then by Lemma 3, we have:

ς−1

(√
2

N

)
=ς−1

(√
2

N

)
− ς−1 (0) ≤

(
ς−1
)′
(0)

√
2

N
+

L

(σ′(0))
2

2

N
= O

(
1

σ′(0)
√
N

)
.

Therefore, if we select the perturbation distance µ as in Corollary 1 independent of the link function
and the distinguishability, i.e., µ2 = Θ(d−1 max{1/

√
N,H/

√
D}), we have:

E [∥∇θV (πθR
)∥2] = Õ

(√
Hd

T
+max

{
1

σ′(0)
, 1

} √
d

N
1
4

+

√
Hd

D
1
4

)
.
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