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Abstract

Link sign prediction in signed bipartite graphs, which are extensively utilized
across diverse domains such as social networks and recommendation systems,
has recently emerged as a pivotal challenge. However, significant space and time
complexities associated with the scalability of bipartite graphs pose substantial
challenges, particularly in large-scale environments. To address these issues, this
paper introduces the SignFlow Bipartite Subgraph Network (SBSN), balancing
sublinear training memory growth through a heuristic subgraph extraction method
integrated with a novel message passing module, with optimal inference efficiency
achieved via the node feature distillation module.

Our subgraph sampling approach reduces the graph size by focusing on neigh-
borhoods around target links and employs an optimized directed message passing
mechanism to aggregate critical structural patterns. This mechanism allows SBSN
to efficiently learn rich local structural patterns essential for accurate sign pre-
diction. Furthermore, to overcome the inefficiency of subgraph sampling-based
models during inference, SBSN incorporates a node feature distillation module
after the first training stage. This module distills subgraph features into node
features, enabling fast inference while retaining the rich structural information of
subgraphs.

Experiments reveal that SBSN shows superior performance in both medium- and
large-scale datasets, efficiently managing memory and computational resources,
making it a scalable solution for extensive applications. The implementation of
SBSN is publicly available at https://github. com/WICTSA/SBSN.
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1 Introduction

In the digital society nowadays, the diversity of evaluations among individuals is prevalent and
manifests significant complexity. This phenomenon spans various domains such as social network
interactions [4} [17, [29]], personalized feedback in recommendation systems [19} 20, 21], and peer
review in academic research [9} 32]]. To fully analyze such social phenomena, researchers frequently
employ the signed bipartite graph model. In a signed bipartite graph, nodes are partitioned into
two disjoint sets, e.g., users and commodities, or reviewers and papers. Links between these sets
are represented by edges with positive or negative signs, where positive edges signify favorable
connections or ratings and negative edges denote unfavorable ones. Predicting the signs of these links,
known as the link sign prediction task, is a fundamental problem in signed bipartite graph research.
Existing methods can generally be categorized into two types: feature-based and subgraph-based
approaches.

Despite progress in the field [24} 2519} [32] 16]], link sign prediction in signed bipartite graphs remains
challenging. First, feature-based approaches commonly leverage balance theory to model node
interactions. However, such methods often suffer from growth in space complexity as the size of the
dataset increases. Furthermore, balance theory cannot model all signed graph formation patterns[18],
leading to substantial information loss. Second, subgraph-based approaches have recently emerged,
extracting and encoding subgraphs for each query during training and inference. Although this
strategy offers local structural advantages, it faces limitations in scalability and inference speed,
which significantly restrict its applicability in large-scale scenarios.

These limitations become even more pronounced in real-world scenarios, such as user preferences
on e-commerce platforms and user ratings on video streaming sites, where both the number of
nodes in each set and the number of edges grow to massive scales. Performing message passing and
feature learning directly on the entire bipartite graph becomes infeasible, resulting in prohibitive
computational costs. The scalability of current models is thus severely hindered by their high resource
demands, limiting their applicability in practical, large-scale settings.

To address these challenges, we propose a link sign prediction method, the SignFlow Bipartite
Subgraph Network (SBSN), to accomplish the prediction task:

1. Scalable Subgraph Training: To tackle the rapid growth of space complexities with
increasing dataset size, we transform global node feature training into local subgraph
feature training. Unlike traditional methods that sample k-hop neighbors of nodes u and v
separately, our subgraph sampling ensures each node lies on a simple path connecting « and
v, greatly improving information efficiency. By leveraging the properties of bipartite graphs,
our subgraph sampling strategy establishes a topological structure to facilitate subsequent
subgraph feature learning. Such a subgraph training design ensures that the space complexity
of our model scales sublinearly with the size of the dataset.

2. Directed SignFlow Passing: To effectively capture the structural information of subgraphs,
we propose the SignFlow Aggregator within SBSN. This module aggregates all path infor-
mation connecting source nodes and target nodes within the topological subgraph, enabling
comprehensive structural representation. The edge-feature-based SignFlow Aggregator
further enriches the subgraph representation, surpassing node-feature-based methods such
as GCN in information richness.

3. Feature Distillation for Efficient Inference: To overcome the inference inefficiencies of
subgraph-based models compared to feature-based models, we introduce a node feature
distillation module. This additional training step distills subgraph features into node features,
allowing our model to achieve better inference efficiency. Also, node features serve a broad
range of downstream tasks, including node clustering and node classification.

4. Theoretical and Empirical Complexity Analysis: We provide both theoretical and em-
pirical analyses of the model’s complexity, demonstrating how computational and memory
costs scale with dataset size F/. Extensive experiments on medium- and large-scale datasets
further validate the scalability and accuracy of our approach.



2 Related Works

2.1 Signed Graph Representation Learning

Signed graphs have garnered significant attention due to the rapid growth of social networks[4} |17} [29]
and recommender systems|[19, 20, 21]]. Numerous tasks in signed graph analysis have been explored,
such as node classification[26]], node ranking[23]], link sign prediction[9}|32]], community detection[2],
and visualization[28]]. Among these tasks, link sign prediction is particularly important. Signed
Graph Representation Learning (SGRL) is an effective approach to analyze the complex patterns in
real-world signed graphs with the co-existence of positive and negative links[33]]. Early methods
for learning representations of signed graphs were based on random walks[[12} |30} [13]] and matrix
factorization[3},[15]. In recent years, deep learning has been applied to signed representation learning.
SiNEJ[28]) extracts structural information from triangle motifs and designs an objective function based
on balance theory[8]]. SGCNI[24]] became the first signed graph neural network model, extending
GCN[14] and using balance theory to determine positive and negative relationships between nodes
in multi-hop neighborhoods. Similarly, models like SiIGAT[10], SNEA[16], and SDGNN]JL1]] use
graph attention networks to learn signed graph representations. SBGCL[32] proposes a contrastive
learning method for robust signed graph representation learning. SGA[31] proposed a novel data
augmentation approach tailored for SGNNs. By introducing a new perspective on data augmentation,
SGA aims to significantly enhance the training process.

However, SGRL methods typically perform message passing through GNN layers across the entire
bipartite graph, which makes GPU memory management challenging. As the dataset size increases
linearly, the GPU memory consumption of such models increases at least linearly. Higher precision
message-passing layers often require more memory, making the training of such models on large-scale
datasets impractical due to the prohibitive GPU memory consumption. Additionally, balance theory,
which is commonly used by SGRL methods, cannot model all signed graph formation patterns[18].

2.2 Subgraph Embeddings and Prediction

Subgraph-based methods have also been extensively explored for graphs. SUBGNN [1]] introduces
a subgraph neural network with a novel routing mechanism to learn disentangled subgraph repre-
sentations. SELO [6] extracts enclosing subgraphs for each target pair of nodes and encodes these
subgraphs into vectors through a unique linear optimization (LO)-based approach. SELO introduces
a likelihood matrix representation for subgraphs, which captures triad and high-order cycle patterns
rather than pairwise interactions.

However, SELO does not strictly limit subgraph size during the matrix computation phase, leading to
large-scale matrix operations on large datasets. Moreover, the above subgraph learning algorithms
require subgraph sampling for each query during the inference phase, resulting in suboptimal inference
performance compared to SGRL algorithms. Furthermore, subgraph-based methods often lack node
features, as they rely on subgraph embedding for inference, which limits their ability to learn rich
node representations and makes them less applicable to other node-based downstream tasks.

3 Problem Formulation of Signed Bipartite Graph Link Sign Prediction

A signed bipartite graph is defined as

G = (U, V,E* E™), where the two sets userl m product1
of nodes U = {uy,uz,...,uy} and V =
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edge (u,v) € E~ represents that u rates v unfa-
vorably. In this paper, we ignore the directions
of the edges and treat the graph G as an undirected graph.

Given G = (U, V, E*, E™), the goal is to predict the sign of an edge (u,v) € U x V that is not in
the observed set of edges E+ U E~. Specifically, we aim to learn a function f that, for any pair of
nodes u; € U and v; € V, predicts whether the edge between them should be positive or negative.
The function f should be able to accurately determine the sign of the link based on the structural
properties of the graph and the features of the nodes.
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Figure 2: Overview of the SignFlow Bipartite Subgraph Network (SBSN). SBSN comprises three
modules: (1) Topological Subgraph Extractor, which identifies subgraph G (u, v) for a queried
edge (u, v); (2) Directed SignFlow Aggregator, which performs edge-based information propagation
and weighted aggregation; and (3) Node Feature Distillation Module, which enhances inference
efficiency in the second training stage.

4 Proposed Method

To address the challenges of high computational cost and scalability in large-scale bipartite graphs,
we propose the SignFlow Bipartite Subgraph Network (SBSN), as illustrated in Figure 2] Our
model comprises three main modules: a topological subgraph extractor (Section [4.1)), a directed
SignFlow Aggregator (Section[4.2), and a node feature distillation module (Section[d.5)). The first two
modules are used for the primary link sign prediction training. Specifically, the topological subgraph
extractor identifies the subgraph for a queried edge, while the SignFlow Aggregator performs edge-
based information propagation and weighted aggregation to generate subgraph embeddings. These
embeddings are fused and passed through an MLP to predict the link sign based on a weighted binary
cross-entropy loss. The third module, the Node Feature Distillation Module, is employed during the
second stage of training to reduce resource consumption during inference and to obtain node features
applicable to a broader range of downstream tasks.

For a queried edge (u,v), the model employs a Topological Subgraph Extractor. This extractor
identifies a topological subgraph Gy, (u, v) that is highly relevant to the queried edge. The subgraph
contains multiple paths with v and v as endpoints, facilitating subgraph structure embedding and
inference.

Once the subgraph structure is obtained, directed information propagation is performed. The SignFlow
Aggregator aggregates path information at the edge granularity, allowing nodes in subsequent layers
to aggregate features from all incoming edges. This module also derives attention values for each
neighbor in the previous layer based on edge features and then performs weighted aggregation.

During the training phase, we use the aggregated subgraph encoding to predict the sign of the queried
edge and compute the loss function. In the inference phase, subgraphs are directly extracted for



prediction. Alternatively, with additional training of the node feature distillation module, we achieve
significant improvements in inference speed at the cost of minimal performance loss.

4.1 Topological Subgraph Extractor

As illustrated in Figure[3] the topological subgraph extractor constructs a subgraph iteratively with u
and v as the first and last layers, respectively. This ensures that the subgraph effectively captures the
structural information of the bipartite graph while maintaining computational efficiency. The detailed
process is described below:

4.1.1 [Iterative Node Sampling for Subgraph Construction

Given a queried edge (u,v) in a bipartite graph G = (U, V, ET, E7), the goal is to construct a
topological subgraph Gy (u,v) with u and v as the source and target nodes. The subgraph is
expanded iteratively by sampling intermediate layers of nodes from U and V.

Let G;?g = {u, v} represent the initial subgraph, where v and v are the only nodes. During each
iteration ¢, two sets of nodes, L}* C U and L} C V, are sampled as intermediate layers. The process
is as follows:

1. Neighbor Node Selection: Define the neighbors of a node set L in U or V' as:
N(L)={w|3(z,w) € E,xz € L}.
At iteration ¢, the candidate sets for new nodes are:
N(L{) U N(Ly),
where L} and Ly are the current intermediate layers of nodes in U and V/, respectively.

2. Sampling New Nodes: New nodes for the subsequent layers, LY 1 and LtV+1, are sampled
from their respective candidate sets using one of several heuristic strategies: Random
Sampling (uniform selection), High-Degree Sampling (prioritizing nodes with the highest
degrees), or Low-Degree Sampling (prioritizing nodes with the lowest degrees).

The sampled nodes must satisfy:
L NGy =0, L NGy, =0,
ensuring that no duplicate nodes are added to the subgraph.

3. Subgraph Update: Update the subgraph with the newly sampled nodes:

Gl =Gl ULy ULY,,.

sub
The process repeats until the total number of nodes in Gy, (u, v) reaches a pre-defined limit Tyyp.

Theorem 1(Optimal Number of Topological Layers). Let G be a random bipartite graph on T’
nodes with edge probability p. Under a budget of T total nodes, the number of topological subgraph
layers K that maximizes the expected number of distinct paths from the first to the last layer is

Kopr = maX{Q, L%J } + 2.
For the full derivation of this result, see Appendix [}

4.1.2 Edge Extraction for the Topological Subgraph

After determining the node sets Gy (u, v), the
edges in the subgraph are extracted from the  "e'e=h
original bipartite graph G. The edge set Eqp, of

the topological subgraph is defined as: s (@ ) @)evenr

* Include edges (z,y) in Egy if 2,y € ar
Gab(u,v) and (z,y) € E in the origi-
nal graph. s 4

* Exclude the direct edge (u,v) from
FEowp, even if it exists in F.

Iterative Node Sampling Edge Extraction

. Figure 3: Illustration of the Topological Subgraph
Thus, the edge set is formally expressed as: Extraction Process

Egp = {(I,y) | T,y € Gsubs (Ivy) € E\{(’LL, U)}}



4.2 Directed SignFlow Passing

Before training, each node is assigned an initial feature vector sampled from a normal distribution.
Let ZY and ZV represent the embeddings of nodes on the two sides of the bipartite graph, where Z,,
represents the feature of node w. During training, we first extract a multi-layer topological subgraph
G (u, v) for the query edge (u, v) using the topological subgraph extractor. Suppose Gy (u, )
consists of k layers; then, the first layer only contains node u, and the k-th layer only contains node v.

Let Z$*™ represent the feature matrix of the nodes of i-th layer in the subgraph, and let Ej”;’ denote
the edge weight matrix between the i-th and j-th layers. We use a message passing (MP) function to
propagate and aggregate information across layers. The initial feature of the first layer is H; = Z,,.

For the ¢-th layer, the aggregated features H; are obtained by fusing the output of the message passing
operations from all preceding layers as follows:

H, =9 ({MP(Hjﬂziub7E3u?) | ] = 1723 cee 7i - 1}) )
where ® represents the feature fusion mechanism.

The message passing and feature fusion process continues iteratively until the final k-th layer. After
completing message passing, the feature Hy, at the k-th layer is used as the subgraph feature P,,_,,,
for the multi-layer topological subgraph Gy, (u, v):

Py, = Hy.

The message propagation process is referred to as SignFlow Passing in this work because it explicitly
incorporates directed information flow across layers, reflecting the directionality of information
transfer from node u to node v.

Let N be the number of nodes, 7" the subgraph node budget, d the feature dimension, L the number of
message-passing layers, and B the batch size. Encoding an extracted subgraph is dominated by edge-
wise message passing and feature transforms; in the worst case the time cost for a single subgraph
encoding scales as O(L T? d?), and the peak GPU memory is dominated by persistent node features
plus temporary working memory for batch subgraphs, which can be written as O(Nd + BT? d?);
importantly, when Node Feature Distillation is used at inference the batch-dependent term related
to T disappears and the active computation reduces to O(B d?). Notably, the time to encode one
subgraph is independent of the total number of edges F, while peak GPU memory scales sublinearly
with the dataset size F because only /N appears in the persistent memory component (under constant
graph density, £ oc N2). Full derivations, constant factors and empirical measurements are provided

in Appendix
4.3 SignFlow Aggregator

To address the issue of information loss due to aggregation solely based on node features, we adopt
SignFlow Aggregator to extract and refine edge features, enabling pre-passage of messages through
edge features and reducing path information loss, thereby achieving more robust feature aggregation.

In our implementation, the message passing module aggregates features by applying the SignFlow
Aggregator separately to the positive and negative edges between two layers of nodes. The results
of these two computations are then combined using a feature fusion function. Here, the SignFlow
Aggregator is responsible for processing the edge information and node features to generate refined
edge features, while the positive and negative edges are handled independently to account for their
distinct contributions to the overall aggregation.

4.3.1 Node to Edge Feature Transformation

Node features from two consecutive layers are transformed into edge features. Let HV and HY
represent the features of the nodes in the source and target layers, respectively. For each edge
connecting nodes u and v, the edge feature Hf » 1s computed as:

HY, = MLP(Concat(H" (u), H" (v))),

where HY (u) and HY (v) are the features of nodes u and v, respectively, and MLP is a multi-layer
perceptron.



4.3.2 Edge Feature Message Passing

Message passing is then performed on the edge features. For each edge (u, v), where v has a set of
neighbors N,, excluding u, the edge feature Hf » 1s updated using the features of edges connecting v

with its neighbors p € N, \ {u}. The updated edge feature is:

H,', = Aggregate(H, , {H, [ p € N, \ {u}}).
The aggregation is performed by pooling the edge features of the set:

H,", = Aggregate(H]

U,V

Pooling({HY, | p € N,,})).

4.3.3 Edge Attention Values

The updated edge features H'” are reduced to scalar values to compute attention weights Qv for
each edge. For each node v in the target layer, the attention weights are normalized using a softmax

function:
exp(Score(H}%,))

ZpeNU exp(Score(H;fv)) ’

where Score(+) computes a relevance score for the edge feature. In our model, we implement Score(+)
using a linear layer. These attention weights are used to perform weighted aggregation of node
features from the source layer:

Agg(v Z Qg

PENy

Qo v =

4.3.4 Edge Feature Integration

Finally, the aggregated node features are combined with the pooled edge features. For each node v in
the target layer, the pooled edge features are integrated into the final feature as follows:

HY (v) = Agg"(v) + MLP(Pooling({HE, | p € N, })).

This formulation ensures that both node and edge information are deeply integrated, enhancing the
representation power of the SignFlow Aggregator.

4.4 Loss Function

After performing message passing in both directions, we obtain subgraph embedding P,,_,, and
P, _ .. These are used to form the fused feature as follows:

E@ub(u7 U) = Concat(Pu_w, Pv—>u) (1)

The fused feature is then passed through an MLP to reduce its dimensionality to 1, followed by a
sigmoid activation. The output is compared with the true label using a weighted binary cross-entropy
loss, where the weight is the proportion of positive labels in the batch.

£bce = - yz IOg yz + (1 - yi) 1Og<1 - gl)) (2)

uMz

where N is the number of samples, y; is the true label, ¢; is the predicted label, and w; is the weight
for sample ¢. The weight w; is determined by the proportion of positive labels in the batch.

4.5 Node Feature Distillation Module

To achieve a lightweight inference process, we propose a node feature distillation module that
approximates the features of subgraphs using the embeddings of nodes u and v. Specifically, the edge
embedding Z,, ,, is computed as a linear transformation of the element-wise product of Z,, and Z,,:



Z, ., = Linear(Z, © Z,),

where ® denotes the element-wise product. This operation captures interactions between individual
dimensions of Z,, and Z,, enabling a meaningful representation of their combined information.

To guide Z,, ,, in approximating the topological subgraph features, we use a distillation loss defined
as the similarity between Z,, ,, and Fyy(u, v), the feature representation of the subgraph obtained
from the SignFlow module. We denote this similarity loss as Lgjn:

Lsim = COS(Zu,’uv Fsub(“7 U))

This module is trained after completing the primary training of the SignFlow Aggregator, focusing on
further optimizing Z,, ,, to enhance inference efficiency with minimal performance loss.

For classification, Z,, ,, is passed through a MLP to reduce its dimensionality to one, followed by a
sigmoid activation to produce the predicted probability of the edge sign. The output is compared with
the true label using a weighted binary cross-entropy loss, denoted as L.

The total loss for the node feature distillation module combines the distillation loss and the binary
cross-entropy loss:

£tolal = Acsim + Ebce-

Upon completing the node feature distillation process, inference for a queried edge u, v becomes
significantly simpler. Instead of performing complex topological subgraph sampling and message
passing, the prediction is directly obtained by computing the element-wise product of Z,, and Z,,
followed by a MLP. This streamlined approach greatly accelerates the inference process while
maintaining high prediction accuracy.

5 Experiments

In this section, we introduce seven real-world datasets and baseline models, along with our experi-
mental setup. We then present the average metrics, demonstrating the performance of our model, after
which we discuss the results in memory management and conduct ablation studies and parameter
studies to evaluate the scalability of our model on large-scale datasets.

5.1 Datasets

We conduct a series of experiments on four small-scale and medium-scale real-world datasets:
Bonanza“, U.S. House[5]], ML-1 and Amazon—Boolﬂ and three large-scale datasets: ML-10M?,
ML-32M~ and Amazon-Book-51 These datasets cover the academic, social, and political domains,
providing us with rich information to validate the performance and applicability of our model. More
details about these datasets can be found in Appendix [B]

5.2 Baselines and Experiment Setting

We evaluate our method, SBSN, against several baselines, including node feature-based methods,
Signed GNNs, and Subgraph-based Networks. During the inference phase, for each queried pair
of nodes, SBSN extracts a subgraph and predicts the sign using the subgraph embedding, whereas
the derived SBSN-node directly leverages the node features distilled by the node feature distillation
module for inference. Detailed descriptions of the baseline methods and specific experimental settings
can be found in Appendix

"https://www.bonanza . com/
*https://grouplens.org/datasets/movielens/
*https://jmcauley.ucsd.edu/data/amazon/index . html
https://jmcauley.ucsd.edu/data/amazon_v2/index.html
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Table 1: Performance (average + standard deviation) on Medium-scale Datasets

Dataset Metric | Node2vec | SGCN SGCL SGA SBGNN SBGCL | SELO SBSN SBSN-node
AUC 59.3 58.7 584  59.6 57.7 59.0 58.5 92.0+1.4 92.5
Bonanza Bin-F1 98.8 89.6 98.7 935 96.2 97.3 98.4 98.8 +0.7 99.3
Mac-F1 494 48.7 514 514 54.0 55.8 58.0 81.44+6.2 85.9
Mic-F1 97.7 81.4 974  88.0 92.7 94.7 96.9 97.7+1.3 98.6
AUC 544 80.8 824  65.1 84.8 81.0 84.6 | 88.0+0.4 85.0
US. House Bin-F1 65.9 82.7 835 714 85.6 81.1 858 | 88.8+0.2 85.9
Mac-F1 48.7 80.8 824  62.1 84.7 80.7 84.6 | 88.0+0.4 85.0
Mic-F1 54.5 80.9 824  66.1 84.7 80.7 847 | 88.0+0.3 85.0
AUC 52.6 59.3 61.3  53.6 60.3 63.7 652 [ 74.5+0.1 73.4
Amazon-Book Bin-F1 88.8 69.3 71.0 89.1 72.0 73.4 86.5 80.9+0.2 81.0
Mac-F1 444 50.4 502 525 552 58.7 652 | 66.6 0.2 66.2
Mic-F1 79.8 58.2 60.4  80.7 61.2 64.0 78.3 72.7+0.3 72.7
AUC 51.0 63.2 632  56.6 65.2 68.5 735 | 74.3+0.2 73.7
ML-1M Bin-F1 73.0 65.2 673 735 69.9 70.2 71.5 77.3+0.2 76.5
Mac-F1 36.6 61.5 66.2  48.6 65.3 67.8 735 | 7T4.1+0.2 73.4
Mic-Fl1 57.5 62.7 652 619 67.4 68.0 74.1 | 7T4.5+0.2 73.7

5.3 Performance on Link Sign Prediction

As shown in Table[I] our proposed model SBSN achieves the best performance in terms of the AUC
metric on all datasets, outperforming the state-of-the-art model by 28.5%, 3.2%, 9.3%, and 0.8%
on the midium-scale datasets. It can be observed that our model exhibits significant improvements,
particularly on imbalanced datasets (Bonanza, Amazon-Book). On large-scale datasets, due to CPU
time (see Appendix [E) or GPU memory overflow, the performance of SGRL methods and SELO
could not be tested. However, our model still achieved strong performance (see Appendix[G)).

Additionally, SBSN-node directly uses the node features obtained through the node feature distillation
module for link sign prediction. The results show that the performance of SBSN-node incurs only
minimal loss compared to subgraph-based feature extraction. The detailed analysis of inference
efficiency in Appendix [D|highlights the substantial improvements in inference efficiency afforded by
our node distillation module.

5.4 Ablation Study and Parameter Study

In the ablation experiments, as shown
in Table 2] we tested the module

ablation effects on the U.S. House Table 2: Ablation Study on U.S. House Dataset
dataset. Firstly, we removed the edge models AUC  Bin-FI Mac-FI Mic-Fl
features HZ, from the Directed Sign- ~ SBSN 88.0  88.8 88.0 88.0

Flow Passing Module and replaced =~ SBSN w/oedge | 87.1 879 87.0 87.1
them with the node features Z,,. The SBSN_GCN 85.6 86.5 85.6 85.7
model experienced a significant per-

formance loss due to the loss of edge feature granularity in the information aggregation process.
Next, we replace the Directed SignFlow Passing Module with a GCN Mean Aggregator, which also
resulted in a certain degree of performance degradation.

Figure [ifa) presents the performance of our model in terms of AUC on the ML-1M dataset with
varying values of the subgraph maximum nodes limit. The results indicate a positive correlation,
with performance steadily improving as the limit increases. However, the marginal gains in AUC
diminish as the limit increases, indicating that while larger neighborhood sizes improve performance,
diminishing returns occur beyond a certain point.

Additional ablation studies (see Appendix [H)) demonstrated that our Topological Subgraph Extractor
utilizes information more efficiently than other sampling algorithms, established that different
sampling strategies offer dataset-specific advantages, and identified the comprehensive utilization of
node features as a primary driver for the superior performance observed on the Bonanza dataset.

5.5 Memory Efficiency Analysis

In this section, we compare the GPU memory consumption of our model with SGRL-based methods
on subsets of the ML-10M dataset of varying sizes. As shown in Figure d(b), SBGNN and SBGCL
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Figure 4: Parameter Experiment and GPU Memory Analysis

exhibit rapidly increasing memory consumption as dataset size grows. This is because SGRL-based
methods perform message passing through GNN layers across the entire bipartite graph, resulting in
rapid memory growth as the dataset size increases. In contrast, SBSN demonstrates a significantly
more stable memory footprint across different dataset sizes. This highlights the memory efficiency of
our method, as it processes smaller topological subgraphs rather than the entire graph during message
passing. By leveraging this efficient subgraph sampling and message-passing strategy, SBSN achieves
a balance between memory efficiency and model performance, enabling its application to large-scale
bipartite graphs. The memory analysis presented in Appendix [F]demonstrates that, for large-scale
datasets, the GPU memory consumption of our method scales linearly with the number of nodes in
the dataset.

6 Conclusion

In this paper, we introduce SBSN to address the challenges in link sign prediction for signed bipartite
graphs. Experiments on real-world datasets demonstrate that SBSN outperforms existing baselines in
predictive performance while maintaining computational efficiency. Importantly, the scalability of
SBSN makes it a versatile solution for large-scale applications.

While our results highlight the effectiveness of subgraph embedding, future work could explore
improvements in three key areas. First, developing more efficient message passing modules could
further optimize computational complexity. Second, incorporating self-explainability techniques may
improve model transparency. Finally, extending SBSN to dynamic signed bipartite graphs would
enable real-time prediction and adaptation to evolving network structures.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: NA
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: NA

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: NA

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is available in the supplementary material and will be available on
github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: NA
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We include std error of our SBSN model in the main experiment table.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: NA
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: NA
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: NA
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: NA
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See README.md in code folder.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We use LLM only for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Complexity Analysis

We provide a detailed analysis of the computational complexity of our proposed SBSN model,
focusing on both space and time requirements.

A.1 GPU memory Complexity

The gpu memory requirements for SBSN consist of storage for model parameters and node features,
as well as dynamic memory for intermediate variables during batch processing. The primary storage
for node features amounts to N - d, where N is the total number of nodes and d is the feature
dimension. The architecture of our model, featuring three SignFlow Aggregator modules (each with
fixed linear layers and one edge attention layer), contributes an additional O(d?) to the learnable
parameter space.

During batch processing, intermediate variables are generated. For a batch of size B with subgraphs
of size T', subgraph node features require B - T - d space. The computations of the Edge Attention
module, including H, f , and pooled attention values, have an upper bound of O(B-T?-d?) in a worst-
case complete graph scenario within the subgraph. Other linear layers and attention mechanisms
contribute terms on the order of B-T?-d and B-T -d?. Consequently, the overall memory complexity
for SBSNis N - d + O(B - T? - d?). This contrasts with standard GCN approaches (often used in
SGRL methods), which may require O(F) memory per message aggregation step across all F edges,
a prohibitive cost for large-scale graphs because £ = O(N?).

The memory consumption varies slightly between phases. During training, the complexity is N -
d+ O(B - T2 . dz). For inference without Node Distillation, it remains similar. However, when
Node Distillation is applied for inference, the memory consumption for the active computation part is
significantly reduced. Since predictions for a pair (u, v) primarily involve their features and a simpler
distilled head, the batch-dependent part related to 7" diminishes, leading to a memory footprint closer
to N - d+ O(B - d?) for the relevant computations. By carefully selecting batch size B and subgraph
size T, SBSN can efficiently process very large graphs; our estimations suggest it can handle datasets
with up to N = 1.7 x 10® nodes on a single 0GB GPU under typical experimental settings with
T = 800. For detailed memory calculation, please refer to Appendix [H

A.2 Inference Time Complexity

We analyze the time complexity on a per-query basis, highlighting the efficiency gains from Node
Feature Distillation during inference.

For a single query processed without Node Distillation, the computation involves two main stages.
First, the sampling stage, which constructs the topological subgraph, has a worst-case time complexity
of O(T? - log(N)), where the bottleneck is the induced subgraph extraction (assuming, for instance,
scanning through neighbor dictionaries in dense regions for 7" nodes). Second, the message passing
stage within the sampled subgraph, analogous to its space requirements, has an upper bound of
O(T? - d?). Thus, the total time complexity per query in this mode is O(T?(log(N) + d?)).

In contrast, when inference is performed with Node Distillation, only the features of the queried
nodes u and v are processed through the distilled model head (typically a few MLP layers). This
dramatically reduces the time complexity per query to O(d?). This level of efficiency is comparable
to that of many SGRL methods during their inference phase, demonstrating a significant practical
advantage of our distillation approach.

B Dataset Details

Each dataset contains a different number of nodes and edges, as well as positive and negative
relationships between them, with detailed statistics listed in Table[3] During the experiments, we
follow the experimental setup in [S], randomly splitting the links of each dataset into three parts: 10%
for testing, 5% for validation, and the remaining 85% for training. For the large-scale dataset, we
split the data into 8% for testing, 2% for validation, and 90% for training, and average the results over
three runs. To ensure the stability and reliability of the experimental results, We run with different
train-val-test splits for 5 times to get the average scores.
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Table 3: Statistics on Signed Bipartite Networks

Bonanza U.S.House ML-IM  Amazon-Book | ML-10M ML-32M  Amazon-Book-51M
U] 7,919 515 6,040 35,736 69,878 200,948 2,930,451
V| 1,973 1,281 3,952 38,121 10,677 84,432 15,362,619
|E| 36,543 114,378 1,000,209 1,960,674 10,000,054 32,000,201 51,311,613
% |ET| 0.980 0.540 0.575 0.806 0.589 0.821 0.848
% |E~| 0.020 0.460 0.425 0.194 0.411 0.179 0.152

C Baselines and Experiment Setting Details

Node2vec baseline: Node2vec [7]] learning low-dimensional vector representations of nodes in
a network, where these vectors can capture the network structure information and neighborhood
characteristics of the nodes. To predict the sign of links, we fuse the embeddings of the connected
nodes and utilize a logistic regression model with binary cross-entropy loss. We experimented
with various fusion methods—including sum, L1, L2, and concatenation—and explored different
hyperparameters for Node2Vec, specifically setting embedding_dim to {16, 32, 64} and walk_length
to {20, 30, 40}. After thorough evaluation, we determined that the optimal combination was the sum
fusion method, with embedding_dim set to 64 and walk_length set to 40.

Signed Graph Neural Networks: SGCN [24] generalize GCN [14] and GAT [27] to signed graphs
based on message-passing mechanisms and balance theory. SGCL [25] is the first research to employ
graph contrastive learning on unipartite signed graphs. SBGNN [9] designs a new message-passing
mechanism for signed bipartite graphs, which is our most competitive competitor. SBGCL [32]
proposes a contrastive learning method for robust signed graph representation learning. SGA[31]
proposed a novel data augmentation approach tailored for SGNNSs.

Subgraph-based Networks: SELO [6] extracts enclosing subgraphs for each target pair of nodes
and encodes these subgraphs into vectors.

For a fair comparison, we set all the node embedding dimensions to 32, which is the same as that in
SBGNN [9]] and SBGCL [32], for all embedding-based methods. For other parameters in baselines,
we follow the recommended settings in their original papers. We run up to 12,800,000 subgraph
samples with K = 4 and T" = 800 for SBSN for training and choose the model that performs the
best in AUC metrics on the validation set. For our SBSN, we use PyTorch to implement it. We use
the Adam optimizer with an initial learning rate of 0.002 and a weight decay of le-5. We set the
maximum number of nodes in the topological subgraph to 800. Our experiments are conducted on
an A100 platform. Additionally, we derived SBSN-node by utilizing the node feature distillation
module.

For SGA, we employ GSGNNJ18]] as the backbone model, which was reported as the top-performing
architecture in its original publication. Regarding the hyperparameters, specifically e;gl, €del> e;Sd,
and €,4,, we searched for optimal values of €41 € {0.1,0.2,0.3} and €,qq € {0.94,0.98,0.99}
across different datasets. Compared to the direct application of the backbone model, The data
augmentation of SGA significantly enhanced model performance. Nevertheless, due to the backbone
model being a general graph model (i.e., not specifically designed for bipartite structures), SGA
exhibited considerable variance in performance on bipartite graph datasets.

During the GPU memory test, we monitored the peak GPU memory usage by tracking the maximum
allocated memory with torch.cuda.memory_allocated.

The evaluation task is link sign prediction, which is a binary classification problem. We use AUC
(Area Under the Curve), Binary-F1, Macro-F1, and Micro-F1 to evaluate the results. These metrics
are widely used in existing work [9, [32].

AUC is particularly important as it measures the ability of the model to distinguish between positive
and negative classes. It provides a single scalar value that summarizes the performance of the model
across all classification thresholds. Thus, we use AUC as the primary evaluation metric for assessing
the link sign prediction performance of models.
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D Inference Efficiency Analysis

Table [ presents the inference time of different models on the ML-1M dataset. We tested the time
consumption of performing inference on the entire ML-1M dataset for each model, where link sign
prediction is performed for all edges in the dataset. As seen, SBGCL achieves the fastest inference
time of 0.00014 seconds, followed by SBGNN and SBSN-node, both of which require 0.0043 seconds
per dataset.

In contrast, SBSN, which relies on subgraph extraction and encoding during inference, requires
2658 seconds per dataset, demonstrating its substantial computational overhead compared to node
feature-based methods. SELO, due to its lack of constraints on subgraph size, results in a prohibitive
inference time of 354353 seconds per dataset, making it unsuitable for practical applications.

SBSN-node, leveraging the node feature distillation module, significantly improves inference effi-
ciency while retaining comparable performance to SBSN. On the ML-1M dataset, the inference speed
is improved by a factor of 618139x compared to SBSN. This highlights the advantage of integrating
the distillation module for scenarios requiring rapid inference or node-based downstream tasks.

Table 4: Inference Time (s) of Different Models on the ML-1M Dataset

Metric SBGCL SBGNN SBSN SELO SBSN-node
Inference Time (s) | 0.00015  0.0043 2658 354353 0.0043

E Time Estimation

On ML-10M, our model required 27 hours for training. In contrast, SELO lacks strict constraints
on subgraph size during the matrix computation phase, resulting in large-scale matrix operations.
Consequently, the estimated training time for SELO is approximately 152,000 hours, which is
impractical and unacceptable.

F Analysis of GPU Memory Consumption

Table 5: GPU Memory Consumption (MiB) across Different Models and Datasets

Model | U.S.House ML-IM ML-10M Amazon-Book Amazon-Book-51M

SBSN 5404 18273 18297 18282 24959
SBGNN 951 22823 OOM OOM OOM
SBGCL 1178 28031 OOM OOM OOM

As shown in Table@ we evaluate the GPU memory consumption of three models (SBSN, SBGNN,
and SBGCL) across four datasets: U.S. House, ML-1M, ML-10M, Amazon-Book, and Amazon-
Book-51M. All experiments were performed using an NVIDIA A100 80GB PCle GPU, ensuring a
consistent computational environment.

SBSN exhibits superior scalability and efficiency compared to other models. It successfully operates
on all four datasets with memory usage ranging from 5,404 MiB (U.S. House) to 24,959 MiB
(Amazon-Book-51M), demonstrating its capability to handle large-scale datasets while keeping
memory consumption manageable. Notably, compared to the 18,273 MiB used on ML-1M, the
memory usage on Amazon-Book-51M increases by 6,686 MiB. This increment precisely corresponds
to the additional memory required to store node feature tensors. Specifically, the theoretical memory
cost can be computed as

(JU|+ |[V]) x d x Crpza x 3 = 18,293,070 x 32 x 4 x 3 bytes ~ 6,699 MiB,

where d denotes the feature dimension, Cfp3, the number of bytes per 32-bit float, and the factor 3
accounts for the parameter, gradient, and optimizer states.

In contrast, SBGNN and SBGCL encounter out-of-memory (OOM) issues on the larger datasets
(ML-10M and Amazon-Book), highlighting their limitations in scalability. Although SBGNN uses
951 MiB on the smallest dataset (U.S. House), its memory consumption rises significantly to 22823
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MiB on ML-1M, suggesting poor memory efficiency as dataset size increases. Similarly, SBGCL
uses 1178 MiB on U.S. House but fails to execute on datasets larger than Amazon-Book.

Overall, the results highlight SBSN’s robust memory management and scalability, enabling it to
effectively handle large-scale datasets where competing models fail due to excessive GPU memory
demands.

G Performance on Large Scale Datasets

Table 6: Performance (average + standard deviation) on Large-scale Datasets

Dataset Metric | Node2vec | SGCN SGCL SGA SBGNN SBGCL | SELO SBSN SBSN-node
AUC 54.9 OOM TLE | 75.2+0.1 74.9
ML-10M Bin-F1 65.6 OOM TLE | 79.4+0.2 78.0
Mac-F1 52.8 OOM TLE | 75.2+0.2 74.5
Mic-F1 56.3 OOM TLE | 75.9+0.2 75.0
AUC 56.3 OOM TLE | 78.3+0.1 71.5
ML-32M Bin-F1 90.1 OOM TLE | 86.0+0.1 85.3
N Mac-F1 45.5 OOM TLE | 71.3+0.1 70.4
Mic-F1 82.0 OOM TLE | 78.8+0.1 77.9
AUC 57.9 OOM TLE | 73.1+0.1 72.5
Amazon-Book-51M Bin-F1 91.8 OOM TLE | 82.8+0.2 82.6
Mac-F1 459 OOM TLE | 64.1 +0.2 63.9
Mic-F1 84.8 OOM TLE | 73.9+0.2 73.9

H Additional Ablation Study

Table 7: Performance (AUC) of Different SBSN Variants

Variant Bonanza U.S.House Amazon-book ML-IM Avg. AUC
Base 92.0 88.0 74.5 74.3 82.2
T=1400, w/o connect 91.0 83.5 71.5 72.5 79.3
w/o node 69.6 87.5 74.0 73.4 76.3
T=100, low 91.1 82.7 73.1 72.4 79.3
T=100, rand 92.0 84.7 73.5 71.7 80.2
T=100, high 93.0 84.0 73.2 70.9 80.0

Below, we provide a supplementary experimental table that evaluates different variants of SBSN. The
experimental settings remain consistent with those described in the main text.

w/o connect: Replacing the Topological Subgraph Extractor with independent random 2-hop neighbor
sampling (resulting in 7' = 1400) produces performance similar to SGRL. This comparison illustrates
that our sampling strategy, which focuses on extracting connected topological subgraphs (with
T = 800), is critical to achieving higher performance.

Traditional subgraph extraction algorithms[[1, 6] sample a subgraph Gy, from several layers of the
neighborhood around the target nodes » and v. These methods typically perform undirected message
passing over the extracted subgraph. However, these subgraphs include numerous nodes that do not
appear in any simple path connecting u and v within G, leading to unnecessary computational
overhead. In contrast, our method extracts topological subgraphs and performs directed message
passing, effectively avoiding this issue. The subgraph embedding aggregates information only from
all simple paths in Gy that connect u and v.

For example, on the ML-1M dataset—the densest graph in our experiments—we found that a two-hop
neighbor sampling with 7" = 1400 produces results similar to those from our Topological Subgraph
Extractor with 7' = 150. This comparison highlights the high efficiency of our sampling algorithm.

w/o node: Removing node features and replacing them with random vectors leads to a performance
drop, especially on the Bonanza dataset. This suggests that the high-quality global node features
learned in the local subgraph training contribute significantly to the performance of SBSN. Our
subgraph sampling method guarantees that every node in the sampled subgraph lies on a simple path
connecting the target nodes w and v. In contrast, simple two-hop neighbor sampling for v and v
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separately does not offer such a guarantee, which significantly reduces the efficiency in information
utilization.

Different Sampling Strategies: The experiments with fixed subgraph size (T' = 100) and varying
heuristic sampling strategies (low, random, high degree) indicate that the optimal strategy can differ
by dataset. We chose the random sampling strategy for the baseline due to its overall superior
performance across datasets.

I Theoretical Calculation for the Number of Topological Subgraph Layers

Let T be the total number of nodes in the topological subgraph and p be the probability of an
edge existing between any two distinct nodes (i.e., the graph density). Because the first layer only
contains a single node u and the last layer only contains node v, we let K* = K — 2 as the number
of mid-layers. The T nodes are divided equally into K* mid-layers, so each mid-layer contains
ny, = T/ K* nodes.

To calculate the expected number of such paths, denoted by E(K™*), we first consider the number of
possible unique sequences of nodes, one from each mid-layer. There are (7/K*) choices for a node

from each mid-layer. Thus, there are (7'/K*)% " distinct potential sequences of K* nodes, one from
each layer.

For any single such sequence (v, vs, ..., vk~+) to constitute an actual path, there must be K — 1
edges present: (v1,v3), (v2,v3),..., (Vk+—1,VK~). Assume the sampled subgraph as an Erd@s-
Rényi random graph G(T', p), the probability of any specific edge existing between nodes in different
layers is p, and these edge existences are independent. Therefore, the probability that all K* — 1
required edges for a specific sequence exist is p’ ~1.

By the linearity of expectation, the total expected number of paths E(K*) is the product of the
number of potential node sequences and the probability of any one such sequence forming a path:

.
E(K)= ( T ) pi ! 3)

K*

To find the optimal K* that maximizes F(K™*), it is often easier to maximize its natural logarithm,
In(E(K™)), since the logarithm is a monotonically increasing function.

In(E(K*)) = In (( ;)K pK*-1>

=K*In (;) + (K™ — 1) In(p)
= K*(In(T) — In(K™*)) + (K* — 1) In(p)

Treating K* as a continuous variable for the purpose of optimization, we differentiate In(E(K™*))
with respect to K* and set the derivative to zero:

In(E(K*)) = [K*In(T) — K" In(K*) + K* In(p) — In(p)]

dK*

dK*
= In(T) — (In(K*) + K* - ;*) +1In(p) — 0

=In(T) — In(K*) — 1+ In(p)
Setting the derivative to zero to find the critical points:
In(T) —In(K*) =1+ 1In(p) =0
1Jﬂ(K*) In(T) + In(p) — 1
In(K™) = In(T’p) — In(e)
)

(%)

In(K*



Thus, the value of K* that maximizes E(K*) when K* is treated as a continuous variable is:

Tp

K *conti = (4)

where e is the base of the natural logarithm.

In practice, K* must be an integer, and typically K* > 2 (for a path to exist between at least two
layers).

In our experiments on real-world datasets, we empirically investigated the optimal K = K* 4+ 2 =
Max{2, L%J} + 2, with the additional constraint that K is an even number. Under a default
setting for the sampled subgraph size 7" = 800, we calculated that the optimal K value was 4 for
a majority of the datasets, including Bonanza, Amazon-book, ML-10M, ML-32M, and Amazon-
book-51M. Consequently, we uniformly adopted K = 4 as a practical setting across our main
experiments for consistency and based on these findings. Furthermore, for dense datasets where
theoretical calculations or initial observations suggested an optimal K > 4 (U.S. House, ML-1M),
we also experimented with K = 6. However, this increase in the number of layers did not yield an
improvement in final performance, which we attribute to the over-smoothing phenomenon([22] that
can affect Graph Neural Networks with deeper multi-hop message passing.

Table 8: Statistics on Signed Bipartite Networks

Bonanza U.S.House ML-IM  Amazon-Book | ML-10M ML-32M  Amazon-Book-51M
U] 7,919 515 6,040 35,736 69,878 200,948 2,930,451
V| 1,973 1,281 3,952 38,121 10,677 84,432 15,362,619
|E| 36,543 114,378 1,000,209 1,960,674 10,000,054 32,000,201 51,311,613
P 0.002339  0.173375 0.041902 0.001439 0.013403 0.001886 0.000001
T 800 800 800 800 800 800 800
K 0.69 51.02 12.33 0.42 3.94 0.56 0.00
K 4 53 14 4 4 4 4
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