
Workshop track - ICLR 2016

GUIDED SEQUENCE-TO-SEQUENCE LEARNING
WITH EXTERNAL RULE MEMORY

Jiatao Gu? Baotian Hu† Zhengdong Lu‡ Hang Li‡ Victor O.K. Li?

?Department of Electrical and Electronic Engineering, The University of Hong Kong
{jiataogu, vli}@eee.hku.hk
†Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
baotianchina@gmail.com
‡Huawei Noah’s Ark Lab, Hong Kong
{lu.zhengdong, hangli.hl}@huawei.com

ABSTRACT

External memory has been proven to be essential for the success of neural
network-based systems on many tasks, including Question-Answering, classifi-
cation, machine translation and reasoning. In all those models the memory is used
to store instance representations of multiple levels, analogous to “data” in the Von
Neumann architecture of a computer, while the “instructions” are stored in the
weights. In this paper, we however propose to use the memory for storing part
of the instructions, and more specifically, the transformation rules in sequence-to-
sequence learning tasks, in an external memory attached to a neural system. This
memory can be accessed both by the neural network and by the human experts,
hence serving as an interface for a novel learning paradigm where not only the in-
stances but also the rule can be taught to the neural network. Our empirical study
on a synthetic but challenging dataset verifies that our model is effective.

1 INTRODUCTION

Quite recently, external memory has been re-introduced to deep learning [Graves et al. (2014); We-
ston et al. (2014)], and is partially responsible for empirical success of neural network-based system
on several challenging tasks, including but not limited to machine translation, Question-Answering,
and reasoning. In those models, external memory is used mostly as an extension to the usual vec-
torial representation of instances, providing more flexibility not only in the format and the space
limit of instance representation, but also in the way information is accessed. Unlike a computer,
the instructions for the neural networks are essentially formed through a learning process in which
instances and the desired outputs are given, and a learning algorithm (e.g., back-propagation with a
certain discrepancy function) adjusts the weights.

In this paper, we propose the framework as “Guided Sequence-to-sequence (GUIDED-SEQ2SEQ)
Learning” to use the memory for storing part of the instructions, in particular the transformation
rules. As another contribution of this paper, we propose to use a hybrid addressing strategy for ex-
ecuting rules. To be more specific, the input sequences are represented as a mixture of distributed
representation and symbol sequences saved in a short-term memory. This particular design of rep-
resentation nicely combines the flexibility of the neural model and the rigour of the symbolic form.

Learning Objectives: We redefine the SEQ2SEQ problem by allowing the guidance of transforma-
tion rules. More specifically, adding a new rule consists of encoding it, putting it into rule memory,
and letting the encoder-decoder learn the transformation specified in the rule. Once a new rule is
added, it should be able to fetch this new rule from rule-memory when the system sees an applicable
instance and execute it properly, while this ability is learned by supervised learning from examples.

2 MODEL OVERVIEW

Overall Architecture: Our model for GUIDED-SEQ2SEQ learning consists of an encoder, a de-
coder and an external rule memory, as illustrated in Figure 1. Given any instance, the encoder can
interact with the rule memory to find the appropriate rule, and apply this rule to the input sequence to

1

Workshop track - ICLR 2016

form the representation in the short-term memory (STM). The STM has two sections, the distributed
section for a input sequence representation, and the symbol section for saving the symbol substrings.

distributed symbol

Hello, I am Han Solo

decoder

Nice to meet you, Han Solo

“Han Solo”

Short-term memory

External Rule Memory

“Hello, I am X”
encoder

Figure 1: Given an input sequence, the system
automatically accesses the external memory for
the matched rule, and guides the sequence-to-
sequence transformation on a hybrid representa-
tion stored in a short-term memory.

For a certain substring in the symbol section,
there will be a segment of memory allocated
for the one hot representation for each sym-
bol in it, and there is a certain indicate vector
that can be recognised by the neural network.
We have specifically designed Recurrent Neu-
ral Networks (RNNs) to generate this hybrid
representation. In decoding, the decoder first
reads the distributed section of the STM, which
further triggers its reading of the symbol sec-
tion, and finally generate the output sequence.

Rule-guided Execution: We utilise an ex-
plicit memory for storing rules, so the rules
can be fetched and executed when needed. In-
troducing the external memory structure into a
neural system has been recently explored such
as [Weston et al. (2014); Sukhbaatar et al. (2015)]. We first encode the source parts of the rules
using an RNN-encoder into fixed length vectors, and stack these vectors to form a memory matrix.

Given an instance IS, we adopt another RNN-encoder to convert it to a vector iS, for retrieving the
corresponding rules in the memory, as illustrated in Figure 2. To make every step differentiable,
reading is computed based on the soft attention mechanism as in [Bahdanau et al. (2014)]:

pt = softmax (e(at, iS)) , t ∈ [1, n]; c =
∑n

t=1
ptct (1)

where e(·) is the scoring function for the correspondence between instance input and rules, which is
commonly formed as either inner product (INP) or a 2-layer network (DNN).

Hello

2 3 4 5 6

I am Han Solo, Han Solo

0 PtrNet
1

Hello , I am Han Solo

softmax

Memory networks
for Rules

weighted sum

Hello , I am X

c

𝐴

𝐶

Figure 2: A framework of rule fetching and exe-
cution networks. The execution part is built with
a Pointer Network.

The readout vector c is used for an execution
network. We model it by regarding the vari-
ables as pointers to locations storing the ad-
dress of the replacing substring. The prob-
lem then becomes extracting the substring from
the source instance, for which we adopt a
structure similar to the Pointer Network (Ptr-
Net) [Vinyals et al. (2015)]. In Figure 2, the
input instance will be separately delivered to
the external memory and the PtrNet, where the
readout memory c will be used to encode to-
gether with the original input instance by an-
other encoder, yielding an array of hidden states
{s1, ..., sTS}. In the decoding phase, a specific
RNN-decoder computes the hidden state ht with the inputs xt (typically the embedding of the pre-
vious predicted position yt−1), and outputs a probability to point to the next position as follows,

P (RS, E|IS) =
∏T

t=1
P (yt|x1:t, IS); P (yt|x1:t, IS) = softmax (e(s1:TS , ht)) (2)

where T is the decoding length and the function e(·) is the scoring function for the correlation be-
tween current state and each input position. Generally, we compute it with a 2-layer neural network.

Hybrid Encoder-Decoder: Based on the execution results, any instance will be naturally trans-
ferred to its associated rule sequence as well as the extracted substring. Further, the rule sequence is
pushed to the encoder of SEQ2SEQ learning to form a vectorial representation. On the other hand,
analogous to the conventional SEQ2SEQ learning, a decoder produces the transformation results
based on the hybrid STM in the GUIDED-SEQ2SEQ learning, which is also a hybrid. In detail, a
standard RNN-decoder is utilised to predict the target rule sequence RT, and the variables working
as pointers are replaced directly with the memorised substrings for the target instance IT.

Learning: Our proposed model decomposes the learning into two supervised learning sub-tasks:

2

Workshop track - ICLR 2016

First, use supervised learning of execution jointly with rule fetching and storing, with objectives:

L = −EIS [logP (RS|IS;R)] ; RS =
{

T(IS) with rule
IS no rule

(3)

whereR is the rule set stored in the rule memory, and the function T(·) is used to transfer instances
to their corresponding rules. It is also worth noting that the learning described should be carried
out from regular instances, for which no applicable rules are provided. To support this, the input
instances for training the rules contain two categories, With rule (instances that has the associated
rules in the rule memory) and No rule (otherwise). Moreover, adding an additional supervision on
memory attention is efficient way to help directly guide the distribution for fetching correct rules.

Second, use supervised learning of transformation which is regarded as a standard encoder-decoder
model. The transformation is similar to a conventional encoder-decoder model for machine transla-
tion or dialogue system, hence a similar learning algorithm to maximise the log-likelihood. Both the
rules and instances (regardless of whatever there is an actual rule execution or not) are represented
as the same form of hybrid representation in the STM, and directly make use of the decoded pointers
to replace the symbols, fusing to the final output sequence.

3 EXPERIMENTS

Dataset Generation: To evaluate the new proposed framework, a synthetic dataset named “Simple
Rules for SEQ2SEQ Learning (SRSS)” is created. The dataset contains symbols with a vocabulary
of 1,000 words (with indices from 000 to 999), and two additional variables X, Y. We first generate
prototype sequences by randomly choosing words from the vocabulary with length ranging from
5 to 20 words, and pair sequences as source and target one by one. Rules are obtained from the
prototypes by replacing some words with the variables X or Y on both sides, and further yielding
instances by replacing the same variables with arbitrary substrings. The substrings are randomly
sampled within the length from 1 to 15, with examples given in Table 1(a). Although the SRSS
dataset is designed for a general purpose of SEQ2SEQ learning, it has difficulty and scalability to
extend to various real-world natural language applications.

Table 1: The example of the SRSS dataset (a), and the experimental results (b) showing the accuracy
on unseen instances associated with old rules (learned for execution before) and newly added rules.
“Ptr” means the rule execution part, and “EM” refers to the external rule memory. Results of rule-
fetching (DNN, INP), with and without the supervision on memory attention (S) are reported.

(a) Examples for the generated SRSS dataset

Type Examples

Source Target

Proto. w(110)w(332) w(111)w(789)

Rule w(110)X Xw(789)

w(110)w(233)w(233) w(233)w(233)w(789)

Inst. w(110)w(134)w(135) w(134)w(135)w(789)

w(110)w(783)w(001) w(783)w(001)w(789)

(b) Results for decoding accuracy

Approaches old rules (%) new rules(%)

with rule no rule with no rule

Rule Enc/Dec 00.0 − 00.0 −
Ptr (without EM) 40.7 28.3 00.0 46.1

Ptr-EM (DNN) 47.8 22.9 00.1 57.8
Ptr-EM (DNN+S) 91.1 93.7 68.7 80.9

Ptr-EM (INP) 93.4 95.7 64.5 83.9
Ptr-EM (INP+S) 90.4 95.8 69.1 84.5

Training and Results: Following the algorithm of GUIDED-SEQ2SEQ learning, we separate the
training into two networks where transformation can be efficiently learned on the selected rule set
considering the number of rules is limited. To achieve this, we randomly generated 5000 different
rules from the SRSS dataset and tuned the encoder-decoder carefully. Then, 90% of the selected
rules are applied to train the rule execution, and for each rule 20 instances are generated.

In Table 1(b), the accuracy of both instances with rules in memory and pure instances are reported
on different model variants. Two baselines, the standard encoder-decoder learned on the rule sets
and an execution network with the memory inputs omitted. It is clear that although by execution
with the external memory inputs, the new framework can be easily applied on newly added rules
without learning any corresponding instances, fetching the correct rules from the external memory
for execution is crucial. The model with inner product attention functions and additional supervision
achieves the best scores for new rules. Moreover, as shown in the table, pure instances with no rules
can also be processed properly, which implies that our model has the ability to dynamically choose
to use or not to use rules for given instances, and generate correct decoding results.

3

Workshop track - ICLR 2016

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in Neural Information Processing Systems, pp. 2431–2439, 2015.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2674–2682, 2015.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

4

	Introduction
	Model Overview
	Experiments

