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ABSTRACT

Sensory augmentation experiments have demonstrated that the perceptual dimen-
sions of the mammalian nervous system are expandable at different levels. This
capacity enables mammals to acquire signals beyond the range of their inherent
sensory systems and subsequently learn to utilize such signals. A critical question
arises: how to enable a learning system to expand its input dimensions in an
online manner? To address this challenge, we propose a hierarchical modular
neural network architecture that supports multi-level and multi-regional expan-
sion of input dimensions, along with a dimension integration algorithm designed
to guide new dimensions to proper neuron circuits during online learning. To
validate our computational model, we design a series of dimension expansion ex-
periments at different levels. The experimental results confirm that our method
effectively handles the input dimension expandable learning problem.

1 INTRODUCTION

As shown in Fig. [Ifa), neuroscientists have explored sensory augmentation through brain-
computer interface [Thomson et al.| (2017) and genetic engineering Zhang et al.| (2017). For
example, researchers have successfully enabled rats to perceive infrared light Thomson et al.
(2017) via a brain-computer interface; made the red color-blind mice [Zhang et al. (2017) ac-
quire red perception ability by the gene therapy that injects human opsin gene into their retina.
Notably, these signals are entirely im-

perceptible to naturally occurring an- @ B Neural Network

imals! Furthermore, the animals were NS

able to learn to utilize their newly ac- wazp" ----------------------

quired perceptual capacities to per- oSt Vfgﬂ. :n g

form specific tasks, such as color dis- HRO T | aractine | Dimansions
crimination and signal localization, “%}"&‘" T New New Dimensions
which are otherwise impossible for N e ’

ordinary animals. Collectively, these

studies lead to a definitive conclu-  Fjgyre 1: (a) The expansion of perception dimensions at d-
sion: the perceptual dimensions of jfferent levels of the mammalian nervous system, e.g., at the
the mammah.an nervous System c€an  retina and at the cerebral cortex. (b) Schematic diagram of
be expanded in a plug-and-play man- 4 peyral network model that can expand input dimensions.
ner, and mammals can learn to lever-  New input dimensions (represented by the black circles) can
age these expanded dimensions. be introduced at different levels of the neural network.

The above conclusion enlightens a

computational problem: how to introduce the expansibility of perceptual dimensions into a
learning system? If the problem is solved, the learning system will be able to expand its input
dimensions during its lifetime, as shown in Fig. [[[b). Such a system can be applied to a variety of
fields including robot system, data stream mining, and information fusion. For example, if we want
to install a microphone to a robot which uses only a camera as an input device, with the system, there
is no need to retrain the robot offline from scratch; the information gathered from the microphone is
integrated with the information gathered from the camera online automatically!
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In recent years, many researchers have studied the problem from different perspectives. However,
to the best of our knowledge, no existing method is capable of simultaneously supporting the online
expansion of input dimensions across both multiple levels and multiple regions. Our method is the
first approach that enables such online expansion of input dimensions at multiple levels and regions.
Briefly, the main contributions of our work include: (1) We propose a hierarchical modular neural
network capable of expanding input dimensions across all hierarchical levels and modular areas.
The input dimensions of the network can be expanded at any time during online learning. (2) We
introduce a dimension integration algorithm that integrates information from new dimensions with
the neural circuits of existing dimensions, which enables the network to absorb the novel perceptual
dimensions in an online way. (3) We design corresponding experiments to realize and verify the
dimension expandable learning paradigm.

2 RELATED WORK

Relevant fields include machine learning with incremental features Zhou|(2022) and machine learn-
ing in open feature space Xing et al.| (2021)); He et al.|(2023). Here, we briefly review these fields.

Some studies directly expand the input dimension of the learning machine for the new features. X-
ing et al.[(2016); |Peng et al.[(2021)) learn and store features of new dimensional data by expanding
the dimension of cluster center vectors learned in the original dimensional space, thereby integrating
new dimensional features into cluster center vectors. [Hou et al.|(2023)); You et al.| (2024) expand the
input dimension of a linear classifier to receive new dimensional features, then use full-dimensional
(original and new) features to train the classifier. However, after training with the new input dimen-
sions, these methods are unable to perform classification on the data from the original dimensions.

Some studies hypothesize that there is a relationship between the new dimensional features and the
original dimensional features. Hou et al.|(2019;2022) assume that there is a linear mapping between
the new dimensional data and the original dimensional data. They learn the mapping by reconstruct-
ing the old dimensional data with the new dimensional data, then use the mapping to classify new
dimensional data. Subsequently, Hou et al.|(2021); Lian et al.| (2024)) extend the linear mapping to
a nonlinear mapping. Wang & Mo| (2021)) learn the relationship by cross-feature attention layers
and obtain parameters of each layer by minimizing the within-class scattering and maximizing the
interclass scattering. Similarly, these methods are also unable to perform classification using data
from the original dimensions after new dimensions have been introduced.

Some studies integrate the new input dimensions by ensemble learning. |Hou & Zhou| (2018)); |[Liu
et al. (2021} |2022); [Tu et al.| (2025)) train two classifiers in the original and new dimensional spaces
respectively, and integrate the two classifiers using ensemble learning. |Gu et al.|(2024) train a set of
classifiers in both existing and new dimensional spaces and then integrate them. [Schreckenberger
et al.|(2023)) train a feature forest for each new dimension and integrate these feature forests with the
forests trained on existing dimensions. However, after training with the new input dimensions, these
methods must use data from all dimensions for classification and cannot use data from the original
dimensions or new dimensions independently.

3 INPUT DIMENSION EXPANDABLE NETWORK

3.1 NETWORK ARCHITECTURE

As mentioned before, the input dimension of the mammalian nervous system can be expanded at
multiple levels. To enable the expansion of input dimensions at multiple levels and across multiple
areas, a hierarchical and modular neural network is designed. As shown in Fig. 2] we adopt the
structure of the brain network. It is a multi-channel structure, where each channel consists of several
feature areas and a unimodal association layer. A multimodal association layer is positioned on
top to integrate all channels. Signals are transmitted in both ascending and descending directions
between different channels, which enables the mutual activation of neurons from different channels
(modalities) and thus facilitates cross-modal recall. The expansion of input dimensions can occur at
all layers and areas. We use N* to represent the set of feature neurons of type oy, N to represent
the set of unimodal association neurons in channel 3, and N to represent the set of multimodal
association neurons.
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Figure 2: Input dimension expandable network. Signals are transmitted in both ascending and de-
scending directions. Dimension expansion can occur at all layers, as marked by the circled numbers.

3.1.1 FEATURE NEURON

As shown in Fig. [2] a feature neuron responds to some particular type of features. We use N* to
represent the set of feature neurons of type ay. Each neuron N ]fl’“ has an ascending pathway and

a descending pathway. The ascending pathway receives feature vector & = [x1,x2, ..., x,]. The
ascending activation function f of NV JO"“ is defined as follows,

n T t—1

= E E wjicosATR2r——,  |l@ — wjll2 <0
‘ T
i=1t=1

0, otherwise

()]

where w; = [w; 1, w;2,...,w; ] and 6 are the weights and threshold of N”". y“* is an activation
51gna1 which will be transmitted to the unimodal association neurons to Wthh N J‘"’“ connects. A;*
is a frequency parameter which corresponds to the i-th dimension of the weights (or features) Wlth
type . Here, each dimension corresponds to a unique frequency which means each feature type oy,
corresponds to a unique frequency vector A“* in the network. We assign a unique natural number
to each A" in practice. T is a parameter which is used to generate a period time of signal.

The descending pathways receive signals from unimodal association neurons. U;” 7 = 1 means
;

there exists a descending connection from unimodal association neuron N, 5 to feature neuron N; e
and U("J" = 0 means not. We use a®* = [a]*,a5",...,alF] to represent a signal transmltted in
a descending pathway between a unimodal association neuron and a feature neuron, and A% =
[AT*, AS*, ..., A%] to denote the signal variable. Each dimension AJ* corresponds to a frequency
A, which means this dimension receives an amplitude value a;* at frequency A. AJ* is modeled as
a Gaussian distribution A"* ~ N (1, 0;), and a relative probability density of a sample a;* of A*
is calculated with
(ai® — pi)?

207
The descending activation function in this descending pathway is defined as follows,

. 1, Vpik>9, 1<i<m
r 0, otherwise

Pl = exp(— ), 1<i<m

2)
where 9 is the threshold for the relative probability density.

3.1.2 UNIMODAL ASSOCIATION NEURON

As shown in Fig. 2] a unimodal association neuron associates different types of feature neurons in
a channel to form a unimodal concept. For example, the unimodal association neurons in a visual
channel can associate shape, color and other types of feature neurons to form visual concepts. We
use N” to represent the set of unimodal association neurons in channel 3.

The ascending connections from feature neurons of type «aj to unimodal association neurons are
represented by a 0-1 matrix W, where W = 1 means there exists a connection from feature
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neuron N ]“k to unimodal association neuron NV, # and W“" = 0 means not. Assume that there are n
different feature areas o1, oo, ..., o, in channel 3, the ascendlng activation function of the unimodal
association neuron Nf is deﬁned as follows,

B8 _ ay ay ap
N = yr, VWi R.ett =1 1<k<n
fo= Z 3)

0, otherwise

where Wﬁ’“ is the i-th row of W<k, e“* is a 0-1 vector, ej.”" = 1 if feature neuron N J‘.”‘ is activated.
y“* represents the signals generated by an activated feature neuron with feature type «; in channel
B using Eq. . 2 is the activation signal of N which equals the sum of the signals of feature
neurons to which N connects.

The descending pathways receive signals from multimodal association neurons. Uf , = 1 means
there exists a descending connection from multimodal association neuron N; to unimodal associa-
tion neuron N/ and U/, = 0 means not. We use a” = [a, a5, ..., a?] to represent a signal transmitted
in a descending pathway between a multimodal association neuron and a unimodal association neu-
ron, and A? = [A4? A5, ..., A?] to denote the signal variable. Each dimension A? corresponds to
a frequency A, which means this dimension receives an amplitude value o’ at frequency A. The

descending activation function is modeled similarly to Eq. (2)),

a®,  Vpl >, 1<i<s
f3={ e O

0, otherwise

where a®* is a descending signal which is transmitted to feature area o, as shown in Fig. 2}

3.1.3 MULTIMODAL ASSOCIATION NEURON

As shown in Fig. 2] multimodal association neurons connect unimodal association neurons across
channels. They transmit signals from one channel to others, enabling coordination among channels.
We denote the set of multimodal association neurons as N.

Ascending connections from unimodal association neurons in channel 8 to multimodal association
neurons are represented by a 0-1 matrix W#, where ij = 1 means there exists an ascending
connection from unimodal association neuron N f to multimodal association neuron N; and ij =0
means not. The ascending activation function of NV; is defined as follows,
. { la,\] = F(z"), W/ .e’=1
Jur = T %)
0, otherwise

where Wf is the i-th row of W*. e” is a 0-1 vector, ef = 1 when unimodal association neuron N f
is activated. z” is the output of the activated unimodal association neuron in channel 3 generated by
Eq. (3), () is the Fourier transform. The output [a, A] are the amplitude and frequency obtained by
the Fourler transform, and we write a® = [a, A] . The amphtude a can be transmitted to the unimodal
association layer and feature areas of all other channels via descending connections according to the
signal variable A” and frequency A attached to A® of the descending connections.

3.2 DIMENSION INTEGRATION

When new input dimensions are introduced, the neurons should absorb the signals transmitted by
the new input dimensions. Now, we introduce the dimension integration of different neurons.

3.2.1 FEATURE NEURON

Assume that there are r feature neurons in feature area «; which receive n dimensional input
feature originally. Now new m dimension feature input are introduced, as indicated by the cir-
cled number 1 in Fig. 2} The input feature & = [z1,2,...,2n] € R" evolves to = [&,&] =
(1,22, ey Try ooy T 1y ooy Ttm] € R™T™. During the dimension integration, area oy can include
two types of feature neurons, one type that has already absorbed new input dimensions and the other
that has not. We use set N* and N°* to represent the sets of neurons whose weights are in R™ and
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R"™, N° = N° U N%. The main idea of the integration algorithm is to find an n dimensional
feature neuron to absorb the current input & = [zn41, Tnt2, ..., Tn+m]. First, the network finds feature
neurons whose weights are most similar to the current input « in space R™ and R™™™,

NZ* = argmin ||& — w2, NZ* = argmin ||z — w;||2

N;"k EN%K N]‘,’keNg"k

where @; = [wj,1,wj,2, ..., w;n] is the part of the weights of N;** in space R". Then, the activation
function is checked for Ng* and Ng* with Eq. (I). Obviously, there are four combinations:

(1) ||z — wall2 < 6 and || — wal|2 > 0, which means N;* is activated but Ng* is not.

If the dimension of the weights w, of N2* is equal to n, the current input activates a low-dimensional
feature neuron but does not activate any high-dimensional feature neurons. The network updates and
expands the weights wg of N;* to a high dimensional space as follows,
1 _
W = wa + — o (T — wa)

wa = [wa, Z] (6)

where u; is the number of updating times of each dimension of w3, o is the Hadamard product. Eq.
@ expands the weights of N2* to space R™*™ with &, which is used to initialize the weights of
the new input dimensions. Meanwhile, the ascending activation function of N5* evolves from an n
dimension function to an n + m dimension function, i.e.,

[Z = wal[z < 0 ~ [|& — wall2 <0 ©)

NZ'* activates and generates ascending signals using n original and m new dimensions by Eq. (1),

n+m T

o t—1
Yo = Z Z Wa,i COS A; ’“27r7T ®)
=1 t=1
where wq,; is the i-th element of wa. X** = [A05,, A\%%,, ..., Aok 1Tis initialized and allocated to area

ak. In practice, we set them to different natural numbers which are different from all the existing
frequency parameters in the network.

If the dimension of NZ* is equal to n+m, N5* does not need to be expanded to the high-dimensional
space R"*™. The network creates a new neuron N, ¥, to record the current feature x, i.e., w, 11 = .
Then N, is activated and generates signals with Eq. @)

(2) ||® — Wall2 < 6 and ||z — wel||2 < 6, which means No* and Ng* are both activated. In such a
scenario, we let the activated high-dimensional neuron Ng* inhibit the activated low-dimensional
neuron and update the weights of neuron Ng* with w, = wa + - o (& — w,). Then Ng™* is activated
and generates signals with Eq. (T)). ’

(3) || — wallz > 6 and ||l — wa||2 < 6, i.e., Ng* is activated but Nz* is not. The network updates
Ng* and generates ascending signals as the way in combination (2).

4) |& — wall2 > 0 and ||z — wal|l2 > 6, which means neither Ng* nor Ng* is activated. A new
neuron N,f, is created and activated as the way in combination (1).

3.2.2 UNIMODAL ASSOCIATION NEURON

When new input dimensions form a new type of feature, unimodal association neurons absorb the
new dimensions as the circled number 2 in Fig. [2 shows. For example, channel B has a feature area
s originally. Next, a new feature extraction function f, emerges in the channel. Correspondingly,
the input dimension of channel B is expanded by a new feature area u.

Assume that there are r» unimodal association neurons in channel 8 which receive input from n
feature areas originally. Then m new feature areas are introduced. Now, a group of feature neurons
NZY, Ng2, ..., Nom are activate in the original feature areas a1, oo, ..., an, another group of feature
neurons Ngr\', Nart?, ..., Na,tm are activated in the new feature areas ani1, qng2s wooy Qngm.
Similar to the feature neuron, during the dimension integration, channel 8 can include two types of
unimodal association neurons, one type that has already absorbed new input dimensions which are
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recorded in set N and the other that has not which are recorded in set N°, and N? = N° U N?. We
let the activated feature neurons try to activate some unimodal association neuron in sets N and N

with Eq. (3),
NZ = (NP\WPk . e =1, 1<k <n, N’ e NP}
NE = {N|WF er =1,1<k <n+m, N} € N°}

where e®* is a 0-1 vector and ez} = 1 which means Ny is activated. The integration algorithm
finds a unimodal association neuron to associate activated feature neurons in the new feature areas
according to the results of N7 and N”. Obviously, there are four combinations:

(1) NP+ and N’=g, the current input activates a low-dimensional unimodal association neuron
but does not activate any high-dimensional unimodal association neurons. The network applies the
dimension integration to N2 as follows,

Woi=e", n+l1<i<n+m 9)

Eq. (@) expands the input dimensions of N/ by creating new ascending connections from feature
neuron Ng ™!, Not2, ..., Nart in each new feature area to N . Then it generates signals using n

original and m new dimensions by Eq. (3)),

n n+m
S S (10)
i=1 i=n+1

The ascending activation function of N2 evolves from n dimension to n 4+ m dimension,

YWEk e =1, 1<k<n ~ YW .e* =1, 1<k<n+m an

(2) N°+@ and N+, the current input simultaneously activates a low-dimensional and a high-
dimensional unimodal association neuron. The activated high-dimensional neuron N/ inhibits the
activated low-dimensional neuron N/ and generates ascending signals with Eq. (10)).

(3) N?=2 and NP+w, the current input activates a high-dimensional unimodal association neu-
ron but does not activate any low-dimensional unimodal association neurons. The activated high-
dimensional neuron generates ascending signals with Eq. (I0).

(4) N?=g and NP=p, the current input does not activate any unimodal association neurons. A new
unimodal association neuron N’ +1 1s created to associate the activated feature neurons to form a
unimodal concept,

Wojfly: =e%%, 1<k<n+m

T

then N 1 18 activated and generates signals with Eq. .

3.2.3 MULTIMODAL ASSOCIATION NEURON

When new input dimensions come from a new channel, multimodal association neurons absorb the
new input dimensions, as the circled number 3 in Fig. 2 shows. In this situation, input from at least
one original channel is needed to guide the input of the new channel to some proper multimodal
association neurons.

Without loss of generality, we use an original channel A which receives & and a new channel X
which receives Z to introduce the integration algorithm. As shown in Fig. [2| when each channel
receives its input, it first conducts ascending activation using Eq. (I) and Eq. (3). Assume that
feature neurons Nz, Ng2, ..., No™ and unimodal association neuron NA are activated in channel
A, feature neurons Ny ', Now 2, . Ngr™ and unimodal association neuron N, are activated in
channel X. The activated unimodal association neurons try to activate some multimodal association

neuron with Eq. (3)),
Na={N;|W7 e’ =1, N;e N}, N,={N;|W;\-e¥ =1, N;e N}

where e is a 0-1 vector and e” = 1 which means N is activated, e is also a 0-1 vector and eX = 1
which means N is activated. The integration algorithm finds a proper multimodal association
neuron to connect the activated unimodal association neuron in channel X according to the results
of N5 and N,. Again, there are four combinations:
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(1) N;#@ and N,=@, channel A activates some multimodal association neuron, but the new chan-
nel X does not. The network applies the dimension integration to N; to associate the unimodal
association neuron NX in channel X,

Wi, =1 (12)
U, =1 13)

Eq. expands the input dimension of the multimodal association neuron N; by creating an as-
cending connection from the unimodal association neuron N;X in the new channel X to N,. Eq.
(T3) expands the output dimension of the multimodal association neuron N; by creating a descend-
ing connection from N, to N;*. Via the descending connection, the network can do retrieval among
different channels. Together, Eq. (I2) and Eq. (I3) create a bidirectional connection between chan-
nel A and the new channel X.

Then N5 can generate signals using the input from the new channel with Eq. (3)),
[a,A] = ]:(zX) (14)

Meanwhile, the descending connection Uz, between N; and N;* adds X of channel X in Eq.
for transmitting signals from channel X, so does the descending connection Ug%, between N:* and
the activated feature neuron Ng. The ascending activation function of neuron N5 evolves from n
modalities to n + 1 modalities, i.e.,

W/ e’ =1, Be{A, B} ~ IWL . =1, Be{A B, X} (15)

(2) N3=2 and N,#@, channel X activates some multimodal association neuron, but channel A
does not. We do a dimension integration process which is similar to that of combination (1) to the
multimodal association neuron N,.

(3) N;#2 and N,#@, both channel A and channel X activate some multimodal association neu-
rons. We do a dimension integration process similar to that of combination (1) to the multimodal
association neurons Nz and N,.

(4) N3=2 and N,=@, neither channel A nor channel X activates any multimodal association neuron.
A new association neuron N, is initialized to associate the unimodal association neurons N/ and
NZ* by creating new ascending and descending connections as follows,

Whi.=1 Wii.=1 Ul .=1 U}, .=1 (16)

Now the dimension integration for different types of neurons is introduced. It is easy to handle these
different types of dimension integration simultaneously if the input contains different types of input
dimension expansion, which will be verified in the experiments.

4 EXPERIMENTS

We use the datasets used in Xing et al.| (2021) and [Lai et al.| (2011). The dataset Xing et al.| (2021)
contains images, audio (name words) and taste data of common fruits. We denote this dataset as IAT
dataset. To verify the learning ability of the network, we add color words and taste words (audio)
to IAT, resulting in an expanded dataset, named eIAT. The dataset Lai et al. (201 1)) contains images
of objects in home environments. We take images of fruit objects from it and pair them with audio
and taste data from eIAT. We denote this dataset as MIX. We compare classic and SOTA methods
including PEN [Xing et al.| (2016)), OPID Hou & Zhou| (2018)), AEN Xing et al.| (2021), ALIU [Tu
et al.| (2025), and OLD?S |Lian et al.| (2024). The parameters of our method are set as follows: In
Eq. (I), 6 of the feature neuron is set to a quarter of the 2-norm of the weight of the neuron and
T is set to 150. In Eq. (Z) and Eq. (@), ¥ is set to 0.8 which means a relative probability of 80%.
Visual features include the color of the object and the normalized Fourier descriptor of the object’s
shape. Auditory features are the Mel-Frequency Cepstral Coefficients of the syllables contained in
the word.

Channel Expansion: [Xing et al.|(2021) design a channel expansion experiment. They first give their
network a visual channel and let the network learn the visual samples. After a period of learning, an
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Table 1: Results of the channel expansion experiment. V: Vision, A: Audition, T: Taste.

Dataset Task Methods
PEN OPID AEN OLD®s ALIU IDEN
\% 81.5+19 84.0+21 84.4+24 863+21 852+20 889+19
IAT A 80.7+£20 815+20 82.6+23 84.1+19 8294+23 86.1+2.2
T 84.1+16 8.0+17 89+17 85+16 884+18 91.8+15
A% 80.1 £ 2.1 809+24 82.74+22 839+18 823+22 86.0+19
elAT A 782+24 787+22 804+26 812+20 79.6+24 847421
T 824+19 852+16 855+15 863+13 857+15 884+17
A% 729 4+26 741+£23 755+25 778+19 7504+23 80.3+2.1
MIX A 70.3 + 3.1 724+£20 743+£29 757+24 739424 791420
T 7444+25 757+£18 768+£23 786+16 764+21 81.6 +£ 1.8

auditory channel is added to the network and pairs of object’s image and audio sample are used to
train the network. After all audio samples are learned, they add a taste channel to the network and
use pairs of image and taste data to train the network. Here, to test the robustness of the methods,
we do the channel expansion in random orders, e.g., we expand the channels in the order of taste,
vision, and audition or audition, vision and taste, etc.

To test the learned model, we do a recall experiment, i.e., we feed input to one channel to get outputs
from the other channels. For example, we use visual input to get auditory and taste outputs, which is
denoted as Task V in Table[I] Task A means using auditory input to get visual and taste outputs, and
Task T is defined similarly. OPID, ALIU, and OLD?S can only perform classification after learning
new dimensions, therefore, we conduct classification on these methods using the new dimension
data. We conduct the training and testing experiments 30 times to obtain the average performance.
Table 1| shows that our method gets the highest accuracy.

Learning in Open Environment: The above experiment is conducted in the close environment,
where all classes are available beforehand. Here, to test the robustness of the methods against
the catastrophic forgetting, we conduct the channel expansion in an open environment, where new
classes emerge after the training is complet-

ed on the current classes. We divide the

dataset into 2, 4, and 10 roughly equal parts Table 2: Results in the open environment.

with different classes. In each channel ex-
pansion step, we first feed one part to the  Dataset Parts  Task
network. After learning is completed, we

Methods
AEN IDEN

o]
o
z

V815422 843420 89.0+2.0
feed the next part, and so forth. We also 2 A 809%23 828%25 8§59+18
conduct the training and testing 30 times. T 834418 891418 OL7+16
Since OPID and OLD?®S require all classes IAT 4 Y 87320 7 i 23 87113
available before training, they are not appli- T 843416 89417 97417

: : Vo 821418 848+21 893+2.0
cable to this environment. . Table 2| shows 10 A 816121 0124 861119
that our method gets the highest accuracy, T 848+17 898+16 923+16
and is comparable to that in the closed en- ) Y 4$20 829421 8e342d
vironment shown in Table[T] indicating that T  822+23 857%17 887+17
i i iron- V805421 831423 864+19
our inethod is stable in the open environ eIAT A2 sl i SR E B
ment. 5T 4ET LESN
Lo Vo 809419 835422 86.6+20
Mix Expansion: The channel expansion in 10 A 7B8E25 814 i 25 852322
Xing et al.|(2021) corresponds to the task of v 72'8 = 3‘3 75'8 f 2'8 80'5 n 2'3
the dimension integration of the multimodal 2 A 706¥31 741E31 790F23
association neuron in our paper. Here, a mix T 747+£25 769420 8l4£19
expansion experiment is designed which is ~ MIX 4 N R9E WAER RIiR
more general than channel expansion. It T 749427 715420 816+£20
simultaneously uses the dimension integra- 10 X 13337 Tee4ss 8l422
T 752426 778+21 82+18

tion of the feature neurons, unimodal asso-
ciation neurons and multimodal association
neurons.

For example, we initially give our network a visual channel that only receives the gray image of
each object. At this stage, we let the network learn shape features of the object. After a period
of learning, we add green and blue dimensions to the visual channel and the network can receive
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Figure 3: Change of a substructure of the network after new input dimensions are added. The icons
next to the neurons (circles) represent the objects to which the neurons maximally respond.

gray and GB images. We let the network learn color features from the GB images. Meanwhile, the
network should correctly introduce the color features to the learned shape features. Next we add
a red dimension to the visual channel. The network should correctly integrate the red dimension
color features to the learned GB dimension col-
or features. After that, we add an auditory

channel to the network. In this period, pairs Table 3: Results of the mix expansion.
of audio sample and image of each object are —
fed into the network to integrate the auditory Dataset  Env. 5 a: -
channel. Finally, a taste channel is added to the a Y S ——
network. We also use different adding orders IAT e . : = . :
. X . Open  89.0+21 86.1+£20 921417
of above dimensions and do the experiment 30
. . ) Close 858422 840422 880+16
times in close and open environments. All com- eIAT
) L Open  863+20 849+22 887+ 18
parison methods cannot handle this mix expan-
. . . Close 80.14+25 787423 8l1+21
sion experiment, we do not train them. TableE] MIX

Open 808423 794425 819+19

shows that the accuracy of the mix expansion is
comparable with that in the channel expansion
in both environments, which is higher than the
accuracy of all other methods in Table|l|and Table

Fig. [B|shows the change of a substructure of the network with the expansion of the input dimensions.
In the beginning the network learns some shape features for the object pear. After the GB dimension
is added, the network learns two color features in the green-blue color space. Two visual unimodal
association neurons are obtained by integrating the color features with the shape features. After the
red dimension is added, the two color feature neurons are expanded to the RGB color space. The
two visual unimodal association neurons are also expanded to RGB dimension which represent a
green pear and a yellow pear. After the auditory channel is added, the neurons in the visual channel
are associated with the auditory channel. The network comes to a new world with the concept of
auditory sense. Finally, the taste channel is correctly added to the network. Fig. |3|demonstrates that
new dimensions are correctly and effectively integrated into the network in an online way.

5 CONCLUSION

To enable multi-level dimension expansion, a hierarchical modular network inspired by the brain
network structure is designed, and an integration algorithm is proposed to bind the new input dimen-
sions with the existing ones in an online manner. We design a series of comprehensive dimension
expansion experiments, and the results confirm our claims. Our method is capable of handling many
potential practical problems in fields such as robotic systems, information fusion, and data stream
mining. For example, when new sensors are added to a robot to expand its perception capabilities,
there is no need for tedious offline retraining of the robot from scratch. Instead, the information
collected by the new sensors will be automatically absorbed by the network in an online manner.
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