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ABSTRACT

The manifold hypothesis, which assumes that data lie on or close to an unknown1

manifold of low intrinsic dimensionality, is a staple of modern machine learning2

research. However, recent work has shown that real-world data exhibit distinct3

non-manifold structures, which result in singularities that can lead to erroneous4

conclusions about the data. Detecting such singularities is therefore crucial as a5

precursor to interpolation and inference tasks. We address detecting singularities6

by developing (i) persistent local homology, a new topology-driven framework7

for quantifying the intrinsic dimension of a data set locally, and (ii) Euclidicity, a8

topology-based multi-scale measure for assessing the ‘manifoldness’ of individual9

points. We show that our approach can reliably identify singularities of complex10

spaces, while also capturing singular structures in real-world data sets.11

1 INTRODUCTION12

The ever-increasing amount and complexity of real-world data necessitate the development of new13

methods to extract less complex—but still meaningful—representations of the underlying data. One14

approach to this problem is via dimensionality reduction techniques, where the data is assumed to15

be of strictly lower dimension than its number of features. Traditional algorithms in this field such16

as PCA are restricted to linear descriptions of data, and are therefore of limited use for complex,17

non-linear data sets that often appear in practice. By contrast, non-linear dimensionality reduc-18

tion algorithms, such as UMAP (McInnes et al., 2018), t-SNE (van der Maaten & Hinton, 2008),19

or autoencoders (Kingma & Welling, 2019) share one common assumption: the underlying data is20

supposed to be close to a manifold with small intrinsic dimension, i.e. while the input data may have21

a large ambient dimension N , there is a n-dimensional manifold with n≪ N that best describes the22

data. For some data sets, this manifold hypothesis is appropriate: certain natural images are known23

to be well-described by a manifold, for instance (Carlsson, 2009), enabling the use of specialised24

autoencoders for visualisation (Moor et al., 2020). However, recent research shows evidence that25

the manifold hypothesis does not necessarily hold for complex data sets (Brown et al., 2022), and26

that manifold learning techniques tend to fail for non-manifold data (Rieck & Leitte, 2015; Scoccola27

& Perea, 2022). These failures are typically the result of singularities, i.e. regions of a space that28

violate the properties of a manifold. For example, the ‘pinched torus,’ an object obtained by com-29

pressing a neighbourhood of a random point in a torus to a single point, fails to satisfy the manifold30

hypothesis at the ‘pinch point:’ this point, unlike all other points of the ‘pinched torus,’ does not31

have a neighbourhood homeomorphic to R2 (see Fig. 1 for an illustration).32

Since singularities—unlike outliers that arise from incorrect labels, for example—may carry relevant33

information (Jakubowski et al., 2020), we address the shortcomings of existing dimensionality re-34

duction methods by assuming an agnostic view on any given data set. Instead of trying to prescribe35

the rigid requirements of a manifold, we consider intrinsic dimensionality to be a fundamentally36

local phenomenon: we permit dimensionality to vary across points in the data set, and, more im-37

portantly, across the scale of locality to be considered. The only assumption we make is that the38

data is of significantly lower dimension than the dimension of the ambient space. This perspective39

enables us to assess the deviation of individual points from idealised non-singular spaces, resulting40

in a measure of the Euclidicity of a point. Our method is based on a local version of topological data41

analysis (TDA), a method from computational topology that is capable of quantifying the shape of42

a data set on multiple scales (Edelsbrunner & Harer, 2010).43
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Figure 1: Overview of our method. Using persistent local homology (PLH), we derive a persistent
intrinsic dimension and, subsequently, a Euclidicity score that measures the deviation from a space
to a Euclidean model space. Here, Euclidicity highlights the singularity at the ‘pinch point.’ Please
refer to Section 4 for more details.

Our contributions. We present a universal framework for detecting singular regions in data. This44

framework is agnostic with respect to geometric or stochastic properties of the underlying data and45

only requires a notion of intrinsic dimension of neighbourhoods. Our approach is based on a novel46

formulation of persistent local homology (PLH), a multi-parameter tool that detects the shape of47

local neighbourhoods of a given point in the data set, making use of multiple scales of locality.48

We employ PLH in two different capacities: (i) We use PLH to estimate the intrinsic dimension49

of a point locally. This enables us to assess how complex a given data set is, both in terms of the50

magnitude of the intrinsic dimension and in terms of the variance of its intrinsic dimension across51

individual points. (ii) Given the intrinsic dimension of the neighbourhood of a point, we use PLH to52

measure Euclidicity, a novel quantity that we define to measure the deviation of a point from being53

Euclidean.We also provide theoretical guarantees on the approximation quality for certain classes of54

spaces and show the utility of our proposed method experimentally on several data sets.55

2 BACKGROUND: PERSISTENT HOMOLOGY AND STRATIFIED SPACES56

We first provide an overview of persistent homology and stratified spaces, as well as their relation57

to local homology. The former concept constitutes a generic framework for assessing complex data58

at multiple scales by measuring its topological characteristics such as ‘holes’ and ‘voids,’ while the59

latter will subsequently serve as a general setting to describe singularities, in which our framework60

admits advantageous properties.61

Persistent homology. Persistent homology is a method for computing topological features at dif-62

ferent scales, capturing an intrinsic notion of relevance in terms of spatial scale parameters. Given63

a finite metric space (X,d), the Vietoris–Rips complex at step t is defined as the abstract simplicial64

complex V(X, t), in which an abstract k-simplex (x0, . . . , xk) of points inX is spanned if and only65

if d(xi, xj) ≤ t for all 0 ≤ i ≤ j ≤ k.1 For t1 ≤ t2, the inclusions V(X, t1) ↪→ V(X, t2) yield66

a filtration, i.e. a sequence of nested simplicial complexes, which we denote by V(X, •). Applying67

the ith homology functor to this collection of spaces and inclusions between them induces maps68

on the homology level f t1,t2
i : Hi(V(X, t1)) → Hi(V(X, t2)) for any t1 ≤ t2. The ith persistent69

homology (PH) of X with respect to the Vietoris-Rips construction is defined to be the collection70

of all these ith homology groups, together with the respective induced maps between them, and71

denoted by PHi(X;V). PH can therefore be viewed as a tool that keeps track of topological fea-72

tures such as holes and voids on multiple scales. For a more comprehensive introduction to PH in73

the context of machine learning, see Hensel et al. (2021). The so-called ‘creation’ and ‘destruc-74

tion’ times of these features are summarised in a persistence diagram D ⊂ R × R ∪ {∞}, where75

any point (b, d) ∈ D corresponds to a homology class that arises at filtration step b, and lasts un-76

til filtration step d. The difference |d − b| is referred to as the lifetime or eponymous persistence77

of this homology class. There are several distance measures for comparing persistence diagrams,78

one of them being the bottleneck distance dB. For two persistence diagrams D,D′, it is defined as79

dB(D,D′) := infγ supx∈D ∥x− γ(x)∥∞, where γ ranges over all bijections between D and D′.80

1For readers familiar with persistent homology, we depart from the usual convention of using ϵ as the
threshold parameter since we will require it to denote the scale of our persistent local homology calculations.
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Figure 2: (a): Non-manifold space.
(b): Annulus around a regular
point x. (c): Annulus around a
singular point. The neighbourhood
around y is different from all others.

Stratified spaces. Manifolds are widely studied and partic-81

ularly well-behaved topological spaces: they locally resemble82

Euclidean space near any point. However, spaces that arise83

naturally often violate this local homogeneity condition, for84

example due to the occurrence of singularities (see Fig. 2 for85

an example), or since the space is of mixed dimensions. Strat-86

ified spaces generalise the concept of a manifold such that87

singular spaces are also addressed. Large classes of singu-88

lar spaces can be formulated as stratified spaces, including89

(i) complex algebraic varieties, (ii) spaces that are disjoint90

unions of a finite number of manifolds of arbitrary dimen-91

sions, and (iii) spaces that admit isolated singularities. Being92

thus intrinsically capable of describing a wider class of spaces, we argue that stratified spaces are93

the right tool to analyse real-world data. Subsequently, we define stratified spaces in the setting of94

simplicial complexes. A stratified simplicial complex2 of dimension 0 is a finite set of points with95

the discrete topology. A stratified simplicial complex of dimension n is an n-dimensional simplicial96

complex X , together with a filtration of closed subcomplexes X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃97

X−1 = ∅ such that Xi\Xi−1 is an i-dimensional manifold for all i, and such that every point x ∈ X98

possesses a distinguished local neighbourhood U ∼= Rk× c◦L in X , where L is a compact stratified99

simplicial complex of dimension n − k − 1 and c◦ refers to the open cone construction (see Ap-100

pendix A.1). If X is a manifold, then independently of the point under consideration, L is given by101

a sphere since for a manifold, any point admits a local neighbourhood that is homeomorphic to Rn.102

This observation will serve as the primary motivation for our Euclidicity measure in Section 4.2.103

Local homology. Local homology serves as a tool to quantify topological properties of infinites-104

imal small neighbourhoods of a fixed point. For a topological space X and x ∈ X , its ith local105

homology group is defined as Hi(X,X \ x) := lim−→U
Hi(X,X \ U), where the direct system is106

given by the induced maps on homology that arise via the inclusion of (small) neighbourhoods of107

x.3 When X is a simplicial complex, we may view x as a vertex in X , using subdivision if neces-108

sary. Its star St(x) is defined to be the union of simplices in X that have x as a face, whereas its link109

Lk(x) consists of all simplices in St(x) that do not have x as a face. Using excision and the long110

exact homology sequence (see Appendix A.3), we have111

Hi(X,X \ x) ∼= H̃i−1(Lk(x)). (1)

The key takeaway here is that the homology of Lk(x) will usually differ from the homology of112

a sphere, once Lk(x) is not homotopy-equivalent to a sphere. For example, when x is an isolated113

singularity in a stratified simplicial complex X of dimension n, then its distinguished neighbourhood114

is given by U ∼= c◦L. Thus, Lk(x) = L and Hi(X,X \ x) = H̃i−1(L) by Eq. (1), which is usually115

different from H̃i−1(S
n−1), when x does not admit a Euclidean neighbourhood. This observation116

motivates and justifies using local homology for detecting non-Euclidean neighbourhoods.117

3 RELATED WORK118

Methods from topological data analysis have recently attracted much attention in machine learning,119

particularly due to persistent homology, which captures global topological properties of the under-120

lying data set on different scales. We give a brief overview of existing methods in the emerging field121

of topology-driven singularity detection, outlining the differences to our approach below. Several122

works already assume a local perspective on homology to detect information about the intrinsic di-123

mensionality of the data or the presence of certain singularities. Rieck et al. (2020) define persistent124

intersection homology via known stratifications, whereas Fasy & Wang (2016) and Bendich (2008),125

for instance, both present persistent versions of local homology. By contrast, Stolz et al. (2020)126

follow a different approach, where local homology is approximated as the absolute homology of127

2Here, we actually mean the geometric realisation of the corresponding simplicial complex; by abuse of
notation we may denote both objects by the term ‘simplicial complex.’

3Heuristically, a local homology class can be thought of as a homology class of an infinitesimal small
punctured neighbourhood of a point.
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a small annulus of a given neighbourhood, resulting in an algorithm for geometric anomaly detec-128

tion (which requires knowing the intrinsic dimension of the data set). Bendich et al. (2007) employ129

persistence vineyards, i.e. continuous families of persistence diagrams, to assess the local homology130

of a point in a stratified space, whereas Dey et al. (2014) use local homology to estimate the (global)131

intrinsic dimension of hidden, possibly noisy manifolds. While manifold learning is concerned with132

the development of algorithms that extract geometric information under the assumption that the133

given data lie on a manifold, Brown et al. (2022) recently introduced the idea to assume data spaces134

to consist of a union of manifolds. Intrinsic dimension is thus allowed to vary across connected135

components of the data space, but singularities are excluded under this assumption, whereas our136

framework detects the correct intrinsic dimension for large classes of singular spaces. Birdal et al.137

(2021) define a global persistent homology dimension for describing neural networks; our persistent138

intrinsic dimension, by contrast, is local and may thus change across different points in the data set.139

Key differences to existing approaches. Our approach crucially differs from existing approaches140

in essential components. In comparison to all aforementioned contributions, we capture additional141

local geometric information: we consider multiple scales of locality in a persistent framework for142

local homology. Concerning the overall construction, Stolz et al. (2020) is the closest to our method.143

However, the authors assume that the intrinsic dimension is known and the proposed algorithm uses144

a fixed scale, whereas our approach (i) operates in a multi-scale setting, (ii) provides local estimates145

of intrinsic dimensionality of the data space, and (iii) incorporates model spaces that serve as a com-146

parison. We can thus measure the deviation from an idealised manifold, requiring fewer assumptions147

on the structure of the input data (Section 5.4 demonstrates the benefits of this perspective).148

4 METHODS149

Our framework TOAST (Topological Algorithm for Singularity Tracking) consists of two parts:150

(i) a method to calculate a local intrinsic dimension of the data, and (ii) Euclidicity, a measure for151

assessing the multi-scale deviation from a Euclidean space. TOAST is based on the assumption that152

the intrinsic dimension of some given data is not necessarily constant across the data set, and is153

best described by local measurements, i.e. measurements in a small neighbourhood of a given point.154

Since there is no canonical choice for the magnitude of such a neighbourhood, TOAST is built on a155

multi-scale analysis of data. Our main idea involves constructing a collection of local (punctured)156

neighbourhoods for varying locality scales, and subsequently recording their topological features.157

This procedure allows us to approximate local topological features (specifically, local homology)158

of a given point, which we use to measure the intrinsic dimensionality of a space. Moreover, by159

calculating the distance to Euclidean model spaces, we are capable of detecting singularities in a160

large range of input data sets. Subsequently, we will briefly describe the ‘moving parts’ of TOAST;161

please refer to Appendix A.1 for a terminology list.162

4.1 PERSISTENT INTRINSIC DIMENSION163

For a finite metric space (X,d) and x ∈ X, let Bs
r(x) := {y ∈ X | r ≤ d(x, y) ≤ s} denote164

the intrinsic annulus of x in X with respect to the parameters r and s. Moreover, let F denote a165

procedure that takes as input a finite metric space and outputs an ascending filtration of topological166

spaces—such as a Vietoris–Rips filtration. By applying F to the intrinsic annulus of x, we obtain167

a tri-filtration (F(Bs
r(x), t))r,s,t, where t corresponds to the respective filtration step that is deter-168

mined by F . Note that this tri-filtration is covariant in s and t, but contravariant in r; we denote it by169

F(B•
•(x), •). Applying ith homology to this filtration yields a tri-parameter persistent module that170

we call ith persistent local homology (PLH) of x, denoted by PLHi(x;F) := PHi(F(B•
•(x), •)).171

To the best of our knowledge, this is the first time that PLH is considered as a multi-parameter per-172

sistence module. Since the Vietoris–Rips filtration is the pre-eminent filtration in TDA, we will also173

use the abbreviated notation PLHi(x) := PLHi(x;V).174

Our PLH formulation enjoys stability properties similar to the seminal stability theorem in persistent175

homology (Cohen-Steiner et al., 2007), making it robust to small parameter changes (we assess176

empirical stability in Section 5.1).177

Theorem 1. Given a finite metric space X and x ∈ X, let Bs
r(x) and Bs′

r′ (x) denote two178

intrinsic annuli with |r − r′| ≤ ϵ1 and |s − s′| ≤ ϵ2. Furthermore, let D,D′ denote the179
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Figure 3: The intrinsic annulus Bs
r(x) around a point x in a metric space (X,d), as well as three

filtration steps with varying t parameters. By adjusting r and s, we obtain a tri-filtration.

persistence diagrams corresponding to PHi(B
s
r(x);V) and PHi(B

s′

r′ (x);V), respectively. Then180
1
2 dB(D,D′) ≤ max{ϵ1, ϵ2}.181

For a finite set of points X ⊂ RN and x ∈ X, we define the persistent intrinsic dimension (PID)182

of x at scale ϵ as ix(ϵ) := max{i ∈ N | PHi−1(B
s
r(x)) ̸= 0 for some r and s with s < ϵ}. This183

measure serves as a multi-scale characterisation of the intrinsic dimension of a data set. In case our184

data set constitutes a manifold sample, it turns out that we can recover the correct dimension.185

Theorem 2. Let M ⊂ RN be an n-dimensional compact smooth manifold and let X :=186

{x1, . . . , xS} be a collection of uniform samples from M . For a sufficiently large S, there exist187

constants ϵ1, ϵ2 > 0 such that ix(ϵ) = n for all ϵ1 < ϵ < ϵ2 and any point x ∈ X. Moreover, ϵ1 can188

be chosen arbitrarily small by increasing S.189

The implication of Theorem 2 is that ix(ϵ) computes the correct intrinsic dimension of M in a certain190

range of values ϵ > 0, provided the sample is sufficiently large. In particular, ix(ϵ) persists in this191

range, which suggests to consider a collection of ix(ϵ) for varying ϵ to analyse the intrinsic dimen-192

sion of x. We also have the following corollary, which specifically addresses stratified spaces (such193

as the ‘pinched torus’), implying that our method can correctly detect the intrinsic dimension of194

individual strata. PID is thus capable of handling large classes of ‘non-manifold’ data sets.195

Corollary 1. Let X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X−1 = ∅ be an n-dimensional196

compact stratified simplicial complex, s.t. Xi \ Xi−1 is smooth for every i. For a fixed i, let197

Xi := {x1, . . . , xS} be a collection of uniform samples from Xi \ Xi−1. For a sufficiently large198

S, there are constants ϵ1, ϵ2 > 0 such that ix(ϵ) = i for all ϵ1 < ϵ < ϵ2 and any point x ∈ Xi.199

Moreover, ϵ1 can be chosen arbitrarily small by increasing S.200

4.2 EUCLIDICITY201

Knowledge about the intrinsic dimension of a neighbourhood is crucial for measuring to what extent202

such a neighbourhood deviates from being Euclidean. We refer to this deviation as Euclidicity, with203

the understanding that low values indicate Euclidean neighbourhoods while high values indicate204

singular regions of a data set. Euclidicity can be calculated without stringent assumptions on mani-205

foldness: letX ⊂ RN be a finite data set, x ∈ X a point, and assume that we are given an estimate n206

of the intrinsic dimension of x. In particular, the previously-described PID estimation procedure is207

applicable in this setting and may be used to obtain n, for example by calculating statistics on the208

set of ix(ϵ) for varying locality parameters ϵ. Euclidicity, however, can also make use of other di-209

mensionality estimation procedures (see Camastra & Staiano (2016) for a survey). To assess how210

far a given neighbourhood of x is from being Euclidean, we compare it to a Euclidean model space211

by measuring the deviation of their corresponding persistent local homology features. We start by212

defining the Euclidean annulus EBs
r(x) of x for parameters r and s to be a set of random uniform213

samples of {y ∈ Rn | r ≤ d(x, y) ≤ s} such that |EBs
r(x)| = |Bs

r(x)|. Here, r and s correspond214

to the inner and outer radius of the Euclidean annulus, respectively. For r′ ≤ r and s ≤ s′ we extend215

EBs
r(x) by sampling additional points to obtain EBs′

r′(x) with |EBs′

r′(x)| = |Bs′

r′ (x)|. Iterating this216

procedure leads to a tri-filtration (F(EBs
r(x), t))r,s,t for any filtration F , following our description217

in Section 4.1. We now define the persistent local homology of a Euclidean model space as218

PLHEi (x;F) := PHi(F(EB•
•(x), •)). (2)
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Again, for a Vietoris–Rips filtration V , we use a short-form notation, i.e. PLHEi (x) := PLHEi (x;V).219

Notice that PLHEi (x) implicitly depends on the choice of intrinsic dimension n, and on the samples220

that are generated randomly. To remove the dependency on the samples, we consider PLHEi (x)221

to be a sample of a random variable PLHE
i (x). Let D(·, ·) be a distance measure for 3-parameter222

persistence modules, such as the interleaving distance.4 We then define the Euclidicity of x, denoted223

by E(x), as the expected value of these distances, i.e.224

E(x) := E
[
D
(
PLHn−1(x),PLHE

n−1(x)
)]

. (3)

This quantity essentially assesses how far x is from admitting a regular Euclidean neighbourhood.225

Implementation. Calculating E(x) requires different choices, namely (i) a range of locality scales,226

(ii) a filtration, and (iii) a distance metric between filtrations D. Using a grid Γ of possible radii (r, s)227

with r < s, we approximate Eq. (3) using the mean of the bottleneck distances of fibred Vietoris–Rips228

barcodes, i.e.229

E(x) ≈ D
(
PLHi(x),PLH

E
i (x)

)
:=

1

C

∑
(r,s)∈Γ

dB(PHi(V(Bs
r(x), •)),PHi(V(EBs

r(x), •))), (4)

where C is equal to the number of summands and PLHEi (x) refers to a sample from a Euclidean230

annulus of the same size as the intrinsic annulus around x. Eq. (4) can be implemented using231

effective persistent homology calculation methods (Bauer, 2021), thus permitting an integration into232

existing TDA and machine learning frameworks (The GUDHI Project, 2015; Tauzin et al., 2020).233

Appendix A.4 provides pseudocode implementations, while Section 5 discusses how to pick these234

parameters in practice. We make one specific instantiation of our framework publicly available.5235

Properties. The main appeal of our formulation is that calculating both PID and Euclidicity does236

not require strong assumptions about the input data. Treating dimension as a local quantity that is237

allowed to vary across multiple scales leads to beneficial expressivity properties. As we showed238

in Section 4.1, our method is guaranteed to yield the right values for manifolds and stratified sim-239

plicial complexes. This property substantially increases the practical applicability and expressivity,240

enabling our framework to handle unions of manifolds of varying dimensions, for instance. We241

require only a basic assumption, namely that the intrinsic dimension n of the given data space is242

significantly lower than the ambient dimension N , making Euclidicity broadly applicable. Similar243

to curvature, Euclidicity makes use of the fact that one can compare data to ‘model spaces,’ allowing244

for different future adjustments.245

Limitations. Our implementation of Euclidicity makes use of the Vietoris–Rips complex, which is246

known to grow exponentially with increasing dimensionality. While all calculations of Eq. (3) can be247

performed in parallel—thus substantially improving scalability vis-à-vis persistent homology on the248

complete input data set, both in terms of dimensions and in terms of samples—the memory require-249

ments for a full Vietoris–Rips complex construction may still prevent our method to be applicable250

for certain high-dimensional data sets. This can be mitigated by selecting a different filtration (Anai251

et al., 2020; Sheehy, 2013); our proofs do not assume a specific filtration, and we leave the treatment252

of filtration-specific theoretical properties for future work. Finally, we remark that the reliability of253

the Euclidicity score depends on the validity of the intrinsic dimension; otherwise, the comparison254

does not take place with respect to the appropriate model space.255

5 EXPERIMENTS256

We demonstrate the expressivity of our proposed TOAST procedure in different settings, empiri-257

cally showing that it (i) calculates the correct intrinsic dimension, and (ii) detects singularities when258

analysing data sets with known singular points. We also conduct a comparison with one-parameter259

approaches, showcasing how our multi-scale approach results in more stable outcomes. Finally, we260

analyse Euclidicity scores of benchmark datasets, giving evidence that our technique can be used as261

a measure for the geometric complexity of data.262

4In our implementation, we will approximate this distance via the bottleneck distance.
5See the supplementary materials for the code and experiments.
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5.1 PARAMETER SELECTION263

Since Eq. (3) intrinsically incorporates multiple scales of locality, we need to specify an upper bound264

for the radii (rmin, rmax, smin, smax) that define the respective annuli in practice. Given a point x,265

we found the following procedure to be useful in practice: we set smax, i.e. the maximum of the266

outer radius, to the distance to the kth nearest neighbour of a point, and rmin, i.e the minimum inner267

radius, to the smallest non-zero distance to a neighbour of x. Finally, we set the minimum outer268

radius smin and the maximum inner radius rmax to the distance to the ⌊k3 ⌋th nearest neighbour.269

While we find k = 50 to yield sufficient results, spaces with a high intrinsic dimension may require270

larger values. The advantage of using such a parameter selection procedure is that it works in a271

data-driven manner, accounting for differences in density. Since our approach is inherently local,272

we need to find a balance between sample sizes that are sufficiently large to contain topological273

information, while at the same time being sufficiently small to retain a local perspective. We found274

the given range to be an appropriate choice in practice. As for the number of steps, we discretise275

the parameter range using 20 steps by default. Higher numbers are advisable when there are large276

discrepancies between the radii, for instance when smax ≫ rmax.277

5.2 PERSISTENT INTRINSIC DIMENSION IS EXPRESSIVE278

METHOD MIN µ± σ MAX

1D

lpca 1.00 1.42±0.78 3.00
twoNN 0.83 1.00±0.07 1.20
DANCo 1.00 1.00±0.01 1.16
PID 1.00 1.12±0.24 1.97

2D

lpca 2.00 2.88±0.32 3.00
twoNN 1.01 1.90±0.36 2.53
DANCo 1.00 2.10±0.32 3.00
PID 1.52 1.95±0.06 2.08

Table 1: Dimensionality estimates for
the concatenation of S1 and S2.

We first analyse the behaviour of persistent intrinsic di-279

mension (PID) on samples from a space obtained by con-280

catenating S1 (a circle) and S2 (a sphere) at a gluing point.281

Table 1 shows a comparison of PID with state-of-the-art282

dimensionality estimators.6 We find that PID outperforms283

all estimators in terms of mean and standard deviation for284

the 2D points, thus correctly indicating that the majority285

of all points admit non-singular 2D neighbourhoods. For286

the 1D points, the mean of the dimensionality estimate of287

PID is still close to the ground truth, while its standard de-288

viation and maximum correctly capture the fact that some289

1D points are situated closer to the gluing point. This be-290

haviour is in line with our philosophy of considering di-291

mensionality as an inherently local phenomenon. In case292

such behaviour is not desirable for a specific data set, Eu-293

clidicity calculations support any dimensionality estimator; since such estimators do not come with294

strong guarantees such as Theorem 2, their choice must be ultimately driven by the data set at hand.295

See Appendix A.6 for a more detailed analysis of these estimates.296

Stability. In practice, the sample density may not be sufficiently high for Theorem 2 to apply. This297

means that there may appear artefact homological features in dimensions higher than the intrinsic298

dimension of a given space. We thus only consider features that exceed a certain persistence thresh-299

old in comparison to the persistence of features of lower dimension: for any data point x and the300

respective intrinsic annulus Bs
r(x), we eliminate all topological features whose lifetimes are smaller301

than the maximum lifetime of features in one dimension below. This results in markedly stable302

estimates of intrinsic dimension, which are less prone to overestimations.303

5.3 EUCLIDICITY CAPTURES SINGULARITIES304

Fig. 1 shows that Euclidicity is capable of detecting the singularity of the ‘pinched torus.’ Of par-305

ticular relevance is the fact that Euclidicity also highlights that points in the vicinity of the singular306

point are not fully regular. This is an important property for practical applications since it implies307

that Euclidicity can detect such isolated singularities even in the presence of sampling errors.308

Besides the pinched torus, another prototypical example of singular spaces is given by Sn ∨Sn, the309

wedge of two n-dimensional spheres. Intuitively, Sn∨Sn is obtained by two n-dimensional spheres310

that are glued together at a certain point. Denoting the gluing point by x0, for a suitable triangulation311

of X = Sn ∨Sn, this space is naturally stratified by X ⊃ {x0}. Next, we apply TOAST to samples312

6Method names are taken from the scikit-dimension toolkit. See Appendix A.6 for more details.
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Figure 4: (a): Euclidicity scores of wedged spheres for different dimensions. High values indicate
singular points/neighbourhoods. The Euclidicity of the singular point always constitutes a clear
positive outlier. In 2D, Euclidicity (b) results in a clearly-delineated singular region when compared
to a single-parameter score (c).

of such wedged spheres of dimensions 2, 3 and 4, calculating their respective Euclidicity scores.313

Since larger intrinsic dimensions require higher sample sizes to maintain the same density, we start314

with a sample size of 20000 in dimension 2 and increase it consecutively by a factor of 10. We315

then calculate Euclidicity of 50 random samples in the respective data set, and additionally for the316

singular point x0. Fig. 4a shows the results of our experiments. We observe that the singular point317

possesses a significantly higher Euclidicity score than the random samples. Moreover, we find that318

Euclidicity scores of non-singular points exhibit a high degree of variance across the data, which319

is caused by the fact that the sampled data does not perfectly fit the underlying space the points320

are being sampled from. This strengthens our main argument: assessing whether a specific point is321

Euclidean does not require a binary decision but a continuous measure such as Euclidicity.322

Stability. As predicted by Theorem 1, Euclidicity estimates are stable in practice. We first note that323

Euclidicity is robust towards sampling: repeating the calculations for the ‘pinched torus’ over differ-324

ent batches results in highly similar distributions that are not distinguishable according to Tukey’s325

range test (Tukey, 1949) at the α = 0.05 confidence level. Moreover, choosing larger locality scales326

still enables us to detect singularities at higher computational costs and incorporating larger parts of327

the point cloud. Please refer to Appendix A.5 for a more detailed discussion of this aspect.328

5.4 EUCLIDICITY IS MORE EXPRESSIVE THAN SINGLE-PARAMETER APPROACHES329

Our Euclidicity measure leads to significantly more stable results than a comparable one-parameter330

approach for geometry-based anomaly detection (Stolz et al., 2020): Fig. 4b and Fig. 4c compare331

multi-parameter Euclidicity with one-parameter Euclidicity for 20000 samples of S2 ∨ S2. The332

constant-scale approach results in many points with high anomaly scores that in fact do admit a Eu-333

clidean neighbourhood. We quantify this by analysing the empirical distributions of anomaly scores334

of the two data spaces (see Appendix A.8 for more details), with the one-parameter method ex-335

hibiting a much larger variance than our multi-parameter Euclidicity measure. The multi-parameter336

distribution shows that the mass is concentrated around the mean, but also contains outliers with337

high Euclidicity scores. These outliers correspond to points in the data space whose distance to the338

singular point is small. We thus conclude that Euclidicity scores increase once one approaches the339

singularity—which is not the case for single-parameter methods with a fixed locality scale. In fact,340

the main advantage of Euclidicity is that it implicitly incorporates information about the scale on341

which a given data point admits a Euclidean neighbourhood.342

5.5 EUCLIDICITY CAPTURES GEOMETRIC COMPLEXITY OF HIGH-DIMENSIONAL SPACES343

To test TOAST in an unsupervised setting, we calculate Euclidicity scores for the MNIST344

and FASHIONMNIST data sets, selecting mini-batches of 1000 samples from a subsample345

of 10000 random images of these data sets. Following Pope et al. (2021), we assume an346

intrinsic dimension of 10; moreover, we use k = 50 neighbours for local scale estima-347

tion. To ensure that our results are representative, we repeat all calculations for five dif-348

ferent subsamples. Euclidicity scores range from [1.1, 5.3] for MNIST, and [1.3, 5.6] for349

FASHIONMNIST. The scores of the two datasets appear to be following different distribu-350

tions (see Appendix A.7 for a visualisation and a more detailed depiction of the distributions).351
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(a) MNIST

(b) FASHIONMNIST

Figure 5: Left to right: low,
median, high Euclidicity.

Fig. 5 shows a selection of 9 images, corresponding to the lowest,352

median, and highest Euclidicity scores, respectively. We observe that353

high Euclidicity scores correspond to images with a high degree of354

non-linearity, whereas low Euclidicity scores correspond to images355

that exhibit less complex structures: for MNIST, these are digits of356

‘1.’ Interestingly, we observe the same phenomenon for FASHION-357

MNIST, where images with low Euclidicity (‘pants’) possess less358

geometric complexity in contrast to images with high Euclidicity.359

Since low Euclidicity can also be seen as an indicator of how close360

a neighbourhood is to being locally linear, this finding hints at the361

existence of simple substructures in such data sets. Euclidicity could362

thus be used as an unsupervised measure of geometric complexity.363

5.6 EUCLIDICITY CAPTURES LOWER-DIMENSIONAL STRUCTURES IN CYTOMETRY DATA364

2

3

4

Figure 6: An em-
bedding of the iPSC
data with colours
based on Euclidicity
highlights dense
non-singular regions.

To highlight the utility of Euclidicity in unsupervised representation learn-365

ing, we calculate it on an induced pluripotent stem cell (iPSC) reprogram-366

ming data set (Zunder et al., 2015). The data set depicts a progression of so-367

called fibroblasts diverging, and splitting into two different lineages. Fig. 6368

shows an embedding obtained via PHATE (Moon et al., 2019) and the Eu-369

clidicity scores of the original data. We find that high Euclidicity scores370

correspond to points that exhibit a lower density in the embedding, being371

in fact situated in lower-dimensional subspaces. Since lower-dimensional372

points in a space can be considered singular in the sense of stratified spaces,373

this is further evidence for Euclidicity to be a useful tool for detecting non-374

manifold regions in data. Please refer to Appendix A.9 for more details.375

6 DISCUSSION376

We presented TOAST, a novel framework for locally estimating the intrinsic377

dimension (via PID, the persistent intrinsic dimension) and the ‘manifold-378

ness’ (via Euclidicity, a multi-scale measure of the deviation from Euclidean379

space) of point clouds. Our method is based on a novel formulation of per-380

sistent local homology as a multi-parameter approach, and we provide theo-381

retical guarantees for it in a dense sample setting. Our experiments showed significant improvements382

of stability compared to geometry-based anomaly detection methods with fixed locality scales, and383

we found that Euclidicity can detect singular regions in data sets with known singularities. Using384

high-dimensional benchmark data sets, we also observed that Euclidicity can serve as an unsuper-385

vised measure of geometric complexity.386

For future work, we envision two relevant research directions. First and foremost will be the inclu-387

sion of Euclidicity into machine learning models to make them ‘singularity-aware.’ In light of our388

experiments in Section 5.5, we believe that Euclidicity could be particularly useful in unsupervised389

scenarios, or provide an additional weight in classification settings (to ensure that singular examples390

are being given lower confidence scores). Moreover, Euclidicity could be used in the detection of391

adversarial samples—a task for which knowledge about the underlying topology of a space is known392

to be crucial (Jang et al., 2020). As a second direction, we want to further improve the properties of393

Euclidicity itself. To this end, we plan to investigate if incorporating custom distance measures for394

three-parameter persistence modules, i.e. different metrics for Eq. (4), lead to improved results in395

terms of stability, expressivity, or computational efficiency. Moreover, we hypothesise that replacing396

the Vietoris–Rips filtration by other constructions (de Silva & Carlsson, 2004) could prove benefi-397

cial in reducing the number of samples for calculating Euclidicity. Along these lines, we also plan398

to derive theoretical results that relate specific filtrations and the expressivity of the corresponding399

Euclidicity measure. Another direction for future research concerns the approximation of a mani-400

fold from inherently singular data, i.e. finding the best manifold approximation to a given data set401

with singularities. This way, singularities could be resolved during the training phase of models,402

provided an appropriate loss function exists. Euclidicity may thus serve as a metric for assessing403

data sets, paving the way towards more trustworthy and faithful embeddings.404
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REPRODUCIBILITY STATEMENT405

We provide our code as part of the supplementary materials. All dependencies are listed in the re-406

spective pyproject.toml file, and the README discusses how to install our package and run our407

experiments. Our implementation leverages multiple CPUs if available but has no specific hardware408

requirements otherwise.409
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A APPENDIX495

A.1 NOTATION496

Symbol Meaning

ϵ local annulus scale parameter
R real numbers
Hi ith (ordinary) homology functor (with Z/2Z coefficients)
H̃i ith reduced homology functor (with Z/2Z coefficients)
inf infimum
sup supremum
| · |∞ uniform (infinity) norm
n intrinsic dimension of the space under consideration
N ambient dimension of the space under consideration
lim−→ (categorical) colimit
Sk k-dimensional sphere
c◦X := X × (0, 1]/X × {1} open cone of a topological space X

497

A.2 PROOFS OF THE MAIN STATEMENTS IN THE PAPER498

We restate the theorems from the main paper for the convenience of readers, along with their proofs,499

which were removed for space reasons. We first prove the stability theorem, first stated on p. 5 in the500

main text, which shows that our method enjoys stability properties with respect to radius changes of501

the intrinsic annuli.502

Theorem 1. Given a finite metric space X and x ∈ X, let Bs
r(x) and Bs′

r′ (x) denote two503

intrinsic annuli with |r − r′| ≤ ϵ1 and |s − s′| ≤ ϵ2. Furthermore, let D,D′ denote the504

persistence diagrams corresponding to PHi(B
s
r(x);V) and PHi(B

s′

r′ (x);V), respectively. Then505
1
2 dB(D,D′) ≤ max{ϵ1, ϵ2}.506

Proof. The Hausdorff distance of two non-empty subsets A,B ⊂ X is dH(A,B) := inf{ϵ ≥507

0 | A ⊂ Bϵ, B ⊂ Aϵ}, where Aϵ = ∪a∈A{x ∈ X; d(x, a) ≤ ϵ} denotes the ϵ-thickening of508

A in X . Set ϵ := max{ϵ1, ϵ2}. By assumption, Bs
r(x) ⊂ Bs′

r′ (x)ϵ and Bs′

r′ (x) ⊂ Bs
r(x)ϵ, i.e.509

dH(B
s
r(x), B

s′

r′ (x)) ≤ ϵ. Using the geometric stability theorem of persistence diagrams (Chazal510

et al., 2014), we have 1
2 dB(D,D′) ≤ dH(B

s
r(x), B

s′

r′ (x)), which proves the claim.511

Next, we prove that our persistent intrinsic dimension (PID) measure is capable of capturing the512

dimension of manifolds correctly, provided sufficiently many samples are present. This theorem513

was first stated on p. 5.514

Theorem 2. Let M ⊂ RN be an n-dimensional compact smooth manifold and let X :=515

{x1, . . . , xS} be a collection of uniform samples from M . For a sufficiently large S, there exist516

constants ϵ1, ϵ2 > 0 such that ix(ϵ) = n for all ϵ1 < ϵ < ϵ2 and any point x ∈ X. Moreover, ϵ1 can517

be chosen arbitrarily small by increasing S.518

Proof. Let x ∈ X be an arbitrary point. Since M is a manifold, x admits a Euclidean neighbour-519

hood U . Since M is smooth, we can assume U to be arbitrarily close to being flat by shrinking it.520

Thus, we can find ϵ2 > 0 with Bs
r(x) ⊂ U for all r, s < ϵ2 such that Hi(V(Bs

r(x), t)) = 0 for all521

i ≥ n, and all t. Hence, PHi(B
s
r(x)) = 0 for all i ≥ n, and therefore ix(ϵ2) ≤ n. By contrast, for522

S sufficiently large, and r, s as before, there exists a parameter t such that V(Bs
r(x), t) is homotopy-523

equivalent to an (n− 1)-sphere, and so Hn−1(V(Bs
r(x), t)) admits a generator, i.e. it is non-trivial.524

Consequently, PHn−1(B
s
r(x)) ̸= 0, and ix(ϵ2) = n. By further increasing S, we can ensure that525

the statement still holds when we decrease ϵ2, which proves the two remaining claims.526
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A.3 ADDITIONAL PROOFS527

To make this paper self-contained, we provide a brief proof of Eq. (1). By the excision axiom for528

homology, we have529

Hi(X,X \ x) ∼= Hi(St(x),St(x) \ x). (5)
Since St(x) is contractible, the long exact reduced homology sequence of the pair (St(x),St(x)\x)530

records exactness of531

0 = H̃i(St(x))→ Hi(St(x),St(x) \ x)→ H̃i−1(St(x) \ x)→ H̃i−1(St(x)) = 0

for all i, and therefore Hi(St(x),St(x) \ x) ∼= H̃i−1(St(x) \ x). Eq. (1) now follows from the532

observation that St(x) \ x deformation retracts to Lk(x).533

A.4 PSEUDOCODE534

We provide brief pseudocode implementations of the algorithms discussed in Section 4. In the fol-535

lowing, we use #Bari(X) to denote the number of i-dimensional persistent barcodes of X (w.r.t.536

the Vietoris–Rips filtration, but any other choice of filtration affords the same description). Algo-537

rithm 1 explains the calculation of persistent intrinsic dimension (see Section 4.1 in the main paper538

for details). For the subsequent algorithms, we assume that the estimated dimension of the intrinsic539

dimension of the data is n. We impose no additional requirements on this number; it can, in fact,540

be obtained by any choice of intrinsic dimension estimation method. As a short-hand notation, for541

pi = PHn−1(V(EB•
•(x), •)) w.r.t. some sample of {y ∈ Rn | r ≤ d(x, y) ≤ s}, we denote by542

pr,si = PHn−1(V(EBs
r(x), •)) the respective fibred persistent local homology barcode (calculated543

w.r.t. the same sample). Algorithm 2 then shows how to calculate the Euclidicity values, following544

Eq. (3) and one of its potential implementations, given in Eq. (4).545

Algorithm 1 An algorithm for calculating the persistent intrinsic dimension (PID)

Require: x ∈ X, smax, ℓ.
1: for s ∈ Γ do ▷ Iterate over the parameter grid
2: ix(s)← 0
3: for r < s ∈ Γ do
4: for i = 1, . . . , N − 1 do
5: Calculate #Bari(B

s
r(x))

6: if #Bari(B
s
r(x)) > 0 then

7: ix(s)← i+ 1
8: end if
9: end for

10: end for
11: return ix(s)
12: end for

Algorithm 2 An algorithm for calculating the Euclidicity values δjk

Require: x ∈ X, smax, ℓ, n, {p1, . . . , pm}.
1: for j = 1, . . . ,m do
2: for k = j + 1, . . . ,m do
3: for s ∈ Γ do
4: for r ∈ Γ, r < s do
5: Calculate dB(p

r,s
j , pr,sk ) ▷ Calculate bottleneck distance

6: return dB(p
r,s
j , pr,sk )

7: end for
8: end for
9: Calculate D(pj , pk) ▷ Evaluate Eq. (4)

10: return D(pj , pk)
11: end for
12: end for
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Figure 8: Modifying the outer radius smax still enables us to detect the singularity of the ‘pinched
torus.’ Larger radii, however, progressively increase the field of influence of our method, thus start-
ing to assign high Euclidicity values to larger regions of the point cloud.
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Figure 9: Histograms of the Euclidicity values for the point clouds shown in Fig. 8. Larger radii
result in the distribution accumulating more probability mass at higher Euclidicity values, making
the singularity detection procedure less local (but still succeeding in detecting the singularity and its
environs).

A.5 STABILITY OF EUCLIDICITY ESTIMATES546
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Figure 7: Boxplots of the Euclidicity values of
different random samples of the ‘pinched torus’
data set. While each sample invariably exhibits
some degree of geometric variation, we are able
to reliably identify the singularity and its neigh-
bourhood.

Fig. 7 shows that Euclidicity is robust under547

sampling; repeating the calculations for smaller548

batches of the ‘pinched torus’ data set (500 points549

each) still lets us detect the singularity and its550

neighbours reliably. This robustness is an im-551

portant property in practice where we are dealing552

with samples from an unknown data set whose553

shape properties we want to capture. Euclidic-554

ity enables us to perform these calculations in a555

robust manner. Following the brief discussion556

in Section 5.1, we show the results of varying557

smax, the outer radius of the local annulus, for558

the ‘pinched torus’ data set. Fig. 8 depicts point559

clouds of 1000 samples; we observe that the sin-560

gularity, i.e. the ‘pinch point,’ is always detected.561

For larger radii, however, this detection becomes562

progressively more global, incorporating larger563

parts of the point cloud. Fig. 9 depicts the corre-564

sponding histograms; we observe the same shift565

in probability mass towards the tail end of the dis-566

tribution. For extremely large annuli, we estimate567

that we lose a clear distinction between singular values and non-singular values. Our data-driven568

parameter selection procedure is thus to be preferred in practice since it incorporates data density.569
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(a) PID (b) twoNN

Figure 10: Even for large values of k, PID still does not overestimate the local dimensionality of the
data, exhibiting a clear distinction between the circle and the sphere, respectively.

A.6 COMPARISON OF PID WITH OTHER DIMENSION ESTIMATES570

In order to assess the quality of PID, we decided to test its performance on a space that is both singu-571

lar and has non-constant dimension. The data space we chose consists of 2000 samples of S1 ∨ S2,572

i.e. a 1-sphere glued together with a 2-sphere at a certain concatenation point. We then applied the573

PID procedure for a maximum locality scale that was given by the k nearest neighbour distances, for574

k ∈ {25, 50, 75, 100, 125, 150, 175, 200}. We assigned to each point the average of the PID scores575

at the respective scales that are less than or equal to the k nearest neighbour bound. Subsequently,576

we compared the results with other local dimension estimates for the respective number of neigh-577

bours. The methods that were chosen for comparison include lpca, twoNN, KNN, and DANCo; we578

used the respective implementation from the scikit-dimension Python package.7.579

Fig. 10a shows the PID results for a maximum locality scale of 200 neighbours, with colours show-580

ing the estimated dimension values for each point. Overall, the correct intrinsic dimension is de-581

tected for most of the points. However, points that lie close to the singular point show a PID value582

between 1 and 2. Similarly to what we already discussed for Euclidicity, PID should therefore also583

be interpreted as a measure that incorporates the intrinsic dimension of a point on multiple scales584

of locality. For real-world data, the dimension will generally change when changing the locality585

scale. However, since there is no canonical choice of scale, we believe that any such scale provides586

valuable information about the intrinsic dimension that is worth being measured. We therefore argue587

that a multi-scale approach like ours is appropriate in practice, especially in a regime that is agnostic588

with respect to the underlying intrinsic dimension. By contrast, Fig. 10b shows the corresponding589

dimension estimates for twoNN, where we observe less stable and reliable results across the dataset.590

Fig. 11a shows boxplots of the distributions of the dimension estimates, for all points that lie on591

the 1D-sphere. We see that for PID, the mass is concentrated at a value of 1. Although there are592

outliers present, these correspond to points that are close to the singularity, as it was expected. We593

note that other methods like KNN and lpca might highly overestimate the dimension, and that the594

interquartile range is significantly higher for twoNN and KNN. Fig. 11b shows the same distributions595

for the points that lie on the 2D-sphere. Again, lpca highly overestimates the dimension since the596

median lies at a value of 3. Again, the interquartile range of PID is the tightest, and the estimates597

are closest to the ground truth. Moreover, the lower-value outliers again correspond to points that598

are close to the singular gluing point.599

Fig. 12a and Fig. 12b show average dimension estimate scores of all investigated methods for vary-600

ing values of k, both for points on the 1-sphere and the 2-sphere. We note that on average, only601

twoNN and DANCo lead to results which are comparable with the reliability of our method. How-602

ever, as we already saw in Fig. 11a and Fig. 11b, the variance of the scores of our method is signifi-603

cantly lower, leading to more reliable outputs for each of the points.604

7https://scikit-dimension.readthedocs.io/en/latest/
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(a) 1-sphere dimension estimates (b) 2-sphere dimension estimates

Figure 11: Estimates of the local intrinsic dimension for points that are close to the 1D-sphere, i.e.
the circle, or the 2D-sphere, respectively.

(a) (b)

Figure 12: Dimension estimates of the 1D-sphere and the 2D-sphere for different methods, plotted
as a function of the number of neighours k.
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(a) (b) (c)

Figure 13: From left to right: more examples of low Euclidicity values, median Euclidicity values,
and high Euclidicity values for the MNIST data set.

A.7 EUCLIDICITY OF MNIST AND FASHIONMNIST605

Fig. 13 and Fig. 14 show the Euclidicity results for the 4 additional runs on both the MNIST and606

FASHIONMNIST data sets. Again, we depicted the 9 images with lowest (left), medium (middle),607

and highest (right) Euclidicity scores for the two datasets. Moving from left to right, the images608

exhibit increases in the complexity of the local geometry, giving evidence for the reproducibility of609

the observation we remarked in Section 5.5.610

Finally, as Fig. 15 shows, the empirical distributions of the calculated Euclidicity scores differ signif-611

icantly for the MNIST and FASHIONMNIST data sets, with the distribution for MNIST exhibiting612

a bimodal behaviour, whereas the FASHIONMNIST Euclidicity value distribution is unimodal. We613

hypothesise that this corresponds to regions of simple complexity—and locally linear structures—in614

the MNIST data set, which are absent in the FASHIONMNIST data set.615

A.8 ONE-PARAMETER VERSUS MULTI-PARAMETER EUCLIDICITY FOR WEDGED SPHERES616

Fig. 16 shows the empirical distributions of Euclidicity scores for fixed locality parameters (left) and617

for our proposed multi-scale locality approach (right). We see that the variance is significantly lower618

in the multi-scale regime, indicating more stable and robust results. Moreover, the ratio of maximum619

and mean is higher in the multi-parameter setting, where high Euclidicity scores correspond to data620

points that lie close to the singularity, resulting in more reliable outcomes.621
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(a) (b) (c)

Figure 14: From left to right: more examples of low Euclidicity values, median Euclidicity values,
and high Euclidicity values for the FASHIONMNIST data set.

(a) MNIST (b) FASHIONMNIST

Figure 15: Both MNIST and FASHIONMNIST exhibit markedly different distributions in terms of
Euclidicity: MNIST Euclidicity values are bimodal, whereas FASHIONMNIST Euclidicity values
are unimodal.
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(a) (b)

Figure 16: A comparison of Euclidicity values of a one-parameter approach (left) and our multi-
parameter approach (right) demonstrates that multiple scales are necessary to adequately capture
singularities.
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Figure 17: A comparison of intrinsic dimension estimates computed for points in the iPSC dataset
that admit high (left) and low (right) Euclidicity scores. The twoNN dimensionality estimator was
used for this example.

2

3

4

(a) 10000 points (b) 5000 points (c) 1000 points

Figure 18: Euclidicity remains stable under subsampling the iPSC data set. Minor variations in the
point cloud shape are due to the PHATE embedding algorithm; Euclidicity was calculated on the
raw data.

A.9 EUCLIDICITY OF IPSC DATA622

The iPSC data set Zunder et al. (2015) consists of 33 variables and around 220k samples. It is623

known to contain branching structures that can best be extracted using PHATE (Moon et al., 2019),624

a non-linear dimensionality reduction algorithm. We only employ this algorithm for visualisation625

purposes; all Euclidicity calculations are performed on the original data. Using twoNN for dimen-626

sionality estimation, we obtained a mean intrinsic dimension of 16; as outlined above, other dimen-627

sionality estimators may be employed as well—we consider this analysis to be a proof of concept628

first and foremost. We selected parameters as described in Section 5.5, and computed Euclidicity629

for 10000 samples.630

We observe that high-Euclidicity scores correspond to points that exhibit a lower density in the631

PHATE embedding,8 and according to the twoNN estimates we see that such points are in fact of632

lower intrinsic dimension; see Fig. 17 for details. More specifically, we calculated the intrinsic633

dimension for the subsample, observing that the interquartile range for the 1000 points with highest634

Euclidicity is around 12–14, whereas the interquartile range of the 1000 lowest Euclidicity points635

ranges between around 13–16. Again, we used the twoNN algorithm for intrinsic dimensionality636

estimates (using k = 50 nearest neighbours). Since lower-dimensional points in a space can be637

regarded as being singular in the sense of stratified spaces, we see further evidence for Euclidicity638

as a useful tool for the detection of non-manifold regions in the data. Finally, we remark that639

our analyses remain valid under subsampling. Fig. 18 depicts subsamples of different sizes for640

which we calculated Euclidicity (on the raw data, respectively, using PHATE to obtain embeddings).641

Euclidicity distributions remain stable and the same phenomena are highlighted for each subsample.642

8However, notice that low-density regions in the PHATE visualisation need not necessarily correspond to
low-density regions in the original dataset.
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