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ABSTRACT

Multimodal sentiment analysis (MSA) requires integrating heterogeneous infor-
mation effectively while addressing inconsistent emotional cues across modali-
ties. However, existing approaches often fail to disentangle modality-invariant and
modality-specific representations, leading to suboptimal feature alignment and se-
mantic entanglement, especially when emotional expressions differ across sub-
modalities. To address this issue, we propose a Sub-modal Label-aware Disen-
tanglement (SLaD) framework that enhances cross-modal representation learning
through a sub-modal label similarity weighting mechanism. Specifically, SLaD
defines three structural relationships among sub-modal labels and introduces a
hybrid similarity function that integrates structural consistency with numerical
similarity. This approach mitigates label noise and conflicts from heterogeneous
modality information. We further introduce three complementary losses for joint
optimization: (1) a modality contrastive loss that aligns modality-invariant fea-
tures, (2) a modality repulsive loss that enhances the discriminability of modality-
specific features, and (3) a multi-label contrastive loss that captures sub-modal
emotional label correlations. Experiments on CMU-MOSI, CMU-MOSEI, and
CH-SIMS demonstrate that SLaD achieves state-of-the-art performance on both
classification and regression tasks, demonstrating the effectiveness of sub-modal
label-aware supervision and disentanglement for advancing multimodal sentiment
understanding.

1 INTRODUCTION

The rise of social media and multimodal content (e.g., text, images, videos) Li et al. (2022) has
made sentiment analysis more challenging and essential for tasks like retrieval, opinion tracking,
diagnosis, and user feedback. Traditional single-modal sentiment analysis, which relies solely on
text or audio, often fails to fully capture human emotions, as emotional expression in real-world
scenarios is inherently multimodal Shoumy et al. (2020). In contrast, MSA integrates heterogeneous
modalities to provide a more comprehensive understanding of human emotions.

Recent research has shown that leveraging complementary information across text, visual, and au-
dio modalities significantly improves sentiment understanding Zubatyuk et al. (2019). However, the
inherent heterogeneity of multimodal data still poses significant challenges, such as inconsistencies
in sentiment expression across modalities Xiao et al. (2023), irrelevant information in heteroge-
neous modalities Li et al. (2025b), and limited availability of distinctive emotional cues in facial
expressions Wu et al. (2024). Therefore, MSA models must capture inter-modal consistency while
maintaining intra-modal coherence. To address these challenges, researchers have proposed meth-
ods that extract and integrate diverse emotional cues from multiple modalities, which generally
fall into two paradigms: representation-based and interaction-based approaches Li et al. (2025a).
Representation-based methods encode each modality using modality-specific subnetworks to gen-
erate global representations, often incorporating additional constraints to enhance representation
quality Wang et al. (2024); Li et al. (2025b). In contrast, interaction-based methods design so-
phisticated architectures to capture fine-grained token-level interactions across modalities Li et al.
(2025a); Jin et al. (2024). Most of these methods fail to account for multiple emotional labels and
modality-specific distinctions, which hampers their ability to model inter-modal relationships un-
der label inconsistency accurately. Figure 1 shows an example of label discrepancy, where positive
sentiment in text co-occurs with negative sentiment in audio.
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Relation 1
Text sentiment intensity: 0.8 Audio sentiment intensity: -0.2

I fully understand
your eagerness to
invite your friends

over for a drink and
a good time.

Text/Audio sentiment intensity: 1

Relation 2

My signal was bad just
now, but it's okay now.
How about it, Mom?

The company arranged
a sea-view villa for me.

Text sentiment intensity: 0.6 Audio sentiment intensity: 0.8

Relation 3

Mr. Huang, I've heard
about it. My godson,
Cang Hai, has been
promoted to deputy
section chief by you.

Figure 1: Relations between text and audio sub-modal labels: Relation 1 denotes non-overlapping
labels, Relation 2 denotes fully co-occurring labels, and Relation 3 denotes partially co-occurring
labels.

Supervised learning struggles with multi-label inconsistencies despite excelling at single-label tasks.
This necessitates modeling implicit inter-modality relationships, especially across varying label co-
occurrence patterns. Additional complexities arise from difficult-to-align cross-modal features.

To address these challenges, we propose a Sub-modal Label-aware Disentanglement (SLaD) frame-
work that explicitly models both structural relationships, such as cases where one sub-modal label is
”0” or modal labels have opposite signs—and numerical relationships, defined by the similarity be-
tween sub-modal emotional labels, to guide cross-modal representation learning. SLaD defines three
types of label-set relationships: non-overlapping, fully co-occurring, and partially co-occurring. To
leverage these relationships, it introduces a hybrid similarity weighting mechanism that integrates
structural consistency with numerical similarity. This mechanism ensures that only structurally com-
parable label pairs are aligned, effectively reducing semantic conflicts and mitigating noise intro-
duced by inconsistent labels. To disentangle modality-invariant and modality-specific representa-
tions, SLaD further incorporates three complementary loss functions: (1) a modality contrastive
loss to align shared emotional semantics, (2) a modality repulsive loss to enhance modality-specific
discriminability and suppress cross-modal interference, and (3) a multi-label contrastive loss to ex-
ploit inter-label correlations for improved emotional association modeling. By jointly optimizing
these components, SLaD effectively mitigates sentiment label inconsistency, enhances cross-modal
affective alignment, and improves the overall performance of MSA. The main contributions can be
summarized as follows:

• We propose a novel SLaD framework that leverages structural and numerical relationships
among sub-modal labels to guide cross-modal alignment, effectively addressing label in-
consistency and semantic conflicts.

• We introduce a modality contrastive loss and a modality repulsive loss to simultaneously
align shared semantics and preserve modality-specific independence, enabling more robust
representation learning.

• We design a multi-label contrastive loss, which dynamically adjusts similarity constraints
based on label-set overlap, allowing the model to capture inter-label correlations and im-
prove emotional association modeling.

• SLaD has conducted extensive experiments on the CMU-MOSI, CMU-MOSEI, and CH-
SIMS datasets, demonstrating that the method outperforms baselines in both classification
and regression tasks, validating its effectiveness in MSA.

2 RELATED WORK

Multimodal sentiment analysis (MSA) exploits complementary cues from language, audio, and vi-
sion. Prior works have emphasized cross-modal fusion: Huang et al. (2024a) introduced a binding
mechanism, Gan et al. (2024) mapped heterogeneous features into a shared space, and Xie et al.
(2025) pursued deep fusion through dense layers. While effective, these methods often overlook
modality conflicts and redundancy.
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Contrastive learning has been widely applied for semantic alignment. Zong et al. (2023) maximized
mutual information with an InfoNCE loss, Yang et al. (2023) enhanced intra-modal discrimination,
and Fan et al. (2025) reduced cross-modal heterogeneity via multi-level objectives. However, most
focus on global consistency and ignore the separation of modality-invariant and modality-specific
signals, which limits robustness to ambiguous samples.

Multi-label learning further addresses label correlations. Li et al. (2024) built a multi-label detection
module, Chen et al. (2024) added a label association loss, and Deng et al. (2023) balanced posi-
tive and negative predictions with a focus loss. Yet these approaches mainly capture global label
dependencies while neglecting fine-grained sub-modal label inconsistencies.

In summary, existing studies have advanced fusion, alignment, and label modeling, but few inte-
grate these perspectives. The lack of frameworks that disentangle invariant/specific features while
accounting for sub-modal label discrepancies motivates our proposed approach.

3 METHODOLOGY

As an overview of the model, Figure 2 illustrates the architecture of SLaD.

3.1 PROBLEM DEFINITION

This study focuses on a multimodal sentiment analysis (MSA) task involving two modalities: text
(t) and audio (a). We denote the modality set as M = {t, a}, where m ∈ M represents a specific
modality. The sentiment prediction ŷ is a continuous value in either [−1, 1] or [−3, 3], with ŷ > 0,
ŷ = 0, and ŷ < 0 indicating positive, neutral, and negative sentiment, respectively.

3.2 MULTIMODAL FEATURE EXTRACTION

To ensure optimal performance of SLaD across different modalities and languages, we employ
language-specific pre-trained models tailored to each dataset’s linguistic characteristics. For En-
glish datasets, we utilize RoBERTa Liu et al. (2019) and Data2Vec Baevski et al. (2022) to extract
textual and acoustic features, respectively. For Chinese datasets, we adopt Chinese-RoBERTa Cui
et al. (2020) and Chinese-HuBERT models to handle the language-specific nuances effectively. The
extracted textual and acoustic modal features are represented as Xt ∈ RB×lt×d and Xa ∈ RB×la×d,
respectively, where B denotes the batch size, lt and la represent the sequence lengths for textual and
acoustic modalities, and d indicates the feature dimensionality.

Modality Text

Modality Audio

Sub-modal Label
Similarity Weights

C
ross-

A
ttention
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ross-
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ttention

Self-
A

ttention
Self-

A
ttention

Pseudo-label Generation

Multimodal Fusion

Output

Input

Classification
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A
ttention

Self-
A

ttention
Self-
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Figure 2: The overall architecture of SLaD consists of multimodal feature extraction, a modality-
invariant sentiment representation, and multimodal fusion & classification.
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3.3 PSEUDO-LABEL GENERATION

The two unimodal pseudo-label generation tasks, which share representations with the multimodal
task, are addressed by first projecting these representations into a dedicated feature space. This
projection mitigates dimensional discrepancies across modalities and ensures more consistent fea-
ture distributions. Linear regression is then applied to map the projected unimodal features to their
corresponding pseudo-labels, producing predicted pseudo-labels for each unimodal task. These pre-
dictions serve as inputs to the Sub-modality Label-aware Similarity Modeling module, forming a
robust foundation for cross-sub-modality similarity learning.

yti = W tT
l1 X ′t + btl1 (1)

yai = W aT
l1 X ′a + bal1 (2)

3.4 MODALITY-INVARIANT SENTIMENT REPRESENTATION

To facilitate effective modality-invariant sentiment representation, We first align the text features
and audio features extracted by the pre-trained model in terms of sequence length, yielding unified
representations X ′t ∈ RB×l×d and X ′a ∈ RB×l×d. Subsequently, these aligned features undergo
a disentanglement process that decomposes them into two complementary components: modality-
invariant features Iti ∈ RB×l×d and Iai ∈ RB×l×d, which capture shared semantic information
across modalities, and modality-specific features St

i ∈ RB×l×d and Sa
i ∈ RB×l×d, which preserve

unique modal characteristics.

3.5 MULTIMODAL FUSION & CLASSIFICATION

Building upon the extracted modality-invariant sentiment features and inspired by Wu et al. (2024),
we design a fusion network based on a cross-attention encoder. In this architecture, queries from
one modality attend to keys and values from another, enabling the model to capture fine-grained
inter-modal dependencies. Such cross-modal interactions facilitate a more effective integration of
heterogeneous modalities, leading to a richer and more comprehensive representation, as illustrated
below:

Attention(QIt
i
,KIa

i
,VIa

i
) = softmax

(
QIt

i
KT

Ia
i√

dk

)
VIa

i
(3)

Attention(QIa
i
,KIt

i
,VIt

i
) = softmax

(
QIa

i
KT

It
i√

dk

)
VIt

i
(4)

Attention(QX′t ,KX′a ,VX′a) = softmax

(
QX′tKT

X′a√
dk

)
VX′a (5)

Attention(QX′a ,KX′t ,VX′t) = softmax

(
QX′aKT

X′t√
dk

)
VX′t (6)

Specifically, the query, key, and value representations QIt
i
, KIt

i
, and VIt

i
are generated from the

modality-invariant text features Iti , whereas QIa
i

, KIa
i

, and VIa
i

are generated from the modality-
invariant audio features Iai . In parallel, QX′t , KX′t , and VX′t are obtained from the text input X ′t,
and QX′a , KX′a , and VX′a are obtained from the audio input X ′a. To preserve temporal dynamics,
the network further employs self-attention encoders that model temporal dependencies within the
cross-modal features. This dual-attention architecture jointly captures cross-modal complementarity
and intra-modal temporal coherence.

Finally, a position-wise feed-forward network, consisting of fully connected layers with ReLU acti-
vation, is applied to refine the feature representations at each time step.

3.6 SUB-MODALITY LABEL-AWARE SIMILARITY MODELING

To address the fact that labels across different modalities often exhibit inconsistent polarities or
misaligned expression intensities, we propose a structure-aware similarity modeling mechanism for
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sub-modal label perception. This mechanism comprehensively considers both set-theoretic relation-
ships and numerical differences among sub-modal labels. As shown in Figure 3, we represent each
relationship as R. For example, R1 represents Relationship 1, where yti and yai denote the text sub-
modal sentiment intensity label and the audio sub-modal sentiment intensity label, respectively. The
three relationships are defined as follows:

R1 : sign(yti) ̸= sign(yai ) ∨ yti = 0 ∨ yai = 0 (7)

R2 : yti = yai (8)

R3 : sign(yti) = sign(yai ) ∧ yti ̸= yai ∧ yti ̸= 0 ∧ yai ̸= 0 (9)

where R1 represents semantic incompatibility (opposite polarities or zero values), R2 denotes per-
fect label alignment, and R3 indicates partial consistency with intensity variations. Based on the
above-defined relationships, this partitioning of structural relationships provides a systematic foun-
dation for consistency modeling of multimodal labels, establishing the groundwork for subsequent
similarity calculations.

Building upon the structural relationships, we further propose a hybrid label similarity function ωi ∈
[0, 1] that fuses structural consistency and numerical similarity. This function is designed to calculate
the label consistency weight for each sample at the sub-modal level. Through this mechanism,
label alignment is ensured only when the semantic structures are consistent. The structural weight
component is defined as:

ωstructure
i =


0 if R1 holds
1 if R2 holds

0.1 + 0.8 · min(|yt
i |,|y

a
i |)

max(|yt
i |,|ya

i |)+ϵ
if R3 holds

(10)

where ϵ = 10−8 prevents division by zero. For relationship R3, we introduce an adaptive weighting
scheme based on relative intensity similarity, where labels with closer magnitudes receive higher
structural weights within the range [0.1, 0.9]. This structural consistency modeling leverages a
relationship-aware mechanism to ensure that only sub-modal sample pairs with consistent label
semantic structures participate in the similarity calculation and supervision.

To maintain structural consistency, we also consider the numerical differences in sentiment labels.
The specific rationale is as follows: if we simply determine that labels with identical polarity rep-
resent complete semantic equivalence, the intensity differences in sentiment expression will be ig-
nored. This approach makes the supervision signal excessively coarse-grained and may forcibly
align features that are not semantically similar. Given this consideration, we adopt a Gaussian ker-
nel function to construct a similarity measurement mechanism sensitive to intensity differences,
thereby accurately capturing the numerical variations of sentiment labels. The numerical similarity
modeling is formulated as:

ωvalue
i = exp

(
− (yti − yai )

2

2α2

)
(11)

where α is the bandwidth parameter of the Gaussian kernel function, which determines the influence
range of the kernel function. The Gaussian kernel function provides smooth similarity measurement,
assigning higher weights to labels with smaller numerical discrepancies while implementing pro-
gressive supervision that avoids excessive penalties for minor expression inconsistencies. Based on

Relation 1

Relation 2

Relation 3

:[ 1  -1   0   0     1 ]

:[ 0   0   1   -1   -1 ]

:[1  -1  0  0.2  0.6 ]

:[1  -1  0  0.2  0.6 ]

:[0.2 -0.4  0.8  0.1]

:[0.3 -0.2  0.7 -0.1]

Figure 3: The three set relationships among sub-modal labels are exemplified by the text and audio
sub-modal label in CH-SIMS. Ω represents the universal set containing all sub-modal label entities.
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the definitions of structural consistency and numerical similarity mentioned above, the sub-modality
label similarity weight is ωi = ωstructure

i ·ωvalue
i , with final clamping to ensure ωi ∈ [0, 1]. For a batch

size of B, the vector expression of the similarity weight is as follows:

ω = [ω1, ω2, · · · , ωB ]
T ∈ [0, 1]B (12)

3.7 MODALITY ALIGNMENT AND DISENTANGLEMENT MODELING

To achieve semantic consistency modeling and modal heterogeneity enhancement in MSA, this
study introduces two synergistic loss mechanisms in the representation learning of modality-
invariant and modality-specific features: the modality contrastive loss Lcon and the modality re-
pulsive loss Lrep. The former is used to align modality-invariant features from different modalities,
making them express similar semantics; the latter encourages modality-specific features to main-
tain differences in the semantic space and enhances modal discriminability. In Lcon, a contrastive
learning strategy is adopted. By bringing closer and pushing apart the similarity distributions of
positive and negative samples, the cross-modal invariant semantic consistency is optimized. The
text and audio modality-invariant features of sample i are denoted as Iti and Iaj , respectively. The
temperature coefficient τ controls the smoothness of the softmax distribution. After normalization,
a cross-modal similarity matrix is constructed as follows:

Sij =
(Iti , I

a
j )

τ
(13)

The main diagonal elements are positive samples, and the off-diagonal elements are negative sam-
ples. To prevent numerical instability, we use a stable calculation method to model the InfoNCE
loss van den Oord et al. (2018):

Lpos
i = − log

(
exp(Sij)∑B
j=1 exp(Sij)

)
(14)

In addition, the Top-K hard negative sample mining strategy Huang et al. (2024b) is utilized to
select the K most confusing negative instances from the negative samples, forming a strengthened
constraint:

Lneg
i =

1

K

∑
j∈Ni

log(1 + exp(Sij)) (15)

where, Ni represents the set of hard negative samples for sample i. The final loss is comprehensively
defined through the similarity weights perceived from labels:

Lcon =
1

B

B∑
i=1

ωi · (Lpos
i + λLneg

i ) (16)

where λ = τ · σ(S̄pos) is an adaptive temperature adjustment factor based on the average similarity
of positive samples. σ(·) is the Sigmoid activation function, and S̄pos is the average similarity score
of positive sample pairs.

In Lrep, to enhance the discriminative ability of modality-specific features in the semantic space,
we design a Triplet-style repulsive loss function. It encourages the specific representations of text
and audio modalities to be far away from each other, maintaining the independence of modalities.
The text and audio modality-specific features are defined as St

i and Sa
i . Similar to constructing the

cross-modal similarity matrix, the similarity matrix is defined as follows:

Rij =
(St

i , S
a
j )

τ
(17)

To focus on the most interfering negative samples, we select the maximum negative sample similar-
ity term from the off-diagonal elements as rhard

i = maxi ̸=j Rij . The modality repulsive loss is then
defined as:

Lrep =
1∑
i ωi

B∑
i=1

ωi ·max(0, rhardi −m) (18)

where m is the repulsive margin, which is used to control the minimum separation distance. This
loss function encourages modality-specific features to be far away from each other in the semantic
space, thereby improving modality discriminability and reducing information conflicts.

6
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3.8 MULTI-LABEL CONTRASTIVE LOSS

Building on the preceding context, to fully explore the complex relationships among the semantics
of sub-modal labels, we further construct an intra-label aware multi-label loss function Lml, which
can be used for feature contrastive learning in this scenario. This loss is based on the overlap
measurement between label sets, dynamically adjusting the similarity penalty intensity for different
sample pairs. It can both enhance the aggregation of samples with similar semantics and suppress
the confusion risk of samples with separated semantics. Thus, by concatenating the prediction
results yti and yai for text and audio separately in the model, the multi-label matrix is obtained
as Y = [yt

1,y
t
2, . . . ,y

a
2B−1,y

a
2B ] ∈ [−1, 1], where C is the number of modalities, such as Two

modalities are considered semantically related when they have at common label, that is:

Mpos
ij = 1

[
(yi · yTj ) > 0

]
, s.t. i ̸= j (19)

To characterize the semantic similarity degree between samples, we design a label weight matrix
W ∈ RB×B . Comprehensively considering the intersection degree Ks(i, j) =

|yi∩yj |
|yi|+ϵ and the set

difference Kd(i, j) =
1

1+|yi|−∥yi∩yj∥ , the final weight is:

Wij = Ks(i, j) ·Kd(i, j) (20)
This design encourages sub-modal label pairs with greater semantic overlap to obtain higher contrast
weights. For this purpose, the construction based on weights is as follows:

Lml =
1

B

B∑
i=1

∑
j

j ̸=i

Wij ·Mpos
ij ·

− log
exp(Sij)∑
k

k ̸=i
exp(Sik)

 (21)

where Sij is the similarity matrix. This loss function can effectively enhance the structural repre-
sentation ability of sample features under multi-label distribution and avoid misalignment between
samples with inconsistent semantics.

Finally, the loss function of the entire model is shown as follows:
Ltotal = Lcls + Lcon + λrepLrep + λmlLml (22)

where Lcls is the L1 loss function, and λrep and λml control the balance of the three mechanisms.
This joint objective realizes the synergistic learning of the alignment of modality-invariant features
and the repulsion of modality-specific features.

4 EXPERIMENTAL

4.1 DATASETS

We conduct experiments on three public multimodal sentiment analysis datasets: CMU-MOSI
Zadeh et al. (2016), CMU-MOSEI Bagher Zadeh et al. (2018) and CH-SIMS Yu et al. (2020).

CMU-MOSI consists of 2,199 short monologue video clips from 93 YouTube videos. Each utterance
is annotated with a sentiment score from -3 to +3. The dataset is split into 1,284 training, 229
validation, and 686 test samples.

CMU-MOSEI extends CMU-MOSI to 5,000 YouTube videos from over 1,000 speakers and 250
topics, with the same sentiment score range of -3 to +3. It includes 16,326 training, 1,871 validation,
and 4,659 test samples.

CH-SIMS is a Chinese dataset with 2,281 video clips and sub-modal sentiment annotations from -1
to +1. The dataset is divided into 1,368 training, 456 validation, and 457 test samples.

4.2 EVALUATION METRICS

Following previous work Hazarika et al. (2020b), we used the accuracy of 2-class (Acc2) and 5-class
(Acc5) on CH-SIMS, the accuracy of 2-class (Acc2) on MOSI and MOSEI. Mean Absolute Error
(MAE), Pearson Correlation (Corr), and F1-score (F1) on all datasets. Moreover, on MOSI and MO-
SEI, Acc2 and F1 used two calculation ways: negative/non-negative (has-0) and negative/positive
(non-0). Except for MAE, higher values indicate better performance for all metrics.

7
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4.3 IMPLEMENTATION DETAILS

We implement the proposed model using the PyTorch framework and conduct all training on a
single NVIDIA L20 GPU. For audio preprocessing, we sample audio signals at 16 kHz with a fixed
duration of 6 seconds. Audio segments longer than 6 seconds are truncated, while shorter segments
are zero-padded at the end to ensure all audio features are standardized to 96,000 sampling points.
For model optimization, we employ the AdamW optimizer with a warm-up strategy and cosine
annealing learning rate scheduler. The hyperparameters are dataset-specific: for CMU-MOSI and
CMU-MOSEI datasets, we set the learning rate to 5e-6 with a batch size of 8, while for the CH-SIMS
dataset, we use a learning rate of 1e-5 with a batch size of 16.

4.4 BASELINE MULTIMODAL MODELS

To comprehensively evaluate the effectiveness of the proposed SLaD model, we compare it with
a diverse set of existing MSA approaches, including both representation-based and advanced
interaction-based methods. Representation-based methods include: MISA Hazarika et al. (2020a),
MMM Han et al. (2021), Self-MM Yu et al. (2021) and FMFN Li et al. (2025a). Interaction-based
methods include: TFN Zadeh et al. (2017), LMF Liu et al. (2018), MulT Tsai et al. (2019), CENet
Wang et al. (2023b), TETFN Wang et al. (2023a), ALMT Zhang et al. (2023), TMBL Huang et al.
(2024a) and KuDA Feng et al. (2024).

Table 1: Model comparison results on the CMU-MOSI and CMU-MOSEI datasets. “a” denotes
results reproduced using the authors’ released code, “b” indicates results reported in Li et al. (2025a),
and “c” indicates results reported in the original paper.

Model CMU-MOSI CMU-MOSEI

Acc2 F1 MAE Corr Acc2 F1 MAE Corr

TFNa 76.9/78.2 76.9/78.2 0.962 0.658 82.0/82.7 81.9/82.2 0.572 0.718
MISAa 82.5/83.8 82.5/83.9 0.757 0.787 81.2/84.7 81.7/84.7 0.544 0.763
MMMb 83.6/85.3 83.6/85.3 0.755 0.773 83.2/85.0 83.4/84.8 0.543 0.758
CENeta 83.5/85.2 83.4/85.2 0.725 0.795 83.5/86.3 83.8/86.3 0.525 0.777
TETENb 84.0/86.1 83.8/86.0 0.717 0.800 84.2/85.1 84.1/85.2 0.551 0.748
ALMTa 84.5/86.4 84.5/86.4 0.683 0.805 84.7/86.7 85.1/86.8 0.526 0.779
KuDAc 84.4/86.4 84.5/86.5 0.705 0.794 83.3/86.5 83.0/86.6 0.529 0.776
FMFHb 84.8/87.0 85.0/87.1 0.728 0.794 83.2/86.3 82.8/86.4 0.533 0.774

SLaD(our) 87.8/90.2 87.7/90.2 0.596 0.874 86.2/88.2 86.3/88.0 0.555 0.812

4.5 COMPARISON OF RESULTS

Table 1 and Table 2 present comprehensive comparative results of our proposed SLaD method
against baseline models on the CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets.

4.5.1 PERFORMANCE ON CMU-MOSI AND CMU-MOSEI DATASETS

As demonstrated in Table 1, SLaD achieves superior performance across all evaluation metrics on
both datasets. On the CMU-MOSI dataset, our model demonstrates substantial improvements over
the second-best baseline FMFH: a remarkable 3.0%/3.2% improvement in Acc2, a 2.7%/3.1% en-
hancement in F1-score, a significant reduction of 0.087 in MAE, and a notable 0.069 increase in
correlation coefficient. These improvements indicate SLaD’s enhanced capability in sentiment po-
larity classification and regression tasks.

Similarly, on the CMU-MOSEI dataset, SLaD consistently outperforms all baseline methods. Com-
pared to the second-best performing ALMT, our model achieves a 1.5%/1.5% improvement in Acc2,
a 1.2%/1.2% enhancement in F1-score, and a substantial 0.033 increase in correlation coefficient.
While showing a slight increase of 0.029 in MAE compared to ALMT, the overall performance gains
across other metrics demonstrate the robustness and effectiveness of our approach.
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Table 2: Model comparison results on the CH-SIMS dataset. “a” denotes results reproduced using
the authors’ released code, “b” indicates results reported in Li et al. (2025a), and “c” indicates results
reported in the original paper.

Model Acc2 F1 Acc5 MAE Corr

TFNa 77.8 78.0 36.3 0.442 0.575
LMFa 77.2 77.4 41.0 0.439 0.586
MulTa 76.2 76.4 36.5 0.441 0.588
Self-MMa 78.9 78.8 44.8 0.410 0.600
CENetb 77.9 77.5 33.9 0.470 0.539
ALMTb 79.4 79.6 42.4 0.420 0.594
TMBLb 79.1 78.7 41.5 0.429 0.592
KuDAc 80.7 80.7 43.5 0.408 0.613
FMFNb 80.7 80.7 44.2 0.416 0.598

SLaD(our) 81.6 81.4 47.9 0.390 0.631

4.5.2 PERFORMANCE ON CH-SIMS DATASET

The CH-SIMS dataset presents more complex multimodal scenarios with richer contextual infor-
mation, making it particularly challenging for MSA tasks. As shown in Table 2, SLaD achieves
state-of-the-art performance across all evaluation metrics, demonstrating its superior capability in
handling complex multimodal sentiment analysis scenarios.

Specifically, SLaD outperforms the best baseline models KuDA and FMFN by 0.9% in both Acc2
and F1-score for binary classification tasks. In the more challenging five-class classification task
(Acc5), our method achieves a substantial 3.1% improvement over the second-best baseline Self-
MM, reaching 47.9% accuracy. For regression tasks, SLaD reduces MAE by 0.018 compared to the
best baseline KuDA and increases the correlation coefficient by 0.018, indicating superior perfor-
mance in fine-grained sentiment intensity prediction.

4.6 ABLATION STUDY AND ANALYSIS

To systematically validate the effectiveness of each key component, comprehensive ablation exper-
iments were conducted on the CH-SIMS dataset. By selectively removing or combining different
mechanisms, including the sub-modality label-aware similarity weighting ω, modality contrastive
loss Lcon, modality repulsion loss Lrep, and multi-label supervision loss Lml, we investigated their
contributions and synergistic effects in cross-modal emotion prediction. The full results are summa-
rized in Table 3.

4.6.1 EFFECTIVENESS OF SUB-MODALITY LABEL-AWARE SIMILARITY WEIGHTING

Removing similarity weighting ω significantly hurt performance (Acc2, F1, Corr dropped by 4%,
MAE increased), showing its importance in aligning cross-modal labels and reducing noise. With-
out modality contrastive loss (Lcon), performance worsened further ( 7% Acc2, 6% F1 drop), high-
lighting the synergy between ω and Lcon for label consistency. Retaining only ω yielded the worst
results, indicating its limited independent value. It has maximal utility when integrated with other
components.

4.6.2 EFFECTIVENESS OF MODALITY CONTRASTIVE LOSS

The effectiveness of the modality contrastive loss Lcon is reflected in approximately 3% reductions
in Acc2 and F1 and a marked increase in MAE upon its removal, highlighting its critical function in
aligning modality-invariant features across modalities. Further comparison shows that when Lcon

is used solely alongside ω and Lml, the performance declines further, indicating a complementary
relationship between the contrastive loss and repulsion loss in modeling consistency and discrim-
inability. The poor performance when Lcon is used alone further confirms that this loss requires the
structural semantic constraints provided by other mechanisms to realize its full potential.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on the CH-SIMS dataset. The percentage in parentheses indicates the
relative change compared with the full model (ω + Lcon + Lrep + Lml), calculated as (current −
full)/full × 100%.

ω Lcon Lrep Lml Acc2 F1 Acc5 MAE Corr
✓ ✓ ✓ ✓ 81.6 81.4 47.9 0.390 0.632

✓ ✓ ✓ 77.9 (↓4.55%) 78.4 (↓3.69%) 42.9 (↓10.44%) 0.432 (↑10.8%) 0.608 (↓3.80%)
✓ ✓ ✓ 75.5 (↓7.48%) 76.2 (↓6.39%) 46.8 (↓2.29%) 0.400 (↑2.56%) 0.587 (↓7.12%)
✓ ✓ ✓ 78.8 (↓3.43%) 79.0 (↓2.95%) 43.5 (↓9.19%) 0.444 (↑13.8%) 0.604 (↓4.43%)
✓ ✓ ✓ 77.5 (↓5.02%) 78.2 (↓3.93%) 44.0 (↓8.15%) 0.413 (↑5.9%) 0.636 (↑0.63%)

✓ ✓ 79.0 (↓3.18%) 78.9 (↓3.07%) 45.1 (↓5.84%) 0.377 (↓3.33%) 0.634 (↑0.32%)
✓ ✓ 75.7 (↓7.23%) 76.5 (↓6.03%) 42.9 (↓10.44%) 0.425 (↑9.0%) 0.613 (↓3.01%)
✓ ✓ 78.3 (↓4.04%) 78.7 (↓3.32%) 46.4 (↓3.13%) 0.386 (↓1.03%) 0.641 (↑1.42%)

✓ ✓ 76.2 (↓6.61%) 76.9 (↓5.52%) 46.8 (↓2.29%) 0.392 (↑0.51%) 0.607 (↓3.95%)
✓ ✓ 74.4 (↓8.82%) 75.2 (↓7.62%) 46.4 (↓3.13%) 0.410 (↑5.13%) 0.577 (↓8.70%)
✓ ✓ 76.4 (↓6.37%) 77.0 (↓5.40%) 47.9 (=0.00%) 0.383 (↓1.79%) 0.636 (↑0.63%)

✓ 76.2 (↓6.61%) 76.7 (↓5.78%) 48.6 (↑1.46%) 0.401 (↑2.82%) 0.600 (↓5.06%)
✓ 77.9 (↓4.55%) 78.1 (↓4.06%) 45.3 (↓5.43%) 0.408 (↑4.62%) 0.635 (↑0.47%)

✓ 74.2 (↓9.06%) 75.1 (↓7.75%) 46.0 (↓3.96%) 0.388 (↓0.51%) 0.622 (↓1.58%)
77.4 (↓5.14%) 77.9 (↓4.30%) 43.3 (↓9.61%) 0.409 (↑4.87%) 0.616 (↓2.53%)

4.6.3 EFFECTIVENESS OF MODALITY REPULSION LOSS

Regarding the modality repulsion loss Lrep, its removal resulted in approximately 5% decreases
in Acc2 and F1 and nearly a 6% increase in MAE, demonstrating that it effectively enhances the
discriminability of modality-specific features and suppresses cross-modal interference. Notably,
correlation slightly improved when combined with other components, suggesting that Lrep main-
tains modality independence while complementing consistency modeling to optimize overall per-
formance.

4.6.4 EFFECTIVENESS OF MULTI-LABEL SUPERVISION LOSS

The multi-label supervision loss Lml exhibited the most significant impact, with its exclusion caus-
ing over 6% and 5% reductions in Acc2 and F1, respectively, along with approximately a 5% drop
in correlation. This emphasizes its indispensable role in mining semantic relationships among labels
and optimizing cross-modal information fusion. The substantial performance degradation observed
when Lml is retained alone further indicates its limited independent efficacy, making it more suitable
for collaborative use with other mechanisms.

In summary, these four mechanisms mutually complement and collaboratively optimize the model
at different levels, collectively enhancing cross-modal emotion recognition performance.

5 CONCLUSION

In this work, we propose SLaD, a novel framework designed to disentangle modality-invariant and
modality-specific representations for MSA. By leveraging a sub-modal label similarity weighting
mechanism, SLaD effectively models the structural and numerical relationships among sub-modal
emotional labels, ensuring consistent and reliable cross-modal alignment. Moreover, through the
integration of a modality contrastive loss, modality repulsive loss, and multi-label contrastive loss,
SLaD achieves both semantic consistency and enhanced modality discriminability. Experimental re-
sults on three benchmark datasets demonstrate that SLaD achieves SOTA performance, significantly
improving both classification and regression metrics. In future work, we plan to extend SLaD to
incorporate visual modalities and explore cross-domain adaptation further to enhance its generaliza-
tion capability in diverse real-world applications.
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A APPENDIX

A.1 REPRODUCIBILITY CHECKLIST

All experiments are implemented using the PyTorch 2.5.1 framework. The training is conducted
on a platform equipped with an Intel (R) Xeon (R) Platinum 8457C CPU and an NVIDIA L20
GPU. The key hyper-parameters are summarized in Table 4. Empirical results show that the optimal
settings of most hyperparameters remain consistent across all datasets, highlighting the robustness of
SLaD with respect to hyperparameter selection. This property alleviates the need for labor-intensive
dataset-specific hyperparameter tuning.

Table 4: Hyper-parameters of SLaD we use on the different datasets.

CMU-MOSI CMU-MOSEI CH-SIMS

Learning Rate 5e-6 5e-6 1e-5
Batch Size 8 8 16
Optimizer AdamW AdamW AdamW

Epochs 50 50 50
Warm Up ✓ ✓ ✓

Cosine Annealing ✓ ✓ ✓
Context ✓ ✓ -

Text Context Length 2 2 -
Audio Context Length 2 2 -

Early Stop 5 5 5
Dropout 0.3 0.3 0.3

Bandwidth Parameter α 0.5 0.5 0.5
Temperature Coefficient τ 0.2 0.2 0.2

Top-K 3 3 3
Number Attention Heads 12 12 12

A.2 BIMODAL EXPERIMENT

In this section, we compare the proposed method with other state-of-the-art bimodal models.

A.2.1 BASELINE BIMODAL MODELS

Self-MM Yu et al. (2021): This model generates sub-modality labels and further introduces a weight
adjustment strategy to balance the learning progress across different sub-tasks.

AOBERT Kim & Park (2023): This model jointly trains a multimodal masked language model and
an alignment prediction task to identify dependencies and correlations among modalities.

SKEAFN Zhu et al. (2023): This framework incorporates external affective knowledge represen-
tations to enhance the textual modality. It employs a text-guided interaction module to promote
interactions between text and other modalities, while a feature-level attention mechanism dynami-
cally adjusts weights during multimodal fusion.

MCMF Li et al. (2023): This model proposes a linguistically guided Transformer framework with
unimodal feature fusion to address the challenges of multimodal information integration.

MTMD Lin & Hu (2024): In this model, textual and multimodal representations are regarded as
teacher networks, while acoustic and visual representations serve as student networks, enabling
knowledge distillation. The distillation process leverages both regression and classification sub-
tasks to facilitate the transfer of sentiment-related knowledge.

MMML Wu et al. (2024): This study shows that pre-trained models for raw audio enhance feature
extraction, and that combining audio with text outperforms using text alone. Moreover, multi-loss
training and contextual information substantially improve multimodal sentiment analysis.
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CMFF Zheng et al. (2025): CMFF exploits hierarchical information embedded in shallow and deep
features of text and audio. A multi-head cross-modal attention mechanism is employed in the fusion
layer to facilitate interactions across feature levels and modalities.

Table 5: Model comparison results on the CMU-MOSI and CMU-MOSEI datasets, “∗” indicates
results reported in Zheng et al. (2025).

Model CMU-MOSI CMU-MOSEI

Acc2 F1 MAE Corr Acc2 F1 MAE Corr

Self-MM∗ 84.0/86.0 84.4/86.0 0.713 0.798 82.8/85.2 82.5/85.3 0.530 0.765
AOBERT∗ 85.2/85.6 85.4/86.4 0.856 0.700 84.9/86.2 85.0/85.9 0.515 0.763
SKEAFN∗ 85.1/87.3 85.2/87.3 0.665 0.825 84.3/87.1 84.1/87.2 0.517 0.788
MCMF∗ 85.2/88.4 85.3/88.4 0.690 0.810 84.7/86.2 84.7/85.9 0.510 0.740
MTMD∗ 84.0/86.0 83.9/86.0 0.705 0.799 84.8/86.1 84.9/85.9 0.531 0.767
MMML∗ 85.9/88.2 85.9/88.2 0.643 0.838 86.3/86.7 86.2/86.5 0.517 0.791
CMFF∗ 87.3/89.2 87.3/89.2 0.570 0.876 84.0/88.2 84.4/88.2 0.483 0.813
SLaD(our) 87.8/90.2 87.7/90.2 0.596 0.874 86.2/88.2 86.3/88.0 0.555 0.812

A.2.2 COMPARISON OF RESULTS

Table 5 reports results on CMU-MOSI and CMU-MOSEI under the bimodal (text + audio) set-
ting. On CMU-MOSI, SLaD achieves state-of-the-art classification accuracy, outperforming CMFF
by up to +1.0% (Acc2/F1) and yielding consistent gains over MMML and SKEAFN, which con-
firms the effectiveness of sub-modal label-aware supervision in capturing fine-grained polarity.
For regression, SLaD attains Corr nearly identical to CMFF (0.874 vs. 0.876) with a slightly
higher MAE, while showing clear improvements over other baselines. On CMU-MOSEI, SLaD
remains highly competitive: it provides balanced improvements over MMML (+1.5% Acc2/F1 un-
der the negative–positive paradigm) and stronger robustness than CMFF in the non-negative setting
(+2.2%/+1.9% Acc2/F1). Although its MAE is higher, Corr remains comparable to CMFF (0.812
vs. 0.813) and superior to most baselines (e.g., +0.024 Corr relative to SKEAFN). Overall, SLaD
consistently advances classification while maintaining competitive regression performance, demon-
strating robustness across datasets.

A.3 INFLUENCE OF TEMPERATURE COEFFICIENT AND HARD NEGATIVE MINING STRATEGY

To verify the effectiveness of the temperature coefficient τ and the Top-K hard negative sample
mining strategy in the proposed modal contrastive loss Lcon, we conducted systematic experiments
under different temperature coefficients (τ = 0.1, 0.2, 0.3, 0.4) and different numbers of negative
samples (K = 1, 2, 3, 4, 5, 6). Figure 4 illustrates the influence of the temperature coefficient and
hard negative mining strategy.

A.3.1 INFLUENCE OF TEMPERATURE COEFFICIENT

The temperature coefficient τ in Lcon has a critical impact on cross-modal alignment. A small
value (τ = 0.1) sharpens the similarity distribution excessively, causing unstable optimization and
noisy hard negative selection, with F1 fluctuating between 77.9%–81.1% (e.g., 78.3% at (K = 5))
and Corr around 0.615. In contrast, moderate values (τ = 0.2 ∼ 0.3) balance gradients across
pairs and improve hard negative mining, achieving the best performance at (τ = 0.2,K = 3) with
F1=81.4%, MAE=0.390, and Corr=0.631. Larger values (τ = 0.4) overly smooth the distribution,
reducing discriminability: although Corr peaks at 0.640 (K = 4), F1 drops to 77.0%–78.9%. These
results indicate that τ = 0.2 offers the best trade-off between stability and discriminability.

A.3.2 INFLUENCE OF HARD NEGATIVE MINING STRATEGY

The Top-K hard negative mining strategy is introduced to enhance feature discriminability by pri-
oritizing the most confusing negatives. Experimental results across different K values validate this
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(a) Acc2 (b) F1 (c) Acc3

(d) Acc5 (e) MAE (f) Corr

Figure 4: Impact of different temperature coefficient τ and Top-K hard negative mining strategy K.

design. Small K (e.g., K = 1, 2) imposes limited constraints, failing to fully exploit semanti-
cally confusing negatives and thus yielding suboptimal performance. For example, at τ = 0.2, F1
reaches only 79.7% for K = 1, compared to 81.4% for K = 3. Moderate values (K = 3) best
capture the hardest negatives, achieving optimal performance at (τ = 0.2,K = 3) with F1=81.4%,
MAE=0.390, and Corr=0.631.

By contrast, large K (e.g., K ≥ 5) dilutes the hard negative set with numerous easily distinguishable
negatives, which provide little gradient signal and instead introduce noise. For instance, at (τ =
0.1,K = 5), performance drops notably (F1=78.3%, Corr=0.600).

Overall, a moderate temperature coefficient and a carefully chosen K are both critical for cross-
modal consistency modeling. The temperature balances gradients between positive and negative
pairs, while the Top-K strategy sharpens modality discrimination by emphasizing the most con-
fusing negatives. Together, these mechanisms jointly improve alignment and discriminability in
multimodal sentiment analysis.

A.4 VISUALIZATION OF THE INPUT UNIMODAL FEATURES AND FINAL FUSED FEATURES

As shown in Figure 5, for the binary sentiment classification task, we employ the T-SNE method
to visualize the input unimodal features (i.e., X ′t and X ′a) and the final fused representation Xf

on the CMU-MOSI and CH-SIMS datasets. The results reveal that, compared to unimodal fea-
tures (whose sample distributions exhibit substantial overlap), the fused representation demonstrates
markedly stronger separability, with clear boundaries emerging between positive and negative sen-
timent classes. This observation indicates that SLaD effectively leverages the diverse and comple-
mentary information across modalities, thereby providing robust support for improving sentiment
classification accuracy.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Visualization of the input unimodal features and final fused features on MOSI and SIMS
datasets. (a) Input Text Features of MOSI, (b) Input Audio Features of MOSI, (c) Final Fused
Features of MOSI, (d) Input Text Features of SIMS, (e) Input Audio Features of SIMS, (f)Final
Fused Features of SIMS.

A.5 METRICS

We adopt both classification and regression metrics for evaluation. Note that sentiment intensity
ranges from [-1,1] for CH-SIMS and [-3,3] for CMU-MOSI and CMU-MOSEI.

Classification metrics:

• Acc2: Binary accuracy (positive vs. negative, or non-negative vs. negative).

• Acc5: Accuracy under a five-class setting by discretizing the sentiment range into five
intervals.

• F1: Harmonic mean of precision and recall, weighted across classes to mitigate class im-
balance.

Regression metrics:

• MAE: Mean absolute error between predicted and ground-truth scores.

• Corr: Pearson correlation coefficient measuring linear correlation between predictions and
labels.

For the Acc2 and F1 score, we describe two cases as follows:

• Non-negative/Negative (NN/N): This classification is used to evaluate the model’s ability
to distinguish between non-negative (greater than or equal to 0) and negative (less than 0)
sentiments.

• Positive/Negative (P/N): This configuration focuses on the accuracy of the model in clas-
sifying sentiment as positive (greater than 0) or negative (less than 0).
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A.6 LIMITATION

A key limitation of this work lies in its current focus on text–audio bimodality, without incorporat-
ing the visual modality. This design choice is motivated by three considerations: (i) prior studies
have shown that adding visual input often brings marginal performance gains in related tasks Wu
et al. (2024); Zheng et al. (2025); (ii) visual integration substantially increases computational cost
and hardware requirements; and (iii) visual information is frequently unavailable in real-world ap-
plications, limiting the practicality of models that rely on it.

Despite this restriction, the proposed model achieves state-of-the-art performance across both bi-
modal and multimodal task settings. Nevertheless, extending the framework to include the visual
modality remains an important future direction. Enhancing the model’s visual understanding capa-
bility may further improve its effectiveness in comprehensive multimodal scenarios.

A.7 THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, Large Language Models (LLMs) were employed as a
general-purpose writing assistant. Their role was limited to grammar correction, style refinement,
and improving the clarity of exposition. Importantly, LLMs were not used for research ideation,
methodological design, experimental setup, data analysis, or interpretation of findings. All scientific
content, results, and conclusions presented in this paper are solely the responsibility of the authors.
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