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Reproducibility Summary1

Scope of Reproducibility2

The claims of the paper [1] are threefold: (1) Summers and Dinneen [1] made the surprising yet intriguing discovery3

that all sources of nondeterminism exhibit a similar degree of variability in the model performance of a neural network4

throughout the training process. (2) To explain this fact, they have identified model instability during training as the key5

factor contributing to this phenomenon. (3) They have also proposed two approaches (Accelerated Ensembling [2] and6

Test-Time Data Augmentation [3]) to mitigate the impact on run-to-run variability without incurring additional training7

costs. In the paper [1], the experiments were performed on two types of datasets (image classification and language8

modelling). However, due to the intensive training and time required for each experiment, we will only consider image9

classification for testing all three claims.10

Methodology11

Our approach to investigating the claims made in the paper [1] can be divided into three parts: (1) Replication: we used12

the publicly available code and adapted it to our experimental environment with some modifications to replicate the13

results; (2) Ablation study: we tried to use different parameters, reducing the total implementation time to less than14

half compared to the original study, while keeping the central claim intact; (3) Generalization: we studied the authors’15

claim on a much more complex dataset and architecture to gain insights on the reproducibility of the conclusion. All16

experiments necessarily required extensive training, with a single experiment alone requiring 490 hours of 2 Nvidia17

Tesla V100 16GB (i.e., 700 trained models).18

Results19

With our tests and the obtained results, we confirm that all individual and combined sources of nondeterminism20

have similar effects on model variability and that instability in neural network optimization is the main reason for21

this phenomenon. However, our results show some discrepancies in the reduction of variability by test-time data22

augmentation (TTA) and accelerated ensembling (claim 3 above). Like the original study, we show that these approaches23

successfully reduce variability, but the degree of reduction is reported as 61%, whereas our study reports 51% as the24

highest value. Despite some small differences, the third claim remains and we support it.25

What was easy26

The authors have made the source code publicly available in the GitLab repository. Even without extensive documenta-27

tion, reimplementation of the experiments was straightforward and required little effort. Moreover, the paper’s clearly28

presented details significantly reduced the effort required to set up the experimental configurations. The use of regular29

neural network training and widely used datasets was the icing on the cake to follow the implementation. This allowed30

us to explore other new aspects of the method.31
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What was difficult32

Although the implementation was easy to comprehend and intuitive with the resources provided, the validation of33

some baselines proved to be computationally intensive and time-consuming, requiring multiple runs. In particular,34

the variability analysis required training 100 models each for 500 epochs to verify the role of a single source of35

nondeterminism. Nevertheless, we managed to maintain the original settings, but we could not run multiple iterations to36

gain more confidence in the results.37

Communication with original authors38

At the beginning of our reproducibility study, we contacted the original authors once. The basic questions about the39

experimental settings were answered and the foundation for the rest of our experiments was laid. In addition, we also40

referred to their post and answers available on the OpenReview portal.41

https://openreview.net/forum?id=SQ7EHTDyn9Y


2 SCOPE OF REPRODUCIBILITY

1 Introduction42

In the pursuit of reproducibility in Deep Learning, a key criterion is the elimination of sources of nondeterminism in43

model optimization. Random initialization of weights is considered the main source of nondeterminism [4], but other44

sources such as random shuffling of training data [5], random data augmentation [6], and even GPU libraries such as45

cuDNN also contribute [7] . These random parameters tend to initialize with a random value every time we train the46

model, even if we use the same source code. On the one hand, such randomization helps to achieve sound performance,47

but on the other hand, it leads to run-to-run variability. This causes difficulties in verifying and improving baselines. To48

have complete experimental control, a better understanding of these random components is required, which is why each49

independent model is trained multiple times as a standard practice. While this can solve the problem, it is extremely50

costly in terms of computational resources and time.51

The authors’ original work focused on quantifying the independent effect of each source of nondeterminism on model52

training. All different sources of nondeterminism were found to have similar effects on model variability. They also53

created an experimental protocol that used standard evaluation measures of model diversity and variability to capture54

model behaviour better. While developing a basic mechanism of understanding, they also discovered model instability55

as a major cause of run-to-run variability. To support this finding, experiments were conducted on image classification56

and language modeling datasets. In the end, two solutions were proposed to reduce variability without additional costs.57

2 Scope of reproducibility58

1) First, we have attempted to replicate all three of the paper’s claims:59

• Claim 1: All sources of nondeterminism have similar effects on model diversity and variability.60

This claim seems to be a surprising discovery, as it could pave the way for researchers to improve the algorithm as a61

whole to reduce the effects of model variability, rather than focusing on each source of nondeterminism separately. In62

this reproducibility report, all sources of nondeterminism were tested individually and also in combination with other63

sources for ResNet-14 [8] on the CIFAR-10 dataset [9].64

• Claim 2: The key driver of this phenomenon “All sources of non-determinism have similar effects on model65

diversity and variability” is the instability of model optimization.66

Model optimization is said to have instability where small changes to the initial parameters lead to large changes to the67

final parameter values. Simply put, changing the initialization of a single weight by the smallest possible amount of68

10−10 has the same effect as initializing all weights with completely random values. This study shows that any source69

of nondeterminism is susceptible to a change in weights by at least 10−10 and therefore produces the same amount70

of variability. This also illuminates the discovery of Zhuang et al. [4], which shows that removing a single source of71

nondeterminism is not sufficient to improve the stability of the training.72

• Claim 3: Accelerated ensembling and TTA are two possible solutions to reduce model variability without73

additional training costs (e.g., time).74

As mentioned earlier, the standard practice to counter model variability is to train models multiple times, which costs75

additional computational resources. This claim attracts our attention because it could change current practices and76

facilitate the reproducibility of experiments in the context of Deep Learning by promoting deterministic training without77

additional costs.78



3 METHODOLOGY

2) Although the main objective of our study is to reproduce the main claims, we did not limit ourselves to these only.79

We have also conducted a series of experiments that go beyond the paper and follow two lines of investigation:80

• Ablation study: During the reproducibility study, one of the main difficulties we faced was the excessive81

amount of time required to conduct a single experiment. In Section 4.2, we attempted to address this issue by82

recommending changes to the default settings supported by our experimental results, while keeping the main83

claims intact.84

• Generalization to larger architectures and datasets: Because we were able to reduce the experimental time, we85

tested the authors’ claim on a larger architecture and dataset to verify that the claim still holds in general.86

3 Methodology87

3.1 Code88

The publicly available source code was provided by the original authors in the corresponding GitHub repository . It89

was written using the Pytorch [10] and NumPy libraries with Python 3.7.5. We used the same code and made some90

adjustments, such as setting the width of the output terminal and downloading the datasets manually. With these91

minor changes, we were able to run the code according to our experimental environment. The code provides a basic92

structure that allows numerous architectures to be used with few changes. However, additional code must be added for93

architectures larger than ResNet-18 [8]. The code also has command line functionality that allows the user to configure94

seed values and hyperparameter settings for a specific task. Although the code covers the entire implementation with95

the exact experimental settings described in the paper, a portion of the code is missing to visualize the results.96

3.2 Model descriptions97

We initially chose the ResNet-14 model because it was frequently used for image classification experiments in the98

original study along with the CIFAR-10 datasets. Due to the large number of trained models required for a single99

experiment, we did not have time to work with other models except ResNet-34, which we created ourselves to test100

the generalization of the claim over larger model architectures. Figure 1 shows the basic residual block of a ResNet101

architecture, consisting of two 3x3 convolutional layers followed by batch normalization before activation. On the same102

basis, Table 1 shows the modular architecture of ResNet-14 and ResNet-34 [8] without the first 7x7 convolutional layer103

and the final fully-connected layer. The blocks are shown in parentheses along with the number of output channels,104

with the multiplier indicating the number of residual blocks in that module.

Module No. ResNet-14 ResNet-34

1
[
3× 3, 16
3× 3, 16

]
×2

[
3× 3, 64
3× 3, 64

]
×3

2
[
3× 3, 32
3× 3, 32

]
×2

[
3× 3, 128
3× 3, 128

]
×4

3
[
3× 3, 64
3× 3, 64

]
×2

[
3× 3, 256
3× 3, 256

]
×6

4
[
3× 3, 512
3× 3, 512

]
×3

Table 1: Architecture of ResNet-14 and ResNet-34 in modular format

105

https://github.com/ceciliaresearch/nondeterminism_instability
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Figure 1: ResNet residual block

3.3 Datasets106

To investigate the effects of nondeterminism on image classification, the authors used CIFAR-10 as the primary training107

dataset to train the ResNet-14 model. Because the architectures used in the original study were smaller, the use of108

CIFAR-100 was not seen. In comparison, we additionally used the CIFAR-100 dataset to train and test the larger109

architecture (ResNet-34) in our extended study. It is worth noting that the authors used a runtime code to download the110

datasets using the torchvision library. Although this would have been the preferred choice, we encountered some issues111

due to the external access limitations of our experimental environment. Thus, we manually downloaded the dataset and112

specified the path, which worked well for us. We used the authors’ protocol for the training and testing portions with113

50k samples and 10k samples of CIFAR-10, respectively. No validation set was used. Table 2 shows the datasets used114

in our experimental tests.

Dataset Classes Samples Dimensions Split(train/val/test)
CIFAR-10 10 60k 32× 32× 3 50k/0/10K
CIFAR-100 100 60k 32× 32× 3 50k/0/10K

Table 2: Summay of datasets

115

3.4 Hyperparameters116

In training the models, all standard parameters were used as given in the paper to more closely approximate the original117

approach. While not all values were mentioned in the paper, they could be easily found in the code itself. All models118

were trained with a cosine learning rate decay [11] with a maximum learning rate of 0.40 and 500 epochs. We also119

used the first three epochs for warm-up with linear learning rate, as was the case in the original study. Throughout the120

training, the SGD optimizer was used with a batch size of 512, a momentum of 0.9, and a weight decay of 5.10−4.121

3.5 Evaluation for the effects of nondeterminism122

To understand the impact of each source of nondeterminism, the original study developed a protocol related to123

performance variability and model diversity representation.124

Performance variability: All random sources are controlled by seeding values. To test a single source, all other125

sources are assigned the constant deterministic seeding value of 1, except for the source that is under observation and126

assumes different seeding values from 1 to the total number of training runs. For the sources that cannot be seeded, such127
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as cuDNN, the range is limited to 0 to 1, with 0 and 1 indicating the random and deterministic values, respectively. In128

the original settings, the total number of training runs is set to 100, so for each source of nondeterminism, 100 models129

can be trained. If we assume 4 different sources, each can be represented as S1, S2, S3, and S4, where S denotes the130

seed values. For example, S1 denotes the seed for random parameter initialization, S2 for training data shuffling, S3131

for data augmentation, and S4 for cuDNN. If we set (S1 = 1, S2 = 1, S3 = R,S4 = 1), where R denotes the range132

from 1 to the total number of training runs, we would analyse the effect of data augmentation as a random source. If133

we want to analyse the effects of multiple sources simultaneously, we would also assign the R values to other sources.134

Finally, to work with performance variability, we consider the standard deviation of accuracy and cross entropy across135

all 100 trained models for each source.136

Representation diversity: In addition to performance variability, the authors also considered the representation of the137

trained models. This allows us to determine the difference in the representation of the trained models even when their138

performance variability is the same. In doing so, they used four different metrics that we followed. Of these, we did not139

find an implementation for the Centered Kernel Alignment (CKA) evaluation metric [12], which is considered the most140

advanced evaluation metric for determining similarities between models. The first metric is the simplest, which uses the141

average disagreement between pairs of 100 models. Second, they used the average correlation between the models’142

predictions. Finally, they examined the change in performance when two models are ensembled from the same source143

of nondeterminism.144

3.6 Extended experiments145

With the extended experiments, we have tried to eliminate the difficulties we encountered in replicating the experiments146

to verify the paper’s claim. One of our main concerns was the time required for each experiment. Therefore, we147

performed a series of experiments beyond the original work to satisfy the claims without being computationally148

intensive.149

Models v/s model variability: In this experiment, we examine the actual number of models required to test the150

variability analysis for each source of nondeterminism, which can reflect the same conclusion as the original settings151

while reducing the overall computational cost. Due to time constraints, we chose to work with only two sources. We152

varied the number of models for each source and observed the results using the same evaluation measures.153

Epochs v/s model variability: Another factor contributing to the long training time is the use of a large number of154

epochs. In this experiment, we investigate the effects of a different number of epochs on the variability of the model,155

and therefore try to obtain similar results with a smaller number of epochs.156

3.7 Experimental setup and computational requirements157

To achieve similar results as in the original study, we strictly follow the same experimental environment and use Pytorch158

as framework with Python = 3.7.5, NumPy = 1.17.4, Torch = 1.3.1 and Torchvision = 0.4.2. All experiments were159

performed on the HPC cluster ARA using the SLURM workload manager at Friedrich Schiller University Jena. This160

system consists of multicore nodes for high computational performance and therefore offers a variety of GPU systems161

that can be used. According to our needs, we chose to work with 2 NVIDIA Tesla V100 GPUs equipped with 24 core162

Intel CPU and 128 GB of RAM. Table 3 shows the number of experiments performed and the time needed for them.163

It is worth mentioning that the evaluation part of all experiments involves the technique of TTA, which must also be164

performed on a GPU, so the time needed for the evaluation part is also added. The first three experiments belong to165

each of the three claims and the others are part of our extended study, which is not included in the original studies.166

https://wiki.uni-jena.de/pages/viewpage.action?pageId=22453005


4 RESULTS

Experiments Dataset Model Total No. of Epochs Total training Total evaluation
trained models time (hrs) time (hrs)

Exp-1 CIFAR-10 ResNet-14 700 500 490 10.5
Exp-2 CIFAR-10 ResNet-14 100 500 70 1.5
Exp-3 CIFAR-10 ResNet-14 100 500 75 1.5

Ext.Exp-1 CIFAR-10 ResNet-14 (10,25, 500 140 2.5
50,100)

Ext.Exp-2 CIFAR-10 ResNet-14 125 (100 to 90 1.7
500)

Ext.Exp-3 CIFAR-100 ResNet-34 25 200 75 2.5

Table 3: Time required for each experiment

4 Results167

In this section we present our experimental results by replicating all three claims and going beyond the paper [1]. First,168

we start with the core replication by following exactly in the footsteps of the original authors and producing all three169

experiments for each claim. Second, we ran three more experiments that help us obtain the same results much faster170

and generalize the first two claims across different datasets and architectures.171

4.1 Core replication results172

Effects of nondeterminism sources Table 4 shows the result of our replication study for claim 1 with some minor173

differences as reported in [1]. In addition to all sources of nondeterminism, we performed additional deterministic174

training to verify that we have complete control over all sources and no other effects of randomness are observed175

during the training process unless otherwise noted. We trained all 100 models for each source, with 100 different176

seed values, as in the original work. We obtained almost the same results when we analysed the effect of each source177

separately. However, when the combination of multiple sources was tested, we found only a few anomalies (marked178

with red colour in Table 4), which ultimately appear to be negligible. Therefore, we support the claim that all sources of179

nondeterminism have similar effects on model variability and diversity.

Nondeterminism Accuracy Cross-Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Determinism 0 0 0 1 0
Parameter Initialization 0.22± 0.02 0.0073± 0.0005 10.7 0.873 1.86

Data Shuffling 0.25± 0.02 0.0083± 0.0005 10.7 0.871 1.86
Data Augmentation 0.22± 0.02 0.0069± 0.0005 10.7 0.872 1.87

cuDNN 0.21± 0.01 0.0067± 0.0004 10.6 0.873 1.83
Data Shuffling + cuDNN 0.25 ± 0.02 0.0071± 0.0005 10.7 0.871 1.85

Data Shuffling + Aug + cuDNN 0.24 ± 0.02 0.0068± 0.0004 10.7 0.871 1.87
All Nondeterminism Sources 0.26± 0.02 0.0080± 0.0005 10.7 0.871 1.84

Table 4: Effects of nondeterminism sources

180

The effect of instability Table 5 shows the result of the second claim. Note that the second claim states that instability181

in neural network optimization is the key factor for similar effects of nondeterminism sources on model variability. To182

observe the effects of instability, deterministic training was performed with a small change of 1 bit (5× 10−10) in a183

single random weight for 100 models. Our results show that this 1-bit change generates about as much variability as184

any other source of nondeterminism. Therefore, this claim can be considered confirmed by our experiment.185
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Nondeterminism Accuracy Cross-Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Random Bit Change 0.21± 0.014 0.0067± 0.0004 10.6 0.874 1.82

Table 5: Effects of instability

Reduction of variability with proposed methods In Table 7 we show the results of our replication study for the186

third claim. Unlike the other two claims, our study this time shows numerous differences in the results compared to the187

original study. The TTA and accelerated ensembling methods were used to reduce model variability, and the values188

were compared to the result obtained by combining all sources of nondeterminism presented as a "Single Model". First,189

we found a computational error in the percentage of variability reduction in the original paper itself, which was taken as190

the average value for all 5 metrics compared to the single model. This measure would allow us to see the effectiveness191

of these two probable solutions. Although the mathematical formula is not given in the study, it seems intuitive to192

work with average values. Therefore, we performed a calculation of the baseline averages and found differences in the193

overall reduction percentages. For all reduction percentages, the values on paper appear to be about 20% higher than194

the calculated values. This is highlighted in red, as shown in Table 6.195

Second, in addition to the calculation error, we found other minor anomalies that account for more than 10% change, as196

shown in Table 7 (highlighted in red). Including all minor differences, we have again shown that TTA and accelerated197

ensembling can be used to reduce variability. However, the highest possible percent reduction was reduced from 61%198

to 51% compared to the original study. When compared to the recalculated values, a slight increase in the percentage199

is observed. Moreover, the different types of TTA alone seem to cause an equal reduction in performance variability,200

while the change is mainly visible in model diversity. Thus, the overall variability is reduced. Despite these differences,201

the third claim remains and we therefore support it..

Nondeterminism Training Accuracy Cross-Entropy Pairwise Pairwise Ensemble Variability
Sources Cost SD (%) SD (%) Disagree (%) Corr. ∆(%) Reduction (%)

Single Model 1x 0.26± 0.02 0.0072± 0.0005 10.7 0.871 1.82 n/a
Acc.Ens. 1x 0.19± 0.02 0.0044± 0.0003 6.1 0.957 0.63 4837

Single/Flip-TTA 1x 0.24± 0.02 0.0061± 0.0005 8.2 0.905 1.20 2117
Single/Crop25-TTA 1x 0.23± 0.02 0.0059± 0.0004 9.2 0.893 1.49 1613
Single/Crop81-TTA 1x 0.21± 0.01 0.0055± 0.0004 8.8 0.898 1.39 2117

Single/Flip-Crop25-TTA 1x 0.21± 0.02 0.0051± 0.0004 7.2 0.920 0.99 3326
Single/Flip-Crop81-TTA 1x 0.19± 0.01 0.0049± 0.0004 6.9 0.922 0.92 3730

Acc.Ens/Flip-TTA 1x 0.15± 0.01 0.0039± 0.0003 5 0.967 0.45 5846
Acc.Ens/Flip-Crop81-TTA 1x 0.16± 0.01 0.0033± 0.0002 4.6 0.972 0.38 6148

Table 6: Correction in percentage reduction

202

Nondeterminism Training Accuracy Cross-Entropy Pairwise Pairwise Ensemble Variability
Sources Cost SD (%) SD (%) Disagree (%) Corr. ∆(%) Reduction (%)

Single Model 1x 0.26± 0.02 0.0080 ± 0.0005 10.7 0.871 1.84 n/a
Acc.Ens. 1x 0.17 ± 0.01 0.0043± 0.0003 6.1 0.957 0.65 40

Single/Flip-TTA 1x 0.22± 0.01 0.0063± 0.0004 8.0 0.905 1.17 20
Single/Crop25-TTA 1x 0.22± 0.02 0.0057± 0.0004 9.1 0.893 1.46 17
Single/Crop81-TTA 1x 0.22± 0.01 0.0056± 0.0004 8.7 0.897 1.36 19

Single/Flip-Crop25-TTA 1x 0.22± 0.01 0.0050± 0.0003 7.1 0.919 0.98 28
Single/Flip-Crop81-TTA 1x 0.21 ± 0.01 0.0050± 0.0004 6.9 0.922 0.92 30

Acc.Ens/Flip-TTA 1x 0.16± 0.01 0.0037± 0.0002 5 0.967 0.42 47
Acc.Ens/Flip-Crop81-TTA 1x 0.15± 0.01 0.0031± 0.0002 4.5 0.972 0.37 51

Table 7: Reproducibility study for variability reduction. Prominent differences accounted for morethan 10% are shown
in red.

4.2 Additional results not present in the original paper203

In replicating all three claims, we faced the major problem of the time required to produce the results. While it is204

understandable that the nature of the problem requires multiple model training, it is still not clear to us why the author205
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used 100 trained models with 500 epochs each as default settings for each source of nondeterminism. Since these two206

parameters play an important role in the time required for an experiment, we decided to explore this area with the goal207

of reducing the training time while maintaining all the claims. This will allow the scientific community to test the208

claims on larger architectures and datasets with less time consumption.209

No. of models v/s Variability In this experiment, we used the original settings, except for the number of trained210

models considered for the variability analyses. By changing the number of trained models for nondeterminism,211

we observed the change in model variability. Due to lack of time, we experiment with only 3 different sources of212

nondeterminism. We found that the result is not significantly different from the number of models, except for the error213

bars associated with standard deviation of accuracy and cross entropy. While all important metrics remain the same, it214

can be observed that these error bars decrease as the total number of models increases, as can be seen in Figure 2. All215

sources tested in Table 8 show the same trend.

Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD (%) Disagree (%) Corr. ∆(%)

All Sources/(N=10) 0.25± 0.041 0.0068± 0.0010 10.7 0.870 1.85
All Sources/(N=25) 0.26± 0.034 0.0073± 0.0007 10.7 0.873 1.86
All Sources/(N=50) 0.24± 0.026 0.0076± 0.0007 10.7 0.871 1.86
All Sources/(N=75) 0.25± 0.021 0.0078± 0.0006 10.7 0.872 1.87
All Sources/(N=100) 0.26± 0.018 0.0080± 0.0005 10.7 0.872 1.87

Data Shuffling/(N=10) 0.25± 0.042 0.0061± 0.0010 10.8 0.871 1.86
Data Shuffling/(N=25) 0.22± 0.035 0.0080± 0.0009 10.7 0.870 1.89
Data Shuffling/(N=50) 0.25± 0.027 0.0079± 0.0007 10.7 0.870 1.88
Data Shuffling/(N=75) 0.25± 0.026 0.0084± 0.0006 10.7 0.870 1.87

Data Shuffling/(N=100) 0.25± 0.021 0.0082± 0.0005 10.7 0.871 1.86
Random Bit Change/(N=10) 0.26± 0.047 0.0063± 0.0011 10.7 0.874 1.88
Random Bit Change/(N=25) 0.23± 0.027 0.0075± 0.0009 10.6 0.874 1.85
Random Bit Change/(N=50) 0.22± 0.019 0.0069± 0.0006 10.6 0.874 1.83
Random Bit Change/(N=75) 0.22± 0.017 0.0070± 0.0005 10.6 0.874 1.83

Random Bit Change/(N=100) 0.21± 0.014 0.0068± 0.0004 10.6 0.874 1.82

Table 8: No. of models v/s Variability. N denotes total number of trained models.

216

Figure 2: Change in error with respect to number of trained models

Epochs v/s Variability Since we found that a smaller number of trained models is less likely to affect the result in217

terms of model variability, we kept the number of trained models constant at 25. In addition to the original settings, we218

changed the number of epochs from 100 to 500 to see its impact on model variability. It can be seen that changing the219
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epochs does not affect the performance variability, but the model diversity. The values for pairwise correlation and220

change in two models ensembling indicate greater model diversity as the number of epochs increases. The same trend221

can be observed in both sources, as shown in Table 9.

Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD (%) Disagree (%) Corr. ∆(%)

Data Shuffling/100 0.20± 0.02 0.0056± 0.0007 10.7 0.910 1.64
Data Shuffling/200 0.24± 0.03 0.0058± 0.0009 10.6 0.895 1.75
Data Shuffling/300 0.23± 0.02 0.0070± 0.0010 10.5 0.884 1.79
Data Shuffling/400 0.24± 0.03 0.0072± 0.0011 10.6 0.878 1.80
Data Shuffling/500 0.22± 0.03 0.0080± 0.0009 10.7 0.870 1.89

Random Bit Change/100 0.23± 0.03 0.0071± 0.0013 10.5 0.913 1.58
Random Bit Change/200 0.22± 0.02 0.0076± 0.0007 10.3 0.898 1.71
Random Bit Change/300 0.24± 0.03 0.0073± 0.0012 10.3 0.887 1.68
Random Bit Change/400 0.26± 0.03 0.0076± 0.0010 10.5 0.881 1.83
Random Bit Change/500 0.23± 0.03 0.0075± 0.0009 10.6 0.874 1.85

Table 9: No. of Epochs v/s Variability

222

Generalization In this section, we examine the first two claims of the paper on a larger scale in terms of architecture223

and dataset. So far, these claims have shown no difference in results and have only been tested with ResNet-18224

representing the largest architecture in [1]. For this reason, we went a step further and conducted experiments to test225

the generalization of nondeterminism and instability to CIFAR-100 (dataset) and ResNet-34 (model architecture). We226

conducted the experiment to obtain the 25 trained models with 200 epochs each for the sources of nondeterminism listed227

in Table 10. We obtained an average accuracy of 63% for the CIFAR-100 test dataset, however the goal is to observe228

the changes in model variability and its metrics. We have found that the two different sources of nondeterminism229

produce roughly the same variability. The relative variability of instability with "Random Bit Change" also shows a230

similar result. However, the significant change in values of these metrics are observed about three times higher than the231

experiments performed with CIFAR-10 and ResNet-14. Even though this difference is due to the lower accuracy of the232

test results, the two main claims still hold.233

Nondeterminism Accuracy Cross-Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Parameter Initialization 0.80± 0.19 0.029± 0.005 31.4 0.768 2.63
Data Shuffling 0.78± 0.11 0.037± 0.005 34 0.748 3.07

Random Bit Change 0.73± 0.13 0.040± 0.009 33.7 0.775 3.03

Table 10: Generalization of nondeterminism and instability

5 Discussion234

Our results in section 4 fully support the first two assertions regarding the effects of "non-determinism" and its identified235

cause "instability". To gain sufficient confidence in the result, we also tested these claims on larger architectures and236

datasets, which also confirms the results of the study. But, when conducting experiments with accelerated ensembling237

and TTA as a solution to reduce variability, some differences were found. Our results show that both approaches can238

reduce variability. However, the extent to which they reduce variability is presented higher in the original study and239

lacks concrete numbers. In addition, we did not find in the paper a mathematical formulation for the average percentage240

of variability reduction that could have avoided this discrepancy. However, this is not sufficient to refute the claim.241

Therefore, we also support the third claim. Moreover, the discovery that all sources of nondeterminism have similar242

effects on model variability is novel in itself and opens many interesting areas of research toward reproducibility of243

deep neural networks.244

Strengths and weaknesses One of our strengths in the reproducibility study was that we stuck to the original245

implementation by using the publicly provided code and were able to create the experimental environment with exact246
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hardware and software specifications. This allowed us to obtain similar results that confirmed the paper’s claims.247

Another strength of our work was to perform some additional experiments that helped us reduce the overall computation248

time, allowing experiments with a larger architecture and dataset to be completed on time. The weakness of our249

approach is that in the limited time available for the reproducibility study, we could not test the claims about different250

combinations of hyperparameters, since 100 of trained models must be seeded for each experiment, whereas training a251

single model takes about 40 minutes.252
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