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ABSTRACT

A standard assumption in machine learning is the data are generated by a fixed
but unknown probability, which is equivalent to assuming the examples are gen-
erated from the same probability distribution independently. So for most of the
learning research we usually randomly shuffle the whole data into training and
test data set. However, for real-life application reality is that the data points are
observed one by one. This paper is devoted to testing the assumption of distribu-
tion shift on-line: the observed data arrive one by one, and after receiving each
object, the machine learning algorithms give a prediction label, we would like to
have a valid measure of the degree to which the evidence to against the assump-
tion of non-distribution-shift. Such measures are provided under the framework
of distribution-free methods, also called martingales measure, which is a general
empirical theory of probability developed in 1993-2003. We report the experi-
mental performance of martingales to measure on the real-life data sets and the
results to show a bona fide fact that the distribution shift testing is an inescapable
reality when we adaptive machine learning algorithms to the original order.

1 INTRODUCTION

The rapid development of learning theory technology recently has made it possible to solve ever
more difficult problems in real-life problems. The development of high-performance computing
algorithms has been essential to this progress. Generally speaking, the problem of learning can be
reduced into the problem that estimates the dependence based on empirical data, which is practically
complete by means of machine learning algorithms as depending on the assumption that the data
are generated independently identify distribution (i.i.d). In order to state and perform state-of-the-
art properties of such algorithms, it is the almost standard announcement that the data satisfy the
i.i.d. assumption. We are concerned with the next natural step is that, however, the real demand of
application must make the sense that the data are generated one by one. So it is surprising that so
little work has been done on testing the distribution shift when we adaptive the learning algorithms
to make predict tasks.

The problem of distribution shift detection has usually a significant impact on the learning theory
research community. In on-line setting, observed data are obtained one by one from a sensor source
and the assumption of i.i.d of the data means that data are generated by a fixed but unknown distri-
bution in the data collection process. In the statistics research community the problem is generally
known as the change-point detection problems. The challenge of change-point detection, under the
shackles of traditional statistics, is that classical statistics methods could never overcome the curse
of dimensionality. However, as proposed in this paper, the distribution-free martingale framework
approach could.

To address this challenge we are eager to assimilate the idea of a general empirical theory of prob-
ability, introduce by Vovk (1993) and extend the idea of testing exchangeability on-line to a martin-
gale framework in Vovk et al. (2003). Generally speaking, a way of on-line distribution shift testing
is by employing the theory of conformal prediction (Gammerman & Vovk, 2006) and then calcu-
lating exchangeability martingales against the assumption. For more details that there are two steps
to achieve the goals, that the first step is to implement a transductive conformal predictor, which
outputs can be used for constructing a sequence of p-values functions. Secondly, we introduce
exchangeability martingales, which are the measure of p-values function, and track the deviation
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between the assumption and the empirical performance. Once the martingale grows up to a pre-
defined large value (20 and 100 are convenient rules of the level), we could have sufficiently large
evidence against the assumption of fixed distribution, or in other words that we have sufficiently
large evidence to confirm the distribution shift phenomenon.

In this paper we adaptive the exchangeability test to distribution shift detection. The first procedure
of testing exchangeability on-line is described by Vovk et al. (2003) for the USPS data set. The core
motivation is based on a new general empirical theory of probability, which was proposed by Vovk
(1993). Vovk (2020; 2021) adapt conformal e-prediction to change detection based on techniques
of conformal prediction. Ho (2005) applies power martingales to the problem of change detection
in time-varying data streams. Ho (2012) describes the detection of concept changes by testing
exchangeability. Ho et al. (2019) proposes a martingale-based approach for flight behavior anomaly
detection. The author shows that the martingale detection approach is an efficient and one-pass
incremental algorithm and can be useful to deal with real-life high dimensional data.

We propose a framework to test the distribution shift for any transducers. As following that for the
first step, select transducers, secondly, extend conformal prediction methods to compute p-value for
each example, and finally choose the significance threshold ε for betting function, which determines
the contribution of p-values to the value of the martingale.

The rest of the paper is organized as follows. In Section 2 we review the concept of martingale
and give a definition of distribution-shift martingales. Section 3 presents the construction of power
martingales, which does not dependent on the specified distribution. Section 4 shows experimental
results of testing three real-life data sets for distribution shift detection; We compare four algorithms,
such as Support Vector Machine, Boosting, and Neural Network, under two situations, as standard
randomly permuted and the original one-by-one order. The conclusion show in Section 5.

2 DISTRIBUTION-FREE MARTINGALES

This section outlines the necessary definition and concepts of martingales.

2.1 DISTRIBUTION-SHIFT

Consider a sequence of random variables (Z1, Z2, . . .), the corresponding outputs elements
(z1, z2, . . .) called examples. It is often the case that each example consists of two parts: an object
xi, and its label yi. The hypothesis of Distribution-shift is that the examples z1z2 . . . are generated
by a fixed but unknown probability distribution Q.

2.2 MARTINGALES FOR DISTRIBUTION-SHIFT TESTING

We are interested in testing the hypothesis of distribution-shift on-line: after observing each new
example zn, the transducer is required to output a number Mn reflecting the strength of evidence
against the hypothesis. The support we want to test the hypothesis that the data is generated by a
fixed but unknown distribution dependently, that is equivalent to the null hypothesis is that:

H0: There is no distribution-shift.

When we test the hypothesis we would construct a supermartingale, which is a sequence of random
variables {M0,M1, . . .} and

Mn ≥ E(Mn+1|Fn), (1)
where Fn is the σ-algebra generated by z1, . . . , zn. IfM0 = 1 and infnMn ≥ 0, as enlightened and
proposed by Vovk (1993; 2001; 2021), Bienvenu & Shen (2009), and Bienvenu et al. (2009), Mn

can be regarded as the capital process of a player who starts from 1, that the player convinces that
he will never risks bankruptcy, at the beginning of each trial n places a fair bet on the zn to be chose
by Nature, which equivalent to the implement of learning algorithms. If such a supermartingale
Mn ever takes a large value, our belief in Q is undermined and we could have rejected the null
hypothesis, which intuition is formalized by Doob’s inequality,

Q{∀n :Mn ≥ C} ≤
1

C
, (2)
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where C is an arbitrary positive constant. The proof about it can be found at Doob (1984).

From the viewpoint of supermartingale, it is unlikely for any Mn to have a large value. For the
problem of test distribution shift, if the final value of collective data of a martingale is large then the
null hypothesis can be rejected with the corresponding valid probability.

2.3 CALCULATION p-VALUES

Let (z1, z2, . . .) denote a sequence of examples arrived as the original order. The calculation of
p-values for the given examples can adopt the conformal prediction methods developed by Vovk
et al. (2005). Following the general idea of transductive inference (Vapnik, 1995; 1998), that the
empirical facts can be transductive into the values of a function. Conformal prediction, informally
naming Transductive Confidence Machine (Vovk et al., 2003), can be adopted for the top of any
transducers to generate a sequence of p-values corresponds to examples. A measurable function,
namely nonconformity scores defined,

αi = An({z1, . . . , zi−1, zi+1, . . . , zn}, zi). (3)

In this paper, four different algorithms are implements, such as SVM, Boosting, and the multilayer
perceptron neural network (MLP), to compute the nonconformity scores. There are many different
ways of defining nonconformity measures, and a natural measure of nonconformity of zi are adopt
the inverse probability of prediction. The p-value definition for zn,

pn =
#{i : αi > αn}+ τn#{i : αi = αn}

n
,

where τn is uniform distribution values from [0,1] and the symbol # means a measure of set size. It
is clear that for the any transducers, the p-values are exactly valid. The proof of Theory 1 established
in Vovk et al. (2005).
Theorem 1. If examples (z1, z2, . . .) satisfy exchangeability assumption, the sequence of p-values
(p1, p2, . . .) that are independent and uniformly distributed in [0, 1].

The property that the example generated a sequence of p-values by conformal prediction, is exactly
valid uniformly distribution, which allows us to make statistical inference.

3 DISTRIBUTION-FREE MARTINGALES BASED ON p-VALUES

This section focuses on the second step of testing: given the sequence of p-values, we can test
distribution shift by calculating distribution-free martingales as the function of the p-values.

For each i ∈ {1, 2, . . .}, let fi : [0, 1]i → [0,∞) be a betting function,

∀i : f(pi) = εpε−1
i , (4)

where ε ∈ [0, 1]. Since
∫ 1

0
εpε−1dp = 1, the random variables

M (ε)
n :=

n∏
i=1

(εpε−1
i ), (5)

where p1, p2, . . . , pn are the sequence of p-values calculated by conformal predictors, will be a
non-negative randomized exchangeability martingale with initial value 1; this family of martingales,
indexed by ε ∈ [0, 1], will be called the randomised power martingales, which does not dependent
on the specified distribution. This method is named Distribution-free martingale test Distribution
shift (DFMTDS). Algorithm 1 summaries the process of distribution shift testing on-line.

4 EMPIRICAL STUDIES

In this section, we investigate the performance of distribution shift detection in with that of the
distribution martingale. Three real-life data sets have been tested under three transducers, such as
SVM, neural network, and Boosting respectively: the USPS data set, the Satimage data set, and
the Segment data set.
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Algorithm 1 DFMTDS: Distribution free martingale test Distribution shift
Input: (z1, . . . , zl)
Output: Mn

1: Let i ∈ {1, . . . , n}:.
2: compute αi,
3: compute pi,
4: compute Mi,
5: return Mn

Table 1: Main dimensional characteristics of data sets
Data Set # of Examples # of Attributions # of Classes

USPS 9298 256 10
Satimage 6430 36 6
Segment 2310 19 7

USPS is a handwritten digits from 0 to 9, of which were collected from real-life zip codes. Each
example is described by 16× 16 grey-scale images. This data set includes 9298 examples, of which
7291 examples are marked as the training set and 2007 examples are marked as the testing set. Each
example contains 256 grey-scale values of all pixels as features. All the examples are labeled from
“0” to “9”.

It is well-known that the USPS data set is heterogeneous; in particular, the training and test sets
seem to have different distributions (Vovk et al., 2003). In the next subsection, we will see the huge
scale of the martingale of this heterogeneity.

Satimage is the Landsat Satellite Image data set provided by Ashwin Srinivasan, University of
Strathclyde. Each example consists of 36 attributes of 3 × 3 pixels in the neighborhood from 4
multi-spectral scanner images as empirical observations. This data set includes 6430 examples, of
which 5042 examples are marked as the training set and 1388 examples are marked as the testing
set. The whole data set is labeled into 6 classes. Satimage is given in random order and certain
lines of data have been removed, so it is established exactly that we will obtain the same scale of the
martingale if we randomly shuffle the Satimage data set.

Segment is the Image Segmentation data set by Vision Group, University of Massachusetts. The
examples were drawn randomly from a database and hand-segmented into 3 × 3-pixel pieces. This
data set includes 2310 examples, of which 1811 examples are marked as the training set and 499
examples are marked as the testing set. The whole data set is labeled into 7 classes. Segment has
been drawn randomly from a database, so the performance of martingale will establish the same
scale after randomly shuffling.

Some dimensional characteristics of these data sets including the size of data sets, the number of
attributes, and the number of classes are summarised in Table 1, the data set split information is
listed in Table 2.

4.1 THE SELECTION OF ε

When we applied to the selected transducers, such as SVM, MLP, and Boosting, the family of
distribution-free randomized power martingales might at first not look very promising (Figure 1

Table 2: Main training and test split of data sets
Data Set # of Examples # of Training # of Test

USPS 9298 7291 2007
Satimage 6430 5042 1388
Segment 2310 1811 499
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Figure 1: The final values, on the logarithmic (base 10) scale, attend by the randomised MLP power
martingales M ε

n on the USPS data set. Left the full parameter ε, and right the zoom-in range of the
parameter ε

Table 3: Significant threshold selection for on-line learning
Data Set SVM MLP Boosting

USPS .77 .89 .94
Satimage .96 .92 .91
Segment .98 .99 .95

[left]), but if we concentrate on a narrow range of ε (Figure 1 [right]), it becomes clear that the final
values for some ε are very large. In this paper, we use the martingales to monitor the trajectory of
distribution, so we select the significance values of ε. The significant threshold selection for on-line
learning and randomly shuffling protocol are list in Table 3 and Table 4 respectively.

4.2 EMPIRICAL RESULTS

Figure 2 shows the martingale trajectory performance of the randomized transducers power martin-
gale. The left panel is the full USPS data set adaptive the SVM, Boosting, and MLP as the transducer
respectively. The right panel is an empirical performance for randomly shuffling protocol.

Figure 2 left panel shows the trajectory performance of the martingales when the examples arrive
in the original order: first the 7291 of the training set and then 2007 of the test set. The p-values
are generated on-line by the DFMTDS algorithm and three transducers power martingale, such
as SVM power martingale, MLP power martingale, and Boosting power martingale are calculated
respectively. The final value of the SVM power martingale is≈ 10150, the final value of MLP power
martingale is ≈ 1048, and the final value of Boosting power martingale is ≈ 1052. It is equivalent to
explaining from Doob’s inequality that we have strong evidence against the null hypothesis.

Figure 2 right panel shows the trajectory performance of the martingales when the examples are
randomly shuffling. As excepted, the final value of the SVM power martingale is ≈ 1062, the final
value of MLP power martingale is ≈ 1018, and the final value of Boosting power martingale is
≈ 1019. Empirically, once the final value grows up not to a large value (20 and 100 are convenient
rules of thumb) (Fedorova et al., 2012), In simple words that the martingales do not reject the null
hypothesis.

Table 4: Significant threshold selection for randomly shuffling learning
Data Set SVM MLP Boosting

USPS .84 .92 .91
Satimage .96 .99 .96
Segment .98 .99 .95
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Figure 2: USPS data set performance
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Figure 3: Satimage data set performance

Figure 3 shows the trajectory performance of the martingales of the Satimage data set. The largest
final value for the transducer martingale is ≈ 102 for the original order setting and ≈ 101.2 when
randomly shuffling. It is argued as expected that we have no evidence against the hypothesis for the
Satimage data set.

Figure 4 shows the trajectory performance of the martingales of the Segment data set, As expected
that we have no evidence against the hypothesis for the Segment data set.
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Figure 4: Segment data set performance
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5 DISCUSSION AND CONCLUSIONS

This paper introduces a new way of martingales framework for distribution shift test by means
of distribution-free methods. We have shown that propose methods can be adapted to any un-
derlying algorithms as the transducers and then by means of conformal prediction we can obtain
the valid p-values and then calculate the transductive power martingale. The martingales frame-
work distribution-shift detection based on the betting function provides an exact solution for betting
against the hypothesis.

Our goal has been to find distribution-free martingales that do not need any assumption about the
data distribution and can be adapted to any high-dimensional problems. The final empirical evidence
shows that for the concrete application with help of machine learning methods, martingale testing
plays a bona fide role.
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