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ABSTRACT

Graphical flows add further structure to normalizing flows by encoding non-trivial
variable dependencies. Previous graphical flow models have focused primarily
on a single flow direction: the normalizing direction for density estimation, or
the generative direction for inference. However, to use a single flow to perform
tasks in both directions, the model must exhibit stable and efficient flow inversion.
This work introduces graphical residual flows, a graphical flow based on invertible
residual networks. Our approach to incorporating dependency information in the
flow, means that we are able to calculate the Jacobian determinant of these flows
exactly. Our experiments confirm that graphical residual flows provide stable and
accurate inversion that is also more time-efficient than alternative flows with sim-
ilar task performance. Furthermore, our model provides performance competitive
with other graphical flows for both density estimation and inference tasks.

1 INTRODUCTION

Normalizing flows (NFs) (Tabak & Turner, 2013) have proven to be a useful tool in many ma-
chine learning tasks, such as density estimation (Papamakarios et al., [2017) and amortized infer-
ence (Kingma et al. [2016). These models represent complex probability distributions as bijec-
tive transformations of a simple base distribution, while tracking the change in density through the
change-of-variables formula. Bayesian networks (BNs) model distributions as a structured prod-
uct of conditional distributions, allowing practitioners to specify expert knowledge. Wehenkel &
Louppel (2020) showed that the modelling assumptions underlying autoregressive transformations
used in NFs correspond to specific classes of BNs. Building on this, [Wehenkel & Louppe (2021)
propose a graphical NF that encodes an arbitrary BN structure via the NF architecture. They only
consider the class of flows that enforces a triangular Jacobian matrix. [Weilbach et al.|(2020) instead
extend the continuous NF of |Grathwohl et al.| (2019) by encoding a BN through the sparsity of the
neural network’s weight matrices. These graphical flow approaches focus on only one flow direc-
tion: either the normalizing direction for density estimation or the generative direction for inference.
They do not emphasize stable inversion. NFs are theoretically invertible, but stable inversion is
not always guaranteed in practice (Behrmann et al., |2021): if the Lipschitz constant of the inverse
flow transformation is too large, numerical errors may be amplified. Another class of flows, known
as residual flows (Chen et al., 2019), obtain stable inversion as a byproduct of their Lipschitz con-
straints, but do not encode domain knowledge about the target distribution’s dependency structure.

This work proposes the graphical residual flow (GRF), which encodes domain knowledge from a
BN into a residual flow in a manner similar to previous graphical NFs. GRFs capture a prede-
fined dependency structure through masking of the residual blocks’ weight matrices. Stable and
accurate inversion is achieved by constraining a Lipschitz bound on the flow transformations. The
incorporation of dependency information also leads to tractable computation of the exact Jacobian
determinant. We compare the GRF to existing approaches on both density estimation and inference
tasks. Our experiments confirm that this method yields competitive performance on both synthetic
and real-world datasets. Our model exhibits accurate inversion that is also more time-efficient than
alternative graphical flows with similar task performance. GRFs are therefore an attractive alterna-
tive to existing approaches when a flow is required to perform reliably in both directions.

*Correspondence to kroon@sun.ac. za .



Published as a workshop paper at ICLR 2022

2 GRAPHICAL RESIDUAL FLOW

Consider a residual network F(x) = (fr o...o fi1)(z), composed of blocks 2(*) := f, (=) =
=D 4 g, (1), with £(©) = . F can be viewed as a NF if all of its component transformations
f+ are invertible. A sufficient condition for invertibility is that Lip(g;) < 1, where Lip(-) denotes the
Lipschitz constant of a transformation. Behrmann et al.|(2019) construct a residual flow by applying
spectral normalization to the residual network’s weight matrices such that the bound Lip(g:) < 1
holds for all layers. The graphical structure of a BN can be incorporated into a residual flow by
suitably masking the weight matrices of each residual block before applying spectral normalization.
Given a BN graph, G, over the components of x € RP, the update to x(=1 in block ft is defined
as follows for a residual block with a single hidden layer—it is straightforward to extend this to
residual blocks with more hidden layers:

x® = x4 (Wy © M) - h(Wy @ My) - x4 by) + by . (1)

Here h(-) is a nonlinearity with Lip(h) < 1, ® denotes element-wise multiplication, and the M;
are binary masking matrices ensuring that component j of the residual block’s output is only a
function of the inputs corresponding to {x;} U Pag(x;). By composing a number of such blocks,
each variable ultimately receives information from its ancestors in the BN via its parents. This
is similar to the way information propagates between nodes in message passing algorithms. The
masks above are constructed according to a variant of MADE (Germain et al., 2015)) for arbitrary
graphical structures (see Appendix A.1-2). The parameters of the flow as a whole are trained by
maximizing the log likelihood through the change-of-variables formula: log p(x) = log po(F'(x)) +
log |det (Jr(x))|, where det (Jr(x)) denotes the Jacobian determinant of the flow transformation.

Since we are enforcing a DAG dependency structure between the variables, there will exist some
permutation of the components of x for which the correspondingly permuted version of the Jacobian
would be lower triangular. We can thus compute det(Jp(x)) exactly as the product of its diagonal
terms—which is invariant under such permutations. This is in contrast to standard residual flows,
which require approximation of the Jacobian determinant.

Inversion The inverse of this flow does not have an analytical form (Behrmann et al.| 2019). In-
stead, each block can be inverted numerically using either a Newton-like fixed-point method (Song
et al |2019) or the Banach fixed-point iteration method (Behrmann et al.| 2019)). Since the conver-
gence rate of the latter is dependent on the Lipschitz constant, we expect the former to perform better
when larger Lipschitz bounds for the residual blocks (= 0.99) are used. To compute x = f, *(y),
the Newton-like fixed-point method applies the following update until convergence:

x(M = x("=Y _ o(diag(Jy, (x" O T f(x" V) —y], @)

using the initialization x(°) = y and letting 0 < o < 2, which ensures local convergence (Song
et al.|[2019). Note that this convergence is not necessarily to the correct x: we implicitly rely on the
assumption that it is unlikely inversion will fail using the initialization x(*) = y.

Inference In the case where latent variables z are present, one typically only has access to the
forward BN that models the generating process for an observation x. That is, the BN generally
encodes the following factorization of the joint: p(x,z) = p(x|z)p(z). To perform inference,
we first invert the BN structure using the faithful inversion algorithm of |Webb et al.| (2018). This
allows us to construct a graphical residual flow where the latent variables are conditioned on the
observations: z(!) := 2= 4 (Wo © My) - (W1 © M) - (2Y ©x) + b1 ) + ba, where & denotes
concatenation. When used to train a variational inference artifact g, the objective is to maximize the
evidence lower bound (ELBO) (Kingma & Welling| 2014), E,,[log p(x, z) — log ¢(z|x)].

Activation Function Since the loss functions above contain the derivatives of the residual block
activation functions through the Jacobian term, the gradients used for training will depend on the
second derivative of the activation function. It is thus desirable to use smooth non-monotonic
activation functions that adhere to the imposed Lipschitz bounds (such as LipSwish [Chen et al.
(2019)) to avoid gradient saturation. In our model, we use an activation we call “LipMish”—
LipMish(z) = (x/1.088) tanh(¢ ({(8) - z)). This is a scaled version of the non-monotonic Mish
activation function (Misral [2020) satisfying Lip(LipMish) < 1 for all 3. The coefficient of x is
parameterized to be strictly positive by first passing 3 through a softplus function, (-).
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Table 1: Density estimation and inference performance. Each entry indicates the average log-
likelihood (for density estimation) or ELBO (for inference) on the test set over five runs, with the
standard deviation given in the subscript. Bold indicates the best results in each model size category.

Density Estimation (LL) Inference (ELBO)
Ant.hm?tlc Tree Protein Arlt'hm§t1c Tree
Circuit Circuit
GNF-Ms —1.29:011 —8651000 4511015 —4.69+020 —1.71410.00
SCCNFs  —1.7940.41 —8.77+0.03 3.17410.34 —4.551021 —1.8240.06

GNF-A, —1.2740.07 —9.30+0.00 —1.5640.40 —4.8840.26 —2.450.00
GNF-M; —1.074005 —8.5610.00 6.44 45 00 —4.02410.16 —1.7240.00
GRFp —1.1040.01  —8.5840.00 7.541005 —4421012 —1.7040.00

3 EXPERIMENTS

We compare our proposed GRF to two existing approaches—the graphical normalizing flow of We-
henkel & Louppe| (2021)), for which we consider both affine and monotonic transformations (de-
noted by GNF-A and GNF-M, respectively) and the structured conditional continuous normalizing
flow (SCCNF) presented in [Weilbach et al.| (2020). We use the arithmetic circuit dataset (Weilbach
et al.} 2020), an adaptation of |Wehenkel & Louppe (2021))’s tree dataset, and a real-world human
proteins dataset (Sachs et al.,[2005) (see Appendix B.1). To provide more informative comparisons
between the flows, we train two models per task for each approach. The first is a smaller model with
a maximum capacity of 5000 trainable parameters, which will be denoted by a subscript S, e.g.,
GRFs. We also train a larger model with a maximum capacity of 15000 parameters, denoted by the
subscript L. All flows were trained using the Adam optimizer for 200 epochs with an initial learning
rate of 0.01 and a batch size of 100. The learning rate was decreased by a factor of 10 each time
no improvement in the loss was observed for 10 consecutive epochs, until a minimum of 10~% was
reached. The training and test sets of the synthetic datasets consisted of 10 000 and 5000 instances,
respectively. The protein dataset was divided into 5000 training instances and 1466 test instances.
For further information on the flow architectures and experimental setup, see Appendix B.2 and B.3.
Our experiments consider the relative performance of the flows with respect to tasks in both the
generative and normalizing directions, as well as the efficiency and accuracy of flow inversion.

3.1 DENSITY ESTIMATION AND INFERENCE PERFORMANCE

Table [I] provides the log-likelihood (LL) and ELBO achieved by each model on the test sets for
density estimation and inference tasks, respectively. For density estimation we assume all variables
to be observed and for inference a subset is taken to be latent. GRF achieves results similar to
GNF-M and SCCNEF, with a close second-best score for most datasets, and the best scores on the
protein dataset (density estimation) and for the large model on the tree dataset (inference). GNF-A,
with its reliance on affine transformations, is unable to provide matching performance.

3.2 INVERSION

We first confirm the computational advantage of using the Newton-like inversion procedure of Equa-
tion2]to invert the flow steps of a GRF, rather than the Banach fixed-point iteration method. Figure/[I]
illustrates that the convergence rate of the latter is heavily dependent on the Lipschitz bound on the
residual block—here controlled by the hyperparameter c.

We next explore the inversion stability of GRFs compared to graphical models with similar
task performance, namely GNF-M and SCCNF. GNF-M and GRF were inverted using the pro-
cedure of Equation We optimize the hyperparameters « and the number of iterations per
flow step (/N) with a grid search. The stopping criterion for the number of iterations N
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Table 2: Comparison of the inversion performance for the different flow models on 100 test data
points from the protein dataset. Bold indicates best results in each model size category. Ranges
indicate different optimal settings for NV and « for different data points.

Small Models Large Models
Converged Inversion Converged Inversion
Flow within N « time (ms) within N time (ms)
50 steps 50 steps
GNF-M 87 946 0.3-1.0 117.28 89 5-49 0.3-1.0 371.38
SCCNF 96 - - 73.45 94 - - 277.05
GRF 100 5-8 1.0 63.69 100 5-8 1.0 157.57

was a reconstruction error of less than 10~%. To bet-
ter illustrate potential inversion instability, we per- \ —— Newton (c=0.99)
form this optimization on a per data point basis for 10t \ ot
100 data points from the protein dataset (whereas in

practice one would typically invert the sample as a

single batch). SCCNF was inverted by executing the

Banach (¢ =0.70)

Reconstruction error

1072
integration in the opposite direction. We record the 103
number of data points for which the desired recon- 1ot

struction error is achieved, and where N < 50 in
the case of GRF and GNF-M. We also measure the 107 5 % = o Do 5o 1%
time it takes to invert the flow for the entire batch Number of iterations per block

using the settings that allow the most data points to

have .the dgsired reconstruction error. The re.sults Figure 1: Equation [2] requires far fewer iter-
are given 1n Table 2 Onf_: .Of the main pa}radlg.ms ations per block to invert GRFg than the Ba-
for enforcing global stability is using Lipschitz- . 4 fixed-point approach. The plot shows
constrained flow transformations (Behrmann et al.l o average reconstruction error for 100 sam-

202.1 ). In theicase of the GRF, this stability is agto- ples from the arithmetic circuit dataset.
matically achieved as a byproduct of the flow design,

and we see that GRF shows excellent inversion ac-

curacy. GNF-M, depending on the architecture and learned weights, has either potentially very large
Lipschitz bounds, or has no global Lipschitz bounds at all. This helps to explain its poorer inversion
results. While SCCNFs have global Lipschitz bounds, these are not controlled during training and
numerical instability can thus occur. For further information see Appendix A.3.

4 CONCLUSION

We proposed the graphical residual flow as an alternative to existing NFs that incorporate depen-
dency information from a predefined BN into their architecture. Including domain knowledge about
the dependencies between variables leads to much sparser weight matrices in the residual blocks,
but still allows sufficient information to propagate in order to accurately model the data distribution.
Although existing methods like GNF-M (Wehenkel & Louppe} 2021)) and SCCNF (Weilbach et al.,
2020) provide very good modelling capability in a given flow direction, inverting these flows for
other tasks can be unstable and computationally expensive. In our experiments, GNF-A provided
a compact model with fast and accurate inversion. It does not, however, achieve very good mod-
elling results on more complex datasets. The graphical residual flow provides an alternative trade-off
between modelling capability and inversion stability and efficiency. It provides primary task perfor-
mance comparable to the best obtained by the other models, while providing the most stable and
quickest inversion performance: flows can be inverted with few fixed-point iterations, and without
taking special care to control the step size. Unlike other models considered, the GRF’s blocks are
globally bi-Lipschitz, with desired Lipschitz bounds enforced during training, and this may explain
the stable inversion observed. The GRF is thus a suitable option to use in situations where some
dependency structure is assumed to exist and where the flow may be required to perform reliably
in both directions. The GRF may also have further application in problems such as BN structure
learning, which can be explored in future work.
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A NORMALIZING FLOWS WITH GRAPHICAL STRUCTURES

A.1 GRAPHICAL RESIDUAL FLOW ILLUSTRATION

<(t+D)

D= {zo} {wo, z1}{z0, 71, 72} {21, 23}

{zo}|{wo, z1 }|{wo, 21, 22 }{@1, 23 | {21 } {22} {23}

x(®) {zo} | {z1} | {22} | {z3} @‘@
@3

Figure A.1: An illustration of the update x(*+1) := x() 1 (W, © M), - h(W1 © My)s-x® +
b1) + b applied to x at each flow step ¢ of a graphical residual flow where each residual block
has a single hidden layer. Subscript s indicates spectral normalization after masking. The edges
removed by the masks M; and M, are not shown; the remaining edges encode the graphical
structure of the given BN. To avoid cluttering the diagram, the bias terms are omitted. The
assignment of sets to nodes in the residual block’s neural network is discussed in Section A.2.

A.2 ENFORCING A GRAPHICAL STRUCTURE THROUGH MASKING

Suppose a joint distribution factorizes as

D

p(x) = [ p(x:iPaf)) 3)

i=1

for DAG G. Pagi denotes the parents of x; in G. For a given neural network that takes x as input, the
goal is to have the output units associated with z; be computed from only those input units associated
with z; and its parents. This means that there should be no computational paths between an input
and an output unit if there is no direct dependency between the associated variables in G. This can
be achieved by applying a masking matrix to the weights of each neural network layer (which can
be of arbitrary width) such that at least one weight on any such computational path is set to zero.

We follow a similar approach to MADE (Germain et al., |2015), which constructs masks for an
implicit fully-connected BN. We begin by assigning a specific subset of variables to each unit in
the neural network. Specifically, each input unit is assigned a unit set containing its corresponding
input variable: {x;}. Each output unit is assigned a set consisting of its associated variable and that
variable’s parents in the BN: {x;} U Pagi. Lastly, each hidden unit is randomly assigned one of the

following sets: {z;} or {x;} U Pagi where 7 can be any of 1, .. ., DEI

A correct mask can then be constructed by ensuring that it zeroes out any weight between two neural
network units if the set assigned to the unit in the next layer is not a superset of the set assigned to
the unit in the previous layer. This has the implication that any path from input to output for any
variable has a single associated set switch from {z;} to {z;} UPaJ .

!"To prevent situations where there are no valid paths from an input to the corresponding output, we also
require at least one unit in each hidden layer associated with {z;}.
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{zo} [{zo, z1}{zo, 21, 22} |{z1, 23} {zo} [{zo, z1}{zo, 1, 22} |[{z1, 23}
{zo} [{zo, x1 {0, 21, w2 }{w1, w3 }|{w1 {22} {3} {20} [{zo, 21 }|{z0, 71, 22 {1, 23 }| {21 } {22} {3}
{zo} | {w1} {2} | {23} {zo} | {w1} | {2} | {23}
(a) (b)

Figure A.2: An example application of the above masking scheme for the graphical residual
flow illustrated in Figure[A.T] The masks are constructed by assigning each output node the set
consisting of the associated variable and its parents in the BN. Each hidden node is assigned a
set consisting of either a single variable or a variable and its parents. An edge is retained only
if the set in the next layer is a superset of the set in the previous layer. Thus, the updates to
variables xg, 1, 2 (a) and x3 (b) are only conditioned on their respective parents.

A.3 INVERTIBILITY OF GRAPHICAL NORMALIZING FLOWS IN PRACTICE

The Lipschitz constants of the forward and inverse transformation of an invertible neural network
quantifies its worst-case stability. Bounds on these values play an important role in understanding
and mitigating possible exploding inverses.

GNF-A No global bounds can be placed on the Lipschitz constant of a GNF with affine normaliz-
ers. This complicates the task of ensuring stable inversion in all scenarios. Behrmann et al.| (2021)
provide the following simple illustration of this. Assume x consists of two variables, zy and x1, and
consider the transformation Fy(x) = x; - s(xg) as the component of a normalizer corresponding
to 1. This is affine in z1, with some arbitrarily complex non-constant function s arising from the

conditioner. Then
OF;(x) 0s(xo)
=z .
on ! 3950
If we take into account both the identity,

Lip(F) = sup [[Jr(x)|]2, o)
x€RP

4)

and that the derivative is unbounded since x; may grow arbitrarily large, Behrmann et al.| (2021)
argue that the unbounded Jacobian can induce an unbounded spectral norm and thus no global
Lipschitz bound can be obtained.

GNF-M We can employ a similar illustration to investigate the Lipschitz bounds of a GNF
with monotonic normalizers. Again assume x consists of two variables, x¢ and z;, where x;
depends on o in the corresponding BN. The transformation applied to x; is then given by

= [} f(t, ha(20))dt + B(h1(x0)) (Wehenkel & Louppel 2021). We take its partial deriva-
tlve usmg Lelban s integral rule and the chain rule:

8F1(x) - 8 1 aﬁ(hq(l'o))
ot = g [ s ) a4 LD ©)
_ /Il Of (t, hi(zo)) Ohi(x0) dt 4+ 9B(h1(x0))
0 8hltmﬂ 8x0 8$0 '

The integrand here is the product of the derivatives of two neural networks with respect to their
inputs. For general networks, it is not necessarily the case that this integral will be bounded, since
the integrand’s shape will depend on not only the chosen activation functions, but also the weights
obtained during training. Thus, either the architecture of the flow must be adapted to ensure that
this integral remains bounded for any x; > 0, or other techniques must be used to improve local
stability, as discussed in Behrmann et al.[(2021).
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SCCNF Given that the flow is defined by a neural ODE, dx(t) = F(x(t),t), where t € [0,1], we
have that the Lipschitz constant for both the forward and i 1nverse transformation are upper bounded

by eLP(F) (Behrmann et al., 2021)).

B DATASETS AND EXPERIMENTS

B.1 BAYESIAN NETWORK DATASETS

Arithmetic Circuit The arithmetic circuit BN follows the same structure as the generative network
used by |Weilbach et al.| (2020) and Wehenkel & Louppe| (2021). For density estimation tasks, all
variables are observed. For amortized inference tasks, variables zq to z5 are latent, while ¢ and x;
are observed. This distribution consists of heavy-tailed densities which are linked through non-linear
dependencies:

zo ~ Laplace(5,1)

z1 ~ Laplace(—2,1)

29 ~ N (tanh(zo + 21 — 2.8),0.1)

zZ3 NN(ZQ X 21,0 1)

Z4 ~ N ( )

25 ~ N (tanh(z3 + 24),0.1)

o ~ N (23, 0. ].)

Ty ~ N (2’5, 0. ].)

Tree This is another synthetic dataset. It is adapted from the model given in [Wehenkel & Louppe
(2021)), to obtain a known model for which the joint distribution can be computed (as needed for
the inference tasks). Instead of using the circles 2D dataset from |Grathwohl et al.|(2019), as used in
Wehenkel & Louppe|(2021), the first two variables are sampled from a 2D Gaussian mixture model,
GMM;, which consists of two equally weighted components with means at (1,1) and (—1, —1).
As in [Wehenkel & Louppe| (2021)), the second pair of variables is sampled from a GMM with 8
equally weighted components with means at (0,1.5), (1,1), (1.5,0), (1, -1), (0, —1.5), (—1,-1),
(—=1.5,0) and (—1,1).

20,71 ~ GMM,

2o, 23 ~ GMMg
24 ~ N (max(zg, z1),1)
25 ~ N (min(z2, 23), 1)

zo ~ N < (sin(z4 + 25) 4 cos(z4 + 25)), 1>

Protein This dataset consists of 11 observed variables containing information about multiple phos-
phorylated human proteins (Sachs et al., [2005). The BN structure encodes the cellular signaling
network that is believed to exist between these proteins. The dataset is divided into 5000 and 1466
training and test instances, respectively.

B.2 FLOW ARCHITECTURES

We train two models per task for each of the approaches. The first is a smaller model with a max-
imum capacity of 5000 trainable parameters, denoted by a subscript S. The second, larger model
has a maximum capacity of 15000 parameters, denoted by the subscript L. Table details the
flow architectures used for each of the datasets. These architectures were obtained by performing
a grid search over flow depth and neural network width, maximizing the number of weights while
adhering to the model size budget. Each residual block and conditioner neural network of the GRF
and GNF models had a single hidden layer, respectively. The same architectures were used for both
density estimation and inference. The integral neural network of all monotonic flows consisted of
one hidden layer of size 100, with ELU activation functions on both the hidden and final layer. The
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SR

(a) Arithmetic Circuit (b) Tree (c) Protein

Figure B.1: BN graphs associated with each dataset. White nodes indicate latent variables, whereas
grey nodes are observed. When used for density estimation, all nodes are taken to be observed.

Nrof Hidden

Number of Activation
Flow . flow layer .
weights : function
steps size

_  GNF-Ag 4464 4 200 ReLU
S GNF-Ms 4592 2 50 ReLU
& SCCNFs 1120 2 150 tanh
o GRFs 4320 8 125 LipMish
£ GNF-Ap 14994 9 300 ReLU
£ GNF-M 14680 4 125 ReLU
< SCCNF, 9316 4 150 tanh
GRF,, 14569 17 200 LipMish
GNF-Ag 4260 4 200 ReLU
GNF-Mg 4486 2 50 ReLU
SCCNFg 1160 2 150 tanh

3 GRFs 4616 8 125 LipMish
& GNF-AL 14301 9 300 ReLU
GNF-M[, 14132 4 125 ReLU
SCCNF, 10412 4 150 tanh
GRF,, 14490 21 150 LipMish
GNF-Ag 4604 4 150 ReLU
GNF-Mg 4831 1 125 ReLU

. SCCNFg 1274 2 150 Tanh
‘5 GRFs 4779 9 100 LipMish
£ GNE-A, 13815 9 200 ReLU
GNF-M[, 14493 3 125 ReLU
SCCNF, 8362 4 150 Tanh
GRF,, 14586 22 125 LipMish

Table B.1: Flow architectures.

hyperparameter c, constraining the spectral norm in the graphical residual flow, was set 0.99 in all
cases.

All flows were trained using the Adam optimizer for 200 epochs with an initial learning rate of 0.01
and training batches of size 100. The learning rate was decreased by a factor of 10 each time no
improvement in the loss was observed for 10 consecutive epochs, until a minimum of 10~¢ was
reached.

B.3 INVERSION

We use the inversion algorithm of Song et al.| (2019) as given in Algorithm[I} The hyperparameters
«a and N are optimized using a grid search to find the setting that produces the fastest inversion with
a reconstruction error less than 10~%. Values for « in the range 0.1 x ¢, for t = 1,...,19, were
considered.
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Algorithm 1 Fixed-point iteration to compute x = f; *(y)

Require: N, 0 < a <2
Initialize xg <~y
forn + 1to N do
Compute fi(X,—1)
Compute diag(J¢, (x,,—1))
Xp <~ Xp—1 — O‘(diag(th (Xn—l)))_l[ft(xn—l) -yl
end for
return x

Figures[B.2]to[B.5|show the reconstruction error (log-scale) for varying numbers of iterations used at
each step while inverting the flow, and for different values of cv. In Figure[B.2] we see that both GNF-
A and GRF require only a few iterations and one can simply use the setting v = 1 for all datasets.
More care needs to be taken when choosing a value for « to invert GNF-M. While Figure [B.3]
looks promising for GNF-M, Figures and show GNF-M’s varying inversion performance
for different data points from the arithmetic circuit and protein test sets. Clearly, one cannot simply
set a = 1 for these models, as some instances may require a much smaller step size to ensure stable
inversion, which subsequently requires more iterations to converge. The stable inversion of all test
instances by the small and large GNF-M models may be due to the simplicity of the tree distribution
and the absence of any outlier or noisy data points.
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Figure B.2: Reconstruction error for different values of o« and N when inverting GNF-Ag and
GRFg for the (a) arithmetic circuit, (b) tree and (c) protein datasets. The larger models showed
similar results.
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Figure B.3: Finding optimal o and IV for (a) GNF-Mg and (b) GNF-M/, for the tree dataset. This is
the only dataset for which the GNF with monotonic normalizers showed stable inversion.
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Figure B.4: Reconstruction error for different values of o and N when inverting GNF-Mg (top
row) and GNF-M, (bottom row) for the arithmetic circuit dataset. The left column shows a case for
which the flow inversion converges within a reasonable number of steps. The right column illustrates
that the flow can exhibit poor convergence on certain data points. Note the change in scale on the
horizontal axis.
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Figure B.5: Reconstruction error for different values of o and N when inverting GNF-Mg (top row)
and GNF-M, (bottom row) for the protein dataset. The left column shows a case for which the flow
inversion converges within a reasonable number of steps. The right column illustrates that the flow
can exhibit poor or no convergence on certain data points. Note the change in scale on the horizontal

axis.
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