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Abstract

We explore causal structure learning with unobserved confounders, represented1

by Acyclic Directed Mixed Graphs, where directed edges indicate observed cause-2

effect relationships and bidirected edges capture unobserved confounding. Previous3

methods have focused on search-based approaches or flow-based generative models.4

In contrast, we propose a novel variational autoencoder framework with dual latent5

spaces, each associated with a trainable adjacency matrix to capture directed and6

bidirected edges, respectively. We propose a causality constraint and introduce7

a causal annealing strategy during training to obtain meaningful causal graph8

structures. Experiments show competitive identification of both relationship types9

on synthetic data, with learned structures enhancing downstream causal inference10

in a real-world task.11

1 Introduction12

Learning cause-effect [8] relationships from observational data becomes particularly challenging13

in the presence of unobserved confounders. Classical approaches, including score-based methods14

(e.g., BIC) and constraint-based algorithms (e.g., conditional independence tests), often fail when15

latent variables are present. While recent continuous optimization methods such as NOTEARS [11]16

provide scalable solutions under acyclicity constraints, they typically assume causal sufficiency.17

The framework of Acyclic Directed Mixed Graphs (ADMGs) and bow-free constraints [3] extends18

identifiability with hidden confounding, but generative models in this space remain underexplored.19

In this work, we propose a causally constrained variational autoencoder (VAE) framework that20

disentangles observed and latent confounding via dual latent spaces, each linked to trainable adja-21

cency matrices for directed and bidirected edges. To guide the model toward learning faithful causal22

structures, we introduce a structured objective that enforces acyclicity and bow-free constraints. Ad-23

ditionally, we propose a novel training strategy called causal annealing, which delays the application24

of causal regularization, allowing the model to first focus on reconstruction and KL divergence.25

Our approach recovers interpretable causal graphs with unobserved confounding and demonstrates26

improved performance on downstream causal inference tasks in both synthetic and real-world dataset.27

Key Contributions.28

• Dual latent spaces for causal disentanglement: We design a VAE framework that separates29

observed and unobserved causal relations by learning two distinct latent spaces, capturing30

directed and bidirected dependencies via adjacency matrices AD and AB , respectively.31

• Causally aware objective: We propose a causality-aware loss that enforces acyclicity32

for AD, bow-free constraints for AB , and sparsity-entropy trade-offs to ensure structural33

interpretability and enable meaningful edge selection.34
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• Causal annealing: We introduce a novel training strategy that gradually activates causal35

constraints through a causal transition epoch (CTE), enabling the model to prioritize recon-36

struction and KL divergence in early training before focusing on causal structure learning.37

2 Related Work38

Causal structure learning has been widely studied through constraint-based and score-based ap-39

proaches, including FCI [9], which can detect latent confounders via conditional independence tests,40

but often fail under hidden confounding and do not scale well to large graphs. Score-based methods41

such as CAM-UV [7], which uses HSIC [5] for independence testing, and RCD [6], which assumes42

linear non-Gaussian models, extend causal discovery to partially address latent confounding.43

Differentiable optimization methods like NOTEARS [11] and its neural extensions DAG-GNN [10]44

and N-DAG-G [4] enable continuous DAG learning with end-to-end inference but assume full45

observability and cannot represent bidirected edges.46

To handle latent confounding more explicitly, ADMG-based methods have been proposed. The47

framework in [3] introduces bow-free and ancestral constraints to support interpretable structure48

learning under linear Gaussian assumptions. Flow-based models such as N-ADMG-G and N-BF-49

ADMG-G [2] enable nonlinear causal structure learning via autoregressive generative modeling, but50

do not incorporate latent-variable disentanglement or generation-based optimization.51

3 Methodology52

We consider two tasks. The first, causal structure learning, G-ADMG-CL, is designed to identify53

causal relationships under latent confounding by identifying directed and bidirected edges considering54

an ADMG framework. The extended variant, G-ADMG-CL+P, builds on the learned structure to55

perform prediction and causal inference (e.g., estimating treatment effects).56

Our model, G-ADMG-CL, is a causally constrained variational autoencoder that learns interpretable57

causal graphs under latent confounding by leveraging dual latent spaces and a causality-aware loss58

LCausal_ADMG. We follow the identifiability assumptions established for ADMG structure learning in59

prior work [2].60

Model Overview: We use a VAE with dual latent spaces zD for directed cause-effect and zB for61

bidirected latent confounding associated with trainable adjacency matrices AD and AB . These spaces62

guide both reconstruction and causal structure estimation. The functional compoenets are depicted in63

Figure 1.64

Learning Causal Structure: Our proposed method, G-ADMG-CL, proceeds in the following

Figure 1: Functional components of the proposed G-ADMG-CL method.

65
stages. First, we initialize trainable graph parameters: W1 and W2, corresponding to the directed66

and bidirected adjacency matrices AD and AB , respectively. The encoder then maps the input67

data X into two sets of latent variables (µD, σ2
D) and (µB , σ

2
B), each updated by the respective68

adjacency weights during every training epoch, to produce structure-aware latents. Using the standard69

reparameterization trick, we sample latent vectors zD and zB , which are concatenated to form a joint70
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Algorithm 1 G-ADMG-CL: Causal Relationships Learning

1: Input: data matrix X ∈ Rn×d

2: Output: reconstructed X̂, directed AD, bidirected AB

3: Initialize W1,W2; encode X into (µD, log σ2
D) and (µB , log σ

2
B)

4: Compute µDAD
= µDW1, µBAB

= µBW2

5: Structure-aware latents: zD ← µDAD
+ ϵD ⊙ exp(0.5 · log σ2

D), zB ← µBAB
+ ϵB ⊙ exp(0.5 ·

log σ2
B) where ϵD, ϵB ∼ N (0, I)

6: Sample zD, zB ; form z = [zD, zB ]; decode X̂
7: Estimate AD = f(zD), AB = f(zB)
8: Minimize total loss Ltotal with annealing schedules
9: return AD, AB , X̂

latent representation z = [zD, zB ]. This combined representation is passed through a decoder to71

reconstruct the input as X̂. Simultaneously, the soft adjacency matrices AD and AB are estimated72

from zD and zB through trainable functions. The model is trained by minimizing the following total73

loss, the training objective.74

Ltotal = Lreconstruction + λKL(LKL_directed + LKL_bidirected) + λcausalLCausal_ADMG,

which combines reconstruction error, KL divergence (with annealing), and a structured causal loss75

that enforces acyclicity, bow-free constraints, and regularization terms. To ensure stable training, we76

introduce causal annealing (Appendix C), where the causal regularization weight λcausal is gradually77

increased until a designated transition epoch, allowing the model to first focus on data reconstruction78

before enforcing structural constraints. Finally, the learned soft adjacency matrices are thresholded79

to yield interpretable causal graphs (AD, AB) alongside the reconstructed data X̂. The learned80

soft adjacency matrices (AD, AB) are thresholded to obtain binary graphs used for evaluation. The81

pseudocode is presented in Algorithm 1. The role of causal annealing is detailed in the ablation study82

(Appendix D).83

Causal inference: For this task the extended model G-ADMG-CL+P leverages the learned graph84

structure to estimate treatment effects from partially observed covariates.85

4 Experiments86

Datasets. We evaluate on diverse datasets: (i) Fork Collider (FC), (ii) Erdős–Rényi (ER) synthetic87

graphs, and (iii) IHDP [1] real-world causal inference dataset, simulating unobserved confounding88

by excluding treated individuals with non-white mothers and generating outcomes using log-linear89

response surfaces. The SCMs of the first two data are given in Appendix B.

Table 1: Performance Comparison: F1 Scores (F1D for Directed, F1B for BiDirected Edges) on FC,
ER(4,6,4), and ER(12,50,10)

Method FC ER(4,6,4) ER(12,50,10)
F1D F1B F1D F1B F1D F1B

FCI 0.00 0.75 0.50 0.40 0.25 0.33
CAM-UV 0.80 0.67 0.30 0.25 0.38 0.36
RCD 0.00 0.54 0.35 0.35 0.45 0.20
DCD 0.00 0.67 0.25 0.20 0.32 0.18
N-DAG-G 0.50 0.00 0.60 0.00 0.55 0.00
N-ADMG-G 0.49 0.99 0.75 0.60 0.60 0.38
N-BF-ADMG-G 0.64 0.93 0.78 0.80 0.60 0.40
Proposed (G-ADMG-CL) 1.0 0.50 0.92 0.89 0.51 0.45

90

Results. G-ADMG-CL: Table 1 shows that our method achieves superior F1 scores (Appendix A)91

for directed edges (F1D) on both FC and ER datasets, outperforming FCI, RCD, CAM-UV, and neural92

ADMG variants. While the F1B score on FC is lower due to approximate confounding estimation, our93

method achieves competitive bidirected performance on ER graphs. Learned causal graphs are shown94

in Appendix F. Thresholding used to binarize the learned causal graphs is detailed in Appendix G.95
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Table 2: Causal Inference Results using IHDP Dataset
Method RMSE-ATE
FCI 0.13
CAM-UV 0.15
RCD 0.14
DCD 0.16
N-DAG-G 0.12
N-BF-ADMG-G 0.10
Proposed (G-ADMG-CL+P) 0.031

G-ADMG-CL+P: On the IHDP dataset, Table 2 shows that our model achieves the lowest RMSE-96

ATE (Appendix A), the most reliable metric in the absence of a ground-truth causal graph. Training97

hyperparameters are summarized for all datasets in Appendix E.98

5 Conclusion99

Prior methods do not utilize a latent-variable generative model. In contrast, our work proposes a VAE-100

based framework that learns disentangled latent spaces for directed and bidirected relations. With101

a structured causal loss and a novel causal annealing schedule, our approach enables interpretable102

and robust causal structure discovery under latent confounding. The proposed method achieves103

strong performance on synthetic graphs, and improves causal inference on real data. Future work will104

explore the impact of causal annealing and CTE across varied structural setups and causal dynamics.105
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A Performance Metrics134

F1 Score. To evaluate the accuracy of structure recovery, we report the F1 score for both directed135

(F1D) and bidirected (F1B) edges. F1 is computed as the harmonic mean of precision and recall:136

F1 =
2 · Precision · Recall
Precision + Recall

,

where true positives are correctly predicted edges, and precision/recall are calculated separately for137

directed and bidirected adjacency matrices.138

RMSE-ATE. For causal inference performance on the IHDP dataset, we report the Root Mean139

Squared Error of the Average Treatment Effect (RMSE-ATE). This is computed between the true and140

estimated ATE across test samples:141

RMSE-ATE =

√√√√ 1

n

n∑
i=1

(τ̂i − τi)2,

where τi and τ̂i denote the ground-truth and estimated treatment effect for individual i, respectively.142

B SCM of Datasets (FC and ER)143

The following Structural Causal Model defines the data-generating process used for the Fork Collider144

(FC).145

T = [u1, u2, ϵ1, ϵ2, ϵ3, ϵ4, ϵ5]
T ∼ N (0, 1),

x1 = ϵ1,

x2 =
√
6 exp(−u2

1) + 0.1ϵ2,

x3 =
√
6 exp(−u2

1) +
√
6 exp(−u2

2) + 0.2ϵ3,

x4 =
√
6 exp(−u2

2) +
√
6 exp(−x2

1) + 0.1ϵ4,

x5 =
√
6 exp(−x2

1) + 0.1ϵ5.

(1)

The following Structural Causal Model defines the data-generating process used for the ER (d,e,m).146

Here, d denotes the number of observed variables (nodes), e the number of directed edges (cause-147

effect relations), and m the number of bidirected edges (latent confounders). For instance, ER(4,6,4)148

represents a graph with 4 variables, 6 directed edges, and 4 bidirected edges.149

AD ∼ ER
(
d,

e

d(d− 1)

)
, diag(AD) = 0

AD[i, j] =

{
1 if there is a directed edge from i to j,

0 otherwise.

AB [i, j] ∼ Bernoulli
(

m

d(d− 1)

)
, diag(AB) = 0

AB = triu(AB , 1) + triu(AB , 1)
⊤,

: triu extracts the elements above the diagonal,

ϵ ∼ N (0, 0.12), u ∼ N (0, 0.12),

Xi =
∑

p∈PaD(i)

f(Xp) +
∑

q∈PaB(i)

g(uq) + ϵi. (2)

C Causal Annealing Schedule150

We introduce a causal annealing, a mechanism designed to systematically control the influence of the151

causal regularization term within the total loss. In early stage of training it is beneficial to prioritize152
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reconstruction and latent representation learning before enforcing strong causal constraints. To this153

end, we gradually increase the causal weight λcausal over training epochs using using either a hard154

or linear annealing schedule. Algorithm 2 details the annealing procedure. Given total epochs E,155

causal transition epoch CTE, and an optional warm-up start epoch et, the algorithm updates λcausal156

at each epoch. In "hard" mode, the causal weight is kept at 0 until epoch CTE, after which it is set157

to 1. In "linear" mode, λcausal increases gradually from 0 (starting at et) to 1 (at CTE), following158

a linear ramp-up schedule. This delayed enforcement of the causal loss prevents early convergence to159

poor graph structures and promotes better structure recovery and generalization.

Algorithm 2 Causal Annealing During Training

1: Input: Total epochs E, causal transition epoch CTE, linear transition start epoch et, anneal
mode ("hard" or "linear")

2: Output: Causal regularization schedule λcausal for each epoch
3: Initialize λcausal ← 0
4: for epoch e = 1 to E do
5: if anneal_mode == "hard" then
6: if e < CTE then
7: λcausal ← 0
8: else
9: λcausal ← 1

10: end if
11: else
12: if e < et then
13: λcausal ← 0
14: else if e < CTE then
15: λcausal ←

e− et
CTE − et

16: else
17: λcausal ← 1
18: end if
19: end if
20: Update model parameters using λcausal
21: end for

160

D Ablation Results161

Causal annealing is a key training strategy that stabilizes structure learning by delaying the influence162

of causal regularization.163

Effect of Causal Annealing:Table 3 presents an ablation comparing G-ADMG-CL trained with164

and without causal annealing (hard mode). On the FC dataset, the F1 score for directed edges165

(F1D) improves from 0.50 to 1.00 when annealing is applied, while maintaining F1B. Similarly, on166

ER(4,6,4), F1D improves from 0.75 to 0.92. This shows that causal annealing significantly improves167

structure recovery, in the presence of unobserved confounding.

Table 3: Impact of causal annealing on structure recovery (F1).

Method FC ER(4,6,4)
F1D F1B F1D F1B

G-ADMG-CL (with annealing) 1.00 0.50 0.92 0.89
G-ADMG-CL (no annealing) 0.50 0.50 0.75 0.80

168

E Training Configuration Summary169

We summarize the key training hyperparameters for the synthetic datasets (FC and ER variants), and170

IHDP given in Table 4.171
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Table 4: Key training parameters for synthetic and real-world datasets used in experiments.
Parameter FC ER(4,6,4) ER(12,50,10) IHDP
KL Annealing Epoch 50 100 800 20
Causal Transition Epoch (CTE) 1200 150 1000 1000
Latent Dim (z, (zD, zB)) 24 24 36 50
λcycle 1 7 5 1
λsymmetry(AB) 0.5 1.5 1.75 4.75

F Additional Figures: Learned Causal Graph172

This section visualizes the learned causal graphs and corresponding adjacency matrices produced by173

our method, G-ADMG-CL, compared against the ground truth graphs for both the FC and ER (4,6,4)174

datasets. Figure 2 shows the comparison for the FC dataset, and Figure 3 presents the results for the175

ER dataset. Each pair of subfigures shows the true causal structure (left) and the structure learned by176

our model (right). Directed edges are denoted as solid lines and bidirected edges as dashed lines. Red177

edges in the learned graphs indicate spurious connections not present in the ground truth, highlighting178

areas of overestimation or structural deviation. These figures provide a qualitative understanding of179

how well the model captures both observed and latent confounding relationships.180

(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 2: Comparison of ground truth (left) and learned (right) causal structures for the FC dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 3: Comparison of ground truth (left) and learned (right) causal structures for the ER dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

We also plan to explore the interplay between directed edges (representing observable causal relations)181

and bidirected edges (capturing latent confounding), to better understand their co-existence within182

complex graph structures.183

G Threshold Optimization184
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Algorithm 3 Optimal Threshold Selection via F1 Sweep

1: Input: Ground truth adjacency matrix A, learned soft matrix W , threshold set T
2: Output: Optimal threshold t∗, maximum F1 score F1max

3: Initialize F1max ← 0
4: Initialize t∗ ← 0
5: for each threshold t ∈ T do
6: Wbin ← (|W | ≥ t) Element-wise thresholding
7: a← flatten(A)
8: w← flatten(Wbin)
9: F1t ← F1_score(a,w)

10: if F1t > F1max then
11: F1max ← F1t
12: t∗ ← t
13: end if
14: end for
15: return t∗, F1max

(a) Obtained best F1 score for learned for AD . (b) Obtained best F1 score for AB .

Figure 4: Optimal threshold selection for FC.

To convert the learned soft adjacency matrices (AD, AB) into interpretable binary graphs, we apply a185

thresholding mehod that selects the threshold maximizing F1 score. A grid search is performed over186

a set of candidate thresholds T (e.g., [0.05, 0.5]) to binarize the edges and compute F1 scores against187

the ground truth graph. The threshold that yields the highest F1 is selected for final evaluation. For188

fair comparison with prior structure learning methods, we follow the common practice of selecting189

the threshold that maximizes validation F1 score. The full procedure is presented in Algorithm 3.190

The optimal threshold selection plots for the directed and bidirected adjacency matrices on the FC191

dataset are shown in Figure 4, highlighting the threshold values that yield the highest F1 score for192

each edge type.193
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