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Abstract

We explore causal structure learning with unobserved confounders, represented
by Acyclic Directed Mixed Graphs, where directed edges indicate observed cause-
effect relationships and bidirected edges capture unobserved confounding. Previous
methods have focused on search-based approaches or flow-based generative models.
In contrast, we propose a novel variational autoencoder framework with dual latent
spaces, each associated with a trainable adjacency matrix to capture directed and
bidirected edges, respectively. We propose a causality constraint and introduce
a causal annealing strategy during training to obtain meaningful causal graph
structures. Experiments show competitive identification of both relationship types
on synthetic data, with learned structures enhancing downstream causal inference
in a real-world task.

1 Introduction

Learning cause-effect [10] relationships from observational data becomes particularly challenging in
the presence of unobserved confounders. Classical approaches, including score-based methods (e.g.,
BIC) and constraint-based algorithms (e.g., conditional independence tests), often fail when latent
variables are present. While recent continuous optimization methods such as NOTEARS [15] provide
scalable solutions under acyclicity constraints, several differentiable extensions explicitly handle
latent confounders rather than assuming causal sufficiency. The framework of Acyclic Directed Mixed
Graphs (ADMGs) [11] and bow-free constraints [4] extends identifiability with hidden confounding,
but generative models in this space remain underexplored.

In this work, we propose a causally constrained variational autoencoder (VAE) framework that
disentangles observed and latent confounding via dual latent spaces, each linked to trainable
adjacency matrices for directed (D) and bidirected (B) edges. To guide the model toward learning
faithful causal structures, we introduce a structured objective that enforces acyclicity and bow-free
constraints. Additionally, we propose a novel training strategy called causal annealing, which delays
the application of causal regularization, allowing the model to first focus on reconstruction and KL
divergence. The KL divergence terms are computed between the approximate posteriors qϕ(zD|x) and
qϕ(zB |x) and their corresponding isotropic Gaussian priors p(zD) = N (0, I) and p(zB) = N (0, I),
ensuring balanced latent regularization and reconstruction across both latent spaces. Our approach
recovers interpretable causal graphs under unobserved confounding and demonstrates improved
performance on downstream causal inference tasks in both synthetic and real-world datasets.

Key Contributions

• Dual latent spaces for causal disentanglement: We design a VAE [7] framework that
separates observed and unobserved causal relations by learning two distinct latent spaces,
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capturing directed and bidirected dependencies via adjacency matrices AD and AB , respec-
tively.

• Causally aware objective: We propose a causality-aware loss that enforces acyclicity
for AD, bow-free constraints for AB , and sparsity-entropy trade-offs to ensure structural
interpretability and enable meaningful edge selection.

• Causal annealing: We introduce a novel training strategy that gradually activates causal
constraints through a causal transition epoch (CTE), enabling the model to prioritize recon-
struction and KL divergence in early training before focusing on causal structure learning.

2 Related Work

Causal structure learning has been widely studied through constraint-based and score-based ap-
proaches, including FCI [12], which can detect latent confounders via conditional independence tests,
but often fail under hidden confounding and may not scale well to large graphs. Score-based methods
such as CAM-UV [9], which uses HSIC [6] for independence testing, and RCD [8], which assumes
linear non-Gaussian models, extend causal discovery to partially address latent confounding.

Differentiable optimization methods like NOTEARS [15] and its neural extensions DAG-GNN [14]
and N-DAG-G [5] enable continuous DAG learning with end-to-end inference but assume full
observability and cannot represent bidirected edges.

To handle latent confounding more explicitly, ADMG-based methods have been proposed. The
framework in [4] introduces bow-free and ancestral constraints to support interpretable structure
learning under linear Gaussian assumptions. Flow-based models such as N-ADMG-G and N-BF-
ADMG-G [3] enable nonlinear causal structure learning via autoregressive generative modeling, but
do not incorporate latent-variable disentanglement or generation-based optimization.

3 Methodology

We consider two tasks. The first, causal structure learning, G-ADMG-CL, is designed to identify
causal relationships under latent confounding by identifying directed and bidirected edges considering
an ADMG framework. The extended variant, G-ADMG-CL+P, builds on the learned structure to
perform prediction and causal inference (e.g., estimating treatment effects).

Our model, G-ADMG-CL, is a causally constrained variational autoencoder that learns interpretable
causal graphs under latent confounding by leveraging dual latent spaces and a causality-aware loss
LCausal_ADMG. We follow the identifiability assumptions established for ADMG structure learning in
prior work [3], which demonstrate that under nonlinear additive-noise structural causal models, the
directed and bidirected edges of an ADMG are structurally identifiable from the observed distribution,
ensuring theoretical validity for learning causal structure under latent confounding.

Other VAE-based causal models, such as CausalVAE [13], learn causal representations consistent with
a given causal graph under the assumption of causal sufficiency and without modeling any unobserved
variables. In contrast, our proposed G-ADMG-CL framework learns the causal structure directly
among observed variables without assuming prior causal knowledge, while explicitly modeling latent
confounding through dual latent spaces that capture directed and bidirected dependencies under the
ADMG formalism.

Model Overview: We use a VAE with dual latent spaces zD for directed cause-effect and zB for
bidirected latent confounding associated with trainable adjacency matrices AD and AB . These spaces
guide both reconstruction and causal structure estimation. Unlike standard causal representation
learning methods that infer causal relationships within the latent space, our approach directly learns
the causal structure among the observed variables through the directed adjacency matrix AD, while
the bidirected matrix AB captures dependencies induced by unobserved confounders. The dual
latent spaces ZD and ZB disentangle these two effects, enabling differentiable optimization and
unsupervised training. Gradients are propagated through the reconstruction and causal losses without
requiring ground-truth adjacency supervision. The functional components are depicted in Figure 1.

Learning Causal Structure: Our proposed method, G-ADMG-CL, proceeds in the following stages.
The model is trained iteratively over multiple epochs, where parameters are updated in each iteration
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Figure 1: Functional components of the proposed G-ADMG-CL method. Showing dual latent spaces
ZD and ZB and trainable adjacency matrices AD and AB .

using gradient descent to optimize the total loss. First, we initialize trainable graph parameters: W1

and W2, corresponding to the directed and bidirected adjacency matrices AD and AB , respectively.
The encoder then maps the input data X into two sets of latent variables (µD, σ2

D) and (µB , σ
2
B), each

updated by the respective adjacency weights during every training epoch, to produce structure-aware
latents. Using the standard reparameterization trick, we sample latent vectors zD and zB , which are
concatenated to form a joint latent representation z = [zD, zB ]. This combined representation is
passed through a decoder to reconstruct the input as X̂. Simultaneously, the soft adjacency matrices
AD and AB are estimated from zD and zB through trainable functions. Training is fully unsupervised,
and model parameters are updated via backpropagation through the reconstruction and causal losses.
The model is trained by minimizing the following total loss, the training objective.

Ltotal = Lreconstruction + λKL(LKL_directed + LKL_bidirected) + λcausalLCausal_ADMG,

AD and AB are parameterized as trainable matrices (e.g., W1, W2) updated via backpropagation
through the encoder-decoder. which combines reconstruction error, KL divergence (with annealing),
and a structured causal loss LCausal_ADMG that enforces acyclicity and bow-free constraints, along
with regularization terms including symmetry/asymmetry, entropy, and sparsity constraints. To
ensure stable training, we introduce causal annealing (Appendix C), where the causal regularization
weight λcausal is gradually increased until a designated transition epoch, allowing the model to
first focus on data reconstruction before enforcing structural constraints. Finally, the learned soft
adjacency matrices are thresholded to yield interpretable causal graphs (AD, AB) alongside the
reconstructed data X̂. The learned soft adjacency matrices (AD, AB) are thresholded to obtain
binary graphs used for evaluation. The pseudocode is presented in Algorithm 1. The role of causal
annealing is detailed in the ablation study (Appendix D).

Causal inference: For this task, the extended model G-ADMG-CL+P leverages the learned graph
structure to estimate treatment effects from partially observed covariates using the identified directed
and bidirected dependencies.

4 Experiments

Datasets. We evaluate on diverse datasets: (i) Fork Collider (FC), (ii) Erdős–Rényi (ER) synthetic
graphs, and (iii) IHDP [2] real-world causal inference dataset, simulating unobserved confounding
by excluding treated individuals with non-white mothers and generating outcomes using log-linear
response surfaces. The SCMs of the first two data are given in Appendix B.
Results. G-ADMG-CL: Table 1 shows that our method achieves superior F1 scores (Appendix A)
for directed edges (F1D) on both FC and ER datasets, outperforming FCI, RCD, CAM-UV, and neural
ADMG variants. While the F1B score on FC is lower due to approximate confounding estimation, our
method achieves competitive bidirected performance on ER graphs. Learned causal graphs are shown
in Appendix F. Thresholding used to binarize the learned causal graphs is detailed in Appendix G.
G-ADMG-CL+P: On the IHDP dataset, Table 2 shows that our model achieves the lowest RMSE-
ATE (Appendix A), the most reliable metric in the absence of a ground-truth causal graph. Training
hyperparameters are summarized for all datasets in Appendix E.
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Algorithm 1 G-ADMG-CL: Causal Relationships Learning

1: Input: data matrix X ∈ Rn×d ;
2: Output: reconstructed X̂, directed AD, bidirected AB

3: Initialize: encoder/decoder parameters, adjacency W1,W2

4: for epoch = 1 to E do
5: Encode X into (µD, log σ2

D) and (µB , log σ
2
B)

6: Compute structure-aware means: µDAD
= µDW1, µBAB

= µBW2

7: Structure-aware latents:

zD = µDAD
+ ϵD ⊙ exp

(
0.5 log σ2

D

)
, zB = µBAB

+ ϵB ⊙ exp
(
0.5 log σ2

B

)
,

where ϵD, ϵB ∼ N (0, I)

8: Form z = [zD, zB ] and decode X̂
9: Estimate AD = f(zD), AB = f(zB)

10: Minimize Ltotal (reconstruction + KL_directed+KL_bidirected + λcausalLCausal_ADMG) via back-
propagation with annealing schedules

11: end for
12: return AD, AB , X̂

Table 1: Performance comparison: F1 scores (F1D for directed, F1B for bidirected edges) on FC,
ER(4,6,4), and ER(12,50,10)

Method FC ER(4,6,4) ER(12,50,10)
F1D F1B F1D F1B F1D F1B

FCI 0.00 0.75 0.50 0.40 0.25 0.33
CAM-UV 0.80 0.67 0.30 0.25 0.38 0.36
RCD 0.00 0.54 0.35 0.35 0.45 0.20
DCD 0.00 0.67 0.25 0.20 0.32 0.18
N-DAG-G 0.50 0.00 0.60 0.00 0.55 0.00
N-ADMG-G 0.49 0.99 0.75 0.60 0.60 0.38
N-BF-ADMG-G 0.64 0.93 0.78 0.80 0.60 0.40
Proposed (G-ADMG-CL) 1.0 0.50 0.92 0.89 0.51 0.45

Table 2: Causal inference results using IHDP dataset
Method RMSE-ATE
FCI 0.13
CAM-UV 0.15
RCD 0.14
DCD 0.16
N-DAG-G 0.12
N-BF-ADMG-G 0.10
Proposed (G-ADMG-CL+P) 0.031

5 Conclusion

Prior methods do not utilize a latent-variable generative model. In contrast, our work proposes a VAE-
based framework that learns disentangled latent spaces for directed and bidirected relations. With
a structured causal loss and a novel causal annealing schedule, our approach enables interpretable
and robust causal structure discovery under latent confounding. The proposed method achieves
strong performance on synthetic graphs, and improves causal inference on real data. Future work will
explore the impact of causal annealing and the causal transition epoch across varied structural setups
and causal dynamics.
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A Performance Metrics

F1 Score. To evaluate the accuracy of structure recovery, we report the F1 score for both directed
(F1D) and bidirected (F1B) edges. F1 is computed as the harmonic mean of precision and recall:

F1 =
2 · Precision · Recall
Precision + Recall

,

where true positives are correctly predicted edges, and precision/recall are calculated separately for
directed and bidirected adjacency matrices.

RMSE-ATE. For causal inference performance on the IHDP dataset, we report the Root Mean
Squared Error of the Average Treatment Effect (RMSE-ATE). This is computed between the true and
estimated ATE across test samples:

RMSE-ATE =

√√√√ 1

n

n∑
i=1

(τ̂i − τi)2,

where τi and τ̂i denote the ground-truth and estimated treatment effect for individual i, respectively.
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B SCM of Datasets (FC and ER)

The following Structural Causal Model defines the data-generating process used for the Fork Collider
(FC).

T = [u1, u2, ϵ1, ϵ2, ϵ3, ϵ4, ϵ5]
T ∼ N (0, 1),

x1 = ϵ1,

x2 =
√
6 exp(−u2

1) + 0.1ϵ2,

x3 =
√
6 exp(−u2

1) +
√
6 exp(−u2

2) + 0.2ϵ3,

x4 =
√
6 exp(−u2

2) +
√
6 exp(−x2

1) + 0.1ϵ4,

x5 =
√
6 exp(−x2

1) + 0.1ϵ5.

(1)

The following Structural Causal Model defines the data-generating process used for the ER (d,e,m).
Here, d denotes the number of observed variables (nodes), e the number of directed edges (cause-
effect relations), and m the number of bidirected edges (latent confounders). For instance, ER(4,6,4)
represents a graph with 4 variables, 6 directed edges, and 4 bidirected edges.

AD ∼ ER
(
d,

e

d(d− 1)

)
, diag(AD) = 0

AD[i, j] =

{
1 if there is a directed edge from i to j,

0 otherwise.

AB [i, j] ∼ Bernoulli
(

m

d(d− 1)

)
, diag(AB) = 0

AB = triu(AB , 1) + triu(AB , 1)
⊤,

: triu extracts the elements above the diagonal,

ϵ ∼ N (0, 0.12), u ∼ N (0, 0.12),

Xi =
∑

p∈PaD(i)

f(Xp) +
∑

q∈PaB(i)

g(uq) + ϵi. (2)

C Causal Annealing Schedule

We introduce a causal annealing, a mechanism designed to systematically control the influence of the
causal regularization term within the total loss. In early stage of training it is beneficial to prioritize
reconstruction and latent representation learning before enforcing strong causal constraints. To this
end, we gradually increase the causal weight λcausal over training epochs using using either a hard
or linear annealing schedule. Algorithm 2 details the annealing procedure. Given total epochs E,
causal transition epoch CTE, and an optional warm-up start epoch et, the algorithm updates λcausal
at each epoch. In "hard" mode, the causal weight is kept at 0 until epoch CTE, after which it is set
to 1. In "linear" mode, λcausal increases gradually from 0 (starting at et) to 1 (at CTE), following
a linear ramp-up schedule. This delayed enforcement of the causal loss prevents early convergence to
poor graph structures and promotes better structure recovery and generalization.

D Ablation Results

Causal annealing is a key training strategy that stabilizes structure learning by delaying the influence
of causal regularization.

Effect of Causal Annealing:Table 3 presents an ablation comparing G-ADMG-CL trained with
and without causal annealing (hard mode). On the FC dataset, the F1 score for directed edges
(F1D) improves from 0.50 to 1.00 when annealing is applied, while maintaining F1B. Similarly, on
ER(4,6,4), F1D improves from 0.75 to 0.92. This shows that causal annealing significantly improves
structure recovery, in the presence of unobserved confounding.
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Algorithm 2 Causal Annealing During Training

1: Input: Total epochs E, causal transition epoch CTE, linear transition start epoch et, anneal
mode ("hard" or "linear")

2: Output: Causal regularization schedule λcausal for each epoch
3: Initialize λcausal ← 0
4: for epoch e = 1 to E do
5: if anneal_mode == "hard" then
6: if e < CTE then
7: λcausal ← 0
8: else
9: λcausal ← 1

10: end if
11: else
12: if e < et then
13: λcausal ← 0
14: else if e < CTE then
15: λcausal ←

e− et
CTE − et

16: else
17: λcausal ← 1
18: end if
19: end if
20: Update model parameters using λcausal
21: end for

Table 3: Impact of causal annealing on structure recovery (F1).

Method FC ER(4,6,4)
F1D F1B F1D F1B

G-ADMG-CL (with annealing) 1.00 0.50 0.92 0.89
G-ADMG-CL (no annealing) 0.50 0.50 0.75 0.80

E Training Configuration Summary

We summarize the key training hyperparameters for the synthetic datasets (FC and ER variants), and
the IHDP given in Table 4.

Table 4: Key training parameters for synthetic and real-world datasets used in experiments.
Parameter FC ER(4,6,4) ER(12,50,10) IHDP
KL Annealing Epoch 50 100 800 20
Causal Transition Epoch (CTE) 1200 150 1000 1000
Latent Dim (z, (zD, zB)) 24 24 36 50
λcycle 1 7 5 1
λsymmetry(AB) 0.5 1.5 1.75 4.75

F Additional Figures: Learned Causal Graph

This section visualizes the learned causal graphs and corresponding adjacency matrices produced by
our method, G-ADMG-CL, compared against the ground truth graphs for both the FC and ER (4,6,4)
datasets. Figure 2 shows the comparison for the FC dataset, and Figure 3 presents the results for the
ER dataset. Each pair of subfigures shows the true causal structure (left) and the structure learned by
our model (right). Directed edges are denoted as solid lines and bidirected edges as dashed lines. Red
edges in the learned graphs indicate spurious connections not present in the ground truth, highlighting
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areas of overestimation or structural deviation. These figures provide a qualitative understanding of
how well the model captures both observed and latent confounding relationships.

(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 2: Comparison of ground truth (left) and learned (right) causal structures for the FC dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 3: Comparison of ground truth (left) and learned (right) causal structures for the ER dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

We also plan to explore the interplay between directed edges (representing observable causal relations)
and bidirected edges (capturing latent confounding), to better understand their co-existence within
complex graph structures.

G Threshold Optimization

Algorithm 3 Optimal Threshold Selection via F1 Sweep

1: Input: Ground truth adjacency matrix A, learned soft matrix W , threshold set T
2: Output: Optimal threshold t∗, maximum F1 score F1max

3: Initialize F1max ← 0
4: Initialize t∗ ← 0
5: for each threshold t ∈ T do
6: Wbin ← (|W | ≥ t) Element-wise thresholding
7: a← flatten(A)
8: w← flatten(Wbin)
9: F1t ← F1_score(a,w)

10: if F1t > F1max then
11: F1max ← F1t
12: t∗ ← t
13: end if
14: end for
15: return t∗, F1max
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(a) Obtained best F1 score for learned for AD . (b) Obtained best F1 score for AB .

Figure 4: Optimal threshold selection for FC.

To convert the learned soft adjacency matrices (AD, AB) into interpretable binary graphs, we apply a
thresholding method that selects the threshold maximizing F1 score. A grid search is performed over
a set of candidate thresholds T (e.g., [0.05, 0.5]) to binarize the edges and compute F1 scores against
the ground truth graph. The threshold that yields the highest F1 is selected for final evaluation. For
fair comparison with prior structure learning methods, we follow the common practice of selecting
the threshold that maximizes validation F1 score. The full procedure is presented in Algorithm 3.
The optimal threshold selection plots for the directed and bidirected adjacency matrices on the FC
dataset are shown in Figure 4, highlighting the threshold values that yield the highest F1 score for
each edge type.
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