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Abstract

We explore causal structure learning with unobserved confounders, represented
by Acyclic Directed Mixed Graphs, where directed edges indicate observed cause-
effect relationships and bidirected edges capture unobserved confounding. Previous
methods have focused on search-based approaches or flow-based generative models.
In contrast, we propose a novel variational autoencoder framework with dual latent
spaces, each associated with a trainable adjacency matrix to capture directed and
bidirected edges, respectively. We propose a causality constraint and introduce
a causal annealing strategy during training to obtain meaningful causal graph
structures. Experiments show competitive identification of both relationship types
on synthetic data, with learned structures enhancing downstream causal inference
in a real-world task.

1 Introduction

Learning cause-effect [[10] relationships from observational data becomes particularly challenging in
the presence of unobserved confounders. Classical approaches, including score-based methods (e.g.,
BIC) and constraint-based algorithms (e.g., conditional independence tests), often fail when latent
variables are present. While recent continuous optimization methods such as NOTEARS [15] provide
scalable solutions under acyclicity constraints, several differentiable extensions explicitly handle
latent confounders rather than assuming causal sufficiency. The framework of Acyclic Directed Mixed
Graphs (ADMGs) [11] and bow-free constraints [4]] extends identifiability with hidden confounding,
but generative models in this space remain underexplored.

In this work, we propose a causally constrained variational autoencoder (VAE) framework that
disentangles observed and latent confounding via dual latent spaces, each linked to trainable
adjacency matrices for directed (D) and bidirected (B) edges. To guide the model toward learning
faithful causal structures, we introduce a structured objective that enforces acyclicity and bow-free
constraints. Additionally, we propose a novel training strategy called causal annealing, which delays
the application of causal regularization, allowing the model to first focus on reconstruction and KL
divergence. The KL divergence terms are computed between the approximate posteriors g, (zp|x) and
¢4(zp|2) and their corresponding isotropic Gaussian priors p(zp) = N(0, ) and p(z5) = N(0,I),
ensuring balanced latent regularization and reconstruction across both latent spaces. Our approach
recovers interpretable causal graphs under unobserved confounding and demonstrates improved
performance on downstream causal inference tasks in both synthetic and real-world datasets.

Key Contributions

* Dual latent spaces for causal disentanglement: We design a VAE [7] framework that
separates observed and unobserved causal relations by learning two distinct latent spaces,
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capturing directed and bidirected dependencies via adjacency matrices Ap and Ap, respec-
tively.

» Causally aware objective: We propose a causality-aware loss that enforces acyclicity
for Ap, bow-free constraints for Ap, and sparsity-entropy trade-offs to ensure structural
interpretability and enable meaningful edge selection.

» Causal annealing: We introduce a novel training strategy that gradually activates causal
constraints through a causal transition epoch (CTE), enabling the model to prioritize recon-
struction and KL divergence in early training before focusing on causal structure learning.

2 Related Work

Causal structure learning has been widely studied through constraint-based and score-based ap-
proaches, including FCI [[12], which can detect latent confounders via conditional independence tests,
but often fail under hidden confounding and may not scale well to large graphs. Score-based methods
such as CAM-UYV [9], which uses HSIC [6] for independence testing, and RCD [8], which assumes
linear non-Gaussian models, extend causal discovery to partially address latent confounding.

Differentiable optimization methods like NOTEARS [[15] and its neural extensions DAG-GNN [14]
and N-DAG-G [3] enable continuous DAG learning with end-to-end inference but assume full
observability and cannot represent bidirected edges.

To handle latent confounding more explicitly, ADMG-based methods have been proposed. The
framework in [4] introduces bow-free and ancestral constraints to support interpretable structure
learning under linear Gaussian assumptions. Flow-based models such as N-ADMG-G and N-BF-
ADMG-G [3] enable nonlinear causal structure learning via autoregressive generative modeling, but
do not incorporate latent-variable disentanglement or generation-based optimization.

3 Methodology

We consider two tasks. The first, causal structure learning, G-ADMG-CL, is designed to identify
causal relationships under latent confounding by identifying directed and bidirected edges considering
an ADMG framework. The extended variant, G-ADMG-CL+P, builds on the learned structure to
perform prediction and causal inference (e.g., estimating treatment effects).

Our model, G-ADMG-CL, is a causally constrained variational autoencoder that learns interpretable
causal graphs under latent confounding by leveraging dual latent spaces and a causality-aware loss
Lcausal_apma- We follow the identifiability assumptions established for ADMG structure learning in
prior work [3], which demonstrate that under nonlinear additive-noise structural causal models, the
directed and bidirected edges of an ADMG are structurally identifiable from the observed distribution,
ensuring theoretical validity for learning causal structure under latent confounding.

Other VAE-based causal models, such as Causal VAE [[13]], learn causal representations consistent with
a given causal graph under the assumption of causal sufficiency and without modeling any unobserved
variables. In contrast, our proposed G-ADMG-CL framework learns the causal structure directly
among observed variables without assuming prior causal knowledge, while explicitly modeling latent
confounding through dual latent spaces that capture directed and bidirected dependencies under the
ADMG formalism.

Model Overview: We use a VAE with dual latent spaces zp for directed cause-effect and z g for
bidirected latent confounding associated with trainable adjacency matrices Ap and A . These spaces
guide both reconstruction and causal structure estimation. Unlike standard causal representation
learning methods that infer causal relationships within the latent space, our approach directly learns
the causal structure among the observed variables through the directed adjacency matrix Ap, while
the bidirected matrix Ap captures dependencies induced by unobserved confounders. The dual
latent spaces Zp and Zp disentangle these two effects, enabling differentiable optimization and
unsupervised training. Gradients are propagated through the reconstruction and causal losses without
requiring ground-truth adjacency supervision. The functional components are depicted in Figure T}

Learning Causal Structure: Our proposed method, G-ADMG-CL, proceeds in the following stages.
The model is trained iteratively over multiple epochs, where parameters are updated in each iteration
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Figure 1: Functional components of the proposed G-ADMG-CL method. Showing dual latent spaces
Zp and Zp and trainable adjacency matrices Ap and Ap.

using gradient descent to optimize the total loss. First, we initialize trainable graph parameters: W
and W, corresponding to the directed and bidirected adjacency matrices Ap and Ap, respectively.
The encoder then maps the input data X into two sets of latent variables (1p,0%) and (up, 0%), each
updated by the respective adjacency weights during every training epoch, to produce structure-aware
latents. Using the standard reparameterization trick, we sample latent vectors zp and z g, which are
concatenated to form a joint latent representation z = [zp, zg]. This combined representation is

passed through a decoder to reconstruct the input as X. Simultaneously, the soft adjacency matrices
Ap and Ap are estimated from zp and z g through trainable functions. Training is fully unsupervised,
and model parameters are updated via backpropagation through the reconstruction and causal losses.
The model is trained by minimizing the following total loss, the training objective.

Ltotal = Ereconstruction + )\KL(»CKLfdirected + £KL7bidirected) + )\causaIECausaLADMGa

Ap and Ap are parameterized as trainable matrices (e.g., W1, Ws) updated via backpropagation
through the encoder-decoder. which combines reconstruction error, KL divergence (with annealing),
and a structured causal 10ss Lcausal_apma that enforces acyclicity and bow-free constraints, along
with regularization terms including symmetry/asymmetry, entropy, and sparsity constraints. To
ensure stable training, we introduce causal annealing (Appendix [C)), where the causal regularization
weight A\ .uusa is gradually increased until a designated transition epoch, allowing the model to
first focus on data reconstruction before enforcing structural constraints. Finally, the learned soft
adjacency matrices are thresholded to yield interpretable causal graphs (Ap, Ap) alongside the
reconstructed data X. The learned soft adjacency matrices (Ap, Ap) are thresholded to obtain
binary graphs used for evaluation. The pseudocode is presented in Algorithm[I] The role of causal
annealing is detailed in the ablation study (Appendix [DJ.

Causal inference: For this task, the extended model G-ADMG-CL+P leverages the learned graph
structure to estimate treatment effects from partially observed covariates using the identified directed
and bidirected dependencies.

4 Experiments

Datasets. We evaluate on diverse datasets: (i) Fork Collider (FC), (ii) Erd6s—Rényi (ER) synthetic
graphs, and (iii) IHDP [2] real-world causal inference dataset, simulating unobserved confounding
by excluding treated individuals with non-white mothers and generating outcomes using log-linear
response surfaces. The SCMs of the first two data are given in Appendix

Results. G-ADMG-CL: Table[I|shows that our method achieves superior F1 scores (Appendix [A)
for directed edges (F1D) on both FC and ER datasets, outperforming FCI, RCD, CAM-UYV, and neural
ADMG variants. While the F1B score on FC is lower due to approximate confounding estimation, our
method achieves competitive bidirected performance on ER graphs. Learned causal graphs are shown
in Appendix [} Thresholding used to binarize the learned causal graphs is detailed in Appendix [G|
G-ADMG-CL+P: On the IHDP dataset, Table[2] shows that our model achieves the lowest RMSE-
ATE (Appendix [A)), the most reliable metric in the absence of a ground-truth causal graph. Training
hyperparameters are summarized for all datasets in Appendix [E]



Algorithm 1 G-ADMG-CL: Causal Relationships Learning

. Input: data matrix X € R"*¢ ;

: Output: reconstructed X, directed Ap, bidirected Ap

. Initialize: encoder/decoder parameters, adjacency Wy, Wy

: for epoch =1 to £ do

Encode X into (pp,logo%) and (pp, log 0%)

Compute structure-aware means: (ip A p =MD Wi, UBAp = Up W
Structure-aware latents:

Zp = fipa, +€p ®@exp(0.5 logo}), zp = ppa, +€p ©exp(0.5 logoy),

where ep, eg ~ N (0, 1)
8 Formz = [zp,zz] and decode X
9: Estimate Ap = f(ZD),AB = f(ZB)
10:  Minimize Lo (reconstruction + KL_directed+KL_bidirected + Acausai Lcausal apMG) Via back-
propagation with annealing schedules
11: end for .
12: return Ap, Ap, X

Table 1: Performance comparison: F1 scores (F1D for directed, F1B for bidirected edges) on FC,
ER(4,6,4), and ER(12,50,10)

Method FC ER(4,6,4) ER(12,50,10)
FID FIB FID FIB FID FIB
FCI 0.00 0.75 050 040 025 033
CAM-UV 0.80 0.67 030 025 038 036
RCD 000 054 035 035 045 0.0
DCD 0.00 0.67 025 020 032 0.18
N-DAG-G 0.50 0.0 0.60 0.00 0.55 0.00
N-ADMG-G 049 099 075 0.60 060 038
N-BF-ADMG-G 064 093 078 080 0.60 040

Proposed (G-ADMG-CL) 1.0 050 092 089 051 045

Table 2: Causal inference results using IHDP dataset

Method RMSE-ATE
FCI 0.13
CAM-UV 0.15
RCD 0.14
DCD 0.16
N-DAG-G 0.12
N-BF-ADMG-G 0.10

Proposed (G-ADMG-CL+P) 0.031

5 Conclusion

Prior methods do not utilize a latent-variable generative model. In contrast, our work proposes a VAE-
based framework that learns disentangled latent spaces for directed and bidirected relations. With
a structured causal loss and a novel causal annealing schedule, our approach enables interpretable
and robust causal structure discovery under latent confounding. The proposed method achieves
strong performance on synthetic graphs, and improves causal inference on real data. Future work will
explore the impact of causal annealing and the causal transition epoch across varied structural setups
and causal dynamics.
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A Performance Metrics

F1 Score. To evaluate the accuracy of structure recovery, we report the F1 score for both directed
(F1D) and bidirected (F1B) edges. F1 is computed as the harmonic mean of precision and recall:

Fl — 2 - Precision - Recall

Precision + Recall ’

where true positives are correctly predicted edges, and precision/recall are calculated separately for
directed and bidirected adjacency matrices.

RMSE-ATE. For causal inference performance on the IHDP dataset, we report the Root Mean
Squared Error of the Average Treatment Effect (RMSE-ATE). This is computed between the true and
estimated ATE across test samples:

RMSE-ATE =

where 7; and 7; denote the ground-truth and estimated treatment effect for individual 4, respectively.



B SCM of Datasets (FC and ER)

The following Structural Causal Model defines the data-generating process used for the Fork Collider
(FO).
T = [uh Uz, €1, €2, €3, €4, 65]T ~ N(Oa 1)7

Ty = €1,

zy = V6exp(—u?) + 0.1es,

x5 = V6 exp(—u?) + V6 exp(—u2) + 0.2¢s, M
x4 = V6exp(—ud) + V6exp(—z?) + 0.1ey,

z5 = V6exp(—z?) + 0.1es.

The following Structural Causal Model defines the data-generating process used for the ER (d,e,m).
Here, d denotes the number of observed variables (nodes), e the number of directed edges (cause-
effect relations), and m the number of bidirected edges (latent confounders). For instance, ER(4,6,4)
represents a graph with 4 variables, 6 directed edges, and 4 bidirected edges.

e

d(d—l)) , diag(Ap) =20

1 if there is a directed edge from 1 to j,
0 otherwise.

Ap ~ER (d,
AD[Zv]] :{

Apli, j] ~ Bernoulli (d(dm—1)> , diag(Ap) =0
Ap =triu(Ag, 1) + triu(Ag, 1)T,
: triu extracts the elements above the diagonal,

e~ N(0,01%), u~ N(0,0.1%),
Xi = Z f(Xp) + Z 9(uq) + €. 2

pEPap (i) q€Pap (1)

C Causal Annealing Schedule

We introduce a causal annealing, a mechanism designed to systematically control the influence of the
causal regularization term within the total loss. In early stage of training it is beneficial to prioritize
reconstruction and latent representation learning before enforcing strong causal constraints. To this
end, we gradually increase the causal weight A¢asa OVer training epochs using using either a hard
or linear annealing schedule. Algorithm [2]details the annealing procedure. Given total epochs F,
causal transition epoch CT'F, and an optional warm-up start epoch e;, the algorithm updates Acysal
at each epoch. In "hard" mode, the causal weight is kept at 0 until epoch CT E, after which it is set
to 1. In "linear" mode, A5, increases gradually from O (starting at e;) to 1 (at C'T'E), following
a linear ramp-up schedule. This delayed enforcement of the causal loss prevents early convergence to
poor graph structures and promotes better structure recovery and generalization.

D Ablation Results

Causal annealing is a key training strategy that stabilizes structure learning by delaying the influence
of causal regularization.

Effect of Causal Annealing:Table [3| presents an ablation comparing G-ADMG-CL trained with
and without causal annealing (hard mode). On the FC dataset, the F1 score for directed edges
(F1D) improves from 0.50 to 1.00 when annealing is applied, while maintaining F1B. Similarly, on
ER(4,6,4), F1D improves from 0.75 to 0.92. This shows that causal annealing significantly improves
structure recovery, in the presence of unobserved confounding.



Algorithm 2 Causal Annealing During Training

1: Input: Total epochs F, causal transition epoch C'T'E, linear transition start epoch e;, anneal
mode ("hard" or "linear")

2: Qutput: Causal regularization schedule A,y for each epoch
3: Initialize Acaysa < O
4: for epoche = 1to E do
5: if anneal_mode == "hard" then
6: if e < CTE then
7. Acausal <= 0
8: else
9: Acausal < 1
10: end if
11:  else
12: if e < e; then
13: )\causal 0
14: else if ¢ < CTFE then
€ — €
15: Acausal < CTT—et
16: else
17: Acausal < 1
18: end if
19:  endif
20:  Update model parameters using A usal
21: end for

Table 3: Impact of causal annealing on structure recovery (F1).
FC ER(4,6,4)
FID FIB FID FI1B

G-ADMG-CL (with annealing) 1.00 0.50 0.92 0.89
G-ADMG-CL (no annealing) 0.50 0.50 0.75 0.80

Method

E Training Configuration Summary

We summarize the key training hyperparameters for the synthetic datasets (FC and ER variants), and
the IHDP given in Table[d]

Table 4: Key training parameters for synthetic and real-world datasets used in experiments.

Parameter FC ER4,6,4) ER(12,50,10) IHDP
KL Annealing Epoch 50 100 800 20
Causal Transition Epoch (CTE) 1200 150 1000 1000
Latent Dim (z, (zp, zB)) 24 24 36 50
Acycle 1 7 5 1
Asymmetry (AB) 0.5 1.5 1.75 475

F Additional Figures: Learned Causal Graph

This section visualizes the learned causal graphs and corresponding adjacency matrices produced by
our method, G-ADMG-CL, compared against the ground truth graphs for both the FC and ER (4,6,4)
datasets. Figure[2]shows the comparison for the FC dataset, and Figure [3| presents the results for the
ER dataset. Each pair of subfigures shows the true causal structure (left) and the structure learned by
our model (right). Directed edges are denoted as solid lines and bidirected edges as dashed lines. Red
edges in the learned graphs indicate spurious connections not present in the ground truth, highlighting



areas of overestimation or structural deviation. These figures provide a qualitative understanding of
how well the model captures both observed and latent confounding relationships.

Ap-[[0,0,0,1,1],
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(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 2: Comparison of ground truth (left) and learned (right) causal structures for the FC dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

Ag- [[0,1,0,1], A-[[0,0,0,1],
[1,0,1,0] [1,0,0,1],
[0,1,0,1], [1,0,0,0], A [0, 1,0,1],
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[1,1,1,001 [oooj
[0110]
(a) Ground-truth causal graph and adjacency matrices. (b) Learned causal graph and adjacency matrices.

Figure 3: Comparison of ground truth (left) and learned (right) causal structures for the ER dataset.
Directed edges are solid; bidirected edges are dashed. Red edges indicate connections not present in
the ground truth.

We also plan to explore the interplay between directed edges (representing observable causal relations)
and bidirected edges (capturing latent confounding), to better understand their co-existence within
complex graph structures.

G Threshold Optimization

Algorithm 3 Optimal Threshold Selection via F1 Sweep

1: Input: Ground truth adjacency matrix A, learned soft matrix W, threshold set 7

Output: Optimal threshold ¢*, maximum F1 score F'1,.x

Initialize F'1,,,« < O

Initialize t* < 0

for each threshold ¢t € T do
Woin < ([W] > t) Element-wise thresholding
a «+ flatten(A)
w + flatten(Whi,)

9:  F1; + F1_score(a,w)

10:  if F'1; > F1lp,,x then

A A i

11: Flmax — Flt
12: t" «—t

13:  endif

14: end for

15: return t*, F'1,.«
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Figure 4: Optimal threshold selection for FC.

To convert the learned soft adjacency matrices (Ap, Ap) into interpretable binary graphs, we apply a
thresholding method that selects the threshold maximizing F1 score. A grid search is performed over
a set of candidate thresholds 7 (e.g., [0.05, 0.5]) to binarize the edges and compute F1 scores against
the ground truth graph. The threshold that yields the highest F1 is selected for final evaluation. For
fair comparison with prior structure learning methods, we follow the common practice of selecting
the threshold that maximizes validation F1 score. The full procedure is presented in Algorithm 3]
The optimal threshold selection plots for the directed and bidirected adjacency matrices on the FC
dataset are shown in Figure[d] highlighting the threshold values that yield the highest F1 score for
each edge type.
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