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Abstract

Mitigating biases in machine learning models001
has become an increasing concern in Natural002
Language Processing (NLP), particularly in de-003
veloping fair text embeddings, which are cru-004
cial yet challenging for real-world applications005
like search engines. In response, this paper006
proposes a novel method for learning fair text007
embeddings. First, we define a novel content-008
conditional equal distance (CCED) fairness for009
text embeddings, ensuring content-conditional010
independence between sensitive attributes and011
text embeddings. Building on CCED, we intro-012
duce a content-conditional debiasing (CCD) loss013
to ensure that embeddings of texts with dif-014
ferent sensitive attributes but identical content015
maintain the same distance from the embedding016
of their corresponding neutral text. Addition-017
ally, we tackle the issue of insufficient training018
data by using Large Language Models (LLMs)019
with instructions to fairly augment texts into020
different sensitive groups. Our extensive eval-021
uations show that our approach effectively en-022
hances fairness while maintaining the utility023
of embeddings. Furthermore, our augmented024
dataset, combined with the CCED metric, serves025
as an new benchmark for evaluating fairness.026

1 Introduction027

Embedding text into dense representations is a028

widely used technique in modern NLP, powering029

applications such as sentiment analysis (Dang et al.,030

2020), recommendation systems (Zhang et al.,031

2016), and search engines (Palangi et al., 2016).032

However, the extensive use of these embeddings033

introduces inherent biases that can affect various ap-034

plications (Packer et al., 2018; Baeza-Yates, 2018;035

Zerveas et al., 2022; Rabelo et al., 2022). For in-036

stance, search engines (Huang et al., 2020) prepro-037

cess all text contents and search queries into em-038

beddings to optimize storage and enable efficient039

similarity matching. These inherent biases in text040

embeddings can influence the calculation of embed-041

ding similarity, impacting the filtering of numerous 042

documents to find pertinent ones. Moreover, text 043

embeddings are directly employed in other appli- 044

cations such as zero-shot classification (Yin et al., 045

2019; Radford et al., 2021) and clustering (John 046

et al., 2023). Unfortunately, various forms of bi- 047

ases, including gender, racial, and religious biases, 048

have been identified in text embeddings generated 049

by pre-trained language models (PLMs), as re- 050

ported in several studies (Bolukbasi et al., 2016; 051

Nissim et al., 2020; Liang et al., 2020; May et al., 052

2019). Consequently, attaining fairness in text em- 053

bedding models is crucial. 054

Recent debiasing techniques (Liang et al., 2020; 055

Kaneko and Bollegala, 2021) for text embeddings 056

use post-training to address biases, avoiding the in- 057

efficiency of retraining sentence encoders for each 058

new bias. When removing bias, projection-based 059

methods (Liang et al., 2020; Kaneko and Bollegala, 060

2021) reduce an embedding’s projection onto each 061

bias subspace. The distance-based method (Yang 062

et al., 2023) constructs embeddings for sensitive 063

groups and equalizes distances to text embeddings 064

across these groups. Nevertheless, these methods 065

persist in pursuing independence between sensitive 066

attributes and text embeddings, which results in 067

the complete removal of sensitive information. As 068

a result, these approaches do not effectively find 069

the sweet spot between fairness and utility trade- 070

off (Zhao and Gordon, 2022; Deng et al., 2023; 071

Zliobaite, 2015). 072

Recent studies (Mary et al., 2019; Deng et al., 073

2023; Pogodin et al., 2022) suggest that using 074

datasets labeled with sensitive information to 075

achieve conditional independence — specifically, 076

conditioning on the content class to preserve se- 077

mantic information within the text — provides a 078

more effective approach to achieving fairness while 079

preserving utility. Yet, the scarcity of text datasets 080

with sensitive labels (Gallegos et al., 2023) lim- 081

its the practical application of these findings. To 082
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Figure 1: Pipleline of our method with gender as the sensitive attributes. (a) Graphical demonstration of the fairness
issue. (b) The debiasing procedure achieves a content-conditioned equal distance to improve the fairness. (c)
Overview of the data augmentation strategy, including the prompt template used to replace sensitive words with
their equivalents from all sensitive groups. (d) Prompt search module: Augmented texts are sent to the demographic
polarity checking block. Incorrectly augmented samples are then manually labeled and added to the prompts.

create such datasets, Counterfactual Data Augmen-083

tation (CDA) (Zhao et al., 2018) collects sensitive-084

related words and employs a rule-based method085

to augment the data, but this approach encounters086

challenges due to the need for an extensive list087

of words. Finally, while Large Language Models088

(LLMs) (Schick and Schütze, 2021; Shao et al.,089

2023) have offered new methods for data gener-090

ation thanks to their rich contextual knowledge,091

yet they still struggle with inherent systematic bi-092

ases (Yu et al., 2023).093

In this paper, we improve the text embeding fair-094

ness through defining fairness with theoretical anal-095

ysis, a novel debiasing loss design, and an LLM-096

based data strategy for dataset generation. Our097

contributions include:098

• Introducing CCED fairness for text embeddings,099

ensuring equal sensitive information and condi-100

tional independence between sensitive attributes101

and embeddings.102

• Proposing CCD loss to achieve the desired CCED103

fairness by ensuring that texts with varied sensi-104

tive attributes but identical content have embed-105

dings equidistant from their neutral counterparts.106

• Employing LLMs to augment datasets fairly,107

representing diverse sensitive groups within the108

same content for effective training with CCD.109

Proposing polarity-guided prompting to ensure110

the LLM-generated data quality and minimize111

the potential biases from LLMs. 112

• Establishing CCED fairness as a benchmark for 113

evaluating fairness in text embeddings. 114

• Extensive evaluations on debiasing benchmarks 115

and downstream tasks demonstrate CCD’s effec- 116

tiveness in promoting fairness while preserving 117

utility. 118

2 Related Work 119

Debias Text Embedding: Bias in text embeddings 120

(also known as sentence embedding) is a signifi- 121

cant issue that arises when these models reflect or 122

amplify societal stereotypes and prejudices found 123

in their training data. To resolve the issue, (Liang 124

et al., 2020) contextualizes predefined sets of bias 125

attribute words to sentences and applies a hard- 126

debias algorithm (Bolukbasi et al., 2016). Con- 127

textualized debiasing methods (Kaneko and Bol- 128

legala, 2021; Yang et al., 2023) apply token-level 129

debiasing for all tokens in a sentence and can be 130

applied at token- or sentence-levels (Kaneko and 131

Bollegala, 2021) to debias pretrained contextual- 132

ized embeddings. However, all the above methods 133

aim to strictly achieve independence between text 134

embedding and sensitive attributes, which may not 135

balance fairness and utility well. While Shen et al. 136

(2021, 2022) employ contrastive learning losses to 137

mitigate biases in language representations for text 138

classification, their approach relies on supervised 139
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data, which is often scarce and expensive to obtain,140

and primarily focuses on fairness in the subsequent141

task. Additionally, although (Leteno et al., 2023;142

Shen et al., 2022) observe that representational fair-143

ness and group fairness in subsequent tasks are144

either not correlated or only partially correlated,145

it is important to note that fairness in subsequent146

tasks and fairness in text embeddings are distinct147

areas, with the latter being crucial for various appli-148

cations. A detailed discussion of these differences149

can be found in Appendix A.2. In this paper, we150

utilize LLMs to augment training data for learning151

fair text embeddings with proposed CCD loss.152

LLMs for Dataset Generation: Leveraging the153

success of LLMs, researchers have begun using154

them to generate various forms of training data,155

such as tabular data (Borisov et al., 2022), relation156

triplets (Chia et al., 2022), sentence pairs (Schick157

and Schütze, 2021; Zhang et al., 2024), and instruc-158

tion data (Shao et al., 2023; Wu et al., 2024). As159

we focus on obtaining data with sensitive attribute160

information, data generation for text classification161

would be the most similar one among those appli-162

cations. Recent efforts in generating data for text163

classification (Meng et al., 2022; Ye et al., 2022;164

Wang et al., 2019) primarily employ simple class-165

conditional prompts while focusing on mitigating166

issues of low quality after generation. However,167

these efforts encounter the challenge of inherent168

systematic biases present in LLMs (Yu et al., 2023).169

While Yu et al. (2023) considers generated data170

bias, it focuses only on the diversity of topics and171

overlooks the inherent bias within words in a text172

(e.g. ‘child’ occurs more frequently with‘mother’).173

In this paper, we instructs the LLM to only locate174

the gendered words and replace them with coun-175

terparts from other groups and propose polarity-176

guided prompt searching to minimize biases from177

LLMs and ensure the quality of augmented data.178

3 Method179

3.1 Problem Setting180

This section outlines the problem of fairness in181

text embeddings. We define several key variables:182

S ∈ D represents the input text from the data183

distribution, C denotes the content of the text,1184

and A = [a1, . . . , a|A|] represents the sensitive at-185

tributes (e.g. gender and age). The symbol n indi-186

cates neutral, meaning no sensitive information is187

1For instance, the texts ‘he is a teacher’ and ‘she is a
teacher’ both convey the same content C = ‘is a teacher’.

present. A text with content C is considered neutral 188

Sn
C if it contain no sensitive information, whereas 189

text Sai
C is associated with the sensitive attribute ai 190

if its sensitive polarity (Wang et al., 2023) is ai, see 191

Eq. (6). The text embedding model f processes a 192

text into a d-dimensional embedding Z ∈ Rd. The 193

embedding of a neutral text encodes the content 194

information C ′ (a well trained model C ′ ≈ C), 195

while the embedding of a sensitive text additionally 196

encodes sensitive information. Words in the text 197

related to the attribute ai are denoted as Xai , and 198

neutral words are denoted as Xn. For clarity, we 199

provide detailed notations in Table 8 in Appendix. 200

Fairness Issue: Fig. 1 (a) shows there exists an as- 201

sociation between attributes A and content variable 202

C. If model f superficially treats A as a proxy for 203

C,2 it results in encoded C ′ being represented by 204

A thus embedding Z will mainly contain sensitive 205

information, which leads to issues of fairness. 206

Fairness Goal: Mitigating fairness is not trivial, 207

as we need to address not only bias mitigation but 208

also the protection of the model’s representation 209

ability. As shown in Fig. 1 (a), our method aims 210

to (1) break the association between content C and 211

the sensitive attribute A, and (2) preserve useful 212

sensitive information in the text embedding. For 213

example, in the case of a text about a father raising 214

a child, its embedding should retain information 215

about the father. 216

3.2 Content Conditional Debiasing 217

To break the superficial association, we propose 218

to achieve conditional independence between sen- 219

sitive attributes and content A ⊥ C ′ | C. The 220

conditional independence allows prediction C ′ to 221

depend on A but only through the content variable 222

C, prohibiting abusing A as a proxy for C thus miti- 223

gating the fairness issue while preserving the utility. 224

To protect utility, our objective is not to completely 225

remove sensitive information but to ensure that text 226

embeddings from different sensitive groups with 227

identical content contain an equal amount of sensi- 228

tive information. 229

3.2.1 Fairness Definition 230

Firstly, we propose a novel content conditional 231

equal distance fairness for fair text embedding: 232

Definition 3.1. (Content Conditional Equal Dis- 233

tance (CCED) Fairness.) Let Sn
C be a neutral text 234

with content C. Assume SA
C = [Sa1

C , Sa2
C , ..., S

a|A|
C ] 235

2For instance, raising children is frequently associated with
women in the training corpus, resulting in the proxy effect.
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being a set of texts from all sensitive groups with236

the same content C. Then, embedding model f237

is content conditioned equal distance fair with re-238

spect to attributes A, for any ai, aj ∈ A:239

∥f(Sai
C )− f(Sn

C)∥ = ∥f(Saj
C )− f(Sn

C)∥, (1)240

where ∥ · ∥ is L2 norm.241

As shown in Fig. 1 (b), CCED fairness requires242

that texts with the same context from different sen-243

sitive groups have equal distance to their corre-244

sponding neutral text on the embedding space. This245

text embedding fairness definition has two merits:246

Equal sensitive information: The equal distance to247

the neutral embedding ensures an equitable encod-248

ing of sensitive information across diverse groups,249

allowing fair usage of sensitive information and250

preserving the utility of embeddings.251

Content Conditional Independent: Echoing the252

methodologies in previous research (Hinton and253

Roweis, 2002; Yang et al., 2023), the conditional254

independence A ⊥ C ′ | C can be represented as255

the CCED on the embedding space:256

Assumption 3.2. (Equal Probability) Within a con-257

tent C, the likelihood P (ai|C) on all sensitive258

attributes ai ∈ A is uniform P (a1|C) = ... =259

P (aA|C).260

Theorem 3.3. When the equal probability assump-261

tion holds, achieving content conditioned equal262

distance fairness is equivalent to achieving condi-263

tional independence between sensitive attributes264

and content A ⊥ C ′ | C.265

Assumption 3.2 is true for a fair dataset that has bal-266

anced texts from all groups within content C (can267

be obtained through our data augmentation strat-268

egy in Section 3.3). Theorem 3.3 demonstrates the269

merit of CCED fairness (Definition 3.1) in achiev-270

ing embedding fairness. Detailed proof can be271

found in Appendix A.5.272

3.2.2 Content Conditional Debiasing Loss273

Based on the defined CCED fairness, we design274

a loss function Lbias that aims to mitigate biases275

while preserving the representation ability of PLMs.276

For a sample pair [Sa1
C , ..., S

a|A|
C , Sn

C ] :277

Lbias =
∑
i∈[A]

∑
j ̸=i

|dist(f(Sai
C ), f(Sn

C))278

− dist(f(S
aj
C ), f(Sn

C))|, (2)279

where dist(A,B) = exp
(
−∥A−B∥2

2ρ2

)
measures280

the distance on the embedding manifold (Yang281

et al., 2023; Hinton and Roweis, 2002) (details in 282

Appendix A.5), and ρ is selected as the variance of 283

the distance over the training dataset for normaliza- 284

tion. To further preserve the valuable information 285

encoded in the model and achieve efficient debi- 286

asing, we design Lrep to enforce high similarity 287

between the neutral texts’ embeddings processed 288

by the fine-tuned model f and those processed by 289

the original model forg: 290

Lrep = ∥f(Sn)− forg(Sn)∥. (3) 291

Ensuring that neutral embeddings remain un- 292

changed offers two benefits: preserving the model’s 293

representational capability and maintaining neutral 294

embeddings as a consistent reference point in the 295

debiasing loss, ensuring stable equal distance to 296

embeddings with various sensitive attributes. Thus, 297

the overall training objective is: 298

Lall = Lbias + β ∗ Lrep, (4) 299

where β is a hyper-parameter used to balance the 300

two terms. An ablation study for setting β is de- 301

tailed in Table 7. 302

3.3 LLM-Assisted Content Conditional Data 303

Augmentation 304

We leverage the rich contextual knowledge of LLM 305

with few-shot prompting to obtain a dataset that 306

(1) fulfills the Assumption 3.2 to achieve our goal 307

in Definition 3.1 as well as (2) avoids introduc- 308

ing inherent bias in LLM to augmented data. The 309

data augmentation algorithm is shown in Alg. 1, 310

followed by a detailed explanation below. 311

Augment Text into Different Sensitive Groups: 312

As shown in Fig. 1 (c), our task description 313

T instructs the LLM to only locate the gen- 314

dered words and replace them with counterparts 315

from other groups, leaving the other content un- 316

changed thus avoiding fairness issues in text gen- 317

eration. Specifically, for sensitive words XA = 318

[Xai , ..., Xaj ], ai, aj ∈ A in the text S, the LLM 319

h substitutes XA with words from different sensi- 320

tive groups and neutral terms, thus obtaining aug- 321

mented texts from all sensitive groups (as shown in 322

Table 1): 323

h(S, T, P ) = [Sa1 , ..., Sa|A| , Sn], c (5) 324

where c is the confidence score and P is the ex- 325

ample prompts (detailed in Table 10 in Appendix). 326

After augmentation, the dataset will have an equal 327
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Algorithm 1 Data Augmentation Algorithm
Input: Dataset D, Sensitive word lists V , Pre-
trained LLM h, Task Description T , Example
Prompts P .

1: for k in 1, . . . ,K do ▷ K = 10 in this work
2: Block I: Augment Texts into Different Sen-

sitive Groups
3: for S ∈ D do
4: h(S, T, P ) → [Sa1 , ..., Sa|A| , Sn], c
5: end for
6: if k = K then
7: return Augmented Dataset D′

8: end if
9: Block II: Polarity Guided Prompt Search-

ing
10: for [Sa1 , ..., Sa|A| , Sn] ∈ D′ do
11: Polarity Checking Eq.6
12: end for
13: Manually Augment the wrong augmenta-

tion with highest c and add to P .
14: end for

amount of texts from each sensitive group with328

identical content, meeting our equal probability As-329

sumption 3.2.330

Polarity-Guided Prompt Searching: To ensure331

the quality of augmented texts and the effectiveness332

of few-shot prompt tuning on LLMs, finding appro-333

priate prompts P is crucial. We propose identifying334

difficult samples from incorrectly augmented texts335

to use as prompts. First, these incorrectly aug-336

mented samples are detected through a sensitive337

polarity check as described by (Wang et al., 2023)338

and illustrated in Fig. 1(d). By counting the occur-339

rences of words in predefined sensitive word lists340

V = [V ai , ..., V aj ], ai, aj ∈ A, the polarities of a341

series of sentences are determined as follows:342

g(S) = argmax
ai∈A

occ(S, V ai), (6)343

where occ represents the number of times words344

from the list V ai appear in all augmented sentences345

S. For a properly augmented sentence Sai , its346

polarity should match the sensitive attribute347

ai. If g(Sai) ̸= ai, the sentence is considered348

inaccurately augmented. Then we introduce349

our prompt searching strategy in Algorithm 1.350

In each iteration, the algorithm identifies the351

incorrectly augmented sample with the highest352

confidence c, manually augments it, and adds it to353

the example prompts P . This rule-guided prompt354

search is repeated K times (with K = 10) to 355

prepare samples for the few-shot prompt tuning of 356

de-biasing LLMs. 357

358

4 Experiments 359

In this paper, we take gender bias as an example 360

due to its broad impact on society. 361

Datasets: We utilize the News-commentary-v15 362

corpus (Tiedemann, 2012) as source samples to 363

generate our training data with LLMs. For gender 364

bias evaluation, we follow (Yang et al., 2023) to 365

use SEAT (May et al., 2019), CrowS-Pairs (Nan- 366

gia et al., 2020) and StereoSet-Intrasentence 367

data (Nadeem et al., 2020). We additionally 368

assess fairness on longer texts via the Bias-IR 369

dataset (Krieg et al., 2023). To evaluate whether the 370

biased models’ representation ability is maintained, 371

we follow (Kaneko and Bollegala, 2021; Yang et al., 372

2023) to select four small-scale subsequent tasks 373

from the GLEU benchmark: Stanford Sentiment 374

Treebank (SST-2 (Socher et al., 2013)), Microsoft 375

Research Paraphrase Corpus (MRPC (Dolan and 376

Brockett, 2005)), Recognizing Textual Entailment 377

(RTE (Bentivogli et al., 2009)) and Winograd 378

Schema Challenge (WNLI (Levesque et al., 2012)). 379

More dataset information see Appendix A.3. 380

Backbone and Baseline Methods: For the selec- 381

tion of PLMs, we choose BERT-large-uncased (De- 382

vlin et al., 2018) and RoBERTa-base (Liu et al., 383

2019). To assess debiasing performance, we com- 384

pare our algorithm with finetuning-based methods 385

DPCE (Kaneko and Bollegala, 2021) and ADEPT- 386

F (Yang et al., 2023). To assess the effectiveness 387

of our data augmentation strategy, we compare our 388

approach with CDA (Zhao et al., 2018). 389

LLM-Assisted Data Augmentation: We leverage 390

ChatGPT (i.e., gpt-3.5-tubo) and Gemini (Team 391

et al., 2023) to generate our training data. We ob- 392

tained a dataset with texts of content C from all 393

groups A and neutral. Using Gemini and Chat- 394

GPT for data augmentation resulted in datasets 395

with 43,221 and 42,930 sample pairs, respectively. 396

Examples of data augmented through our method 397

are presented in Table 1, and the quality of the 398

augmented dataset is assessed in Section 4.1. 399

Hyperparameters: We use Adam to optimize the 400

objective function. During the debiasing training, 401

our learning rate is 5e-5, batch size is 32, and β 402

is 1. Our method requires training for only a sin- 403

gle epoch and selecting the checkpoint with the 404
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Gender Generated Text

Male

But because Rumsfeld wanted to prove a point about transforming strategy.
After championing the continuation of his hardline policy, his current strategy of negotiation is risky.

He has been very vocal in voicing discontent with the rule of Kirchner and that of his husband and predecessor, Néstor Kirchner.

Neutral

But because the individual wanted to prove a point about transforming strategy.
After championing the continuation of their hardline policy, the current strategy of negotiation is risky.

They have been very vocal in voicing discontent with the rule of Kirchner and that of their spouse and predecessor, Néstor Kirchner.

Female

But because Rachel wanted to prove a point about transforming strategy.
After championing the continuation of her hardline policy, her current strategy of negotiation is risky.

She has been very vocal in voicing discontent with the rule of Kirchner and that of her wife and predecessor, Néstor Kirchner.

Table 1: We utilize LLM to augment text into three gender categories: Male, Female, and Neutral. Below are sample
examples of the generated data, where words containing gender information are highlighted in colors: red for male,
blue for neutral, and orange for female.

lowest validation loss (validate every 500 steps).405

The results for DPCE and ADEPT-F are obtained406

using the originally reported hyperparameters from407

the studies by (Kaneko and Bollegala, 2021; Yang408

et al., 2023). Consistent with these studies, we set409

the random seed to 42 to ensure a fair compari-410

son. All experiments are conducted on an NVIDIA411

A100 GPU.412

4.1 Augmentation Quality Checking413

To demonstrate the quality of our augmented data414

on gender, we quantitatively assess the fairness415

of our augmented dataset using the union gender416

polarity accuracy metric, formulated as follows:417

gui =
(
g(Sn

i ) = n ∩ g(Sm
i ) = am ∩ g(Sf

i ) = af
)

418

Acc =

∑N
i=1 g

u
i

N
, (7)419

where [Sn
i , S

m
i , Sf

i ] are the augmented texts for the420

i-th sample, N denotes the size of the augmented421

dataset, and g(·) is the polarity checking function422

as defined in Eq. (6). The union gender polarity423

accuracy metric measures the proportion of text424

triples (neutral, male, female) that are accurately425

augmented in alignment with their respective gen-426

der polarities. The results show both Gemini and427

GPT models achieve high accuracy, with Gemini428

and GPT reaching 83.4% and 82.2% respectively .429

This suggests that our data augmentation process430

has effectively produced a fair dataset. Incorpo-431

rating polarity checking as a post-processing step432

further ensures the fairness of our augmented data.433

4.2 Results and Analysis434

We evaluate four models on all benchmarks,435

namely the original model (pre-trained with no ex-436

plicit debiasing), the DPCE model, the ADEPT-F437

model, and our CCD.438

Reducing Gender Biases: In Table 2 and Ta-439

ble 3, our experiments demonstrate that CCD with440

GPT and Gemini data strategies excels in debias- 441

ing, consistently outperforming baselines in the 442

StereoSet and CrowS-Pairs datasets for both BERT 443

and RoBERTa backbones. On SEAT, both CCD 444

and DPCE achieve good performance, with CCD- 445

Gemini achieving the best overall performance on 446

SEAT across both backbones. Notably, our method 447

attains a high ICAT score in the StereoSet dataset, 448

indicating an excellent balance between perfor- 449

mance and fairness. However, while DPCE main- 450

tains great fairness, it adversely affects its repre- 451

sentation capability, as evidenced by a significantly 452

lower LMS score in the StereoSet dataset. 453

Preserving Representation Ability: In Table 4 454

and Table 5, the GLUE results demonstrate that 455

CCD-Gemini achieves the highest average perfor- 456

mance with both BERT and RoBERTa backbones, 457

suggesting that our CCD even enhances the model’s 458

representation capabilities. Conversely, DPCE, 459

which strictly separate gender attributes from neu- 460

tral text embeddings, harms the model’s utility. 461

Bias in Information Retrieval: Since search en- 462

gine performance is a crucial subsequent task of 463

text embedding usage, we evaluate the bias in in- 464

formation retrieval using the Bias-IR dataset. For 465

the BERT model, Table 4 shows that CCD-Gemini 466

achieves the best fairness, with CCD-GPT ranking 467

second. For the RoBERTa model, Table 5 demon- 468

strates CCD-GPT achieves the best fairness, with 469

CCD-Gemini ranking second. Overall, CCD with 470

GPT and Gemini data strategies outperforms base- 471

lines in fairness across various fields, as well as in 472

average fairness. 473

CCED as Fairness Metric: We use our CCED 474

fairness from Definition 3.1 to evaluate fairness. 475

Specifically, we calculate the CCED gap for all meth- 476

ods on our Gemini-augmented dataset using the 477

equation 1
N

∑N
i |∥f(Sai

i )− f(Sn
i )∥ − ∥f(Saj

i )− 478

f(Sn
i )∥|. Table 6 demonstrates that CCD achieves 479

the best fairness on the CCED fairness metric and 480
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Datasets
Method

SEAT (0.00) the best StereoSet:gender StereoSet:all CrowS-Pairs
6 6-b 7 7-b 8 8-b AVG (abs)↓ LMS↑ SS (50.00) ICAT↑ LMS↑ SS(50.00) ICAT↑ SS(50.00)

BERT 0.37 0.20 0.42 0.22 −0.26 0.71 0.36 86.34 59.66 69.66 84.16 58.24 70.29 55.73
DPCE −0.21 0.27 0.44 0.07 0.25 0.21 0.24 81.19 56.72 65.41 64.06 52.96 60.26 52.29
ADEPT-F 0.83 −0.14 0.63 1.24 0.43 1.28 0.76 86.45 61.70 66.21 85.09 57.52 72.26 51.91

DPCE-Gemini 0.63 0.41 0.00 −0.01 0.19 0.17 0.23 82.63 60.68 64.98 64.08 54.91 57.78 51.53
ADEPT-F-Gemini 0.71 −0.23 0.21 0.92 0.35 0.99 0.57 86.80 61.72 66.44 85.47 58.50 71.71 51.91

CCD-CDA 0.16 0.03 0.43 0.38 0.47 0.22 0.29 80.34 53.53 74.69 79.10 53.46 73.62 46.95
CCD-GPT 0.35 −0.11 −0.17 −0.15 0.57 0.06 0.23 81.47 53.60 75.60 80.22 52.83 75.97 47.71
CCD-Gemini 0.47 −0.00 −0.02 −0.72 −0.30 0.07 0.26 82.91 54.93 74.72 82.97 55.00 74.67 48.85

Table 2: Comparison of debiasing performance on BERT. We test the debiased models on SEAT, CrowS-Pairs, and
filtered StereoSet-Intrasentence, with the best and second best results in bold and underline respectively.

Datasets
Method

SEAT (0.00) the best StereoSet:gender StereoSet:all CrowS-Pairs
6 6-b 7 7-b 8 8-b AVG (abs)↓ LMS↑ SS (50.00) ICAT↑ LMS↑ SS(50.00) ICAT↑ SS(50.00)

RoBERTa 0.92 0.21 0.98 1.46 0.81 1.26 0.94 89.79 66.17 60.74 88.91 62.22 67.17 60.15
DPCE 0.40 0.11 0.73 0.98 0.03 0.75 0.50 82.93 61.80 64.11 61.30 55.14 54.99 54.79
ADEPT-F 1.23 −0.14 0.99 1.09 0.93 1.11 0.92 89.81 63.10 66.27 90.03 61.31 69.68 55.56

CCD-CDA 0.29 −0.07 0.87 0.94 0.58 0.85 0.60 88.52 60.29 70.29 88.88 59.12 72.66 50.57
CCD-GPT 0.40 0.08 0.41 0.85 0.57 0.63 0.49 87.21 59.51 70.63 88.33 57.61 74.89 48.66
CCD-Gemini 0.27 0.18 −0.13 0.82 0.08 0.81 0.38 81.35 58.15 68.10 84.68 56.65 73.41 49.54

Table 3: Comparison of debiasing performance on RoBERTa. We test the debiased models on SEAT, CrowS-Pairs,
and filtered StereoSet-Intrasentence, with the best and second best results in bold and underline respectively.

Datasets
Method

GLUE ↑ Bias-IR (Male Ratio, 0.50 the best)
SST-2↑ MRPC↑ RTE↑ WNLI↑ AVG↑ Appearance Child Cognitive Domestic Career Physical Relationship AVG-DEV↓

BERT 92.9 84.6 72.5 38.0 72.0 0.71 0.50 0.75 0.46 0.75 0.68 0.61 0.16
DPCE 92.8 69.6 53.4 49.3 66.3 0.86 0.79 1.00 0.47 0.70 0.84 0.61 0.24
ADEPT-F 93.2 85.5 69.9 56.3 76.2 0.50 0.50 0.75 0.53 0.80 0.68 0.65 0.13

DPCE-Gemini 93.2 81.4 60.6 46.5 70.4 0.29 0.36 0.17 0.20 0.10 0.32 0.35 0.24
ADEPT-F-Gemini 92.7 81.4 71.5 56.3 75.5 0.71 0.43 0.83 0.53 0.65 0.74 0.65 0.17

CCD-CDA 92.8 86.3 65.3 50.7 73.8 0.79 0.79 0.83 0.80 0.70 0.79 0.83 0.29
CCD-GPT 93.6 85.1 70.4 56.3 76.4 0.78 0.78 0.50 0.73 0.50 0.63 0.52 0.13
CCD-Gemini 93.5 83.6 72.9 56.3 76.6 0.57 0.64 0.58 0.60 0.70 0.42 0.65 0.11

Table 4: Evaluation results on the GLUE dataset and the Bias-IR dataset with BERT, we calculate the average
deviation to 0.5 for Bias-IR as AVG-DEV. The bold and underline represent the best and second-best respectively.

Datasets
Method

GLUE ↑ Bias-IR (Male Ratio, 0.50 the best)
SST-2↑ MRPC↑ RTE↑ WNLI↑ AVG↑ Appearance Child Cognitive Domestic Career Physical Relationship AVG-DEV↓

RoBERTa 93.8 88.2 70.8 56.3 76.9 0.28 0.28 0.66 0.40 0.60 0.42 0.70 0.16
DPCE 78.1 81.6 53.8 56.3 67.5 0.43 0.93 0.42 0.60 0.50 0.58 0.43 0.12
ADEPT-F 93.9 89.2 66.8 56.3 76.6 0.57 0.50 0.83 0.60 0.85 0.68 0.74 0.18

CCD-CDA 94.3 88.2 68.2 56.3 76.7 0.29 0.50 0.58 0.13 0.35 0.21 0.56 0.16
CCD-GPT 93.1 86.5 71.5 56.3 76.9 0.43 0.36 0.58 0.33 0.55 0.53 0.61 0.09
CCD-Gemini 94.6 86.5 72.9 56.3 77.6 0.43 0.50 0.67 0.53 0.65 0.58 0.69 0.10

Table 5: Evaluation results on the GLUE dataset and the Bias-IR dataset with RoBERTa, we calculate the average
deviation to 0.5 for Bias-IR as AVG-DEV. The bold and underline represent the best and second-best respectively.

Method CCED ↓
BERT 0.339
DPCE 0.212
ADEPT-F 0.324
CCD-CDA 0.081
CCD-GPT 0.056
CCD-Gemini 0.077

(a) CCED on BERT.

Method CCED ↓
RoBERTa 0.438
DPCE 0.177
ADEPT-F 0.159
CCD-CDA 0.166
CCD-GPT 0.143
CCD-Gemini 0.052

(b) CCED on RoBERTa.

Table 6: Debiasing performance in terms of CCED.

DPCE being the fairest baseline. The CCED results481

align well with the results on other benchmarks in482

Table 2 and Table 3, indicating that CCED serves as483

an new benchmark for text embedding fairness. 484

Comparision of Data Strategy: To demonstrate 485

the effectiveness of our proposed data strategy, we 486

conduct comparisons with CDA as shown in Ta- 487

ble 2 to Table 5. Integrating our debiasing loss 488

with all data strategies results in improved fairness. 489

However, CDA consistently performs worse than 490

GPT and Gemini on fairness due to its limited sen- 491

sitive word list. This highlights the superiority of 492

our LLM-based augmentation method in leverag- 493

ing the rich contextual knowledge of LLMs. For 494

the use of different LLMs, both ChatGPT and Gem- 495

ini achieve strong performance. 496
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Figure 2: T-SNE plots of embeddings that are processed by different methods. Our approach maintains embedding
positions similar to BERT while mixing male and female embeddings thus achieving fairness.

Method β LMS SS ICAT

CCD-Gemini

0.0 64.37 51.03 63.02
0.5 73.67 53.69 68.22
1.0 82.91 54.93 74.72
1.5 84.28 57.64 71.39

Table 7: Influence of β on StereoSet dataset with BERT.

Baseline with augmented data: In this section,497

we study of baseline methods with our Gemini498

augmented data and denote as DPCE-Gemini and499

ADEPT-F-Gemini . Table 2 shows that our aug-500

mented dataset marginally improves fairness in cer-501

tain metrics, though the overall performance re-502

mains similar to that of the original dataset. We503

arrive at the same conclusion: our CCD surpasses504

these baseline approaches. Regarding representa-505

tion capability and BiasIR performance, the results506

are reported in Table 4. We observed that DPCE507

experienced an improvement in GLUE average per-508

formance, while ADEPT-F showed a slight decline.509

Despite these variations, both DPCE-Gemini and510

ADEPT-F-Gemini still exhibit a significant perfor-511

mance gap compared to CCD methods, as detailed in512

Table 4. To summarize, even with our augmented513

dataset, our CCD still outperforms baseline methods.514

Influence of β: We perform the ablation study515

of β on CCD-Gemini using the StereoSet dataset516

on BERT, known for its comprehensive evaluation517

metrics that assess performance (LMS), fairness518

(SS), and the trade-off between them (ICAT). We519

highlight that increasing β amplifies the impact of520

the Lrep, as detailed in Eq. 4, ensuring that neutral521

embeddings remain unchanged. This provides two522

key benefits: preserving the model’s representa-523

tional capability and maintaining neutral embed-524

dings as a consistent reference point in the debias-525

ing loss. We vary β from 0 to 1.5, with the results526

presented in the Table 7. As β increased, we ob-527

served an increase in the LMS score from 64.37 to528

84.28, indicating improved model utility. However, 529

the fairness score decreased from 57.64 to 51.03, 530

suggesting a shift towards prioritizing utility over 531

fairness. Setting β = 1 resulted in the optimal 532

ICAT score, balancing fairness and utility. 533

Embedding Visualization: (1) Fairness Improve- 534

ment: Fig. 2.a shows the T-SNE of the original 535

BERT model, where male (blue dots) and female 536

(red dots) embeddings form distinct clusters, indi- 537

cating fairness issues (Peltonen et al., 2023). In 538

contrast, baseline methods and our CCD mix male 539

and female embeddings, thus improving fairness. 540

(2) Utility Preservation: DPCE (Fig. 2.b) separates 541

gendered (blue and red) and neutral (yellow) em- 542

beddings, completely removing sensitive informa- 543

tion. This disrupts the original embedding geome- 544

try and significantly reduces performance (Tables 2 545

and 4). ADEPT (Fig. 2.c) also causes a perfor- 546

mance drop and worsens fairness, as shown in Ta- 547

bles 2 and 4. Notably, our approach (Fig. 2.d) 548

maintains an embedding geometry similar to BERT 549

while mixing male and female embeddings, achiev- 550

ing fairness without compromising utility. 551

5 Conclusion 552

In conclusion, we introduce CCED fairness for text 553

embeddings, ensuring conditional independence 554

and equal sensitive information between attributes 555

and embeddings. We propose the CCD loss to 556

achieve this fairness by ensuring that texts with var- 557

ied sensitive attributes but identical content have 558

equidistant embeddings from their neutral coun- 559

terparts. By employing LLMs to fairly augment 560

datasets, we achieve effective training with CCD. 561

We establish CCED fairness as a benchmark for eval- 562

uating text embeddings fairness. Extensive evalu- 563

ations on debiasing benchmarks and downstream 564

tasks demonstrate CCD’s effectiveness in promoting 565

fairness while preserving utility. 566
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6 Limitaions567

In this study, we utilize gender bias to demonstrate568

the efficacy of our method. As our approach con-569

stitutes a general pipeline, we plan to extend our570

methodology to address other types of biases (e.g.,571

race, age) in the future. Moreover, we discuss the572

application of our method in a binary gender set-573

ting, which generally does not reflect the real world574

where gender (and other biases) may not be strictly575

binary. Fortunately, our method is readily extensi-576

ble to any number of dimensions. We consider this577

extension as part of our future work.578

7 Ethical Consideration579

Our work pioneers in mitigating biases in text em-580

beddings, crucial for fairness and inclusivity in581

NLP applications. We introduce a method that en-582

sures fair representation by achieving conditional583

independence between sensitive attributes and text584

embeddings, aiming to reduce societal biases. Em-585

ploying LLMs for data augmentation represents586

ethical advancement in tackling inherent biases,587

moving towards equitable technology and inspiring588

future bias-aware research. Our contribution signif-589

icantly advances AI fairness by validating a method590

that minimizes bias in text embeddings, promoting591

inclusivity in machine learning.592
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A Algorithm Details842

A.1 Notation843

Basic Variables
L ≜ loss function

f ,fori ≜ finetuned and original text embedding model.
h ≜ Large language model.
θp ≜ Few-shot prompts that used to empower a LLM.

A, ai ≜ Sensitive attribute set and i-th sensitive attribute.
Sai ,Sn ≜ Text that relate to sensitive attribute ai and neutral text.
C,C ′ ≜ Content variable and predicted content.

Xai , Xn ≜ words from group ai and neutral words in a text.
V ai ≜ words list that contains all collected words related to at-

tribute ai.

Table 8: Main notations used in this paper.

A.2 The significance of text embedding fairness and its distinction from subsequent task fairness844

Recently (Shen et al., 2021, 2022) apply contrastive learning losses to mitigate biases in language845

representations for text classification and (Leteno et al., 2023; Shen et al., 2022) find a representational846

fairness and subsequent task group fairness are not, or only partially, correlated. However, subsequent847

tasks and text embedding fairness represent two distinct areas that are both important and need to be848

distinguish:849

The importance of embedding fairness: Recent efforts, as highlighted in the introduction of our850

paper, emphasize the significance of text embedding fairness. The fairness of embeddings is essential851

due to their widespread application across various systems. For instance, Search Engine (Huang et al.,852

2020), preprocess all content—including documents, videos, and audios—into embeddings to save on853

storage. When a search query is submitted, it is converted into an embedding to retrieve the most relevant854

results, especially during the recall phase, where embedding similarity is used to filter through numerous855

documents to find pertinent ones. Moreover, embeddings are directly used in other applications such856

as zero-shot classification (Yin et al., 2019; Radford et al., 2021), clustering (John et al., 2023), and857

Anomaly Detection (Hu et al., 2016), among others. Given the critical role that embeddings play in these858

and additional applications, addressing fairness issues within the embeddings themselves is undeniably859

crucial.860

Difference between embedding fairness and subsequent task group fairness: This paper focuses861

on the intrinsic fairness of text embeddings. However, the group fairness of subsequent tasks extends862

beyond this, incorporating additional modules that take embeddings as input for predictions, which are863

influenced by other sources of bias. For instance, in a medical report dataset where only females are864

depicted as having a cold, even if the embedding captures information about gender equally (as defined in865

Definition 3.1), subsequent modules in the system might still incorrectly associate women with having866

colds. As a result, it is important to distinguish the difference between the fairness of subsequent tasks867

and the intrinsic fairness of embeddings.868

What we explored and can explore in the future: In this paper, we focus on text embedding fairness869

and studied its influence on information retrieval tasks, as shown in Table 4 and Table 5 in our paper.870

Creating fair text embeddings directly improves the fairness of information retrieval. While group fairness871

of subsequent tasks falls outside the scope of this paper, exploring the relationship between embedding872

fairness and group fairness in future work could be valuable. This exploration would involve selecting873

an appropriate metric (Mehrabi et al., 2021) for representation fairness and disentangle the fairness of874

subsequent task modules and embedding intrinsic fairness.875

Considering the widespread use of embeddings, differences between group fairness and embedding876

fairness, we believe the fairness of text embeddings is indeed an important research topic in itself.877
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A.3 Dataset Details 878

We generated training data using the News-Commentary-v15 corpus (Tiedemann, 2012) focusing on 879

gender bias. By employing Gemini and ChatGPT for data augmentation, we obtained datasets comprising 880

43,221 and 42,930 sample pairs, respectively. Each pair contains texts with identical content from male, 881

female, and neutral perspectives. We use last 1000 data as validation set and the remaining data as training 882

set. 883

For the bias evaluation dataset, we provide detailed statistics in Table 9. Our augmented dataset sets a new 884

benchmark, featuring an extensive dataset size that enhances the robustness and comprehensiveness of 885

bias assessment.

Evaluation Data Level Data Size
Sentence Encoder Association Test (SEAT) Text 5172
CrowS-Pairs Text 1508
StereoType Analysis Text 8497
Gender-Bias-IR Query-Doc 236
CCD-GPT (ours) Text 42,930
CCD-Gemini (ours) Text 43,221

Table 9: Dataset Statistics on various bias evaluation benchmarks.
886

A.4 Data Augmentation Prompts 887

The prompt template can be found in Figure 1. To provide a clearer demonstration, we also list the 888

examples we used. Notably, to save computational costs, we have shortened the examples and merged the 889

selected 10 examples into 8, as shown in the Table 10. 890

A.5 Ommited Proofs 891

In this section, we give a detailed proof of Theorem 3.3. 892

Proof. Firstly, we establish the conditional independence A ⊥ C ′ | C for any ai, aj ∈ A: 893

P (C ′ | A = ai, C) = P (C ′ | A = aj , C) (8) 894

where C ′ represents the content embedding. Assuming equal probabilities for different sensitive attributes 895

P (a1 | C) = · · · = P (aA | C), we can rewrite Eq. (8) as: 896

P (C ′ | A = ai, C)P (ai | C) = P (C ′ | A = aj , C)P (aj | C) 897

P (C ′, ai | C) = P (C ′, aj | C) (9) 898

According to Section 3.1, f(Sai
C ) encodes both content and sensitive information, allowing us to obtain: 899

P (f(Sai
C ) | C) = P (f(S

aj
C ) | C) (10) 900

Because a fair and well-trained embedding model f can effectively extract the content C from the neutral 901

text Sn
C without introducing bias, we can approximate Eq. (10) as: 902

P (f(Sai
C ) | f(Sn

C)) = P (f(S
aj
C ) | f(Sn

C)) (11) 903

Following (Hinton and Roweis, 2002; Yang et al., 2023), the conditional probability P (f(Sai
C ) | f(Sn

C)) 904

can be represented as the similarity between Sai
C and f(Sn

C), and can be modeled using a Gaussian 905

distribution. We thus measuring P (f(Sai
C ) | f(Sn

C)) by calculating: 906

P (f(Sai
C ) | f(Sn

C)) =
exp

(
−∥f(Sai

C )−f(Sn
C)∥2

2ρ2

)
∑

ai∈A exp
(
−∥f(Sai

C )−f(Sn
C)∥2

2ρ2

) (12) 907
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where ρ controls falloff of the P with respect to distance and is set by hand. Eq. (12) can be interpreted as908

follows: (1) Consider setting a Gaussian distribution with a covariance matrix equal to ρ times the identity909

matrix at the embedding of a neutral text SC (with content C), which is denoted as f(Sn
C). Then, a text910

with the same content but containing sensitive information ai appears in the distribution with a probability911

proportional to exp
(
−∥f(Sai

C )−f(Sn
C)∥2

2ρ2

)
, represented as the numerator. (2) The denominator aggregates912

the aforementioned probabilities across all sensitive groups ai ∈ A and serves as the normalization factor.913

Then we combine Eq. (11) and Eq. (12) and obtain:914

exp
(
−∥f(Sai

C )−f(Sn
C)∥2

2ρ2

)
∑

ai∈A exp
(
−∥f(Sai

C )−f(Sn
C)∥2

2ρ2

) =

exp

(
−∥f(S

aj
C )−f(Sn

C)∥2
2ρ2

)
∑

aj∈A exp

(
−∥f(S

aj
C )−f(Sn

C)∥2
2ρ2

)915

exp

(
−
∥f(Sai

C )− f(Sn
C)∥2

2ρ2

)
= exp

(
−
∥f(Sai

C )− f(Sn
C)∥2

2ρ2

)
916

∥f(Sai
C )− f(Sn

C)∥2 = ∥f(Saj
C )− f(Sn

C)∥2 (13)917

Thus we obtain the Theorem 3.3. As a result, achieving conditional independence between sensitive918

attributes and content embeddings is equivalent to achieving content-conditioned equal distance.919

Example Original passage Neutral passage Male passage Female passage
Example 1 The high popularity of

the current president
(Socialist Michelle
Bachelet, Chile’s first
female chief executive)

The high popularity of
the current president
(A Socialist, Chile’s
first chief executive)

The high popularity
of the current presi-
dent (Socialist Mike
Bachelet, Chile’s first
male chief executive)

The current president
(Socialist Michelle
Bachelet, Chile’s first
female chief executive)

Example 2 Rwanda has the high-
est female legislators
in the world.

Rwanda has the high-
est legislators in the
world.

Rwanda has the high-
est male legislators in
the world.

Rwanda has the high-
est female legislators
in the world.

Example 3 When a kid arrived, ac-
companied by a doting
father, the prophet’s
son.

When a kid arrived, ac-
companied by a doting
parent, the prophet’s
child.

When a kid arrived, ac-
companied by a doting
father, the prophet’s
son.

When a kid arrived, ac-
companied by a doting
mother, the prophet’s
daughter.

Example 4 wizards Hunt people,
poor paternal nutrition.

People Hunt people,
poor nutrition.

wizards Hunt people,
poor paternal nutrition.

Witch Hunt people,
poor maternal nutri-
tion.

Example 5 Bruni’s life path be-
come opera divo, bar-
man and actress.

A people’s life path be-
come opera performer,
bar staff and acting.

Michael’s life path be-
come opera diva, bar-
woman and actor.

Bruni’s life path be-
come opera divo, bar-
man and actress.

Example 6 Ally is marchioness,
Bride for Sarkozy.

they are noble, partner
of someone.

Alexandria is marquis,
Groom for Sara.

Ally is marchioness,
Bride for Sarkozy.

Example 7 Mike embarked on a
fascinating experiment
with sons.

Leader embarked on a
fascinating experiment
with offsprings.

Mike embarked on a
fascinating experiment
with sons.

Merkel embarked on a
fascinating experiment
with daughters.

Example 8 Orban and Tomy ap-
pointed a police as his
secretary, most strong-
minded male Demo-
crat.

They appointed a po-
lice as their secretary,
most strong-minded
Democrat.

Orban and Tomy ap-
pointed a police as his
secretary, most strong-
minded male Demo-
crat.

Olivia and Michelle ap-
pointed a police as her
secretary, most strong-
minded female Demo-
crat.

Table 10: Task template and prompt examples for gender-neutral, male, and female passages.
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