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Abstract

The whole is greater than the sum of its parts, even in 3D-text contrastive learn-
ing. We introduce SCENEFORGE, a novel framework that enhances contrastive
alignment between 3D point clouds and text through structured multi-object scene
compositions. SCENEFORGE leverages individual 3D shapes to construct multi-
object scenes with explicit spatial relations, pairing them with coherent multi-object
descriptions refined by a large language model. By augmenting contrastive training
with these structured, compositional samples, SCENEFORGE effectively addresses
the scarcity of large-scale 3D-text datasets, significantly enriching data complexity
and diversity. We systematically investigate critical design elements, such as the op-
timal number of objects per scene, the proportion of compositional samples in train-
ing batches, and scene construction strategies. Extensive experiments demonstrate
that SCENEFORGE delivers substantial performance gains across multiple tasks,
including zero-shot classification on ModelNet, ScanObjNN, Objaverse-LVIS, and
ScanNet, as well as few-shot part segmentation on ShapeNetPart. SCENEFORGE’s
compositional augmentations are model-agnostic, consistently improving perfor-
mance across multiple encoder architectures. Moreover, SCENEFORGE improves
3D visual question answering on ScanQA, generalizes robustly to retrieval scenar-
ios with increasing scene complexity, and showcases spatial reasoning capabilities
by adapting spatial configurations to align precisely with textual instructions.

1 Introduction

Large-scale contrastive learning has transformed vision-language modeling, with early breakthroughs
like CLIP [[19] and ALIGN [[L1]] demonstrating the power of aligning visual and textual representations
at scale. By leveraging vast image-text datasets, these models have achieved remarkable success in
zero-shot recognition, retrieval, segmentation, and transfer learning. Following these advancements
in 2D, researchers have increasingly turned to 3D, where richer geometric and spatial information
is critical for robotics, virtual environments, and augmented reality. However, scaling contrastive
learning to 3D remains challenging due to the limited availability of large-scale datasets. Recent works
such as Uni3D [31] and OmniBind [21] have made significant strides by leveraging OpenShape [17]
dataset, a large-scale ensemble of 3D-text data. These methods align 3D point clouds with 2D-text
representation spaces using pretrained CLIP models, achieving strong zero-shot performance on
single-object classification benchmarks like ModelNet and ScanObjNN. However, despite these
advances, the available 3D text data remain limited, specially compared to image-text datasets,
necessitating new strategies to enhance learning.
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In this work, we propose a novel approach which allows us to both virtually increase the amount
of 3D-text training data and introduce harder samples, improving the contrastive representation.
Inspired by image compositions typically used for augmenting classification datasets and methods in
previous works, we leverage compositional learning in 3D by constructing multi-object multimodal
training samples for contrastive learning. Our method is motivated by two key insights. First, unlike
2D images, where objects are inherently tied to backgrounds, lighting conditions, and perspectives,
individual 3D point clouds can be freely combined into structured scenes without visual artifacts.
Second, the spatial flexibility of 3D data allows explicit control over object positioning, an ability
difficult to achieve in 2D. In contrast to images, 3D objects exist independently of any scene context,
enabling meaningful spatial configurations and natural textual descriptions with relational cues (e.g.,
“A on top of B”). We further refine these descriptions using a large language model, generating
diverse and nuanced combinations. Using structured synthesis, we virtually leverage a large-scale,
synthetic multi-object 3D-text dataset grounded in real-world captions, significantly expanding
diversity and complexity. Training any 3D encoder on these compositional scenes to align with
CLIP’s representation space achieves consistent improvements across tasks including zero-shot
classification, retrieval, segmentation, and VQA. We empirically demonstrate the model-agnostic
nature of our compositional augmentations, confirming their effectiveness across multiple encoder
architectures. Our contributions are threefold: (1) proposing a novel compositional data pipeline
for 3D-text contrastive learning approach synthesizing multi-object 3D scenes; (2) demonstrating
consistent performance gains across tasks and backbones; and (3) analyzing the impact of key design
choices, including composited object counts, object ratios, and 3D composition strategies.

2 Related Work

Among the first successful works on contrastive alignment of 3D data, ULIP [23] aligned 3D
features with CLIP and scaled to the Objaverse dataset in ULIP-2 [23]], while Uni3D [31] further
advanced this direction by scaling to billion-parameter models, leveraging 2D pretraining and using
OpenShape [17] ensembled data. Other works proposed methods for improving the alignment:
TAMM [30] mitigates the domain gap between rendered and natural images via adapter modules,
while MixCon3D [i8] sculpts holistic 3D representations by integrating multi-view rendered images
and point clouds. OmniBind [21] adpots instead a differente approach, proposing to ensemble
multiple pretrained models via a learnable routing mechanism, achieving state-of-the-art multimodal
performance. Our work instead explores an orthogonal approach, scaling multimodal learning by
virtually increasing dataset diversity through composition-based augmentation. This strategy aims to
improve generalization by exposing the model to a richer distribution of multimodal data.

Compositionality in Multimodal Learning. Compositionality refers to the idea of constructing
new concepts by combining simpler ones, a principle that is fundamental human-like concept
generalization [12]. Multi-sample composition augmentations such as CutMix [26] and MixUp [28]
have been demonstrated to be highly effective for robustness and generalization in 2D tasks such as
classification, detection, and segmentation. In the 3D domain, adaptations of these augmentation
strategies have been proposed and shown to be effective for unimodal 3D tasks, such as point cloud
classification and segmentation [3, [29]. More recently, a stronger form of composition has been
employed in image-text contrastive learning [1l], demonstrating improved multimodal alignment.
Unlike CutMix and MixUp, which blend two images by either mixing pixel values or pasting cut
regions, thus being only a weak form of compositional learning, this approach vertically stacks
centered crops of two images and combines their captions using the conjunction “and”, creating
stronger semantic compositions. Building on these ideas, we extend compositional augmentation to
3D data, where the structural properties of point clouds make them particularly well-suited for such
techniques. Unlike images, which often contain noisy elements such as background or secondary
objects, point clouds representing individual objects can be seamlessly merged into a unified scene
without introducing visual artifacts. Moreover, 3D compositional augmentations enable explicit
modeling of spatial relationships, which can be reflected in textual descriptions, facilitating relational
reasoning alongside object-level recognition.

3 Method

We introduce SCENEFORGE (SF), a framework for composing multi-object 3D scenes by combining
individual point clouds with their text descriptions according to explicit spatial relations. SCENE-
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Figure 1: Our multimodal scene composition framework for contrastive 3D-text learning.
Given a batch of point clouds and their captions, each sample is randomly kept as single object
or combined into a synthetic 3D scene with a random number of objects. Objects designated for
combination are passed to the SCENEFORGE module, which samples the additional objects and their
captions. Spatial relationships among the selected objects are randomly assigned, and the 3D Scene
Forge and Scene Caption Forge generate the corresponding combined 3D scene and its composite
caption. The newly formed scenes are merged with the unmodified objects to construct a final batch,
which is then used for contrastive 3D-text alignment using a pretrained CLIP text encoder.

FORGE can be incorporated into any contrastive multimodal 3D—text learning pipeline, and we refer
to the resulting approaches as SF-variants. An overview of our pipeline is shown in Figure[T]

3.1 SCENEFORGE module

SF takes as input a (point cloud, caption) sample (pg, to) and the number K of objects to be combined.
It randomly samples the required K — 1 point clouds {p1,p2,...,p K_lg and their corresponding
textual captions {t1,ta,...,tx_1} to generate a composite 3D scene ¢*P and an associated scene
caption c*®*. The framework consists of two core modules: the 3D Scene Forge, which spatially
arranges the point clouds, and the Scene Caption Forge, which constructs the textual description of the
generated scene. Both modules rely on a set of randomly sampled spatial relations {s1, s2, ..., Sx—1},
which define the relative placement of each object with respect to the one previously placed. These
relations dictate how each object is positioned within the combined 3D scene and are used to generate
a caption that accurately describes the spatial arrangement. The spatial relations are sampled once
per scene and remain consistent across both the 3D and captioning processes.

» o«

Spatial Relations. We define three simple spatial relations: “over,” “under,” and “next to”. Since
objects in the OpenShape dataset are not consistently oriented along the horizontal axes, using
directional terms such as “left” or “right” would be ambiguous unless interpreted as absolute dis-
placements along the X or Z axis. However, this would limit compositions to strictly axis-aligned
translations. Instead, we employ the “next to” relation, which allows flexible horizontal placement
while preserving semantic coherence. In contrast, the vertical orientation of objects is consistent,
making “over” and “under” well-defined, provided that appropriate constraints are imposed on
rotation augmentations, as discussed later (Section @) These relations serve as constraints for both
the spatial placement of objects in the 3D scene and the construction of descriptive captions that
reflect the compositions.

3D Scene Forge. The 3D Scene Forge arranges objects according to their assigned spatial relations,
ensuring a semantically coherent composition. The high-level procedure is outlined in Algorithm T]
The module takes as input K point clouds, a set of K — 1 pairwise spatial relations, and a target size
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Algorithm 1: 3D Scene Forge algorithm. then refined to the final ¢! using Qwen2.5.

for the final merged cloud. The first object py is used to initialize the scene ¢3”. Each subsequent
object p; is then placed relative to the previous object p; 1 according to its assigned spatial relation
84, using a function P(-) that computes the appropriate displacement. Specifically, we define P(-)
based on the spatial relation between objects. For “over”, we align the minimum z-coordinate of p;
above the maximum z-coordinate of p;_1:

P(pi, pi—1, “over’) = leaX(Piq) - mzin(pi),

and reverse the roles for “under”. For “next to”’, we sample a horizontal unit vector d in the zy-plane
and compute:
P(pi, pi—1, “next to”) = ( max (x,d) — min(y, d>> d,

XEPi—1 yED:

where (-, -) is the inner product.

In all relations, to prevent perfect alignment and introduce slight randomness, we add a fixed offset §
along the shift direction (+z, —z or d), along with a small Gaussian noise term ¢ € R>. After placing
all K objects, we downsample the composite point cloud 3P to the target number of points P,
ensuring diversity while maintaining spatial consistency. Notice that normalization and augmentation
A3P is performed on each sample before adding it to the scene, as well as on the final scene.

Scene Caption Forge This module constructs a textual description of the combined scene by
sequentially incorporating individual object captions {to,t1,...,tx—1} and their corresponding
spatial relations {s1, $2, . . ., Sk —1 }. The captioning process mirrors the spatial composition of the 3D
scene, starting with the first object’s caption and appending each subsequent caption preceded by its
respective spatial relation. However, due to the method’s simplicity, the generated caption may exhibit
artifacts such as misplaced punctuation before spatial relations, incorrect capitalization following
conjunctions, and disfluent sentence structures. Consequently, we refer to this as a raw caption,
ct*traw  To enhance readability and coherence, we refine the raw caption using a large language
model (Qwen2.5 [24]), obtaining the refined caption c***. The model corrects grammar, punctuation,
and structure while preserving the original meaning and spatial relationships. It restructures the
text into a fluent, human-like description, splitting overly long sentences when necessary. Beyond
improving fluency, this rewriting process also enhances caption diversity and refines OpenShape [17]]
captions, originally generated by BLIP [14] and Microsoft Azure Cognitive Services (2023), by
leveraging the more advanced linguistic capabilities of a recent language model. The full prompt used
for refinement is provided in the supplementary, together with an ablaton on the LLM. An overview
of the proposed method is provided in Figure[2]

3.2 Training Scheme

We mix single and multi-object samples in the same training batch with a predefined ratio o (ablated
in Section [5). This allows the model to retain strong performance on single-object tasks while
benefiting from the additional compositional training signals. For each combined sample, the number

of objects to combine is randomized between 2 and the maximum number of combinable objects IV,

D

which we investigate in Section This allows for Zszl (Di!k)!?)k_l possible configurations with
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up to k samples and 3 possible relations, with D being the dataset cardinality (extended derivation in
the supplementary). With OpenShape data, this allows for 6 E' scenes.

Our framework operates entirely at the batch—generation level and can be plugged into any contrastive
pipeline that aligns text, image, and 3D point-cloud embeddings. Because all previous methods
include images, we likewise keep the 2D modality when deploying SCENEFORGE. In principle,
we could rasterise every composed scene and align its image views, but real-time rendering is
computationally prohibitive given our budget. Instead, we mask composed samples for the 2D-3D
loss terms, evaluating those terms only on pre-rendered single-object views. This preserves baseline
performance on image—3D tasks (see supplementary) while allowing our compositions to focus on
strengthening text—3D alignment. Following established practice, the CLIP image and text encoders
stay frozen; gradients flow only through the 3D encoder.

Loss Partitioning. We consider contrastive models employing the InfoNCE loss proposed in
CLIP [19]. For modalities m, n € {tat, 2D, 3D} and a sample subset S, we define

1 exp((ei", ef') /7)
£'m n S)= ——= lo B
0 (5) IS] ; gzjesexp«e?’se}‘)/ﬂ

where e]*, el" are /3-normalised embeddings and 7 is a learnable temperature.

()

6]

Let S. and S, denote the composed and single-object samples in a batch, with N = |S.| + |S;].
Because each sample is composed with probability a, E[|S;|] = (1 — a) N. We scale the image-3D
block so that, per batch, it contributes the same total gradient budget as the text—3D block:

N
L= %[EStht (Sc U ‘Se) + Ltmt—>3D (S(' U Ss)] + m %[‘CBD—QD (Ss) + EQD—>3D (Se)] . (2)

text—3D (all N samples) 2D-3D (singles only)

Considering the large batch sizes used in contrastive models, |S;| is tightly concentrated around its
mean, so we simply replace the dynamic factor N/|S;| by its expectation 1/(1 — «).

Implementation Details. We instantiate our scene—composition pipeline on three approaches using
different point-cloud encoders: OpenShape-PointBERT [17]], Uni3D-G [31]], and ViT-Lens-G (a
frozen ViT-bigG/14 with trainable adapter lenses) [13]]. This variety allows us to verify the encoder-
agnostic nature of our method and to select the approach which benefit the most from our pipeline. All
variants are trained with their public available code and our modified loss for 200 epochs with a global
batch size of 1152, a = 0.5, and a target point-cloud resolution of P = 10k points. This point budget
was chosen as a trade-off between detail and efficiency, as detailed in the supplementary. For caption
generation, we use the Qwen 2.5 7B-instruct [24] large language model. SCENEFORGE only requires
an additional GPU hosting the lightweight LLM for composition. We pre-generate the first M/ batches
and then switch to a producer—consumer setup: while batch ¢ trains, batch ¢4 M is assembled in
parallel. Though composition latency is not always fully hidden, parallelization significantly reduce it.
For faster models, multiple SCENEFORGE instances and quantization can be used to further amortize
overhead. Measured slowdown ranges from 0% to 50% depending on backbone, LLM quantization
and replication (see supplementary). For the function A%, we normalize point clouds to the unit
sphere and apply random point dropout and scaling. Rotation and translation strategies differ based on
whether we process single objects, objects intended for combination in a scene, or the final composed
scene. For single objects, we allow both shifts and larger rotations. However, for objects that will be
combined, shifts are disabled to avoid inconsistencies in composition, while full rotations around the
vertical axis and slight rotations along other axes are permitted. The latter ensures that concepts such
as “over” and “under” remain semantically meaningful. For the final combined point cloud, we adopt
the same rotation constraints as in the previous case to preserve spatial semantics but additionally
allow translations.

4 Experiments

4.1 Zero-Shot Classification

Datasets. We follow the standard zero-shot evaluation protocol on Objaverse LVIS [6], Model-
Net40 [22] and ScanObjNN [20], where categories are mapped to text prompts by formatting a set of



LVIS  ModelNet ScanObjNN Scannet Avg LVIS  ModelNet ScanObjNN Scannet Avg

Model Model

A A
TL T5 T1I T5 TI1 T5 T1 TL T5 TI T5 TI T5 T1
ULIP2 46.3 75.0 84.0 97.2 45.6 829 38.1 - ULIP2 50.6 79.1 84.7 97.1 51.5 89.3 38.9 -
TAMM 42.0 71.7 86.3 98.1 56.7 86.1 424 - TAMM 50.7 80.6 85.0 98.1 55.7 88.9 41.8 -
MixCon3D 47.5 76.2 87.3 98.1 57.7 89.8 43.0 - MixCon3D 52.5 81.2 86.8 98.3 58.6 89.2 44.1 -
OmniBind-L - - - - - - - - OmniBind-L  54.0 82.9 86.6 99.0 64.7 94.2 46.3 -
OmniBind-F - - - - - - - - OmniBind-F ~ 53.6 81.8 87.1 99.0 64.7 94.4 46.1 -
OpenShape 39.1 689 853 974 472 84.7 40.3 +1.50 OpenShape 46.8 77.0 84.4 98.0 52.2 88.7 39.4 +1.43
SF-OpenShape 41.7 71.5 86.7 98.1 48.0 85.9 41.5 : SF-OpenShape 48.1 78.4 85.2 98.3 534 89.5 41.8 :
ViT-Lens 50.1 78.1 86.8 97.8 59.8 87.7 43.8 +0.78 ViT-Lens 52.0 79.9 87.6 98.4 60.1 90.3 437 +0.85
SF-ViT-Lens 50.9 78.4 87.3 98.0 60.9 89.1 44.5 : SF-ViT-Lens  52.8 80.7 88.0 89.9 60.9 91.2 45.1 o
Uni3D 472 76.1 86.8 98.4 66.5 90.1 439 +1.73 Uni3D 53.5 82.0 87.3 99.2 639 91.7 45.8 +1.75
SF-Uni3D 489 784 87.5 99.0 67.3 91.5 47.6 7 SF-Uni3D 54.7 84.8 88.2 99.2 652 934 494 o
(a) Trained on ensemble (no LVIS). (b) Trained on ensemble (with LVIS).

Table 1: Zero-shot classification accuracy (%). “SF-" denotes models trained with SCENEFORGE.
Green cells () are the best results, yellow () the second best. The rightmost column reports the
average Top-1 improvement (A) of the augmented model over its baseline.

templates (e.g., “a point cloud model of a ) and the model is evaluated on the classification accuracy.
Additonally, adopting the pipeline from CLIP? [27], we test our models on the Scannet [3] dataset to
evaluate their zero-shot performance on object instances from real-world scenarios.

What is the optimal value of N? Figure
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less plasticity when confronted with composed # Combined Objects
shapes. Increasing to N=4 plateaus on canoni-

cal datasets and already trims accuracy on LVIS  Figure 3: Top-1 accuracy across different datasets
and ScanNet, whose higher intra-class variabil- (Lvis, ModelNet, ScanObjectNN, and Scannet) as
ity makes them clutter-sensitive. At N=5 the a function of the number of combined objects.
drop is universal, indicating that squeezing five

objects into a fixed 10 k-point budget fragments salient geometry and introduces caption noise,
hampering alignment. Interestingly, performance variations are relative minor on ModelNet40 and
ScanObjNN, but the effect is far more pronounced on LVIS and ScanNet. We attribute this to the
latter’s more complex object distributions: as additional shape combinations are introduced, the
model must balance greater intra-class variability with the need for discriminative features, a trade-off
that becomes harder to resolve in these richer, noisier datasets. Considering these results, we adopt
N=3 as default SF-variants and report the full sweeps (N=1—5) in the supplementary.

5 1 2 3 4
# Combined Objects

Detailed Quantitative Comparison. Table[I|benchmarks SCENEFORGE on the considered zero-
shot 3D—text classification suites. For each backbone we report its best composition size (N = 3)
together with its single-shape baseline (N = 1), and list recent and sota models for reference.

Effect of SCENEFORGE. Across all three backbones SCENEFORGE delivers consistent top-1 gains.
With the “no-LVIS” training split the average improvement is 4-1.50 pp for OpenShape, 4-0.78 pp



Method 1-shot 2-shot Model B-4 AB-4|CIDEr ACIDEr|EM AEM

mioU A mloU A OmniBind-L + BLIP2FlanT5 |85 | 629  [17.1

OmniBind-L 772 79.9 OmniBind-F + BLIP2-FlanT5 | 8.3 62.1 17.6
OmniBind-F 778 803
OnenShane . o5 OpenShape + BLIP2-FlanT5 6.3 +18 54.8 +6.7 14.1 28

P 3 Voo 109 he SF-OpenShape + BLIP2-FlanT5 | 8.1 61.5 16.9
SF-OpenShape 76.2 79.1
ViT-Lens 755 s 779 s V1T—L§ns + BLIP2-FlanT5 7.2 +13 57.5 +5.9 15.7 21
SFE-ViT-Lens  77.0 < 80,1 . SF-ViT-Lens + BLIP2-FlanT5 | 8.5 63.4 17.8
Uni3D 75.9 126 78.2 430 Uni3D + BLIP2-FlanT5 7.5 2.9 58.3 +8.4 16.4 41
SF-Uni3D 78.5 81.2 SF-Uni3D + BLIP2-FlanT5 10.4 66.7 20.5

Table 2: One-shot and two-shot Table 3: Performance on the ScanQA dataset using BLEU-4,

part segmentation on ShapeNetPart.  CIDEr, and Exact Match.

for ViT-Lens and +1.73 pp for Uni3D; with the “+LVIS” split the corresponding gains are +1.43,
+0.85 and +1.75 pp. Uni3D benefits most, likely a consequence of its larger capacity, which can
better exploit the richer intra-sample diversity injected by multi-shape compositions, yet even the
smaller OpenShape and the adapter-based ViT-Lens improve.

Comparison with prior works. All three SCENEFORGE variants surpass previous non-ensemble
methods (ULIP-2 [23]], TAMM [30], MixCon3D [8]) on every dataset. Moreover, SF-Uni3D
outperforms OmniBind [21]], the strongest published ensemble, despite using a single model: on the
LVIS-ModelNet—ScanObjNN-ScanNet quartet it achieves absolute top-1 margins of 4-0.7, 4-1.6,
-+0.5 and +3.1 pp, respectively. These results underscore that structured multi-object augmentation
offers a more inference-efficient strategy for enhancing representations than costly ensemble methods.

Why do multi-object compositions enhance single-object classification? While it might initially
appear counterintuitive, training with multi-object compositions fosters improved representations
that benefit single-object recognition tasks. This phenomenon aligns with established findings in
representation learning literature, particularly in image classification, where multi-sample augmen-
tations (e.g., CutMix, MixUp) are known to induce smoother decision boundaries and promote
robust generalization by exposing models to more diverse feature combinations. Analogously, in
our structured 3D scene compositions, the increased complexity and relational context implicitly
regularize the learned representations, facilitating the emergence of discriminative features resilient
to variations in single-object scenarios encountered at inference. By analyzing the positive—negative
similarity margins in zero-shot classification, we find that SF-variants yield larger margins over
baselines, indicating stronger inter-class separation and more robust decision boundaries. We report
the quantitative analysis in the supplementary material.

4.2 Few-Shot Part Segmentation on PartNet

We follow the protocol of Uni3D [31] on the ShapeNetPart dataset [25], evaluating each backbone in
one-shot and two-shot regimes. As in PointNet++ [18]], we freeze the pretrained transformer encoder
and attach lightweight feature-propagation heads that upsample intermediate representations to dense
part predictions. Only these heads are fine-tuned on the few labeled part annotations.

Table [2] reports mean IoU (mlIoU) and the improvement A over the corresponding single-shape
baseline for all three backbones (OpenShape, ViT-Lens, Uni3D) with and without SCENEFORGE.
SCENEFORGE yields consistent gains: SF-OpenShape improves by +2.2/ +2.6 pp in one-/two-shot,
SF-ViT-Lens by +1.5/ +2.2 pp, and SF-Uni3D by +2.6/ +3.0 pp, with SF-Uni3D achieving the highest
absolute mloU (78.5 / 81.2). These improvements suggest that multi-shape pretraining encourages
more fine-grained, group-based features that transfer effectively to part segmentation, structuring the
feature space to better capture part-level relationships even under extreme label scarcity.

4.3 3D Question Answering on ScanQA

We further assess 3D—text alignment on the ScanQA benchmark [2| 9], which requires answering
natural-language questions about ScanNet scenes. Following prior works, we freeze each 3D
encoder and attach it to BLIP2-FlanT5 [4}|15]], then fine-tune on ScanQA’s question—answer pairs.



In addition to the sota contrastive baselines (OmniBind-Large, OmniBind-Full), we include SF-
OpenShape, SF-ViT-Lens and SF-Uni3D as our multi-shape variants, alongside their single-shape
counterparts. We report here BLEU-4 (B-4), CIDEr and Exact Match (EM); full metrics appear
in the supplementary. Table [3] gives the results. All three backbones see substantial gains with
SCENEFORGE: SF-OpenShape improves B-4 by +1.8 pp, CIDEr by +6.7 pp and EM by +2.8 pp;
SF-ViT-Lens adds +1.3 pp, +5.9 pp and +2.1 pp, respectively; and SF-Uni3D leads with +2.9 pp,
+8.4 pp and +4.1 pp. While all backbones gain, Uni3D yields the largest relative and absolute boosts,
consistent with its greater capacity, whereas ViT-Lens, despite smaller gains, still surpasses OmniBind.
A qualitative review shows that, while baseline encoders match our variants on attribute- or color-
based questions, SCENEFORGE variants significantly outperform them on spatial reasoning queries,
e.g. “What is over the brown chair?”, where modeling inter-object relationships is essential. This
suggests that our structured multi-shape augmentation not only sharpens local feature representations
but also boosts the encoder’s ability to infer complex spatial configurations, a critical capability for
3D scene understanding.

4.4 Supervised Fine-Tuning

To test if the benefits of SCENEFORGE pre-training extend to supervised settings, we evaluate full fine-
tuning and Parameter-Efficient Fine-Tuning (PEFT) methods [10} 16} 32]. We perform experiments
on three of the considered classification benchmarks: the synthetic ModelNet40, the challenging
real-world ScanObjectNN, and ScanNet Instances extracted from complex indoor scenes.

Table 4: Supervised fine-tuning accuracy (%).

Model Method Trainable Params  ModelNet40  ScanObjectNN  ScanNet Inst.
Full Fine-Tuning 1016.5M (100%) 94.28 97.12 82.72
Uni3D Adapter 7.6M (0.74%) 94.35 96.80 81.42
DAPT 7.3M (0.72%) 94.33 96.78 82.65
PointGST 4.1M (0.40%) 94.83 97.68 83.04
Full Fine-Tuning 1016.5M (100%) 94.42 97.58 83.58
. Adapter 7.6M (0.74%) 94.46 97.09 82.56
SE-Uni3D 1\ pp 7.3M (0.72%) 94.49 97.15 83.46
PointGST 4.1M (0.40%) 94.95 98.09 84.29

As shown in Tabled] our SF-Uni3D backbone provides a superior initialization, consistently outper-
forming the baseline, especially on the complex ScanNet Instances. A strong synergy with PEFT
is also evident: the PointGST method surpasses even full fine-tuning while using just 0.4% of the
trainable parameters.

4.5 N-Objects cross-modal Retrieval

Following prior work [23] 31], we eyaluate B S S
cross-modal retrieval on the unseen Objaverse- E\.m: R AN
. 70 s S NIN:
LVIS dataset, measuring top-k accuracy for both Y -
3D-to-text and text-to-3D retrieval. Models are £ °° AN \\f:\\
. . . N N\ " ..
trained on the full ensemble excluding this set, g so % \‘\.\'\.\’\, N
. . - . N 3 N\
and performance is assessed via cosine simi- 240 RN \\
. . L\ N\ NN
larity retrieval across embedded samples. Be- 7, \:'».\\ ~»
. . . . <] ni N g .
yond standard single-object retrieval, we aim " _ | -=- omnmnar N L SN
. 20 —- Ours (N=2) RERET ~Q
to analyze how well our models understand in- - Ours (N=3) N *
creasingly multi-object scenes. To this end, we I e
introduce the N-LVIS benchmark, where each T 2 3 4 5 6 7 8 9 10

Number of Combined Shapes

shape is composed with N — 1 additional ob-
Jects. For clarity, we report results only for the )
best SF backbone (Uni3D with N = 1..5) and Figure 4: Top-1 averagfzd retrieval accuracy on the
compare against OmniBind-F [21]]; analogous N-LVIS datasets as IV increases.

results for other backbones are provided in the

supplementary.

We evaluate retrieval on N-LVIS from /N=1 (standard retrieval) to N=10, reporting averaged top-1
accuracy (text to 3D and viceversa) in Figure ] Prior models degrade sharply when faced with
multi-object compositions, dropping below 50% at N=2. In contrast, our models, trained with



varying numbers of composed objects, exhibit strong generalization, each peaking near its training
composition size. Notably, the N=3 model sustains over 70% accuracy at N=6 and around 60% at
N=7, highlighting its robustness in complex scenes. This comes at a slight cost: models trained with
higher N perform marginally worse at lower N, reinforcing our findings in Section {.1]that simpler
compositions better preserve single-object understanding. Full top-1 and top-5 results are provided in
the supplementary.

4.6 Object Repositioning

Starting Target

> Uni3D Omnibind-F SF-Uni3D
Scene relation

To qualitatively assess our approach ability to

improve reasoning about spatial relationships, :
we introduce a simple object repositioning task. , - ﬁ

Given two objects, we combine them in an ini-
tial configuration using our MSF. The combined

caption is then modified to describe a new spatial e
relationship, and we optimize a three-parameter s "Over”
offset vector to reposition the second object,

maximizing alignment with the updated descrip- Lo
tion while keeping the 3D-text encoder frozen. ) ) o

Full optimisation details appear in the supple- Figure 5: Object repositioning example.
mentary. As illustrated in Figure [5] encoders

trained with SCENEFORGE reliably relocate the object to the target position, while baseline encoders
stall in semantically plausible yet misaligned configurations. We observe the same qualitative be-
haviour with all other variants, confirming that SCENEFORGE strengthens spatial and compositional
reasoning.

5 Ablation Studies

5.1 Proportion of Multi-Object Samples

|

o
S

i

Openshape Openshape (55.70) \
—4— ViT-Lens ---- ViT-Lens (60.85)
—e— Uni3D -=== Uni3D (62.63)

The hyperparameter o determines the fraction of multi-
object samples in each training batch. We analyze its im-
pact by varying « from O to 1 and evaluating the average
zero-shot top-1 accuracy on the zero-shot datasets (Fig-
ure[6). Increasing « initially improves performance with
respect to the baselines, with accuracy peaking around —_—
a = 0.5. However, for larger «, performance declines, ¢

likely due to an excessive focus on compositional rela- Figure 6: Effect of varying o on average
tionships at the expense of single-object understanding. zero-shot top-1 accuracy.

w o
) S

o
o

Average Zero-shot Top-1 Accuracy (%)

5.2 Do other composition functions work?

. Composition Lyvis ModelNet  ScanObjNN  Scannet
To asses.s.the impact of our 3D scene Method Top-1 Top-1 Top-1 Top-1
composition method, we conduct -

. . .. None (Uni3D) 53.5 87.3 63.9 45.8
experiments by fixing the training PointCutMix-R ~ 53.5 87.1 64.1 475
method to ours, the backbone to the PointCutMix-K 447 83.0 45.1 34.8

: : PointMixup 392 787 414 30.2
strongest we found (Uni3D) and just SF-Uni3D (N=2) 539 87.6 64.5 48.2

ablate the composition method against
object composition approaches: Point-  ,pje
CutMix [29] and PointMixUp [3].
PointCutMix replaces regions of one

point cloud with those from another and has two variants: PointCutMix-R, which randomly replaces
points, and PointCutMix-K, which preserves key structures. PointMixUp interpolates point coor-
dinates and features between objects. For a fair comparison, since these methods combine two
objects, we compare their results specifically to our N = 2 configuration. Textual descriptions for
PointCutMix and PointMixUp compositions are generated by concatenating object captions with
"and" and subsequently refined using Qwen [24], following our pipeline.

5: Different 3D composition methods on zero-shot cls.



Results in Table [5] show our method consistently outperforming all baselines. Although PointCut-
Mix-R exceeds Uni3D on a most benchmarks, it still lags behind our method, even more considering
the N = 3 variant; PointCutMix-K and PointMixUp perform worse than Uni3D. This gap stems from
how each approach handles object semantics and spatial coherence: our method builds structured
scenes that align naturally with captions, whereas PointCutMix-R randomly mixes whole objects,
creating overlaps, and PointCutMix-K and PointMixUp fragment or interpolate shapes, produc-
ing unrealistic, poorly described scenes. Overall, maintaining clear object semantics and spatial
relationships through structured composition yields superior generalization.

5.3 Are simple relations enough?

To test if the learned spatial understanding generalizes beyond the simple pre-training relations, we
isolate performance on ScanQA questions involving more complex, unseen spatial queries. Table [f]
shows that our compositionally-trained models consistently outperform their baselines across all
backbones and a variety of complex relations.

Table 6: Generalization to unseen spatial relations on ScanQA for all backbones.

Relation Type Metric OpenShape ViT-Lens Uni3D
Baseline SF A Baseline SF A Baseline SF A
CIDEr 545 615 +7.0 571 633 +62 579 666 +8.7
Attached To (21) )y 141 171 +3.0 156 179 +2.3 165 208 +43
Siting On (59)  CIDEr 568 634 +6.6 500 651 +6.1 610 701 9.1
g EM 152 177 +2.5 166 184 +1.8 175 226 +5.1
Between (112)  CIDEF sa1 612 +7.1 568 629 +6.1 572 665 +93
EM 140 170 +3.0 155 179 +2.4 158 205 +4.7
Closest To (112)  CIDEr 550 618 +638 575 635 +6.0 585 670 +85
EM 143 172 +2.9 158 180 +22 162 204 +42
CIDEr 561 625 +6.4 582 640 +58 603 683 +8.0
In Front Of (246) gy 149 176 +2.7 163 182 +1.9 171 218 +47

The comprehensive results in Table[6] show that SCENEFORGE provides consistent benefits across all
three backbones. Each SF-variant significantly outperforms its respective baseline on all complex
relation types. This indicates that our pre-training builds a robust spatial foundation that generalizes
effectively to more nuanced relational queries, regardless of the underlying encoder architecture.

6 Limitations and Future Directions

While SCENEFORGE consistently enhances 3D—text alignment across multiple backbones and tasks,
we are aware of its limitations. First, our synthetic scene generation employs only three basic
spatial relations, which, although diversified through LLM-based refinement, do not fully capture
the complexity of natural environments. Future research could focus on more realistic and var-
ied364compositions guided by learned object co-occurrence patterns and spatial priors. Second, due
to computational constraints, we maintain a fixed 10 k-point budget for multi-object compositions,
resulting in accuracy degradation for densely populated scenes (see Figure 3). Addressing this will
require exploring larger point budgets or employing more sophisticated sampling techniques to
preserve salient geometric features in complex scenarios. Third, although we leverage the lightweight
Qwen?2.5 model for refinement, the overhead is not always negligible and reducing it introduces a
memory-time tradeoff. Finally, due to rendering costs, we could not pair each composition with
a synthetic image, though extending the pipeline to incorporate rendered views for joint 2D-3D
learning or studying alternative approaches, such as aligning 3D compositions to aggregations of the
single image embeddings, remains a promising direction. Overall, addressing these limitations will
significantly broaden the practical impact and robustness of compositional 3D—text learning methods.

Acknowledgments. This paper is supported by the PNRR-PE-AI FAIR project funded by the
NextGeneration EU program. We acknowledge ISCRA for awarding this project access to the
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