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Abstract. Advancements in medical image segmentation are critical for
enhancing diagnostic accuracy in clinical settings, particularly when op-
erating on edge devices like CPU-only laptops. In this context, we have
developed a medical image segmentation model that is specifically de-
signed for efficient deployment on such devices. Our approach leverages
the EfficientViT-SAM architecture integrated with dynamic quantization
to optimize both accuracy and computational efficiency. The model has
been trained on a diverse dataset that includes over one million image-
mask pairs from 10 different medical imaging modalities along with ad-
ditional data for underrepresented anatomies. Performance evaluations
show that our model achieves a dice score of 88.54% and a normalized sur-
face dice of 98.28%, showing improvements of 4.37% and 2.85%, respec-
tively, over the baseline model. The implementation of dynamic quantiza-
tion not only preserves accuracy but also boosts inference speeds, making
the model exceptionally viable for real-time clinical applications. This
study affirms the potential of advanced segmentation technologies to op-
erate effectively on non-specialized hardware, thereby expanding the ac-
cessibility of high-quality medical imaging analysis in environments con-
strained by resources. With its robust performance across various imag-
ing scenarios and enhanced processing efficiency, the model promises sub-
stantial improvements in clinical workflows and patient outcomes. The
code is available at https://github.com/Ninebell/GraysAnatomySAM.
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1 Introduction

Medical imaging plays a critical role in the diagnosis, treatment planning, and
monitoring of various diseases. Segmentation, the process of delineating regions
⋆ Both authors contributed equally. Names are listed in alphabetical order.
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of interest (ROIs) such as organs, lesions, and tissues in medical images, is fun-
damental to many clinical applications. Traditionally, manual segmentation has
been the gold standard, but it is time-consuming, labor-intensive, and requires
significant expertise. The advent of deep learning has brought substantial im-
provements, with models now capable of delivering accurate segmentation results
across diverse tasks. However, these models are often task-specific, and their per-
formance can degrade when applied to new tasks or different types of imaging
data. This limitation has spurred interest in developing universal models for
medical image segmentation that can generalize across various tasks.

The Segment Anything Model (SAM) [3] is a groundbreaking foundation
model in the realm of image segmentation, demonstrating remarkable versatil-
ity and performance in natural image tasks. Despite its success, applying SAM
directly to medical image segmentation presents challenges due to the inherent
differences between natural and medical images. These differences necessitate
adaptations to leverage SAM’s strengths while addressing its limitations in the
medical domain.

Recent studies have explored various adaptations of SAM to medical imag-
ing, including MedSAM [6], which fine-tunes SAM on extensive medical image
datasets to enhance its performance. Nonetheless, a significant barrier to the
widespread adoption of these models in clinical settings is their computational
intensity. SAM, in particular, requires substantial computational resources, mak-
ing it impractical for time-sensitive and resource-constrained applications such
as real-time diagnosis and mobile health applications.

To address this challenge, several lightweight versions of SAM have been
proposed, such as FastSAM [11], MobileSAM [9], and EfficientSAM [8]. These
models aim to reduce the computational burden while maintaining performance,
often by employing techniques like model distillation and leveraging more effi-
cient architectures. However, these adaptations still encounter trade-offs between
performance and computational efficiency.

In this paper, we adopt EfficientViT-SAM [10] that combines the EfficientViT [2]
architecture with SAM to create a fast and lightweight model for medical image
segmentation. EfficientViT-SAM aims to retain the high performance of SAM
while significantly reducing the computational requirements. In addition, we dy-
namically quantized our EfficientViT-SAM model for faster inference. Through
comprehensive experiments on various medical imaging tasks, we demonstrate
that our quantized EfficientViT-SAM achieves remarkable performance while
being significantly faster and more efficient than existing models. Furthermore,
we incorporate insights from recent research [4] on enhancing grayscale medical
images to improve segmentation outcomes. By using the method we term “Gray’s
Anatomy”, which processes grayscale medical images to optimize contrast and
smoothness, we aim to boost the efficiency and accuracy of our model.

This work represents a step forward in making advanced medical image seg-
mentation tools more accessible and practical for clinical use, highlighting the
potential of combining foundation models with lightweight architectures and
enhanced image preprocessing techniques.
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2 Method

We introduce a comprehensive methodology for developing a lightweight medi-
cal image segmentation model. We start from preprocessing, including a three-
channel enhancement technique that enriches input data essential for robust
segmentation. Consequently, we elaborate on our adoption of the EfficientViT-
SAM architecture, tailored for both accuracy and computational efficiency on
edge devices. Finally, the post-processing subsection introduces dynamic quan-
tization for fast and resource-efficient inference.

Output segmentationsInput images

Bounding box prompts

Image embedding

Fig. 1. Overview of the Image Segmentation Pipeline. The input is a three-channel
constructed image, which is processed by the EfficientViT-SAM model to extract fea-
tures across the entire image. Simultaneously, bounding box prompts specify regions
of interest, guiding the model to focus its resources on specific areas. The final output
is a segmentation mask applied within the regions defined by the prompts.

2.1 Preprocessing

Data management Given the challenge of processing over a million image-
mask pairs, data management and preprocessing are critical for efficient training
and validation. To standardize the input data and optimize the use of computa-
tional resources, we preprocessed and saved data in a new format.

To ensure consistency across the dataset, which includes images of varying
dimensions from different medical imaging modalities, we resized all images to
have the same dimensions. Each image was first padded to make its height
and width equal, preserving the aspect ratio and ensuring that no anatomical
information was distorted or lost. Subsequently, we resized the images to a size
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of 256x256 pixels. This resizing not only helps in maintaining computational
efficiency but also ensures uniformity in the input data for our segmentation
models.

To manage the large volume of segmentation masks accompanying the im-
ages, we employed run-length encoding (RLE) for the masks. RLE is a simple
form of data compression where sequences of data (in this case, pixels of the
same value) are stored as a single data value and count. This approach signifi-
cantly reduced the size of our mask files, making them easier to store and faster
to transmit.

The preprocessed images were saved in PNG format, which offers lossless
compression, ensuring that no image data is lost after compression. The masks,
encoded in RLE, were saved in Pickle (PKL) format, a Python-specific binary
format, which facilitates easy loading and saving of large amounts of structured
data. It was driven by the need for efficiency in both storage and speed during
the training phase of our models.

Channel Construction and Enhancement The preprocessing stage is cru-
cial for ensuring that the medical images are in an optimal format for segmenta-
tion while preserving essential diagnostic features. Considering the diverse char-
acteristics of medical imaging modalities such as CT, X-ray, and MRI, which
are primarily in a single-channel grayscale format, we adopted a multi-channel
preprocessing approach to enhance segmentation accuracy and robustness.

Instead of replicating the grayscale image across three channels, we tailored
each channel to capture different aspects of the image data, enhancing both the
model’s input variability and its capacity to identify relevant features. The first
channel retains the original raw image data, serving as a baseline representation
of the anatomical structure without any modifications. To reduce noise while
preserving edge integrity, which is critical for delineating regions of interest,
we applied anisotropic diffusion in the second channel. Anisotropic diffusion is
particularly effective in environments with high levels of noise, as it smooths
the image while maintaining sharp edges, crucial for accurate segmentation.
The third channel builds upon the smoothed image from Channel 2. Here, we
apply histogram equalization to maximize the contrast. This step is particularly
beneficial for enhancing the visibility of subtle features within the image, which
are often crucial for accurate and segmentation.

Figure 2 illustrates the transformation of a single grayscale image through
these preprocessing steps, demonstrating the distinct contribution of each chan-
nel to the overall enhancement of the image. This preprocessing strategy not
only standardizes the input data but also enriches the information the model
receives, equipping it to more effectively differentiate between relevant features
for segmentation tasks across various medical imaging modalities.

2.2 Proposed Method

Architecture To meet the challenge of developing a general and lightweight
medical image segmentation model capable of running efficiently on laptops
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without GPU support, we adopted the EfficientViT-SAM model, specifically its
smallest variant, EfficientViT-SAM-L0. This architecture combines the strengths
of scalable architecture modeling with an efficient version of the Vision Trans-
former, tailored for speed and low-resource consumption.

EfficientViT-SAM incorporates a hybrid approach that leverages the power of
Vision Transformers while alleviating their traditional computational inefficien-
cies. The architecture begins with a series of MBConvolution (Mobile inverted
Bottleneck Convolution) layers, which are specifically designed for mobile and
edge devices due to their reduced parameter count and efficient computation.
These layers preprocess the input image, effectively reducing its dimensional-
ity while retaining crucial spatial hierarchies necessary for feature extraction.
The processed features are then fed into the EfficientViT module. We initialized
our image encoder with weights that are knowledge distilled from the SAM-ViT
model. In this way, our EfficientViT-SAM image encoder retains the the robust
feature recognition capability of more resource-intensive models while operating
within the constraints of CPU-only environments.

Building on the EfficientViT-SAM’s efficient feature extraction, the model
incorporates MedSAM’s bounding box prompt encoder and mask decoder. The
bounding box prompt encoder enables the model to understand and process
specific regions of interest within the image, focusing the segmentation task
on areas highlighted by clinical relevance. The mask decoder then utilizes the
features and spatial cues provided by the EfficientViT-SAM to generate precise
segmentation masks, adapting dynamically to the varied shapes and sizes of
medical anomalies.

Fig. 2. Preprocessing Steps for Medical Image Segmentation. The left image displays
the original raw grayscale image, showcasing the standard input format. The middle
image illustrates the result of applying anisotropic diffusion, aimed at reducing noise
while preserving critical edge details. The right image presents the histogram equalized
image, where contrast has been enhanced to highlight subtle features and improve
visibility, facilitating more accurate segmentation.
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2.3 Post-processing

In the final stage of our model’s deployment, we focus on optimizing the inference
time and computational efficiency through the application of quantization tech-
niques. Quantization reduces the precision of the numerical values in a model,
which decreases the model’s memory footprint and speeds up the processing
time—essential traits for models intended for use on CPU-only laptops in clini-
cal environments.

Quantization can be done in two ways: static quantization and dynamic quan-
tization. Static quantization involves the conversion of both the weights and
activations of the model to a lower precision format, such as int8, prior to de-
ployment. This process requires the determination of quantization parameters,
which are fixed during the initial calibration phase using a subset of the training
data. While this method enhances the speed of operations by allowing the use
of integer mathematics during inference, it suffers from a lack of flexibility. The
predetermined scaling factors may not always accurately represent the range of
values seen during actual model use, potentially leading to inaccuracies when
processing data that differ significantly from the calibration dataset.

In contrast to static quantization, dynamic quantization offers a more adapt-
able solution for handling the variability inherent in medical imaging data. This
approach involves quantizing the model’s weights before deployment, while the
activations are quantized dynamically at runtime. As a result, the quantization
parameters for the activations are recalculated based on the actual data pre-
sented during inference. This dynamic adjustment allows the model to adapt to
the specific characteristics of each image it processes, providing flexibility and
accuracy crucial for medical applications where image diversity is high.

Opting for dynamic quantization using torch.qint8 enabled our model to
maintain high segmentation accuracy while achieving substantial reductions in
computational demands. This approach simplifies the deployment process by
eliminating the need for extensive pre-calibration, thereby ensuring that the
model can operate efficiently on a wide range of hardware, including the less
powerful CPUs typical of many clinical settings. The dynamic nature of this
quantization method enhances the model’s usability and effectiveness, particu-
larly in real-time clinical applications, making it a superior choice for ensuring
robust performance across varied medical imaging scenarios.

3 Experiments

3.1 Dataset and evaluation measures

To comprehensively assess the performance of our segmentation model, we uti-
lized a large-scale challenge dataset, which encompasses a diverse array of med-
ical imaging modalities and cancer types. This dataset includes over one million
image-mask pairs and covers 10 distinct imaging modalities, such as CT, MRI,
and X-ray, providing a robust foundation for training our model. The dataset is
also diverse in terms of anatomical coverage, featuring images of various body
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parts including the lungs, skin, and eyes, which are critical for a wide range of
clinical applications.

Recognizing the need to enhance our model’s capability in handling less com-
mon anatomies and modalities, we supplemented the challenge dataset with ex-
ternal datasets. These additional datasets focus on anatomies and modalities not
extensively covered in the challenge dataset, such as hip X-rays and ultrasound
images of the prostate. The inclusion of these datasets ensures a more compre-
hensive training process, enabling our model to perform well across a broader
spectrum of medical scenarios. Table 1 summarizes the external datasets incor-
porated into our training. This comprehensive approach to data collection allows
our model to learn from a wide variety of image characteristics and clinical con-
ditions, enhancing its generalizability in real-world applications.

To assess the performance of the segmentation models, this challege measured
Dice Similarity Coefficient (DSC), Normalized Surface Dice (NSD) [1], and in-
ference time as our primary evaluation metrics. DSC measures the volumetric
overlap between the predicted segmentation and the ground truth, providing a
quantitative indicator of the segmentation accuracy. It is used to evaluate the
agreement between the two segmentations, where a value of 1 indicates perfect
overlap and 0 indicates no overlap. In addition, NSD focuses on the accuracy of
the segmentation boundaries rather than their volumetric correspondence. By
measuring the similarity of the surfaces, NSD measures how well the segmenta-
tion contours align with the anatomical boundaries, which is crucial for appli-
cations requiring precise delineation of complex anatomical structures. Lastly,
inference time is considered for the ranking computation. It ensures that they not
only are accurate but also fit well within the operational constraints of medical
environments.

Table 1. External training dataset.

Dataset Name Modality Segmentation Targets Annotated Images
Nuclei Segmentation Microscopy Nucleus 5426
HipXRay X-ray Bones 140
BTCV CT abdominal organs 30
Micro-Ultrasound Micro-Ultrasound Prostate 75
ToothSeg X-ray Teeth 598

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 2.

Training protocols Training a model for medical image segmentation with
over one million image-mask pairs presents unique challenges and constraints.
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Table 2. Development environments and requirements.

System Windows 11
CPU AMD Ryzen 7 3700X 8-core Processor
RAM 16×2GB; 2.67MT/s
GPU (number and type) NVIDIA RTX 4090 24G
CUDA version 11.0
Programming language Python 3.12
Deep learning framework torch 2.0, torchvision 0.2.2
Specific dependencies
Code

Our approach to training was carefully designed to optimize resource use while
maintaining relevance to clinical applications.

Given the standardized nature of medical imaging and the critical importance
of anatomical positions, conventional data augmentation techniques like flipping
or random cropping are less suitable. For instance, anatomical landmarks such
as the heart are consistently located in specific positions (e.g., the left side of the
chest), making such transformations potentially misleading for a segmentation
model. Therefore, our augmentation focused solely on adjusting the bounding
box positions and sizes. This approach preserves the integrity and relevance of
the anatomical information in the images, ensuring that the model learns to
recognize and segment based on realistic variations in patient anatomy.

To evaluate our model effectively, we allocated 1% of the images from each
modality to a validation set and reserved the remaining 99% for training. This
split was designed to provide a robust dataset for training while ensuring that
the validation set was representative of the diversity and challenges present in
the larger dataset.

Due to the extensive size of our dataset and limitations in computational
resources, completing even one epoch of training required more than a day. To
manage this efficiently, we adopted a sampling strategy during training where
only 1000 samples from each 2D imaging modality and 1000 samples from each
3D imaging submodality were used per epoch. This approach not only facilitated
faster iterations but also made monitoring and saving model checkpoints more
manageable. Model checkpoints were evaluated based on the performance on the
validation set, with a focus on minimizing the validation loss. The model that
demonstrated the smallest validation loss was selected for our final submission.

4 Results and discussion

4.1 Quantitative results on validation set

Our proposed model demonstrated significant enhancements in segmentation
performance on the validation set compared to the baseline model, particularly
in terms of DSC and NSD. Overall, improvements of 4.37% in DSC and 2.85%
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Table 3. Training protocols.

Pre-trained Model Efficient-ViTSAM [10]
Batch size 32
Patch size 256×256×3
Total epochs 300
Optimizer AdamW [5]
Initial learning rate (lr) 5e-5
Lr decay schedule ReduceLROnPlateau
Training time 113.2 hours
Loss function BCE, MSE, Dice
Number of model parameters 34.79M4

Number of flops 602G 5

CO2eq 7 Kg6

Table 4. Quantitative evaluation results.

Target Baseline Quantized Baseline Proposed Quantized Proposed
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)

CT 72.47 88.49 72.71 89.15 84.46 97.74 84.80 98.05
MR 76.40 93.02 77.12 93.22 80.92 95.86 82.69 97.22
PET 70.56 95.71 70.91 95.93 79.22 98.61 79.15 98.56
US 94.80 98.41 95.10 98.93 94.91 98.38 95.01 98.42
X-Ray 96.04 99.30 95.82 99.12 95.21 98.67 95.17 98.66
Dermoscopy 94.23 98.09 94.41 98.09 94.60 98.12 94.62 98.14
Endoscopy 91.47 98.46 91.45 98.34 91.38 98.60 91.40 98.57
Fundus 92.68 98.90 92.93 98.30 89.93 98.6 90.15 98.73
Microscopy 65.80 86.43 66.10 86.83 83.24 97.90 83.86 98.23
Average 83.83 95.20 84.06 95.32 88.20 98.05 88.54 98.28



10 IK Lee et al.

in NSD were observed. While the baseline model showed stronger results in
specific modalities such as X-ray, endoscopy, and fundus imaging, our proposed
model excelled across a broader range of modalities, indicating its versatility
and robustness. A significant improvement was observed in microscopy images,
where the DSC dramatically increased from 65.80% to 83.24%. This substan-
tial enhancement underscores the robustness of our model in handling various
datasets.

Furthermore, the performance of both quantized versions of the baseline and
the proposed models was evaluated to compare dynamic quantization. Remark-
ably, the quantized models did not exhibit a performance drop compared to their
non-quantized counterparts, maintaining similar DSC and NSD scores. This re-
sult highlights the effectiveness of dynamic quantization as a post-processing
step, confirming its potential to preserve the model’s accuracy while significantly
reducing the computational load during inference.

Table 5. Quantitative evaluation of segmentation efficiency in terms of running time
(s).

Case ID Size Num. Objects Baseline Proposed
3DBox_CT_0566 (287, 512, 512) 6 210.98 51.85
3DBox_CT_0888 (237, 512, 512) 6 53.35 11.22
3DBox_CT_0860 (246, 512, 512) 1 7.50 2.51
3DBox_MR_0621 (115, 400, 400) 6 83.16 16.92
3DBox_MR_0121 (64, 290, 320) 6 51.20 9.84
3DBox_MR_0179 (84, 512, 512) 1 6.92 1.6
3DBox_PET_0001 (264, 200, 200) 1 3.50 0.78
2DBox_US_0525 (256, 256, 3) 1 0.40 0.11
2DBox_X-Ray_0053 (320, 640, 3) 34 0.90 0.72
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 1.41 2.09
2DBox_Endoscopy_0086 (480, 560, 3) 1 0.43 0.09
2DBox_Fundus_0003 (2048, 2048, 3) 1 0.72 0.38
2DBox_Microscope_0008 (1536, 2040, 3) 19 1.05 0.66
2DBox_Microscope_0016 (1920, 2560, 3) 241 6.27 6.19

4.2 Qualitative results on validation set

The qualitative evaluation of our model on the validation set further demon-
strated its capability to accurately identify and segment regions of interest within
bounding box prompts, particularly when a single region of interest is included
within the prompt. For instance, as illustrated in the first and second rows of
Figure 3, our model achieved precise segmentation of mammography and head
CT images, respectively. In these cases, the bounding box prompts effectively
covered the entire region of interest, allowing the model to correctly delineate
the boundaries without interference from adjacent structures.



Gray’s Anatomy SAM 11

However, the model’s performance was less consistent when faced with bound-
ing box prompts containing multiple regions of interest. These scenarios often led
to incorrect segmentations, as the model sometimes prioritized one region over
another or misinterpreted the intended area of focus. Examples of such failures
are displayed in the third and fourth rows of Figure 3. In one case involving an
X-ray image of the lung, the model was prompted to segment the pneumoth-
orax region but erroneously focused on the entire right lung. Another example
includes a prompt covering both lungs and bones; here, the model incorrectly
segmented the bone structure when the ground truth required segmentation of
the entire lungs.

4.3 Segmentation efficiency results on validation set

An integral aspect of our evaluation focused on the efficiency of the segmen-
tation process, particularly how dynamic quantization affects performance and
inference speed. According to the results presented in Table 4, our dynamically
quantized model maintained the accuracy of its non-quantized counterpart, with
no degradation in DSC or NSD. This result underscores the effectiveness of dy-
namic quantization in preserving the integrity of the model’s predictive capabil-
ities while optimizing computational efficiency.

More importantly, the impact of quantization on inference speed was substan-
tial. The dynamically quantized version of our proposed model demonstrated a
remarkable increase in processing speed compared to the baseline model. Specif-
ically, our proposed quantized model achieved up to five times faster inference
times in certain scenarios and on average three times faster across all tested
conditions.

These efficiency gains are further detailed in Table 5, which provides an
overall comparison of inference times. This comprehensive overview underscores
the significant speed advantages offered by our approach. Such improvements
are particularly valuable in resource-constrained environments, aligning with
our goal to develop a model that is both effective and efficient on edge devices.

4.4 Results on final testing set

We submitted our proposed model for evaluation using the final testing set.
Overall, DSC and NSD metrics decreased by 9.6% and 16.6% respectively. Par-
ticularly in three-dimensional datasets, including CT, MR, and PET scans, our
model performed poorly. The results from the final test set are presented in
Table 4.

4.5 Limitation and future work

Our model faces challenges with bounding box prompts leading to segmentation
ambiguities, such as whether to segment organs or bones in CT images. To im-
prove clarity, future works could integrate more detailed prompting techniques,



12 IK Lee et al.

Image Prediction Ground truth

Mammography

Head CT

X-ray

Chest CT

Fig. 3. Qualitative segmentation results. It illustrates examples of segmentation predic-
tions made by our model. The top two rows display cases of successful segmentations.
The third and fourth rows illustrate unsuccessful segmentations, where the predicted
areas significantly diverge from the ground truth masks. Yellow bounding boxes repre-
sent prompts given to the model.
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Table 6. Quantitative evaluation results on the test set.

Target Quantized Proposed
DSC(%) NSD (%)

CT 62.63 65.49
MR 67.17 68.44
PET 77.73 68.50
US 86.02 90.42
X-Ray 74.16 85.62
Endoscopy 92.80 95.66
Fundus 90.61 92.64
Microscopy 82.14 84.43
OCT 77.30 84.39
Average 78.95 81.73

such as scribble-based input, where users provide direct annotations within the
image, guiding the model more precise segmentation. Additionally, while our
preprocessing methods successfully enhanced grayscale images, they proved less
effective for color images. Future research can be focused on developing prepro-
cessing techniques that improve feature recognition in color images as well, en-
suring consistent performance across different imaging types. These refinements
will boost the model’s precision and expand its clinical utility.

5 Conclusion

In this study, we introduced a novel approach for medical image segmentation
that leverages an efficient transformer-based architecture, EfficientViT-SAM,
combined with dynamic quantization to achieve robust performance on edge
devices, including laptops without dedicated GPU resources. Our methods ad-
dressed key challenges in medical imaging by providing a lightweight yet pow-
erful solution capable of handling a diverse imaging modalities and anatomical
structures.

Our results demonstrate that our proposed model significantly improves upon
the baseline in terms of DSC and NSD, particularly showing notable performance
enhancements in microscopy imaging where the segmentation accuracy increased
dramatically. Importantly, the implementation of dynamic quantization ensured
that these improvements did not come at the cost of computational efficiency.
On the contrary, our quantized model achieved up to five times faster inference
speeds, making it highly suitable for real-time clinical applications where rapid
image processing is crucial.

Furthermore, our model’s efficiency highlight its potential for widespread
adoption in clinical settings, especially in scenarios where high computational re-
sources are not available. This capability opens up new possibilities for deploying
advanced medical imaging technologies in resource-limited environments, poten-
tially enhancing patient care by providing quicker and more accurate diagnostic
tools.
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