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ABSTRACT

Partial label learning (PLL) deals with classifications when a set of candidate labels
instead of the true one is given for each training instance. As a weakly supervised
learning problem, the main target of PLL is to discover latent relationships within
training samples, and utilize such information to disambiguate noisy labels. Many
existing methods choose nearest neighbors of each partially-labeled instance in an
unsupervised way such that the obtained instance similarities can be empirically
non-optimal and unrelated to the downstream classification task. To address this
issue, we propose a novel multi-agent reinforcement learning (MARL) framework
which models the connection between each pair of training samples as a reinforce-
ment learning (RL) agent. We use attention-based graph neural network (GNN) to
learn the instance similarity, and adaptively refine it using a deterministic policy
gradient approach until some pre-defined scoring function is optimized. Different
from those two-stage and alternative optimization algorithms whose training proce-
dures are not end-to-end, our RL-based approach directly optimizes the objective
function and estimates the instance similarities more precisely. The experimental
results show that our method outperforms state-of-the-art competitors with a higher
classification accuracy in both synthetic and real examples.

1 INTRODUCTION

PLL, also known as superset label learning (Liu & Dietterich, 2014; 2012; Gong et al., 2017), has
been extensively studied in the past few decades. As a typical weakly-supervised learning problem,
PLL assumes that most of training instances are partially labeled and their ground truth labels are
unknown. To be more specific, each instance is associated with a small set of candidate labels
including the ground truth. PLL has been widely considered in diverse fields, including web mining
(Luo & Orabona, 2010), facial age estimation (Zhang et al., 2016), photograph captioning (Duygulu
et al., 2002; Barnard et al., 2003; Berg et al., 2004; Gallagher & Chen, 2007) and image annotation
(Cour et al., 2011; Zeng et al., 2013). It is usually much easier to get blurry labels than acquiring
exact ground truths, and accurately labeling each instance is costly and labor-intensive. For example,
the natural photographs collected in the real world may contain multiple human faces and are often
tagged ambiguously with several potential names in the captions. The goal is to precisely match
the persons in each images with the names, and learn a robust classification model which can be
generalized to unseen instances.

PLL has been widely examined in the past few years. How to distinguish fuzzy labels in training
sets and recover their true labels plays an important role in developing efficient and robust PLL
methods. One main class of PLL methods, such as LSB-CMM(Liu & Dietterich, 2012), M3PL(Yu
& Zhang, 2016) and PL-SVM(Nguyen & Caruana, 2008), directly fits the classifier with traditional
machine learning models. These methods ignore the relationships between training instances which
leads to unfaithful labelling disambiguation results. Some more advanced methods, such as PL-KNN
(Hüllermeier & Beringer, 2006), IPAL (Zhang & Yu, 2015) and PL-LEAF (Zhang et al., 2016), utilize
the coorelations between training instances provided by some underlying similarity graph learned in
an unsupervised manner. These methods have achieved desirable empirical performance, but still
suffer from some common issues. For example, the similarity graph generated via some unsupervised
approaches may be non-optimal due to its independence of the main classification task. Another
weakness of the graph-based methods is that the label prediction of each test example is voted by its
neighbors in the training set which makes the prediction results highly depend on the selection of
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neighboring instances. Unfortunately, there is usually no guidance of choosing a proper size of the
neighboring set in practice. The prediction results can be significantly biased when some unrelated
or wrongly-labelled training instances are included as voters. Although some more recent studies
such as AGGD (Wang et al., 2019) employ supervised methods to model the instance similarities,
the neighbor selection issue has not been fully addressed as they initialize the neighboring set in
an unsupervised way and only update the similarity measurements at some specific locations in the
subsequent optimization step which has great limitations. On the other hand, these methods need to
limit the total number of neighbors and thus some training instances that are useful in improving the
predicting accuracy are ignored. Furthermore, the complicated optimization problem proposed by
these graph-based methods are difficult to solve in practice.

In this work, we propose a novel end-to-end Partial Label learning method using Multi-Agent
Reinforcement Learning, called PLRL. Under the MARL setting, each pair of training instances
is treated as an individual agent and its action is defined as the similarity measurement between
these two instances. All the n training instances build the node set of an underlying similarity
graph, and the learned optimal policy precisely quantifies the closeness between any two nodes,
which is the edge weight. Unlike traditional two-stage or alternative optimization approaches, our
PLRL method directly optimizes a pre-defined score function and adaptively updates the instance
similarities in a supervised way which makes the learned similarity graph more related to the main
classification task. Specifically, we use GNNs to learn the similarity graph which maximizes a total
reward shared by all the n2 agents. With the similarity graph, an estimated probability distribution
over the candidate labels for each test example is obtained through some label propagation strategies.
Then we incorporate the estimated probabilities with a kernel ridge regression model to carry out the
label disambiguation. The MARL framework together with the classification model is end-to-end
trained using policy gradients. The main contributions of this paper are summarized as follows.

• We introduce a novel MARL framework to quantify the similarities between training
instances and impose no limits on the number of nearest neighbors.

• Different from traditional two-stage or alternative optimization methods, we employ an
end-to-end approach to jointly implement predictions and labelling disambiguation, which
makes the learned instance similarities more related to the main classification task.

• We use Policy Gradient to efficiently solve the complicated optimization problem which
cannot be easily handled by previous studies.

• Experimental results on both synthetic and real datasets show that our method outperforms
existing PLL methods with higher classification accuracies in most scenarios, especially in
those cases with imbalanced samples.

2 PROBLEM STATEMENT

In PLL, a partially labelled training set D = {(xi, Ci) | 1 ≤ i ≤ n} is given, where xi =
(xi1, ..., xid)

⊤ ∈ X is a d- dimensional instance and Ci ⊆ Y is the candidate label set among
which only one label is assumed to be valid. Y = {y1, y2, ..., yq} here denotes a label space with q
classes. Let X = [x1, ...,xn]

⊤ ∈ Rn×d be the normalized input data matrix. The target of PLL is
to induce a multi-class classifier g(·) : X → Y using such fuzzy label information D to precisely
classify partially-labelled and unseen instances.

In this work, we consider an undirected weighted graph G = (V,W) among instances. V = {xi|1 ≤
i ≤ n} is the set of vertices. W = [wij ]n×n refers to the non-negative weight adjacency matrix,
where wij ∈ [0, 1] measures how close the two instances xi and xj are to each other with larger value
meaning higher correlation. In this work, a novel RL based approach is used to estimate the weighted
adjacency matrix W.

For each training example (xi, Ci), we aim to generate a normalized real-valued vector f i ∈ Rq

where each fij represents the label confidence of the j-th label being the true label of xi. The label
confidence vector f i satisfies the following constraints: (i)

∑q
j=1 fij = 1 for any 1 ≤ i ≤ n, (ii)

fij ≥ 0 for any yij = 1, and (iii) fij = 0 for any yij = 0. The second and third constraints indicate
the potential ground-truth label resides in the candidate label set. When the label confidence of
training set X is generated as F = [f1, ...,fn]

⊤ ∈ Rn×q, a classifier g(·) : X → Y can be induced
based on this disambiguation results.
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3 A MULTI-AGENT RL FRAMEWORK

In this paper, we model the PLL problems via a MARL framework. Each agent learns the similarity
wij between each pair of training instances by fully exploiting the input features and the labelling
uncertainty. To be specific, we consider a multi-agent extension of partially observable Markov
games, which is defined by a set of states S describing the possible configurations of all agents,
a set of actions A1, ...,AN and a set of observations O1, ...,ON for each agent. Each agent i
chooses the action following a policy πi : Oi → Ai. We use neural networks to parameterize the
policy of each agent, which outputs the similarity between two corresponding instances. The private
observation of each agent i is correlated to the overall state S, such that oi : S → Oi. Since there
are n instances, the total number of agents is N = n2. All the n2 agents are fully cooperative
to maximize the total reward r : S × A → R. In addition, we define the action-value function
Qπ(s, a1, ..., aN ) = E[R(s,a)|s0 = s,a0 = a], where a = [a1, ..., aN ] and π = (π1, . . . , πN )⊤.
In the context of PLL, we highlight the following specifics:

State. The entire state space is constructed by the contexts of n training instances, i.e. S =
{x1, ...,xn}. Each agent only observes the contexts of the two related instances, i.e. Oij = {xi,xj}.

Action. For each agent, its action aij ∈ [0, 1] measures the similarity between instance xi and xj ,
which represents the edge weight in the similarity graph determined by the policy πij(xi,xj). The
larger value of aij implies the higher similarity between xi and xj . Specifically, it is much likely
that two instances should be categorized into two different classes of Y if aij = 0.

For each agent, we employ a neural network to output the action aij ∈ [0, 1] with input being the
observation Oij = {xi,xj}, whose parameters are shared by all the N agents. To ensure that the
similarity measurement is undirected, i.e. aij = aji, we borrow the idea of attention mechanism
(Vaswani et al., 2017) and the action can be obtained as follows,

aij(θ) = πij(xi,xj) = Sigmoid
(
(WQϕ(xi))

⊤WKϕ(xj) + (WKϕ(xi))
⊤WQϕ(xj)

)
(1)

where ϕ : Rp → Rp′
encodes each xi to a p′-dimensional embedding ϕ(xi) (here we use fully

connected layer with ReLU activation function), and WQ,WK ∈ Rq×p′
denote the query and key

parameter matrices, respectively. θ includes all the parameters to be learned. It is obvious that the
network architecture in Eq.(1) is permutation invariant, and the output is independent of the order of
the two inputs xi and xj . With all the N actions taken by the N agents at each training epoch, we can
build a normalized weighted adjacency matrix W = [wij ]n×n with wij =

aij∑
k aik

. All weight values
in W are updated during the optimization, except that the diagonals are set to zero to avoid self-loops.
Different from previous graph-based methods, we allow all the training instances to involve in the
prediction of each test example and their importance is optimized via the MARL design.

Reward. Since all the N agents are fully cooperative, we define a single reward function to evaluate
the learned similarities W between the n instances, which is defined as follows,

−R =

n∑
j=1

∥∥∥∥∥f j −
n∑

i=1

wijf i

∥∥∥∥∥
2︸ ︷︷ ︸

(i): LSE of label confidence

+µ

n∑
j=1

∥∥∥g(xj)− f j

∥∥∥
2︸ ︷︷ ︸

(ii): LSE of classifier

+η

n∑
j=1

∥∥∥∥∥xj −
n∑

i=1

wijxi

∥∥∥∥∥
2︸ ︷︷ ︸

(iii): LSE of feature

−β

n∑
j=1

log (p(ŷj |xj))︸ ︷︷ ︸
(iv): log-likelihood

(2)
The first three terms in (2) are similar to those given in Wang et al. (2019) while the last term is
newly raised. Term (iii) measures how each xi is represented by all the n training instance based on
W. Term (i) is exploiting the smoothness assumption that the graph structure in the feature space
should be preserved in the label space. F here is the label confidence of the n training instances
which is a function of W and can be obtained through disambiguation. For term (ii), we expect to
minimize the error of the classifier g(·). As shown by Section 4.2, g(·) is determined by F and thus
can also be treated as a function of W. In particular, we add a log-likelihood term (iv) to facilitate the
convergence. ŷj denotes the label prediction of training instance xj i.e. p(ŷj |xj) = maxl fjl where
fjl is the (j, l)-th element of F. Since the four terms in (2) all depend on the weighted adjacency
matrix W, the negative reward can serve as an objective function to optimize W.
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4 METHODOLOGY

In this section, we describe the implementation details of the PLRL algorithm. At each training
epoch, we apply a disambiguation method to obtain the label confidence F which is then used to
learn the classifier g(·). With the obtained F and g(·), we can compute the reward function in (2),
using policy gradient to train all the N agents and dynamically updating the weighted adjacency
matrix W until the optimal reward R∗ is achieved. More details can be found in Sections 4.1, 4.2
and 4.3. With the optimal adjacency matrix W∗, we can finally predict the class label of each unseen
instance using the kernel ridge regression (KRR) with optimal model parameters, which is described
in Sections 4.4. The flow chart of PLRL is summarized in Figure 1 and the detailed algorithm is
provided in the Supplement A.

Figure 1: Algorithm architecture of PLRL

4.1 COMPUTING F: DISAMBIGUATION

At each training epoch, we disambiguate the candidate labels of training instances using the obtained
W and apply an iterative approach (Zhang & Yu, 2015) to compute the label confidence matrix F
through label propagation. To be specific, we initialize the label confidence matrix F(0) = P =
[pij ]n×q based on the partially labelled training set D before the iteration process starts, such that

pi,j =

{
1/|Ci|, if yj ∈ Ci

0, otherwise ∀1 ≤ i ≤ n. (3)

This initialization step equally distributes the label confidence of xi over all its candidate classes.
Then at the t-th iteration, F is updated by propagating label information along with W, such that

F̃(t) = α ·W⊤F(t−1) + (1− α) ·P, (4)

where the hyperparameter α ∈ (0, 1) balances the contribution of the inherited label information
W⊤F(t−1) and the initial label confidence P. Then, F̃(t) is normalized to get F(t), i.e.

f
(t)
i,j =


f̃
(t)
i,j∑

yl∈Ci
f̃
(t)
i,l

, if yj ∈ Ci

0, otherwise
∀1 ≤ i ≤ n. (5)

After T iterations, we take F(T ) as the final label confidence and adopt the class mass normalization
(CMN) (Zhu & Goldberg, 2009) to adjust the disambiguation output towards class prior distribution,
which handles unbalanced samples well. We let F = M ◦ F(T ) where ◦ denotes the Hadamard
product and M = [m, . . . ,m]⊤n×q is composed of the vector defined as

m =

[
m1

m̂1
, . . . ,

mq

m̂q

]⊤

q×1

, (6)

where mj =
∑n

i=1 pi,j , m̂j =
∑n

i=1 f
(T )
i,j , j = 1, ..., q.

With this disambiguation approach, we get the label confidence matrix F which is then used to
compute terms (i) and (iv) in the objective function (2) to update W.
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4.2 OBTAINING g(·): KERNEL RIDGE REGRESSION MODEL

Now, we introduce the classifier which makes predictions for unlabelled instances by using the label
confidence F obtained in Section 4.1. We consider a reproducing kernel Hilbert space (RKHS)
and let ψ(·) : Rd → Rh denote the (implicit) nonlinear feature mapping that projects the original
feature space to a higher dimensional RKHS space HK via a Gaussian kernel function κ(xi,xj) =
exp(−∥xi − xj∥22/(2σ2)) where σ is the averaged pairwise distances of training instances.

We model the classifier via a kernel regression model using a generalized ridge penalty. As pointed
out by Wahba (1990), a general solution to this problem is finite-dimensional, and can be defined as

g(x) =
∑n

i=1 uiκ(x,xi) + b, (7)

where b and ui, i = 1, . . . , n are some parameter vectors. Let K = ψ(X)ψ(X)⊤ be a kernel
matrix with each element generated by a kernel function kij = κ(xi,xj) = ψ(xi)

⊤ψ(xj) and
U = [u1, . . . ,un]

⊤ ∈ Rn×q contains the combined weights of all the n instances. The classifier can
be obtained by fitting the following kernel ridge regression (KRR),

min
U,b

∥∥∥KU+ 1b⊤ − F
∥∥∥2

F
+ λ tr

(
U⊤KU

)
, (8)

where 1 denotes a vector of 1’s, ∥ · ∥F represents the Frobenius norm, and tr(·) is the trace. Let the
gradients of (8) with respect to U and b be zeros, we can obtain the solution of U and b as follows,

U =

(
K+ λI− 11⊤K

n

)−1 (
F− 11⊤F

n

)
,

b =
1

n

(
F⊤1−U⊤K⊤1

)
,

(9)

which are then used to compute term (ii) in the objective function (2).

4.3 UPDATING W: POLICY GRADIENT

At each training epoch, the agent i, j observes its own observation Oij and outputs the similarity wij

between xi and xj . With the N obtained wij’s, we carry out the disambiguation step in Section 4.1
and calculate the prediction model given in Section 4.2. Then the reward R can be obtained.

Let the expected reward J(πθ) = Es∈S,a∼πθ
[R] be the objective function of PLRL, where the

detailed formulation of R is given by (2) and the computations of F and g(·) are described in Sections
4.1 and 4.2. All the four components in (2) work together and jointly affect the estimation of W,
which makes the learned similarity graph related to the classification task, and thus the neighboring
information can be well utilized to improve the prediction accuracy. The gradient ∇θJ (πθ) is
obtained by the deterministic policy gradient (DPG) algorithm (Silver et al., 2014) as

∇θJ (πθ) = ∇θπθ(s)∇aQπ(s, a1, . . . , aN )|aj=πj(oj),j=1,...,N , (10)

where s = X, oil = {xi,xl}, 1 ≤ i, l ≤ n. In practice, we can pre-train the model and properly
initialize the adjacency matrix W, which helps shorten the training process of the PLRL algorithm.
A good starting point of the matrix W can be obtained by using some existing unsupervised methods
such as k-NN (Zhang & Yu, 2015). Then the proposed PLRL algorithm can further improve the
prediction accuracy by refining the matrix W in a supervised way.

4.4 PREDICTION

As the DPG algorithm converges, we can get the optimal similarity graph W∗ and the optimal label
confidence matrix F∗. The finally prediction of each unseen instance x∗ is given by

y∗ = argmax
j

n∑
i=1

u∗ijκ(x
∗,xi) + b∗j . (11)

where u∗ij is in the i-th row, j-th column of U∗ and b∗j is the j-th element in b∗. Both U∗ and b∗

here can be obtained by (9) using the optimal W∗ and F∗.
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5 EXPERIMENTS

In this section, we conduct both synthetic and real-world experiments to demonstrate the advantages
of the proposed PLRL algorithm in solving PLL problems. PLRL is compared with seven SOTA PLL
algorithms, whose parameters are fine-tuned as suggested by the literature. The configurations of
these methods are summarized in Table 1 and the details are provided in the Supplement B. For PLRL,
the optimal choices of the regularization coefficients are µ = 1, η = 0.5 and β = 0.05 according
to the cross-validation results. More analysis about the parameter sensitivity are in the Supplement
E.1. For each method, we perform five-fold cross-validation, and report the mean accuracy together
with their standard deviations. In addition, we apply the t-test at 0.05 significance level to assess the
performance of the proposed method.

Table 1: Comparing methods

Methods Graph-based Configuration

PLRL (Ours) Yes α = 0.95, T = 100, λ = 0.05, µ = 1, η =
0.5, β = 0.05

AGGD (Wang et al., 2019) Yes k = 10, T = 10, λ = 1, µ = 1, γ = 0.05
IPAL (Zhang & Yu, 2015) Yes k = 10, α = 0.95, T = 100
PL-KNN (Hüllermeier & Beringer, 2006) Yes k = 10
SURE (Feng & An, 2019a) No λ = 0.5, β = 0.05
LSB-CMM (Liu & Dietterich, 2012) No σ2 = 1,K = 80, α = 0.05
CLPL (Cour et al., 2011) No SVM with the squared hinge loss
PL-SVM (Nguyen & Caruana, 2008) No λ = 0.01

Our implementation is based on PyTorch (Paszke et al., 2019) and all the experiments were carried
out with NVIDIA Tesla P100 GPUs. When handling large-scale datasets, we employ a batch training
strategy to reduce the influence of the limited memory. To be specific, we randomly split the whole
dataset into several parts and iteratively feed them into the GPUs when training the GNN model.
Then we use the trained model to make predictions for all training instances. In practice, our PLRL
method takes nearly the same computation time as other recently proposed parametric methods
including SURE and AGGD. For the small datasets with sample size less than 2000, the whole
training procedure takes about 1 to 10 minuets, and for some large datasets with more than 10000
samples, it takes about 1 to 3 hours. Considering the performance gain of PLRL in practice, the
training cost is acceptable.

5.1 SIMULATION STUDY

To show that the MARL design can better capture the instance similarities and thus improve the
prediction accuracy, we design a simulation experiment and compare our PLRL algorithm with three
SOTA graph-based methods, AGGD, IPAL and PL-KNN.

We let the sample size n be 110, the dimension of features d be 6, the number of classes q be 5, and
the number of wrong labels in each candidate set be r ∈ {1, 2, 3}. Each of the six instance features
is generated from a Gaussian distribution, an uniform distribution or a binomial distribution. We
randomly divided the n samples into q classes, and the features of instances belonging to different
classes follow different distributions. The detailed distribution settings are summarized in Table 7 of
the Supplements. The data generating procedure is given as follows,

1. Randomly assign one of the q class labels to each of the n instances as the true label y.

2. For each instance, generate data features X(y) according to Table 7 of the Supplements.

3. We consider an underlying connective graph and simulate the adjacency matrix Ā =
[āij ]n×n by āij = 1{yi=yj}1{κij>0.75} for 1 ≤ i, j ≤ n, which measures the similarities
between the n training instances. κij here is the Gaussian kernel κ(xi,xj) = exp(−∥xi −
xj∥22/(2σ2)) where σ is the averaged pairwise distances of all instances.

4. For each instance, simulate the r partial labels by randomly selecting r labels from the q− 1
candidate labels that are not equal to y.
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We repeat this data generating procedure 40 times and conduct five-fold cross-validation each time to
report the mean prediction accuracy. Due to the small sample size of the generated dataset, we set the
total number of training epochs to be 200 for each method.

(a) Classification accuracy on simulation datasets (b) ROC of graph recovery

Figure 2: Classification and graph recovery performance on simulation datasets

For the three competitors, we plot their prediction results under different choices of k, which is
the total number of neighbours of each training instance when building the underlying similarity
graph. The prediction performance of all the four methods is visualized in Figure 2(a), where the 40
replicates are sorted in an ascending order according to the classification accuracy. As Figure 2(a)
shows, PLRL performs consistently well while the classification accuracy of the the other three varies
a lot with the k selections across the 40 replicates. In some cases a small neighbor set is preferred
while in other cases a denser similarity graph may be helpful. Since the optimal number of k is
usually unknown in the real world, the performance of the three graph-based methods can be highly
affected with a improperly selected k. Our method addresses this issue by allowing all the n2 edges
to have non-zero weights which are optimized by the end-to-end MARL design.

We also show how each method recovers the true underlying graph Ā. To be specific, we transform
each obtained weighted adjacency matrix W into an unweighted one Â = [âij ]n×n where each
âij = 1{wij>τ} and τ ∈ (0, 1) here represents a truncation threshold. In Figure 2(b), we draw five
ROC curves based on the learned weighted graph obtained by the five methods. It should be noted
that both IPAL and PL-KNN estimate the smilarity graph using K Nearest Neighbor and thus we use
”KNN” to represent them. As Figure 2(b) shows, PLRL can better estimates the true graph. For both
AGGD and KNN, the estimation performance does not improve when a certain TPR is reached.

Table 2 summarizes the graph estimations under τ = 0.05. F-norm denotes the Frobenius distance
between the true graph Ā and the estimated graph W. Higher values of NNZ, TPR, and smaller
values of FDR, SHD and F norm distance demonstrate that PLRL can discover more true edges than
the other three and achieve the best performance in recovering the underlying graph. The simulation
study indicates that PLRL can better capture the similarities between training instances which helps
improve the final prediction accuracy.

Table 2: Graph recovery performance on one simulation dataset

FDR TPR SHD NNZ F norm
PLRL 0.314 0.212 1052 384 4.74

AGGD(k=5) 0.347 0.157 1101 296 5.66
AGGD(k=10) 0.384 0.174 1110 323 5.30
AGGD(k=50) 0.411 0.174 1126 349 5.28

KNN(k=5) 0.388 0.154 1121 297 5.48
KNN(k=10) 0.489 0.164 1180 375 4.84
KNN(k=50) 0.681 0.092 1311 334 5.49

5.2 CONTROLLED UCI DATASETS

Following the common design of previous PLL studies, we generate an artificial partially labelled
dataset based on the UCI dataset (Dua & Graff, 2019). The characteristics of eight UCI datasets are
summarized in Table 8 of the Supplements. We set the proportion of PL examples p = 1 across all
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our experiments, and vary the number of wrong labels r and the probability one specific false positive
label co-occurs with the true label ϵ. The configuration of the two settings is provided as follows: (I)
p = 1, r = 1, ϵ ∈ {0.2, 0.3, ..., 0.8}. (II) p = 1, r ∈ {1, 2, 3, 4, 5, 6, 7}.

The details of the experiment performance are shown in Supplement D. To clearly illustrate the
advantage of the proposed PLRL algorithm, we report the win/tie/loss results between PLRL and each
competing method using two-sample t-test. As Table 3 shows, PLRL significantly outperforms its
competitors with win/tie rates greater than 93.0% among 86 set-ups. In particular, for some recently
proposed methods such as SURE and AGGD, PLRL is superior or comparable to them in most cases.

Table 3: Win/tie/loss (pairwise t-test at 0.05 significance level) counts on the controlled UCI datasets
between PLRL and the comparing algorithms

SURE AGGD IPAL CLPL PL-SVM PL-KNN LSB-CMM
config1(ϵ) 24/27/1 25/26/1 39/9/4 52/0/0 52/0/0 47/5/0 35/12/5
config2(r) 13/21/0 10/24/0 27/5/2 34/0/0 34/0/0 30/4/0 23/11/0

In total 37/48/1 35/50/1 66/14/6 86/0/0 86/0/0 77/9/0 58/23/5
PLRL win/tie rate 98.8% 98.8% 93.0% 100.0% 100.0% 100.0% 94.2%

5.3 REAL-WORLD DATASETS

We use five real-world datasets to validate the proposed method, including Lost (Cour et al., 2011),
Soccer Player (Zeng et al., 2013), Yahoo! News (Guillaumin et al., 2010), MSRCv2 (Liu & Dietterich,
2012) and BirdSong (Briggs et al., 2012). The first three are for automatic face naming, the fourth is
for object classification, and the last is to classify bird songs. The characteristics of these five datasets
are summarized in Table 9 of the Supplements, as well as the average number of candidate labels.

The mean inductive classification accuracy with its standard deviation for each algorithm on unlabelled
test data are summarized in Table 4. Pairwise t-tests at 0.05 significance level is conducted based
on 5-fold cross-validation. As shown in Table 4, PLRL significantly outperforms the others in four
datasets and achieves the second best prediction accuracy in Yahoo! News, which indicates that
PLRL is less sensitive to the data structures and performs consistently well in practice.

Table 5 presents the transductive classification accuracy on partially labelled training samples,
which reflects the disambiguation capacity of each method in recovering ground-truths from the
candidate label set. For PLRL, SURE and AGGD, the generated label confidence vector f i can
be used to predict the ground-truth label for each partially labelled training instance xi such that
ŷi = argmaxyk∈Ci

f ik. Other approaches directly make predictions by choosing the most likely
ŷi ∈ Ci.

As shown in Table 5, the performance of PLRL is superior to other algorithms in terms of a higher
transductive prediction accuracy. In particular, PLRL significantly outperforms CLPL, IPAL, PL-
KNN, and LSB-CMM in all the five real-world datasets. When compared to SURE, AGGD and
PL-SVM, PLRL can still achieves the best performance in most cases. These results imply that PLRL
performs better in disambiguating blurry labels and can extract more useful information which helps
to build a more precise prediction model.

Table 4: Inductive classification accuracy (mean&std) of each method on the real-world partial label
datasets, where •/◦ indicates whether the performance of PLRL is statistically superior/inferior to the
comparing algorithm on each data set (pairwise t-test at 0.05 significance level)

Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PLRL 0.810 (0.038) 0.585 (0.034) 0.749 (0.013) 0.557 (0.007) 0.652 (0.012)
SURE 0.765 (0.022)• 0.463 (0.034)• 0.733 (0.020) 0.529 (0.011)• 0.628 (0.011)•
AGGD 0.758 (0.029)• 0.494 (0.024)• 0.731 (0.013) 0.538 (0.010)• 0.645 (0.009)
IPAL 0.688 (0.033)• 0.522 (0.027)• 0.708 (0.011)• 0.547 (0.006) 0.659 (0.008)
CLPL 0.728 (0.041)• 0.412 (0.024)• 0.631 (0.010)• 0.366 (0.006)• 0.461 (0.008)•

PL-SVM 0.693 (0.051)• 0.467 (0.055)• 0.629 (0.051)• 0.451 (0.007)• 0.544 (0.164)•
PL-KNN 0.342 (0.024)• 0.437 (0.018)• 0.646 (0.013)• 0.493 (0.010)• 0.402 (0.003)•

LSB-CMM 0.652 (0.033)• 0.462 (0.035)• 0.684 (0.023)• 0.491 (0.011)• 0.522 (0.007)•
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Table 5: Transductive classification accuracy (mean&std) of each method on the real-world partial
label datasets

Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PLRL 0.907 (0.006) 0.781 (0.005) 0.867 (0.003) 0.708 (0.004) 0.866 (0.002)
SURE 0.828 (0.012)• 0.608 (0.009)• 0.838 (0.016)• 0.703 (0.001) 0.812 (0.001)•
AGGD 0.866 (0.004)• 0.637 (0.011)• 0.840 (0.004)• 0.717 (0.003) 0.850 (0.002)•
IPAL 0.834 (0.007)• 0.698 (0.013)• 0.832 (0.004)• 0.679 (0.002)• 0.850 (0.001)•
CLPL 0.877 (0.002)• 0.595 (0.010)• 0.762 (0.006)• 0.669 (0.005)• 0.768 (0.004)•

PL-SVM 0.861 (0.020)• 0.652 (0.040)• 0.778 (0.044)• 0.722 (0.004)◦ 0.790 (0.108)•
PL-KNN 0.614 (0.015)• 0.598 (0.008)• 0.757 (0.008)• 0.568 (0.001)• 0.689 (0.002)•

LSB-CMM 0.797 (0.008)• 0.613 (0.016)• 0.814 (0.013)• 0.677 (0.003)• 0.821 (0.012)•

5.4 FURTHER STUDY

To fairly evaluate the contributions of the MARL design, the GNN model used to learn the weighted
graph and the KRR model, we carry out an ablation study on four different datasets to quantitatively
illustrate their necessity. Specifically, we compare the full PLRL model with the ones removing either
GNN&RL or KRR and also the baseline model IPAL, whose detailed architectures are described as
follows,

• “w/o GNN&RL” represents the prediction method that uses k-NN to estimate the underlying
graph and make predictions via KRR. In this case, both GNN and RL are removed.

• “w/o KRR ” refers to the case that the reward is obtained by
∑n

j=1

∥∥f j −
∑

i wijf i

∥∥
2
+

η
∑n

j=1 ∥xj −
∑

i wijxi∥2 . Since g(·) is removed, the final prediction of each test instance
is voted by it neighbors.

• IPAL serves as the baseline of PLRL without KRR and GNN&RL.

Table 6: Prediction accuracy of PLRL and its ablated variants on four partial label datasets

vehicle (r=2) steel (r=2) Lost MSRCv2
PLRL 0.732 (0.042) 0.737 (0.024) 0.810 (0.038) 0.585 (0.034)

w/o GNN&RL 0.710 (0.043)• 0.723 (0.018) 0.764 (0.016)• 0.543 (0.029)•
w/o KRR 0.710 (0.066)• 0.684 (0.016)• 0.741 (0.022)• 0.573 (0.022)

IPAL 0.677 (0.067)• 0.686 (0.014)• 0.688 (0.033)• 0.522 (0.027)•

As shown in Table 6, the full PLRL model consistently outperforms the other three in most scenarios
with statistically significant t-test results. The prediction accuracy decreases when either the KRR
model or the GNN&RL mechanism is removed. Thus, both of these two components are important
in improving the baseline performance although their contributions can be varied in different datasets,
which validates their effectiveness and indispensability.

We also show that the reward and the classification accuracy on both training and test datasets
converge after 1000 epochs. More details can be found in the Supplement E.2.

6 CONCLUSION

In this work, we propose a novel PLL method, called PLRL, which models the instance similarities
using an MARL based GNN model and enhances the disambiguation capacity. Our method takes
all training samples into consideration when building the similarity graph and can better utilize the
neighboring information. Thanks to the end-to-end design, the graph structure learned by PLRL is
more related to the main classification task.

Despite the empirical success PLRL achieves, there are still some open questions to be answered.
First, we need to figure out why the improvement of PLRL over baselines is varied across different
datasets. Second, the significance of the improvement by PLRL largely lies in the usage of GNN
and RL. It may bring some new ideas to other weakly supervised learning problems such as graph
estimations and link predictions.
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