
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A BOOTSTRAP PERSPECTIVE ON
STOCHASTIC GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models trained with stochastic gradient descent (SGD) can gen-
eralize better than those trained with deterministic gradient descent (GD). In this
work, we study SGD’s impact on generalization through the lens of the statistical
bootstrap: SGD uses gradient variability under batch sampling as a proxy for
solution variability under the randomness of the data collection process. We use
empirical results and theoretical analysis to substantiate this claim. In idealized ex-
periments on empirical risk minimization, we show that SGD is drawn to parameter
choices that are robust under resampling and thus avoids spurious solutions even
if they lie in wider and deeper minima of the training loss. We prove rigorously
that by implicitly regularizing the trace of the gradient covariance matrix, SGD
controls the algorithmic variability. This regularization leads to solutions that are
less sensitive to sampling noise, thereby improving generalization. Numerical
experiments on neural network training show that explicitly incorporating the esti-
mate of the algorithmic variability as a regularizer improves test performance. This
fact supports our claim that bootstrap estimation underpins SGD’s generalization
advantages.

1 INTRODUCTION

1.1 BACKGROUND

Modern machine learning models are typically overparameterized and/or non-convex, resulting in
many parameter choices that achieve good training performance. However, the test performance of
these parameter choices can be vastly different, making the training algorithm an important element
of generalization. Notably, SGD tends to find training loss minima that generalize better on test data
than GD (Zhang et al., 2016). This work aims to clarify the mechanism underlying this phenomenon.

Some studies explain this phenomenon by suggesting that the noise in SGD induces it toward flatter
minima in the loss landscape, which they argue are associated with better generalization performance
(Keskar et al., 2016; Yang et al., 2023; Wu & Su, 2023). However, this explanation is undermined by
the lack of invariance under function reparameterization (Dinh et al., 2017; Andriushchenko et al.,
2023). Another line of work provides stability-based bounds on the generalization gap (Bousquet
et al., 2020; Zhou et al., 2022). These approaches usually assume uniform smoothness of the loss
function, which can be overly loose in certain regions for complex loss functions. Consequently, these
bounds may be trivial at solutions to which the algorithms converge. To address these limitations, we
introduce a bootstrap estimation perspective to understand the generalization advantage of SGD.

1.2 OUR CONTRIBUTIONS

We propose that the mini-batch gradient variability in SGD acts as a bootstrap estimate of the
solution’s sensitivity to resampling, which we term algorithmic variability, and SGD implicitly
regularizes this bootstrap estimate to enhance generalization. This perspective motivates the design
of new regularizers that can further improve generalization. Our main contributions are:

• We conduct an idealized experiment of function optimization to show that the gradient vari-
ability plays an important role in the generalization performance of SGD. More specifically,
the data-dependent gradient noise steers SGD away from regions with high variability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Under certain assumptions, we derive an approximation of the expected generalization
gap, which is determined by the solution’s Hessian matrix and the algorithmic variability
with respect to sampling noise. We further derive an approximate upper bound on the
algorithmic variability, which consists of two components. We propose that SGD utilizes
the accumulated gradient variability as a bootstrap estimate of the first component of the
algorithmic variability bound and implicitly regularizes it, thereby enhancing generalization.

• We conduct numerical experiments on SGD with explicit regularizers corresponding to esti-
mates of the two components of the algorithmic variability bound. The results demonstrate
that both components are essential for reducing test losses and that regularizers based on
these estimates can be effectively applied in neural network training. To the best of our
knowledge, no prior work has employed the second component of the algorithmic variability
bound as a regularizer.

1.3 PAPER OUTLINE

Section 2 introduces the key concepts used in this work and conducts an idealized experiment to
illustrate the importance of data-dependent gradient noise in helping SGD generalize better. Section 3
discusses the main theoretical conclusions of this work. We first prove that the expected generalization
gap depends on the algorithmic variability. Then, we propose that SGD implicitly regularizes the
bootstrap estimate of a bound on the algorithmic variability to enhance generalization. Section 4
provides experimental results that support our analysis and show that estimates of the algorithmic
variability bound can be used as explicit regularizers. Section 5 reviews related work. Section 6
concludes this paper.

2 PRELIMINARIES

2.1 EMPIRICAL RISK MINIMIZATION AND GENERALIZATION GAP

Because the population distribution is inaccessible, the training loss, also called the empirical risk, is
minimized as a surrogate for the population loss. The difference between the training loss and the
population loss, known as the generalization gap, quantifies how well the model generalizes.

2.2 STOCHASTIC GRADIENT DESCENT

Gradient-based methods are widely employed for optimizing objective functions in machine learning.
Unlike standard GD, which updates the model parameters with the gradient of the entire training
set, SGD uses the gradient of a mini-batch randomly sampled from the training set at each iteration.
The sampling noise in SGD can be captured by a gradient noise term in its update rule. Initially
introduced to improve scalability with large datasets, SGD has demonstrated superior generalization
performance with various models and tasks compared with GD. We will show in Section 2.4 that the
data-dependent noise is essential in pushing SGD out of minima that generalize poorly.

2.3 BOOTSTRAP ESTIMATION

Given an estimator, we may wish to know how it would have differed over different samples.
Bootstrap estimation measures this variability by treating the training set as an empirical distribution
and evaluating the variability of the estimate over subsamples drawn from it.

The gradient variability of SGD evaluates how much the gradient changes with different samples
from the training set. This connection motivates our explanation of SGD’s generalization behavior
through the lens of bootstrap estimation.

2.4 AN IDEALIZED EXPERIMENT

We use an idealized experiment to show that the sampling noise, or equivalently, the gradient noise,
can induce SGD to converge to solutions with better generalization compared to GD. To show the
importance of the data-dependent noise, we also conduct experiments with NoisyGD, which adds
data-independent Gaussian noise to each GD update.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Resample Average

Candidate losses Training set

Training loss

Figure 1: Construction of loss functions in the idealized experiment.

We run GD, SGD, and NoisyGD to optimize two-dimensional objective functions with the same
initializations and hyperparameters. Each objective function is constructed by sampling 30 functions
with replacement from a set of 30 candidate functions and averaging them, as illustrated in Figure
1. For each algorithm, we report the mean test loss over 100 runs with different initializations. The
detailed experimental setup is in Appendix A.1.

Table 1: Average test losses of algorithms in the idealized experiment.

ALGORITHM TEST LOSS

GD 13.99± 1.67
SGD 5.33± 1.73
NoisyGD 11.09± 1.71

Random sampling can produce training sets with samples deviating substantially from other samples
in the population. These deviations yield spurious minima in the training loss landscape that fit the
training data well but generalize poorly. Avoiding such spurious minima is crucial for generalization.

Figure 2 reports the experimental results. The population and training loss heat maps show a better-
generalizing minimum at (7, 7) and a spurious minimum at (7, 1). Among the three algorithms,
SGD spends most of the training time in regions where the trace of the gradient covariance matrix
is small. Even though the spurious minimum is deeper, broader, and has smaller gradient norms
in its neighborhood than the better-generalizing minimum in the training loss landscape, SGD still
converges to the latter owing to its smaller variability. This observation is corroborated in Table 1,
where SGD has the smallest average test loss among the algorithms. These results indicate that the
data-dependent gradient noise enables SGD to avoid converging to spurious minima arising from
random sampling from the population. This finding inspires the idea that SGD utilizes gradient
variability to estimate the sensitivity of the solution to different training data.

3 THEORETICAL RESULTS

In Section 2.4, we show with the idealized experiment that SGD converges to solutions with small
gradient variability, which generalize well to the test data. This observation raises two key questions:
(1) what factor drives SGD to solutions with small gradient variability? (2) how does this reduced
gradient variability improve generalization? In this section, we formally establish the connection
between the gradient variability and generalization. First, under the assumptions that SGD can achieve
small gradient on the training data and that replacing one training sample has only a minor impact on
the solution, we show that the expected generalization gap can be decomposed into the trace of the
product between the solution’s Hessian and the algorithmic variability, which measures the sensitivity
of the solution to replacing a single sample in the training set. Then, we demonstrate that the gradient
variability of SGD can be regarded as a bootstrap estimate of the first component of a bound on the
algorithmic variability. Lastly, we show that the implicit regularizer of SGD, as characterized by
Smith et al. (2021), is equivalent to regularizing gradient variability. Taken together, these points
suggest that the implicit regularizer steers SGD toward solutions with smaller gradient variability,
which, being a bootstrap estimate of the algorithmic variability, leads to improved generalization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

−2

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

−2

0

2

4

6

8

10

10

20

30

40

10

20

30

40

−2 0 2 4 6 8 10

−2

0

2

4

6

8

10

5

10

15

−2 0 2 4 6 8 10
0

0.5

1

1.5

(a) GD trajectory density. (b) SGD trajectory density. (c) NoisyGD trajectory density.

(d) Population loss. (e) Training loss.

(f) `2-norm of the gradient. (g) Gradient covariance trace.

×103

GD
SGD
NoisyGD

Figure 2: Heat maps of algorithm trajectory densities, population and training losses, gradient norms,
and gradient covariance traces from the idealized experiment, with representative trajectories overlaid.

3.1 NOTATIONS

This paper focuses on supervised learning. A sample z = (x, y) consists of an input x ∈ X = Rd

and a target y ∈ Y = R. Let S = {z1, z2, . . . , zN} be a training set of size N , where the zi are
i.i.d. samples from the population distribution D on Z = X × Y . L (z; θ) denotes the loss function
evaluated on sample z at model parameters θ. We slightly abuse these notations by writing the average
loss on the training set S as L (S; θ) = 1

N

∑N
i=1 L (zi; θ) and the expected loss on the population

distribution D as L (D; θ) = Ez∼D [L (z; θ)].

For a training set S, let At (S) denote the solution obtained by applying SGD to S for t iterations, start-
ing from initialization A0. A specific SGD instantiation AT can be represented by {j1, j2, . . . , jT },
where jt indicates that sample zjt in S is selected at iteration t. EAT

[f] takes the expectation of
function f over all possible AT , given a fixed model initialization A0 and a learning rate schedule
{η1, η2, . . . , ηT }. We can construct a perturbed training set for S by replacing the i-th sample with a
new one drawn from the population distribution: Si = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zN}, z′i ∼ D. Un-

less stated otherwise, Ez′
i
[f] denotes the expectation of function f over z′i drawn from the population

distribution D. For brevity, we define J (v) = vvT for any vector v.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 DECOMPOSITION OF THE EXPECTED GENERALIZATION GAP

We derive a decomposition of the expected generalization gap under the following assumptions.
Assumption 1. For S ∈ ZN , with probability 1−δ1,T , SGD obtains a solution whose batch gradient
`2-norm is bounded by ε1,T after T iterations, i.e.,

Pr (‖∇L (S;AT (S))‖2 > ε1,T) < δ1,T

for some 0 < ε1,T , δ1,T � 1.

Multiple studies have shown that overparameterized models can interpolate training sets under
suitable conditions (Richtárik & Takác, 2020; Vaswani et al., 2019; Loizou et al., 2021). Consequently,
Assumption 1 holds broadly across many machine learning problems.
Assumption 2. For S ∈ ZN , with probability 1− δ2,T , the `2-norm of the deviation between the
solutions obtained by running SGD for T iterations on S and its perturbed training set Si is bounded
by ε2,T , i.e.,

Pr
(∥∥AT (S)−AT

(
Si
)∥∥

2
> ε2,T

)
< δ2,T

for some 0 < ε2,T , δ2,T � 1.

Assumption 2 concerns the solution stability under single-sample replacements and holds when the
training set is sufficiently large that such replacements have a small effect.
Lemma 1. Consider a loss function L whose value is bounded by UL, with batch gradient `2-norm
bounded by UG and all third-order partial derivatives bounded by UJ . Assume the parameters are
bounded as ‖θ‖2 ≤ UF . If Assumptions 1 and 2 hold for L, the expected generalization gap satisfies

ES,AT
[L (D;AT (S))− L (S;AT (S))] (1)

=
1

N

N∑
i=1

ES,z′
i,AT

[L (z′i;AT (S))]− 1

N

N∑
i=1

ES,z′
i,AT

[
L
(
z′i;AT

(
Si
))]

(2)

= ES,AT

[
1

2
Tr

(
∇2L (S;AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])]
(3)

+O
(
ε1,T ε2,T + δ1,T ε2,TUG + δ1,T δ2,TUGUF + ε32,TUJ + δ2,TUL

)
. (4)

Lemma 1 provides the expected generalization gap decomposition, with its proof given in Appendix
B.1. ES,z′

i,AT
[L (z′i;AT (S))] denotes the expectation of L (z′i;AT (S)) over S ∼ DN , z′i ∼ D

and SGD instantiations initialized at A0. The big-O term arises from the remainder of the Taylor
expansion, and its constant does not depend on the problem setting. For the second-order Taylor
expansion to be accurate, it suffices that all the third-order partial derivatives in a neighborhood of the
solution are bounded by the smallest eigenvalue of its Hessian, scaled by ε2,T . This condition may fail
for degenerate solutions, but note that flat directions contribute far less to the expected generalization
gap than sharp ones. Combined with the alignment between the Hessian and the gradient covariance
of SGD (Wu et al., 2022), this justifies the approximation.

The decomposition depends on the solution’s Hessian and 1
N

∑N
i=1 Ez′

i

[
J
(
AT

(
Si
)
−AT (S)

)]
.

We denote this latter term as the algorithmic variability, which measures the sensitivity of the
solution to single-sample replacements in the training set. Next, we will show that SGD automatically
estimates and regularizes this variability term.

3.3 BOOTSTRAP ESTIMATION OF THE ALGORITHMIC VARIABILITY

We proceed to demonstrate that SGD uses the accumulated gradient covariance as a bootstrap
estimate of part of a bound on the algorithmic variability. The analysis in this subsection relies on the
data-dependent gradient noise of SGD and therefore does not extend to GD.
Lemma 2. Consider the case where the model is trained with SGD on the training set S for M
epochs, with each sample appearing exactly once in every epoch. Assume that

1. The learning rates are small, i.e., letting Q = maxt ηt, we have Q � 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2. The operator norm of ∇2L (S; θ) is uniformly bounded by a constant C � 1
Q .

Then, the algorithmic variability can be bounded as

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])
(5)

≤ Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
i

[
J (∇L (z′i;At−1 (S))−∇L (D;At−1 (S)))

])
(6)

+Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2t J
(
∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))

))
(7)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
.

(8)

The proof of Lemma 2 is in Appendix B.2. It relies on the positive semi-definiteness of the solution’s
Hessian. This condition is guaranteed since SGD avoids solutions with negative Hessian eigenvalues
almost surely (Mertikopoulos et al., 2020). Since Q � 1, TQ = O (1) for finite T , hence the big-O
term is bounded.
Theorem 1. Denote by ΣS

B (θ) the gradient covariance of mini-batches of size B evaluated on
dataset S at θ. If the conditions of Lemma 2 hold, θ lies within a compact set Θ, and ∇L (z′i; θ)
is continuous with respect to θ on Θ, then as the training set size N → ∞, the difference between
the accumulated population gradient covariance and the accumulated gradient covariance of SGD
converges to 0 almost surely, i.e.,

T∑
t=1

Ez′
i

[
J (∇L (z′i;At−1 (S))−∇L (D;At−1 (S)))

]
−

T∑
t=1

BΣS
B (At−1 (S))

a.s.→ 0. (9)

Theorem 1 is the core contribution of this work, and its proof is given in Appendix B.3. Suppose
SGD were to draw K mini-batches of size B from S at At−1 (S), the empirical gradient covariance
of these mini-batches would act as a bootstrap estimate of ΣS

B (At−1 (S)) and converge to it as
K → ∞. Furthermore, BΣS

B (At−1 (S)) serves as an estimate of the population gradient covariance

Ez′
i

[
J (∇L (z′i;At−1 (S))−∇L (D;At−1 (S)))

]
and converges to it as N → ∞. Hence, we

interpret SGD as using the accumulated mini-batch gradient covariance as a bootstrap estimation
of the accumulated population gradient covariance, which constitutes the first component of the
algorithmic variability bound in equation 6.

Although Theorem 1 is an asymptotic result, our experiments show that the accumulated gradient
covariance of SGD is strongly correlated with the algorithmic variability even for moderate N . We
refer to the eigenvectors corresponding to the largest eigenvalues of a matrix as its principal eigendi-
rections. For the accumulated gradient covariance matrix to accurately estimate the accumulated
population gradient covariance, the span of the sample gradients must capture most of the principal
eigendirections of the population gradient covariance, which requires N to be at least as large as
the number of principal eigendirections of the population gradient covariance. In practice, real data
often reside in a low-dimensional subspace, which explains why the estimation is accurate even for
moderate N .

3.4 IMPLICIT REGULARIZER AND GENERALIZATION

We now show how SGD implicitly regularizes the first part of the algorithmic variability bound
in equation equation 6, thereby enhancing generalization. Smith et al. (2021) show that when
resampling mini-batches of size B without replacement, SGD implicitly regularizes the mean
squared Euclidean distance between the sample gradients and the batch gradient, Γ (θ) =
1
N

∑N
i=1 ‖∇L (zi; θ)−∇L (S; θ)‖22, with implicit regularizer N−B

N−1
Γ(θ)
B . Analogously, when re-

sampling with replacement from S, SGD implicitly regularizes Γ(θ)
B . By algebraic manipulation, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

show that this quantity equals the trace of the mini-batch gradient covariance:

Tr
(
ΣS

B (θ)
)
= Tr

(∑N
i=1 J (∇L (zi; θ)−∇L (S; θ))

BN

)
=

∑N
i=1 ‖∇L (zi; θ)−∇L (S; θ)‖22

BN
.

(10)

This implicit regularizer of SGD reduces the trace of the gradient covariance during training, thereby
controlling the algorithmic variability. Since the expected generalization gap depends on the algorith-
mic variability, this implicit regularizer enables SGD to generalize better.

The second component of the algorithmic variability bound in equation 7 is neither estimated nor
regularized by SGD. Analogous to the bootstrap estimation in Theorem 1, we introduce a plug-in
estimator of this term as an explicit regularizer. For set S, at iteration t, we define regularizer 1 as

Reg1 = λ1
1

N

N∑
i=1

‖∇L (zi;At−1 (S))−∇L (S;At−1 (S))‖22 (11)

and regularizer 2 as

Reg2 = λ2‖∇L (Sjt ;At−1 (S))−∇L (S;At−1 (S)) ‖22, (12)

with λ1 and λ2 denoting their respective strengths. These two regularizers correspond to estimates of
the two components of the algorithmic variability bound. We evaluate the impact of these regularizers
on generalization with numerical experiments in the following sections.

3.5 EMPIRICAL VALIDATION

0 50 100 150 200
0

20

40

Iteration

G
en

er
al

iz
at

io
n

ga
p GD

NoisyGD

SGD

SGDwReg2

0 50 100 150 200
0

20

40

60

80

100

Iteration

A
lg

or
ith

m
ic

va
ri

ab
ili

ty
tr

ac
e

GD

NoisyGD

SGD

SGDwReg2

0 50 100 150 200
0

10

20

30

40

Iteration

G
en

er
al

iz
at

io
n

ga
p GD

NoisyGD

SGD

SGDwReg2

0 50 100 150 200
0

10

20

30

Iteration

A
lg

or
ith

m
ic

va
ri

ab
ili

ty
tr

ac
e

GD

NoisyGD

SGD

SGDwReg2

(a) Initialization 1.

(b) Initialization 2.

Figure 3: Trajectories of the generalization gap and the algorithmic variability trace versus iteration
for GD, SGD, NoisyGD, and SGDwReg2, shown for two initializations in the idealized experiment.

We extend the idealized experiment in Section 2.4 to illustrate the relationship between algorithmic
variability and generalization gap. In addition to the three algorithms considered above, we evaluate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

SGDwReg2, which incorporates regularizer 2 into SGD. Figure 3 reports the trajectories of the
generalization gap and the algorithmic variability trace under two different initializations. We observe
that sharp decreases in the algorithmic variability trace coincide with reductions in the generalization
gap, and algorithms ending with smaller algorithmic variability traces exhibit smaller generalization
gaps. GD and NoisyGD have no control over the algorithmic variability, and we observe they end with
larger variability trace and generalization gap in most experiments. We deliberately choose one case
where SGD has poor generalization as Initialization 2. Notably, while SGD performs poorly under
initialization 2, SGDwReg2 consistently reduces the algorithmic variability trace and achieves good
generalization. These results align with our analysis above: while SGD only implicitly regularizes the
first component of the algorithmic variability bound, incorporating regularizer 2 enables SGDwReg2
to regularize the full bound.

4 NUMERICAL EXPERIMENTS

10 15 20 25 30

0.2

0.4

λ1

Te
st

lo
ss

ra
tio

λ2 = 0

λ1/λ2 = 0.5

λ1/λ2 = 1

λ1/λ2 = 2

λ1/λ2 = 3

λ1/λ2 = 4

Figure 4: Average test loss ratios of SGD with reg-
ularizers 1 and 2 relative to the vanilla SGD bench-
marks. Shaded areas represent standard deviations
of the test loss ratios across different initializations.

1 2 3 4

·10−2

0.2

0.25

0.3

0.35

0.4

Learning rate

Te
st

lo
ss

λ2 = 0

λ2 = 0.1

λ2 = 0.25

λ2 = 0.5

λ2 = 1.0

Figure 5: Average test losses of SGD with reg-
ularizer 2. Shaded areas represent standard
deviations across three runs with different ran-
dom seeds.

4.1 SPARSE REGRESSION WITH DIAGONAL LINEAR NETWORKS

To evaluate the impact of regularizers 1 and 2 on generalization with moderately large training sets,
we conduct experiments on sparse regression. We incorporate both regularizers 1 and 2 into SGD, for
different fixed values of the relative strength ratio λ1

λ2
, and compare their performance with that of the

vanilla SGD benchmark. The model we use is the diagonal linear network (DLN), parameterized as
θ = (θa, θb) ∈ R2d. This model represents the function f(x; θ) = 〈θa � θb, x〉, where � denotes the
element-wise multiplication. Despite its simplicity, the DLN is overparameterized and provides the
non-convexity we seek (Pesme et al., 2021). We run the algorithms to minimize the mean squared
error of the training sets, which consist of 40 samples. The detailed experimental setup is in Appendix
A.2.

While different initializations strongly impact the test loss, the test loss ratios between different
algorithms starting from the same initialization remain stable. Therefore, for each training set and
initialization combination, we use the test loss of the vanilla SGD for that setting as the benchmark.
The performance of each algorithm is evaluated by the ratios between its test loss and this benchmark.

Figure 4 shows that most test loss ratios fall below 1, indicating that incorporating explicit regularizers
to SGD improves the average test loss of the solution. Within certain thresholds, increasing the
regularization strength reduces the test loss. Notably, incorporating regularizer 2 can further reduce
the test loss. Across the experimental settings, smaller relative strength ratios correspond to better
generalization performance. Compared to the λ2 = 0 curve, the setting λ1

λ2
= 0.5 reduces the best

test loss by 14%. These observations demonstrate that these regularizers improve generalization

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

for moderately large training sets. Moreover, consistent with our analysis in Section 3, while SGD
only implicitly regularizes the first component of the algorithmic variability bound to help the model
generalize, the best performance is achieved when both regularizers 1 and 2 are incorporated, thereby
regularizing the full algorithmic variability bound.

4.2 DEEP NEURAL NETWORKS

To evaluate the effectiveness of the proposed regularizers in practical deep neural network training,
we train a convolutional neural network (CNN) on the FashionMNIST dataset (Xiao et al., 2017).
We use SGD with weight decay regularization as a benchmark. Owing to computational budget
constraints, we incorporate only regularizer 2 and omit the batch gradient term in it. The detailed
experimental setup is in Appendix A.3.

Figure 5 compares the performance of different regularization strengths and the benchmark, repre-
sented by the λ2 = 0 curve. Overall, the average test loss decreases when we explicitly incorporate
regularizer 2. For small regularization strengths, we observe consistent improvements over the
benchmark. At larger regularization strengths, regularizer 2 yields better performance under small
learning rates, but it also carries the risk of degrading test performance as the learning rate increases.
These results demonstrate that an appropriately tuned regularizer 2 improves generalization.

4.3 COMPUTATIONAL OVERHEAD OF REGULARIZERS

One potential concern regarding the proposed regularizers is that both involve the batch gradient
∇L (S;At−1 (S)), and computing this term can incur large computation overhead. In practice, we
can use approximation of the batch gradient when implementing the regularizers. For instance,
the average of the previous k mini-batch gradients can be used as an approximation to the batch
gradient when the learning rate is not too large. In the experiment of Section 4.2, we omit the batch
gradient term in regularizer 2 completely because the magnitude of the batch gradient becomes much
smaller than that of most of the mini-batches quickly. In this case, the training time of SGDwReg is
approximately 2.2 times of SGD.

5 RELATED WORK

Solution sharpness perspective. Many studies try to explain the generalization behavior of SGD
from the perspective of solution sharpness. Keskar et al. (2016) show that the generalization drop
of the model is caused by the sharp minimizer it converges to when using large batches. Yang et al.
(2023); Wu & Su (2023) attribute the good generalization of a solution to its low sharpness. Moreover,
Ma & Ying (2021); Wu et al. (2022); Ibayashi & Imaizumi (2021) show that stochasticity in SGD
leads to solutions with low sharpness without explicit regularization.

However, these sharpness-based explanations suffer from the lack of invariance under reparam-
eterization (Andriushchenko et al., 2023). Different parameterizations of the same function can
yield drastically different sharpness values. This fact undermines the claim that the generalization
performance of a function is directly correlated with its sharpness. Our perspective is related to
the sharpness views in that the expected generalization gap decomposition involves the solution’s
Hessian, but crucially differs from them because it considers the entire training trajectory. Since
reparameterization alters the training dynamics and can lead to different solutions, our perspective is
not subject to invariance issues.

Algorithmic stability perspective. Another line of work connects generalization to algorithmic
stability. Bousquet & Elisseeff (2002) and Elisseeff et al. (2005) define different kinds of stability
and lay the foundation for this branch of work. Shalev-Shwartz et al. (2010) explore the connection
between learnability and stability of empirical risk minimization. Recent works in this area include
high-probability bounds (Feldman & Vondrak, 2019), hypothesis set stability (Foster et al., 2019),
and uniformly stable algorithms (Bousquet et al., 2020). Regarding the generalization gap, Zhou
et al. (2022) give a generalization gap bound based on the gradient variability on the training set,
and Thomas et al. (2020) propose an estimation of the generalization gap based on the Hessian and
gradient covariance at the solution evaluated on the population distribution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Prior stability analyses typically yield worst-case generalization bounds under uniform smoothness
assumptions, which can be overly conservative in highly non-convex settings. In contrast, our
decomposition of the expected generalization gap is Hessian-weighted and evaluated at the solutions,
thereby capturing the local curvature in regions of the loss landscape that the algorithm actually
reaches. Free from uniform smoothness bounds, this framework enables us to isolate the impact
of algorithmic variability and identify SGD’s implicit regularization on the bootstrap estimate of
algorithmic variability as the mechanism underlying its generalization advantage.

6 CONCLUSION

We provide an explanation of the generalization advantage of SGD based on a bootstrap estimation
of the algorithmic variability. Specifically, we demonstrate that SGD implicitly regularizes the trace
of the gradient covariance matrix, which serves as a bootstrap estimate of part of the algorithmic
variability bound. This regularization guides SGD toward solutions that are robust to sampling
noise, thereby enhancing generalization performance. While our theoretical analysis relies on
specific assumptions on problem settings, numerical experiments in both synthetic and real-world
settings show that our claims extend to broader settings. The experimental results demonstrate that
incorporating the bootstrap estimates as explicit regularizers can effectively improve generalization
in practice. These findings underscore the central role of the algorithmic variability in generalization
and offer new insights into designing new regularizers to enhance generalization. An important open
problem is whether the optimal regularization strength can be estimated from the training data or
automatically tuned during training.

REPRODUCIBILITY STATEMENT

The detailed experimental setups for the idealized experiment, the DLN experiment, and the CNN
experiment are given in Appendix A.1, A.2, and A.3, respectively. Complete proofs for Lemma
1, Lemma 2, and Theorem 1 are given in Appendix B.1, B.2, and B.3. The source code for all
experiments conducted in this work is included in the zipped supplementary materials.

REFERENCES

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization, 2023. URL
https://arxiv.org/abs/2302.07011.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res.,
2:499–526, 2002. URL http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.
html#BousquetE02.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable
algorithms. In Conference on Learning Theory, pp. 610–626. PMLR, 2020.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable
algorithms with nearly optimal rate. In Conference on Learning Theory, pp. 1270–1279. PMLR,
2019.

Dylan J Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan.
Hypothesis set stability and generalization. Advances in Neural Information Processing Systems,
32, 2019.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

10

https://arxiv.org/abs/2302.07011
http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.html#BousquetE02
http://dblp.uni-trier.de/db/journals/jmlr/jmlr2.html#BousquetE02

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hikaru Ibayashi and Masaaki Imaizumi. Exponential escape efficiency of sgd from sharp minima in
non-stationary regime. arXiv preprint arXiv:2111.04004, 2021.

Robert I Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals of
Mathematical Statistics, 40(2):633–643, 1969.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks.
Advances in Neural Information Processing Systems, 34:16805–16817, 2021.

Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure conver-
gence of stochastic gradient descent in non-convex problems. Advances in Neural Information
Processing Systems, 33:1117–1128, 2020.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal linear
networks: a provable benefit of stochasticity. Advances in Neural Information Processing Systems,
34:29218–29230, 2021.

Peter Richtárik and Martin Takác. Stochastic reformulations of linear systems: algorithms and
convergence theory. SIAM Journal on Matrix Analysis and Applications, 41(2):487–524, 2020.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Valentin Thomas, Fabian Pedregosa, Bart Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio, and
Nicolas Le Roux. On the interplay between noise and curvature and its effect on optimization and
generalization. In International Conference on Artificial Intelligence and Statistics, pp. 3503–3513.
PMLR, 2020.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In The 22nd international conference on
artificial intelligence and statistics, pp. 1195–1204. PMLR, 2019.

Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
descent. In International Conference on Machine Learning, pp. 37656–37684. PMLR, 2023.

Lei Wu, Mingze Wang, and Weijie Su. The alignment property of sgd noise and how it helps select flat
minima: A stability analysis. Advances in Neural Information Processing Systems, 35:4680–4693,
2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ning Yang, Chao Tang, and Yuhai Tu. Stochastic gradient descent introduces an effective landscape-
dependent regularization favoring flat solutions. Physical Review Letters, 130(23):237101, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yi Zhou, Yingbin Liang, and Huishuai Zhang. Understanding generalization error of sgd in nonconvex
optimization. Machine Learning, pp. 1–31, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL SETUP

A.1 IDEALIZED EXPERIMENT

We consider a set of 30 different candidate functions as the population. Each function has a local
minimum at (7, 7), as well as an additional critical point. This second critical point is located at one
point drawn uniformly from the set {(1, 1) , (1, 4) , (1, 7) , (4, 1) , (4, 4) , (4, 7) , (7, 1) , (7, 4)}. With
probability ρ, the additional critical point is a local maximum; otherwise, it is a local minimum. We
set ρ = 0.35. Each critical point is modeled by a Gaussian function, with its height and width drawn
from Gaussian distributions. We construct 10 training sets. Each training set contains 30 candidate
functions, sampled with replacement from the population. We run all experiments for 200 iterations
with an initial learning rate of 0.4 and decay rate of 0.99. Each algorithm is evaluated over 100
different initializations, arranged in a 10× 10 grid on the domain [0, 8]× [0, 8], and the results are
averaged.

This experiment was conducted on an Apple MacBook Pro equipped with an M1 Pro processor and
16 GB of memory. The typical running time for a single training set is approximately 19 minutes.

A.2 SPARSE REGRESSION WITH DIAGONAL LINEAR NETWORKS

For each training set and initialization combination, we run experiments with three different model
initializations and four training sets and average the results to account for the stochasticity. Each train-
ing set contains 40 samples whose inputs are drawn from a 100-d Gaussian distribution N (0, I100).
The label for each sample is generated by taking the inner product between the true solution vector β
and the input, then adding a Gaussian noise to it:

yi = 〈β, xi〉+ ξ, ξ ∼ N (0, 1) . (13)

The sparse true solution vector β has 5 non-zero entries, randomly generated from a Gaussian
distribution N (0, 2I5).

For each combination of initialization and training set, we run the algorithms 4 times and take the
average over the results. We use a constant learning rate of 0.01 throughout the 200 training epochs.

Experiments were conducted using NVIDIA V100 GPUs with 32 GB of memory. For both one and
two explicit regularizers, the typical running time of SGD is approximately 3.2 hours for 200 epochs
at a given regularization strength.

A.3 DEEP NEURAL NETWORKS

We conduct experiments with only regularizer 2, because it is much more tractable to compute than
regularizer 1. We omit the batch gradient term ∇L(S;At−1(S)) to further reduce the computational
cost.

The CNN has two convolutional layers, whose structures are (in_channels=1, out_channels=32,
kernel_size=3, stride=1, padding=1) and (in_channels=32, out_channels=64, kernel_size=3, stride=1,
padding=1), and one fully-connected hidden layer with 128 nodes. We run each algorithm for 400
epochs with gradient clipping and batch size 32. To accelerate convergence, we let the learning rate
decay by 1% after each epoch. For the weight decay benchmark, we conduct a grid search over
candidate values of the decay rate and select 0.01 as the optimal setting.

Experiments were conducted using NVIDIA V100 GPUs with 32 GB of memory. The typical running
times for the original SGD and SGD with the explicit regularizer are 2.5 and 5.5 hours for 400 epochs
at a given regularization strength.

B PROOFS

B.1 PROOF OF LEMMA 1

Lemma 1. Consider a loss function L whose value is bounded by UL, with batch gradient `2-norm
bounded by UG and all third-order partial derivatives bounded by UJ . Assume the parameters are

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

bounded as ‖θ‖2 ≤ UF . If Assumptions 1 and 2 hold for L, the expected generalization gap satisfies

ES,AT
[L (D;AT (S))− L (S;AT (S))] (1)

=
1

N

N∑
i=1

ES,z′
i,AT

[L (z′i;AT (S))]− 1

N

N∑
i=1

ES,z′
i,AT

[
L
(
z′i;AT

(
Si
))]

(2)

= ES,AT

[
1

2
Tr

(
∇2L (S;AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])]
(3)

+O
(
ε1,T ε2,T + δ1,T ε2,TUG + δ1,T δ2,TUGUF + ε32,TUJ + δ2,TUL

)
. (4)

Proof. As mentioned in the main article, Ez′
i
[f] means Ez′

i∼D [f] and ES [f] means ES∼DN [f].

Note that for a specific realization of SGD, it is no longer symmetric in each sample of the training
set. Intuitively, it makes a bigger difference when the replacement happens earlier rather than later.
So, we will average over all the N locations in the training set. We write the expected training loss
over S and AT in terms of sample losses:

ES,AT
[L (S;AT (S))] = EAT

[ES [L (S;AT (S))]] (14)

= EAT

[
ES

[
1

N

N∑
i=1

L (zi;AT (S))

]]
(15)

= EAT

[
1

N

N∑
i=1

ES [L (zi;AT (S))]

]
(16)

=
1

N

N∑
i=1

ES,AT
[L (zi;AT (S))] . (17)

Note that for a certain i ∈ [N], ES [L (zi;AT (S))] = ES,z′
i

[
L
(
z′i;AT

(
Si
))]

and thus,

ES,AT
[L (S;AT (S))] =

1

N

N∑
i=1

ES,z′
i,AT

[
L
(
z′i;AT

(
Si
))]

. (18)

The expected generalization gap can be formulated as

ES,AT
[L (D;AT (S))− L (S;AT (S))] (19)

=
1

N

N∑
i=1

ES,z′
i,AT

[L (z′i;AT (S))]− 1

N

N∑
i=1

ES,z′
i,AT

[
L
(
z′i;AT

(
Si
))]

(20)

=
1

N

N∑
i=1

ES,z′
i,AT

[
L (z′i;AT (S))− L

(
z′i;AT

(
Si
))]

. (21)

We apply a second-order Taylor expansion to the expression in equation 21:

1

N

N∑
i=1

ES,z′
i,AT

[
L (z′i;AT (S))− L

(
z′i;AT

(
Si
))]

(22)

=
1

N

N∑
i=1

ES,z′
i,AT

[
∇L

(
z′i;AT

(
Si
)) (

AT (S)−AT

(
Si
))

(23)

+
1

2

(
AT (S)−AT

(
Si
))T ∇2L

(
z′i;AT

(
Si
)) (

AT (S)−AT

(
Si
))]

(24)

+O
(
ε32,TUJ + δ2,TUL

)
. (25)

The terms ε32,TUJ and δ2,TUL constitute the remainder of the second-order Taylor expansion.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Recall that Assumption 1 assumes that the gradient `2-norm,
∥∥∇L

(
z′i;AT

(
Si
))∥∥

2
, is bounded by

ε1,T with probability 1− δ1,T . Therefore, we can bound the first-order term in equation 22 by

1

N

N∑
i=1

ES,z′
i,AT

[
∇L

(
z′i;AT

(
Si
)) (

AT (S)−AT

(
Si
))

(26)

+
1

2

(
AT (S)−AT

(
Si
))T ∇2L

(
z′i;AT

(
Si
)) (

AT (S)−AT

(
Si
))]

(27)

+O
(
ε32,TUJ + δ2,TUL

)
(28)

=
1

N

N∑
i=1

ES,z′
i,AT

[
1

2

(
AT (S)−AT

(
Si
))T ∇2L

(
z′i;AT

(
Si
)) (

AT (S)−AT

(
Si
))]

(29)

+O
(
ε1,T ε2,T + δ1,T ε2,TUG + δ1,T δ2,TUGUF + ε32,TUJ + δ2,TUL

)
(30)

=
1

N

N∑
i=1

ES,z′
i,AT

[
1

2
Tr
(
∇2L

(
z′i;AT

(
Si
))

J
(
AT (S)−AT

(
Si
)))]

(31)

+O
(
ε1,T ε2,T + δ1,T ε2,TUG + δ1,T δ2,TUGUF + ε32,TUJ + δ2,TUL

)
. (32)

The term ε1,T ε2,T corresponds to the case where both Assumption 1 and 2 hold, the term δ1,T ε2,TUG

corresponds to the case where Assumption 1 does not hold but Assumption 2 holds, and the term
δ1,T δ2,TUGUF corresponds to the case where neither of the two assumptions holds. The term
corresponding to the case where Assumption 1 holds but Assumption 2 does not hold is dominated
by δ2,TUL.

Because sampling (S, z′i) and
(
Si, zi

)
are symmetric,

ES,z′
i,AT

[
f
(
S, Si, zi, z

′
i, AT

)]
= ESi,zi,AT

[
f
(
S, Si, zi, z

′
i, AT

)]
for any function f . Therefore, we can exchange zi with z′i and S with Si in equation 31, and then
apply the bound on the solution deviation in Assumption 2 to obtain

1

N

N∑
i=1

ES,z′
i,AT

[
1

2
Tr
(
∇2L

(
z′i;AT

(
Si
))

J
(
AT (S)−AT

(
Si
)))]

(33)

=
1

N

N∑
i=1

ESi,zi,AT

[
1

2
Tr
(
∇2L

(
z′i;AT

(
Si
))

J
(
AT (S)−AT

(
Si
)))]

(34)

=
1

N

N∑
i=1

ES,z′
i,AT

[
1

2
Tr
(
∇2L (zi;AT (S)) J

(
AT

(
Si
)
−AT (S)

))]
(35)

=
1

N

N∑
i=1

ES,AT

[
1

2
Tr
(
∇2L (zi;AT (S))

1

N

N∑
q=1

Ez′
q
[J (AT (Sq)−AT (S))]

)]
(36)

+O(ε32,TUJ + δ2,TUL) (37)

= ES,z′
i,AT

[
1

2
Tr
(1

N

N∑
i=1

∇2L (zi;AT (S))
1

N

N∑
q=1

Ez′
q

[
J
(
AT

(
Si
)
−AT (S)

)])]
(38)

+O(ε32,TUJ + δ2,TUL) (39)

= ES,AT

[
1

2
Tr

(
∇2L (S;AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])]
(40)

+O(ε32,TUJ + δ2,TUL). (41)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Plugging equation 40-equation 41 into equation 31 gives the desired result:

ES,AT
[L (D;AT (S))− L (S;AT (S))] (42)

= ES,AT

[
1

2
Tr

(
∇2L (S;AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])]
(43)

+O
(
ε1,T ε2,T + δ1,T ε2,TUG + δ1,T δ2,TUGUF + ε32,TUJ + δ2,TUL

)
. (44)

B.2 PROOF OF LEMMA 2

Lemma 2. Consider the case where the model is trained with SGD on the training set S for M
epochs, with each sample appearing exactly once in every epoch. Assume that

1. The learning rates are small, i.e., letting Q = maxt ηt, we have Q � 1.

2. The operator norm of ∇2L (S; θ) is uniformly bounded by a constant C � 1
Q .

Then, the algorithmic variability can be bounded as

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])
(5)

≤ Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
i

[
J (∇L (z′i;At−1 (S))−∇L (D;At−1 (S)))

])
(6)

+Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2t J
(
∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))

))
(7)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
.

(8)

Proof. For simplicity of exposition, and without loss of generality, we only consider the case of SGD
with batch size 1 in this proof.

From a fixed model initialization A0, the update rule of SGD leads to

AT (S) = A0 −
T∑

t=1

ηt∇L (Sjt ;At−1 (S)) (45)

and

AT

(
Si
)
= A0 −

T∑
t=1

ηt∇L
(
Si
jt ;At−1

(
Si
))

. (46)

Thus,

AT

(
Si
)
−AT (S) =

T∑
t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1

(
Si
)))

. (47)

Now we prove by induction that

Ak

(
Si
)
−Ak (S) =

k∑
t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

))
(48)

+O
(
kQ
(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
, (49)

for k = [T].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Base case: Because A0 (S) = A0

(
Si
)
= A0, it is easy to check that equation 48-equation 49 hold

when k = 1.

Inductive hypothesis: Suppose equation 48-equation 49 hold for all 1 ≤ k ≤ p.

Inductive step:

Ap+1

(
Si
)
−Ap+1 (S) (50)

= Ap

(
Si
)
−Ap (S)− ηp+1∇L

(
Si
jp+1

;Ap

(
Si
))

+ ηp+1∇L
(
Sjp+1

;Ap (S)
)

(51)

= Ap

(
Si
)
−Ap (S) + ηp+1

(
∇L

(
Sjp+1

;Ap (S)
)
−∇L

(
Si
jp+1

;Ap (S)
))

(52)

− ηp+1

(
∇L

(
Si
jp+1

;Ap

(
Si
))

−∇L
(
Si
jp+1

;Ap (S)
))

. (53)

The solution stability bound grows with the number of iterations (Hardt et al., 2016). Consequently,
Assumption 2 holds with ε2,T and δ2,T for the entire training process. We can apply a Taylor
expansion to the term in equation 53:

∇L
(
Si
jp+1

;Ap

(
Si
))

−∇L
(
Si
jp+1

;Ap (S)
)

(54)

= ∇2L
(
Si
jp+1

;Ap (S)
) (

Ap

(
Si
)
−Ap (S)

)
+O

(
ε32,TUJ + δ2,TULU

3
F

)
. (55)

Recall that the Hessian operator norm is bounded by C � 1
Q . Plugging equation 55 back into

equation 53 obtains

Ap+1

(
Si
)
−Ap+1 (S) (56)

= Ap

(
Si
)
−Ap (S) + ηp+1

(
∇L

(
Sjp+1 ;Ap (S)

)
−∇L

(
Si
jp+1

;Ap (S)
))

(57)

− ηp+1

(
∇L

(
Si
jp+1

;Ap

(
Si
))

−∇L
(
Si
jp+1

;Ap (S)
))

(58)

= Ap

(
Si
)
−Ap (S) + ηp+1

(
∇L

(
Sjp+1 ;Ap (S)

)
−∇L

(
Si
jp+1

;Ap (S)
))

(59)

− ηp+1∇2L
(
Si
jp+1

;Ap (S)
) (

Ap

(
Si
)
−Ap (S)

)
+O

(
Q
(
ε32,TUJ + δ2,TULU

3
F

))
(60)

= Ap

(
Si
)
−Ap (S) + ηp+1

(
∇L

(
Sjp+1 ;Ap (S)

)
−∇L

(
Si
jp+1

;Ap (S)
))

(61)

+O
(
Q
(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
(62)

=

p∑
t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

))
(63)

+O
(
pQ
(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
(64)

+ ηp+1

(
∇L

(
Sjp+1

;Ap (S)
)
−∇L

(
Si
jp+1

;Ap (S)
))

(65)

+O
(
Q
(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
(66)

=

p+1∑
t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

))
(67)

+O
(
(p+ 1)Q

(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
. (68)

Thus, equation 48-equation 49 also hold for the case k = p+ 1. By the principle of mathematical
induction,

Ak

(
Si
)
−Ak (S) =

k∑
t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

))
(69)

+O
(
kQ
(
ε32,TUJ + δ2,TULU

3
F + CQUF

))
(70)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

for k = [T].

For each i ∈ [N], there are M indices t such that jt = i. For simplicity of notation, we require that
the sample sequence is not shuffled for different epochs, so that jm = jm+rN = m,m ∈ [N] , r ∈
[M − 1]. However, the result also holds when the sample sequence is shuffled in each epoch.

It follows that

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])
(71)

= Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J

(
T∑

t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

)))])
(72)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
.

(73)

Note that
N∑
i=1

Ez′
i

[(
∇L (Sjm ;Am−1 (S))−∇L

(
Si
jm ;Am−1 (S)

))
(74)

(
∇L (Sjn ;An−1 (S))−∇L

(
Si
jn ;An−1 (S)

))T]
= 0 (75)

when jm 6= jn. In this case, since S and Si only differ in the i-th sample, either Sjm = Si
jm

or
Sjn = Si

jn
, making the outer product of the gradient differences zero. Hence,

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J

(
T∑

t=1

ηt
(
∇L (Sjt ;At−1 (S))−∇L

(
Si
jt ;At−1 (S)

)))])
(76)

= Tr

(
∇2L (S,AT (S)) (77)

N∑
i=1

Ez′
i

[
J

(
M−1∑
r=0

ηi+rN

(
∇L

(
Sji+rN

;Ai+rN−1 (S)
)
−∇L

(
Si
ji+rN

;Ai+rN−1 (S)
)))])

(78)

≤ Tr

(
∇2L (S,AT (S)) (79)

N∑
i=1

Ez′
i

[
M−1∑
r=0

Mη2i+rNJ
(
∇L

(
Sji+rN

;Ai+rN−1 (S)
)
−∇L

(
Si
ji+rN

;Ai+rN−1 (S)
))])

(80)

= Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
jt
∼D

[
J
(
∇L (Sjt ;At−1 (S))−∇L

(
Sjt
jt
;At−1 (S)

))])
(81)

= Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
jt
∼D

[
J
(
∇L (Sjt ;At−1 (S))−∇L

(
z′jt ;At−1 (S)

))])
(82)

= Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
i

[
J (∇L (Sjt ;At−1 (S))−∇L (z′i;At−1 (S)))

])
(83)

= Tr

(
∇2L (S,AT (S))Ez′

i

[
T∑

t=1

Mη2t J (∇L (Sjt ;At−1 (S))−∇L (z′i;At−1 (S)))

])
. (84)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Equation 77-equation 78 aggregate all iterations which select the same samples in the
∑M−1

r=0 sum,
and the factor 1

N is absent because there is exactly one i for which this expectation is non-zero. The
inequality in equation 79-equation 80 results from the fact that, for any positive semi-definite matrix
G ∈ Rd×d and any vector sequence {up ∈ Rd : p ∈ [M]},

Tr

(
GJ

(
M∑
p=1

up

))
≤ Tr

(
GM

M∑
p=1

J (up)

)
, (85)

which can be derived as follows:

Tr

(
GM

M∑
p=1

J (up)

)
− Tr

(
GJ

(
M∑
p=1

up

))
(86)

= M

M∑
p=1

‖up‖2G −

∥∥∥∥∥
M∑
p=1

up

∥∥∥∥∥
2

G

(87)

=
1

2

M∑
p,q=1,p6=q

‖up − uq‖2G (88)

≥ 0. (89)

By plugging the results in equation 76-equation 84 into equation 71-equation 73 and rearranging the
terms, we obtain

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])
(90)

≤ Tr

(
∇2L (S,AT (S))Ez′

i

[
T∑

t=1

Mη2t J (∇L (Sjt ;At−1 (S))−∇L (z′i;At−1 (S)))

])
(91)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
(92)

= Tr

(
∇2L (S,AT (S))Ez′

i

[
T∑

t=1

Mη2t J
(
(∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))) (93)

+ (∇L (D;At−1 (S))−∇L (z′i;At−1 (S)))
)])

(94)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
.

(95)

Note that

Ez′
i

[
(∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))) (∇L (D;At−1 (S))−∇L (z′i;At−1 (S)))

T
]

(96)

= (∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S)))Ez′
i

[
(∇L (D;At−1 (S))−∇L (z′i;At−1 (S)))

T
]

(97)

= (∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S)))
(
∇L (D;At−1 (S))− Ez′

i
[∇L (z′i;At−1 (S))]

)T
(98)

= (∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))) (∇L (D;At−1 (S))−∇L (D;At−1 (S)))
T (99)

= 0. (100)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Plugging this identity back into equation 93-equation 94 yields the desired result:

Tr

(
∇2L (S,AT (S))

1

N

N∑
i=1

Ez′
i

[
J
(
AT

(
Si
)
−AT (S)

)])
(101)

≤ Tr

(
∇2L (S,AT (S))Ez′

i

[
T∑

t=1

Mη2t J
(
(∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S))) (102)

+ (∇L (D;At−1 (S))−∇L (z′i;At−1 (S)))
)])

(103)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
(104)

= Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2tEz′
i
[J (∇L (D;At−1 (S))−∇L (z′i;At−1 (S)))]

)
(105)

+Tr

(
∇2L (S,AT (S))

T∑
t=1

Mη2t J (∇L (Sjt ;At−1 (S))−∇L (D;At−1 (S)))

)
(106)

+O
(
TQε2,T

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)
+ T 2Q2

(
ε32,TUJ + δ2,TULU

3
F + CQUF

)2)
.

(107)

B.3 PROOF OF THEOREM 1

Theorem 1. Denote by ΣS
B (θ) the gradient covariance of mini-batches of size B evaluated on

dataset S at θ. If the conditions of Lemma 2 hold, θ lies within a compact set Θ, and ∇L (z′i; θ)
is continuous with respect to θ on Θ, then as the training set size N → ∞, the difference between
the accumulated population gradient covariance and the accumulated gradient covariance of SGD
converges to 0 almost surely, i.e.,

T∑
t=1

Ez′
i

[
J (∇L (z′i;At−1 (S))−∇L (D;At−1 (S)))

]
−

T∑
t=1

BΣS
B (At−1 (S))

a.s.→ 0. (9)

Proof. We denote a training set of size N as S = {z1, z2, . . . , zN}, zi ∼ D, i ∈ [N]. We use zi
to denote samples in S, and z′ to denote an independent sample drawn from either the population
distribution D or the empirical distribution DS

emp associated with S. We proceed to define the
variables

Zi (θ) = ∇L (zi; θ)−∇L (D; θ) , zi ∼ D, i ∈ [N] (108)

ΣD (θ) = Ez′∼D

[
J (∇L (z′; θ)−∇L (D; θ))

]
(109)

Z̄N (θ) =
1

N

N∑
i=1

Zi (θ) . (110)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Then, we can write

Ez′∼DS
emp

[
J (∇L (z′; θ)−∇L (S; θ))

]
(111)

= Ez′∼DS
emp

[
J (∇L (z′; θ)−∇L (D; θ) +∇L (D; θ)−∇L (S; θ))

]
(112)

= Ez′∼DS
emp

[
J ((∇L (z′; θ)−∇L (D; θ))− (∇L (S; θ)−∇L (D; θ)))

]
(113)

= Ez′∼DS
emp

[
J (∇L (z′; θ)−∇L (D; θ))

]
− Ez′∼DS

emp

[
J (∇L (D; θ)−∇L (S; θ))

]
(114)

=
1

N

N∑
i=1

J (Zi (θ))− J
(
Z̄N (θ)

)
. (115)

Let v(j) indicate the j-th entry of vector v. Due to the continuity of ∇L (z′; θ), Z(j)
i (θ) is a continuous

function of θ for any zi. Also, from the bound on the `2-norm of the gradient, Z(j)
i (θ) is bounded

by a function h (zi) for any zi and θ, where h is an integrable function of zi with respect to the
distribution D. With these conditions, according to Theorem 2 in Jennrich (1969), for any j, k ∈ [N],

1

N

N∑
i=1

Z
(j)
i (θ)Z

(k)
i (θ)

a.s.→ Ez1∼D

[
Z

(j)
1 (θ)Z

(k)
1 (θ)

]
= ΣD

jk (θ) (116)

uniformly for all θ ∈ Θ as N → ∞. Because Zi has a finite number of entries,

1

N

N∑
i=1

J (Zi (θ))
a.s.→ ΣD (θ) (117)

uniformly for all θ ∈ Θ as N → ∞.

From the strong law of large numbers, as the training set size approaches infinity, the mean of any
gradient entry over the training set converges almost surely to its population mean. Since Z̄

(j)
N (θ)

represents the difference between the mean gradient over the training set S and the population
gradient, for any j ∈ [N],

Z̄
(j)
N (θ)

a.s.→ 0 (118)

uniformly for all θ ∈ Θ as N → ∞. Because Z̄N has a finite number of entries,

J
(
Z̄N (θ)

) a.s.→ 0 (119)

uniformly for all θ ∈ Θ as N → ∞.

Combining equation 117 and equation 119 leads to

Ez′∼DS
emp

[
J (∇L (z′; θ)−∇L (S; θ))

]
− ΣD (θ)

a.s.→ 0 (120)

uniformly for any θ ∈ Θ as N → ∞.

At θ, the gradient covariance of the mini-batches of size B sampled from dataset S can be expressed
as the empirical gradient covariance ΣS

B (θ) = 1
BEz′∼DS

emp

[
J (∇L (z′; θ)−∇L (S; θ))

]
. Thus,

with the uniform convergence in equation 120, we obtain

T∑
t=1

Ez′∼D

[
J (∇L (z′;At−1 (S))−∇L (D;At−1 (S)))

]
−

T∑
t=1

BΣS
B (At−1 (S))

a.s.→ 0 (121)

as N → ∞, which is equivalent to the desired result.

20

	Introduction
	Background
	Our Contributions
	Paper Outline

	Preliminaries
	Empirical Risk Minimization and Generalization Gap
	Stochastic Gradient Descent
	Bootstrap Estimation
	An Idealized Experiment

	Theoretical Results
	Notations
	Decomposition of the Expected Generalization Gap
	Bootstrap Estimation of the Algorithmic Variability
	Implicit Regularizer and Generalization
	Empirical Validation

	Numerical Experiments
	Sparse Regression with Diagonal Linear Networks
	Deep Neural Networks
	Computational Overhead of Regularizers

	Related Work
	Conclusion
	Experimental Setup
	Idealized Experiment
	Sparse Regression with Diagonal Linear Networks
	Deep Neural Networks

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

