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Abstract

Learning latent actions from action-free video has emerged as a powerful paradigm
for scaling up controllable world models learning. The latent actions offer an
extra degree of freedom for users to generate videos iteratively. However, existing
approaches often rely on monolithic inverse and forward dynamics models to learn
one latent action that controls all, which struggle to scale in complex scenes where
different entities act simultaneously. In this work, we propose FLAM, a factored
dynamics framework that decomposes the latent state into independent factors,
each with its own inverse and forward dynamics model. This structure enables
more accurate modeling of complex, multi-entity dynamics and improves the video
generation quality in action-free video settings. Evaluated on Multigrid, Proc-
gen, nuPlan and Sports datasets, FLAM consistently outperforms the monolithic
dynamics model, demonstrating the superiority of the factorized model.

1 Introduction

Recent advances in Latent Action Models (LAM) [29, 2] have unlocked the possibilities of learning
world models from action-free videos that are abundant on the web. Specifically, these approaches
use an inverse dynamics model to encode environmental changes into a single latent action. The
latent action is then used to train a forward dynamics model, allowing controllable predictions of
future frames purely from in-the-wild videos.

However, in-the-wild videos often contain complex scenes where many entities may be taking
actions simultaneously: for instance, a robot video may include independent joint movements, object
manipulation, and shifting camera perspectives; while a soccer game involves several players, the
ball, and even background audience motion, each of which acts independently. Compressing all these
motions into a single latent action is challenging, since the complexity of actions scales exponentially
with the number of movable entities (Fig. 1). Consequently, existing methods struggle with latent
action learning in such settings, which severely limits their scalability to in-the-wild scenarios.

In this work, we propose the Factored Latent Action Model (FLAM), where the latent state is
decomposed into a set of factors, each independently predicting its latent action and its next state via
shared factored inverse and forward dynamics models. By sharing a common latent action codebook
across factors, FLAM reduces the challenge of learning a massive codebook covering all action
combinations to the simpler task of learning a small codebook for each entity’s action. Unlike most
prior LAM approaches that use a monolithic scene representation entangling all entities, FLAM
factorizes the scene into compositional entities with a shared forward dynamics model, inherently
supporting permutation invariance and enabling stronger generalization. With next frame prediction
as the training objective, FLAM learns structured state and action representations from action-free
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Figure 1: In multi-entity scenarios, (left) such as an intersection with three road users: (middle) a vanilla latent
action model must compress all possible action combinations into a single latent action, which makes learning
challenging due to the need for a huge codebook of size |A|K . (right) In contrast, FLAM decomposes the state
and latent representation into K factors and adopts the same small action codebook of size |A| for each factor,
enabling more efficient learning.

video data, leading to more accurate modeling of complex, multi-entity dynamics and improved
prediction quality compared to previous work.

We evaluated our method in challenging domains including real-world autonomous driving, sports,
and egocentric activity videos, where FLAM outperforms previous state-of-the-art methods both in
dynamics prediction quality and video generation controllability.

2 Related Work

In this section, we first discuss previous works in learning world models from action-free videos.
Next, we discuss prior works in factorized decision making and object-centric representations, whose
strength and weakness inspire FLAM.

Dynamics Modeling without Action Labels Given the abundant source of videos and the scarcity
of action labels, several methods have been developed to learn from pure observations. PlaNet [14]
learns a latent dynamics model for planning. [23] learns both object structure and dynamics from
videos using keypoint representation. ILPO [10] learns a latent policy with forward dynamics model
only, and later maps the latent policy output to real action through an action remapping network.
LAPO [29] and Genie [2] jointly learn an inverse dynamics model jointly with a forward dynamics
model. [24] then introduce a small portion of ground-truth actions as dynamics modeling supervision.
[34] expand learning from observation from vision only to vision and language modalities. Past work
[36, 35, 1, 34] has proven the value of dynamics modeling without action labels in applications such
as learning to drive, play games, and manipulate with robot arms from videos. Our work is mainly
based on the LAPO framework, since it is the SOTA method that incorporates all four components:
inverse dynamics modeling, forward dynamics modeling, real action remapping and policy learning.
However, noisy real-world videos usually include more than one entity, and LAPO falls short in
modeling those complex scenes, which motivates our method focusing on the dynamics modeling for
multi-entity videos through factorization.

Factorization in Decision Making Factorization has long been used to exploit structured state
and action spaces in complex environments, often through the factored MDP formulation [26, 13].
Recent works have applied this principle to derive factored forward dynamics [28, 33], factored
policies [15, 16], and factored value functions [31]. FLAM is motivated by the same principle that
factorization simplifies complexity into manageable components. However, it applies this idea to
learning world models from action-free video, where the underlying factorization is not given. [19] is
a similar work that also deals with world models from action-free video. However, FLAM is the first
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factored latent world model that does not use pre-trained or co-trained object-centric representation,
and specifically focus on multi-entity scenarios.

Object-Centric Representation Learning Object-centric learning aims to represent complex
scenes by isolating individual objects from the background and from each other, leading to improved
generalization and modeling capabilities. Key challenges include the need for supervision, leading to
the development of many unsupervised methods. MONet[3] and IODINE[12] achieved unsupervised
multi-object segmentation through attention and iterative amortized inference. Slot Attention [20]
uses iteratively updated slots to learn disentangled, object-based representations. DINO [5, 25] uses
a transformer-based architecture instead. Recent work such as [6, 18] has focused on improving
object-centric learning fidelity in noisy real-world data. In our work, we use Slot Attention as the
factorizer for the state representation and use the forward prediction task as the learning signal. One
thing that distinguishes our representation from the object-centric representation is that we do not use
the reconstruction task for representation learning; thus the representation tends to focus on gathering
groups of entities with similar dynamics instead of those with similar superficial visual properties.

3 Preliminaries

Latent Action Model Given a video dataset, we seek to model the dynamics with only observations;
without any action labels. The Latent Action Model (LAM) is a model that uses an inverse dynamics
model (IDM) and a forward dynamics model (FDM) to infer latent actions. Though not fully aligned
with real actions with physical meanings, the inferred latent actions capture the most essential change
during the transition, thus can be used for subsequent policy learning.

Figure 2: Latent action model
architecture.

As shown in Fig. 2, both the IDM and the FDM observe ot, but only
the IDM observes ot+1. Therefore, in order to accurately predict
ot+1, the IDM must extract useful transition information through the
latent action at for the FDM. However, if no bottleneck constraints
are added in at, the model is likely to collapse, as a naive solution
would be simply to copy ot+1.

Thus, prior methods use vector quantization to discretize the latent
action into a small set of codes, ensuring that it is compact [32].
While action quantization is a necessary step to ensure that it only
encodes the most important changes rather than copying the future
frame, it also limits the expressiveness of the latent action. One
example is scenarios where many state variables have independent
actions, such as a crowded intersection, and it is suboptimal and
even infeasible to compress all entities’ actions into a single latent
action.

As a solution, FLAM factorizes both the state representation and the latent action into independent
factors, enabling us to share a small codebook across all factors, as discussed in detail in Section 4.

4 Factored Latent Action Model (FLAM)

From a high-level perspective, FLAM scales latent action models to multi-entity scenarios by inferring
a set of latent actions rather than a single latent action between each pair of frames in a factored
manner, enabled by two learning phases shown in Fig. 3:

• Encoder learning (Section 4.1): FLAM pre-trains a VQ-VAE to extract high-level features from
pixels, allowing the latent action model to learn in the feature space rather than the pixel space for
the purpose of efficient learning.

• Latent action model (LAM) learning (Section 4.2): Using the extracted features, FLAM decom-
poses the scene into several independent factors, also referred to as slots. For each slot, an inverse
dynamics model infers a separate latent action from its current and next-frame values. Then, based
on its current value and the corresponding latent action, a forward dynamics model independently
predicts the next-frame value for each slot. Finally, all predicted slots are mapped back to the
feature space and decoded into the next video frame.
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Figure 3: Two training stages of FLAM. (a) A VQ-VAE is pretrained to extract features for latent action model
learning. (b) FLAM infers latent actions and makes predictions for each slot independently, with all modules
trained to minimize prediction error.

After FLAM is well trained to model the world from action-free videos, its latent action outputs can
be used for either controllable video generation or policy learning to achieve tasks. We refer to this as
the third phase, and discuss how to leverage FLAM for both settings in Section 4.3.

4.1 Pretrained Encoder

As shown in Fig. 3 (a), FLAM learns a VQ-VAE [32] to extract features from raw pixels, enabling fast
LAM learning. For each frame o ∈ RH×W×3, a CNN encoder first extracts N patch-level features
z ∈ RN×dz . The features are then quantized from continuous encoder outputs to the nearest entry in
a discrete codebook, denoted as zq ∈ RN×dz , using finite scalar quantization FSQ [22], which forces
features into a finite set of learned embeddings. At the same time, we also record their codebook
indices as c ∈ {1, . . . , C}N . By applying vector quantization, FLAM reformulates the next-step
feature prediction from a regression task (predicting features z) to a classification task (predicting
indices c), which has been shown to improve prediction quality [30] (see details in Sec. 4.2). Finally,
a decoder reconstructs the frame from the quantized feature:

z = Encoder(o),
zq, c = FSQ(z),

ô = Decoder(zq).

The VQ-VAE is trained by minimizing the following reconstruction loss:

LVQ-VAE(o) = ||o− ô||2. (1)

4.2 Factored Latent Action Model (FLAM)

As shown in Fig. 3 (b), our latent action model contains four key components: 1) a factorizer that
decomposes the scene zq into a set of independent slots s, 2) an inverse dynamics model that infers
a separate latent action ait for each slot, 3) a forward dynamics model that, given the current slot
value and latent action, predicts the next-frame value for each slot, and 4) an aggregator that maps the
predicted slots back to the feature space. These four components are jointly trained to minimize the
feature prediction error.

Factorizer To decompose the scene into a set of factors with independent actions, FLAM uses slot
attention [20]. For each frame, K slots st ∈ RK×ds are initialized from learned embeddings and
then compete to bind to different regions in the frame through iterative slot attention:

st = SlotAttention(zt). (2)
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Algorithm 1 FLAM Latent Action World Model

1: Prepare a dataset of (ot, ot+1).
2: Initialize the VQ-VAE (Encoder, FSQ, Decoder) and the latent action model (Factorizer,

IDM, FDM, Aggregator).
3: Pretrain the VQ-VAE with the reconstruction loss in Eq. (1). ▷ Sec. 4.1
4: // Train the latent action model ▷ Sec. 4.2
5: Extract features with the VQ-VAE encoder: zt = Encoder(ot), zt+1 = Encoder(ot+1).
6: Extract slots using Eq. 2: s1:Kt = Factorizer(zt), s1:Kt+1 = Factorizer(zt+1).
7: for each slot i = 1, . . . ,K do
8: Infer the latent action: ait = IDM(s1:Kt , sit+1).
9: Predict the next-frame slot: ŝit+1 = FDM(s1:Kt , ait).

10: Map predicted slots back to the feature space: ẑt+1 = Aggregator(zt, ŝ1:Kt+1).
11: Optimize the latent action model with the prediction loss in Eq. 5.

Note that although FLAM employs slot attention, a technique that is also widely used for learning
object-centric representations, FLAM differs from prior object-centric representation work in its
learning signal. While object-centric representation methods typically optimize reconstruction and
extract objects based on visual features, FLAM instead optimizes prediction and extracts factors
based on action independence, as detailed in the Training Objective paragraph.

Inverse Dynamics Model (IDM) After extracting independent slots, the IDM aims to infer a latent
action ait for each slot i, based on all current slots s1:Kt and its next-frame value sit+1:

ait = IDM(s1:Kt , sit+1), (3)

where for a variable x, x1:K denotes the set {xi}Ki=1, and we use s1:Kt and st interchangeably. We
use all current slots rather than just sit as inputs to account for interactions between factors, enabling
more accurate latent action prediction (e.g., a person in a car moves because of the car rather than by
themselves).

To implement the IDM, we adopt the spatio-temporal model introduced in Genie [2]. The spatial
block applies self-attention to capture interaction information across s1:Kt , while the temporal block
applies cross-attention to compare sit+1 with its current value and encode the most meaningful
changes between them:

s1:Kt = SelfAttention(s1:Kt ),

ait = CrossAttention(query = sit+1, key = [sit, s
i
t+1]).

Note that although we only use the current and next values in the temporal block, our model can be
easily extended to use all prior frames si1:t as inputs.

Similar to existing LAM methods, we use vector quantization to compress the latent action into a
small set of codes. This compression limits the capacity of the latent action, preventing it from simply
copying sit+1 and bypassing dynamics learning. In our work, we use the same IDM (including the
latent action codebook) for all slots.

Forward Dynamics Model (FDM) To provide the learning signals for the IDM, the forward
dynamics model takes all current slots s1:Kt together with the latent action ait and predicts the
next-frame value for each slot ŝit+1:

ŝit+1 = FDM(s1:Kt , ait). (4)

Similarly to the IDM, we use all current slots instead of just sit as inputs to capture interactions
between slots, as they are not intended to be encoded by the latent action. For implementation, we
use the same spatio-temporal model as the IDM, except that the temporal block uses ait as the key.
We also use the same FDM to predict all slots.

Aggregator Finally, the aggregator maps the predicted slots back into the feature space, enabling
decoding into the next-frame prediction. Instead of relying solely on ŝit+1 to predict the feature, the
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aggregator also conditions on the current feature zt. This design allows ŝit+1 to focus on capturing
changes between current and next time steps, rather than redundantly encoding static visual details.
Concretely, the aggregator uses cross-attention to update each patch feature based on the predicted
slots:

ẑt+1 = CrossAttention(query = zt, key = ŝ1:Kt+1).

Training Objective The four components of the latent action model (Factorizer, IDM, FDM, and
Aggregator) are trained jointly to minimize the feature prediction error:

LLAM(zt, zt+1) = ∥zt+1 − ẑt+1∥. (5)

As mentioned earlier, although the factorizer and the aggregator use implementations similar to prior
object-centric representation methods, the prediction loss, together with the design of independent
latent actions for each slot in the IDM and FDM, enables FLAM to separate entities in a scene
according to their independent dynamics. This design differs from object-centric representation
methods, which rely on reconstruction loss and separate objects based on visual appearance.

4.3 Learned Latent Actions Utilization

The latent actions learned from FLAM implicitly incorporate the action information of each entity in
the world, thus offering a degree of freedom to manipulate the video generation. We can let human
specify a latent action value from the learned latent action codebook, and use that as a control variable
to generate video accordingly. Conditioned on different latent action chosen, the video generation
will be diverse.

The latent actions can also be used as action labels for policy learning on video frames. Because the
dimensions of the latent action do not necessarily align with the dimensions of the real action, a latent
action decoder f that maps latent action a to real action u is needed. We first collect a small dataset
of latent action-action pairs and train a latent action decoder f offline through supervised learning.
We can then learn a policy πu through behavior cloning on the observation-action pairs (o, f(a))
obtained by applying FLAM and a latent action decoder on expert demonstration videos DE :

Lπu = E(o,a)∼DE
∥πu(o)− f(a)∥2 . (6)

5 Experiments

Our central hypothesis is that our factorized representation and latent action learning approach can
better capture the features and dynamics of each entity separately, thus leading to more accurate
world modeling on complex, noisy, multi-entity videos. These more accurate world models can then
be used for planning and policy learning, leading to higher performance on downstream tasks. To
this end, we evaluate our method in both clean simulation settings as well as more noisy real-world
settings. We focus on designing our experiments to answer the following key questions:

1. Does factorization truly help learning more accurate world models?
2. Can FLAM work well on noisy real-world data?

5.1 Settings

We conducted experiments on 2 simulation datasets and 3 real-world datasets. The simulation datasets
include a Multigrid dataset and a Procgen dataset. The real-world datasets include an autonomous
driving dataset, a sports dataset, and an egocentric activity dataset. We pick these datasets because
they all include multiple independent entities, such as cars, players, or two human arms. Please refer
to Appendix B for more details. The hyperparameters are listed in Tab. 4.

5.2 Baselines

We compare our method with three baseline algorithms. Latent Action Model (LAM) is the vanilla
variant that learns latent actions without factorization. LAM using Object-Centric representation
(OC+LAM) is the variant that adds a reconstruction loss on top of the prediction loss of the vanilla
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LAM. World Model (WM) is the variant without factorization and uses ground truth actions rather
than latent actions for forward dynamics prediction. While LAM and LAM+OC run on all datasets,
WM only runs on the simulation datasets because ground-truth action labels are not available within
the real-world datasets.

5.3 Encoder-Decoder Pre-training

As introduced in Section 4, the encoder-decoder architecture feature extractor is pre-trained and
frozen in the latent action model learning stage. Instead of training a universal feature extractor for
all data, we separately train a feature extractor for each dataset. This is because the focus of our work
is to prove the superiority of factorization in world modeling, rather than a universal world model.
Feature extractors customized for data can ensure that this part is not the bottleneck of our model, for
the sake of fair comparison of multiple latent action model variants. Fig. 5 and Fig. 6 in Appendix C
are the illustrations of the original video frames and the reconstructed video frames using the trained
feature extractor. We can tell from the small difference between the original frames and reconstructed
frames that the feature extractors are trained very well to capture useful information.

5.4 Do we need factor tracking?

When using slot attention as the factorizor and inferring a separate latent action for each slot, a
question would naturally arise that whether we need one-on-one matching between slots on two
different frames. We tried multiple ways of slot matching and find that recursive slot initialization -
using the final slots of previous frame as the initialization for iterative slot updates on current frame
would lead to the best results. This reveals that it is too hard for the factorized world model to
implicitly learn the tracking of factors and there is the necessity of offering priors through explicit
slot matching. For details of various slot matching methods we tried and results comparison, please
refer to Appendix D.

5.5 How does FLAM perform compared to the vanilla latent action model?

We examine the performance of FLAM from two perspectives, the dynamics modeling accuracy, i.e.
how good the model is in future video frame prediction, and controllability, i.e. how much adjustment
users can apply onto video generation through the latent actions. For dynamics modeling accuracy,
after scaling the pixel values into the [0,1] space, we calculate the Peak Signal-to-Noise Ratio (PSNR)
as the evaluation metric, using the mean squared error (MSE) between the 1-step ahead ground-truth
frame and predicted frame:

PSNRt=1(xt, x̂t) = 10 ∗ log10
(

1

MSE(xt, x̂t)

)
,

where xt represents the ground-truth frame at time t and x̂t represents the predicted frame at time
t using latent actions a1:t inferred from ground-truth frames. The bigger the PSNR is, the more
accurate the model is on dynamics modeling. For controllability, we use a metric called the PSNR
difference devised by [2]:

∆tPSNR = PSNRt(xt, x̂t)− PSNRt(xt, x̂
′
t).

It measures the difference between the video frames x̂t generated conditioned on a sequence of
latent actions inferred from ground-truth frames, and the video frames x̂′

t generated conditioned on a
sequence of latent actions randomly sampled from a categorical distribution. The greater ∆tPSNR,
the higher level of controllability the latent actions offer during the video generation.

The results are shown in Tab. 1. The results show that FLAM achieves lower predection error
than other baselines without access to ground truth actions. This validates our assumption that in
environments with multiple independent entities, factorizing the states and learning a dynamics
model separately for each entity would help modeling the world dynamics more accurately. Although
in Procgen environment, FLAM gets slightly worse controllability than LAM. This leads us to
carefully choose the number of factors in the following experiments, considering the complexity of
the scenes. Meanwhile, because FLAM outperforms OC+LAM, we can claim that without learning
object-centric representation through an auxiliary reconstruction task, we can still do world modeling
well by learning dynamics-aware representations, especially in the multi-entity settings. In fact,
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OC+LAM appears to suffer from a performance degradation compared to LAM, which reveals
that object-centric representations are not always beneficial to world modeling, if learned from
superficial visual appearance. Due to space limit, please refer to Appendix E for visualized examples
of reconstruction and prediction rollout samples.

Table 1: Video prediction performance of all methods across the simulation datasets.
Dataset WM LAM OC+LAM FLAM

PSNR(↑) Multigrid 48.90 31.04 26.79 35.49
Procgen 24.74 25.28 20.87 26.28

∆t PSNR(↑) Multigrid - 7.84 0.11 11.24
Procgen - 5.02 2.18 3.99

5.6 When do we need FLAM?

To investigate whether FLAM indeed help with dynamics modeling in complex multi-entity videos,
we conduct an ablation study over the number of entities in the multigrid environment. As we can
see from 2, when the number of moving entities increases in the scene, FLAM is more robust than
non-factored LAM.

Table 2: Video prediction performance across Multigrid environments with various number of entities.
# Entities WM LAM FLAM

PSNR(↑)

1 57.46 32.04 35.39
2 56.56 33.39 34.47
4 48.90 31.04 35.49
8 39.85 26.18 28.36

16 34.03 24.61 25.24

5.7 Is FLAM robust to real-world scenes?

We now apply FLAM to real-world datasets, with results shown in Tab. 3. On all three dataset, FLAM
outperforms OC+LAM, which confirms the significance of learning dynamics-aware representations
instead of visual representations. While FLAM and LAM shows similar capability in accurate
prediction, FLAM demonstrate superior controllability in video generation. Due to space limitations,
please refer to Appendix E for visualized examples of reconstruction and prediction rollout samples.

Table 3: Video prediction performance of all methods across the real-world datasets.
Dataset LAM OC+LAM FLAM

PSNR(↑)
nuPlan 18.55 16.59 17.70
Sports 17.96 15.68 17.47

EGTEA 19.41 13.47 19.35

∆t PSNR(↑)
nuPlan 2.07 0.26 5.97
Sports 1.58 0.63 4.94

EGTEA 4.58 0.73 5.13

5.8 Controllable Video Generation

The factored latent actions learned by FLAM not only help with accurate world modeling, but can
also serve as a manipulation surrogate to guide the video generation. After an action codebook is
learned, we let human user specify a choice from the codebook, and then rollout multiple steps. As
shown in Fig. 4, latent actions can be used as a control variable to generate various video frames even
with the same initial frame.
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6 Conclusion

Figure 4: Conditioned on dif-
ferent latent actions, diverse
videos can be generated on
same initial frame.

We present FLAM, a factored latent action model that scales to
multi-entity scenarios where the action space grows exponentially
with the number of entities. Although the large action space makes
learning the action codebook challenging for vanilla LAM, FLAM
addresses this issue by decomposing the state and the latent action
representation into multiple independent factors, allowing learning
to focus on a small action codebook shared across factors. This struc-
ture enables us to learn structured state and action representations
from action-free video data, leading to more accurate modeling of
complex multi-entity dynamics and improved both prediction quality
and video controllability.

FLAM makes predictions in latent space with a transformed-based
aggregator and a pre-trained decoder for visualization. For future
work, exploring more sophisticated decoding methods, such as dif-
fusion models, could further enhance the visual quality of generated
rollouts.
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A Hyperparameter

Table 4: Experiment hyperparameters. Simulation datasets are Multigrid and Procgen; real-world
datasets are Sports, EGTEA, and nuPlan.

Simulation Real-world
Encoder IMPALA MAGVIT-v2
Decoder LAPO MAGVIT-v2
Image size 128 (Multigrid), 224 (Procgen) 224
Tokenizer quantizer FSQ FSQ
Tokenizer codebook size 1024 16384
Tokenizer codebook levels [4,4,4,4,4] [4,4,4,4,4,4,4]
z-channels 128 128
Codebook dimension 128 128

dmodel (LAM/FLAM) 256 / 256 256 / 512
Number of blocks 2 3
Number of factors K 4 (Multigrid), 32 (Procgen) 16 (nuPlan), 32 (Sports & EGTEA)
Action quantizer FSQ FSQ
Action codebook size 4 (Multigrid), 16 (Procgen) 32
Action FSQ levels [2,2] or [2,2,2,2] [2,2,2,2,2]
Sub-trajectory length 10 10
Prediction steps 5 5
Hierarchical subtokens [32,32] [128,128]

B Dataset Details

We summarize here the datasets used in our experiments with additional implementation details. All
datasets are split into train/validation/test with an 80-10-10 ratio by frame count, unless otherwise
specified. Frames are scaled to [0, 1] and resized to the image resolutions reported in Table 4.

Multigrid (Simulation). We extend the MiniGrid environment [7] to support multiple indepen-
dently moving agents. Each video consists of 32× 32 gridworlds rendered at 128× 128 resolution,
with between 2–4 agents moving simultaneously. The number of factors K is set to 4 to match the
number of independent agents. We use the official empty-agent_K-v0 (train) and v1 (validation)
splits from the Minari dataset format.

Procgen (Simulation). We adopt the Procgen benchmark [8] with background rendering disabled
for consistency. Videos are rendered at 224× 224 resolution. We set the number of factors K = 32
to capture the diverse moving entities.

nuPlan (Real-world). We use the nuPlan benchmark [4], restricting to front-facing camera streams
only. Videos are downsampled from 10 fps to 5 fps (frame skip = 2). Frames are resized to 224×224,
and the number of factors is set to K = 16 to capture vehicles and pedestrians in each scene. We use
the train_CAM_F0.hdf5 and valid_CAM_F0.hdf5 splits.

Sports (Real-world). The sports dataset combines five sub-datasets: (1) soccer, basketball, and vol-
leyball sequences from SportsMOT [9]; (2) volleyball data from [17]; (3) tennis videos from Playable
Video Generation [21]; (4) the TenniSet dataset [11]; and (5) basketball clips from BASKET [27]. All
videos are sampled at 5 fps (frame skip = 3 from original 15 fps) and resized to 224× 224. Because
multiple players are present in each scene, we set K = 32.

EGTEA (Real-world). We additionally evaluate on EGTEA, an egocentric video dataset of hand-
object interactions. Following prior work, we use the official train/validation split with frame skip 2
and resize frames to 224× 224. We set K = 32 to reflect the diversity of object-level factors.
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C Examples of Video Frame Reconstruction of the Encoder-Decoder Feature
Extractor

Figure 5: The reconstruction results on nuPlan dataset. The images on top are the original frames, the images at
the bottom are reconstructed images using the extracted features.

Figure 6: The reconstruction results on Sports and dataset. The images on top are the original frames, the
images at the bottom are reconstructed images using the extracted features.
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D Explicit slot matching

While slot attention is good at factorizing the state features into K slots, each attending to a subarea
in the frame, there is no guarantee of entity tracking. To perform separate dynamics learning for each
slot-based factor is highly based on the assumption that the slot skt at time t and slot skt+1 at time
t + 1 we used for each IDM and FDM are corresponded to the same entity (subarea). Therefore,
we tried two categories of slot matching, one is slot consistency loss and the other is recursive slot
initialization.

Because there is no constraint to enforce the same distribution for the slot representations of different
frames, which can cause problem for the following dynamics learning, we applied a slot distribution
loss

Lslot_dist = DKL(s
1:K
t ∥s1:Kt+1)

to encourage the slot representations across consecutive frames follow the same distribution. To
enforce the consistent ordering of the slots, we also tried hard 1-to-1 Hungarian matching with MSE
loss and greedy top-1 matching with contrastive infoNCE loss. For Hungarian matching, we find the
permutation σ∗ (one-to-one assignment) that minimizes total cost:

σ∗ = arg min
σ∈SK

K∑
i=1

Ci,σ(i),

where SK is the set of permutations of {1, . . . ,K}, and Ci,σ(i) is the distance between the paired
slots sit and s

σ(i)
t+1 . Then Hungarian matching loss is the matched cost:

Lslot_Hungarian =

K∑
i=1

Ci,σ∗(i).

For greedy top-1 matching, we treat each sit as a query, and use sjt+1 for all j as keys. Then top-1 slot
matching loss for slot sit is:

Li = − log

(
exp
(
sim(sit, s

j∗

t+1)/τ
)∑K

j=1 exp
(
sim(sit, s

j
t+1)/τ

)) ,

where j∗ is the index of the most similar slot (top-1 match):

j∗ = argmax
j

sim(sit, s
j
t+1).

Then contrastive matching loss is

Lslot_contrastive =
1

K

K∑
i=1

Li.

We augment the FLAM training objective LLAM with each of the slot consistency loss above, but there
is no significant improvement in the accuracy of future frame prediction. Therefore, we use recursive
slot initialization instead. For the slot attention learning at time t, we initialize the slot embeddings
with the values from slots of previous time t− 1 rather then random initialization, and then start the
iterative slot updates. The results in Fig. 7 show that recursive slot initialization helps learn better
slots, thus we use this implementation as the default slot initialization method for our FLAM model.
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Figure 7: Comparison of results with and without recursive slot initialization on Multigrid dataset. The first row
is the ground truth frames from the dataset. The second row is the attention mask from the factorizor module, in
which each color represent a factor. The third row is the reconstructed frames,

E Examples of Reconstruction and Prediction Rollout Results
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Figure 8: Example of reconstruction and prediction rollout results of LAM, OC+LAM and FLAM on Multigrid
dataset.
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Figure 9: Example of reconstruction and prediction rollout results of LAM, OC+LAM and FLAM on Procgen
dataset.
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Figure 10: Example of reconstruction and prediction rollout results of LAM, OC+LAM and FLAM on nuPlan
dataset.
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Figure 11: Example of reconstruction and prediction rollout results of LAM, OC+LAM and FLAM on Sports
dataset.
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