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Abstract
Mixture of experts (MoE) model is a statistical
machine learning design that aggregates multiple
expert networks using a softmax gating function
in order to form a more intricate and expressive
model. Despite being commonly used in several
applications owing to their scalability, the mathe-
matical and statistical properties of MoE models
are complex and difficult to analyze. As a re-
sult, previous theoretical works have primarily
focused on probabilistic MoE models by impos-
ing the impractical assumption that the data are
generated from a Gaussian MoE model. In this
work, we investigate the performance of the least
squares estimators (LSE) under a deterministic
MoE model where the data are sampled accord-
ing to a regression model, a setting that has re-
mained largely unexplored. We establish a con-
dition called strong identifiability to characterize
the convergence behavior of various types of ex-
pert functions. We demonstrate that the rates for
estimating strongly identifiable experts, namely
the widely used feed-forward networks with acti-
vation functions sigmoid(·) and tanh(·), are sub-
stantially faster than those of polynomial experts,
which we show to exhibit a surprising slow esti-
mation rate. Our findings have important practical
implications for expert selection.

1. Introduction
Softmax gating mixture of experts (MoE) is introduced by
(Jacobs et al., 1991; Jordan & Jacobs, 1994) as a general-
ization of classical mixture models (McLachlan & Basford,
1988; Lindsay, 1995) based on an adaptive gating mecha-
nism. More concretely, the MoE model is a weighted sum
of expert functions associated with input-dependent weights.
Here, each expert is either a regression function (De Veaux,
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1989; Faria & Soromenho, 2010) or a classifier (Chen et al.,
2022; Nguyen et al., 2023a) that specializes in smaller parts
of a larger problem. Meanwhile, the softmax gate is respon-
sible for determining the weight of each expert’s output. If
one expert consistently outperforms others in some domains
of the input space, the softmax gate will assign it a larger
weight in those domains. Thanks to its flexibility and adapt-
ability, there has been a surge of interest in using the softmax
gating MoE models in several fields, namely large language
models (Jiang et al., 2024; Puigcerver et al., 2024; Zhou
et al., 2023; Du et al., 2022; Fedus et al., 2022b), computer
vision (Riquelme et al., 2021; Liang et al., 2022; Ruiz et al.,
2021), multi-task learning (Hazimeh et al., 2021; Gupta
et al., 2022) and reinforcement learning (Chow et al., 2023).
In those applications, each expert plays an essential role in
handling one or a few subproblems. As a consequence, it
is of practical importance to study the problem of expert
estimation, which can be solved indirectly via the parameter
estimation problem.

Despite its widespread use in practice, the theory for pa-
rameter estimation of the MoE model has not been fully
comprehended. From a probabilistic perspective, (Ho et al.,
2022) studied the convergence of maximum likelihood esti-
mation under an input-independent gating Gaussian MoE,
which admits the following set-up:

Set-up of a Gaussian MoE model. An i.i.d sample
(X1, Y1), . . . , (Xn, Yn) are assumed to be drawn from a
softmax gating Gaussian MoE model whose conditional
density function pG∗(y|x) is of the form

k∗∑

i=1

exp((β∗
1i)

⊤x+ β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j)

· π(y|h(x, η∗i ), ν∗i ),

where π(·|µ, ν) denotes a Gaussian density function with
mean µ and variance ν, and h(·, η) stands for a mean expert
function. Additionally, G∗ :=

∑k∗
i=1 exp(β

∗
0i)δ(β∗

1i,η
∗
i ,ν

∗
i )

stands for the mixing measure, a weighted sum of Dirac
measures δ, with unknown parameters (β∗

0i, β
∗
1i, η

∗
i , ν

∗
i ).

By assuming that the data were generated from that model,
they demonstrated that the density estimation rate was para-
metric on the sample size, while the parameter estimation
rates depended on the algebraic independence between ex-
pert functions. Subsequently, (Nguyen et al., 2023b) and
(Nguyen et al., 2024b) also considered the Gaussian MoE
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models but equipped with a softmax gate and a Gaussian
gate, respectively, both of which vary with the input values.
Owing to an interaction among gating and expert parame-
ters, they showed that the rates for estimating parameters
were determined by the solvability of some systems of poly-
nomial equations. Additionally, (Makkuva et al., 2019) also
designed provably consistent algorithms for learning param-
eters of the softmax gating Gaussian MoE. Next, (Nguyen
et al., 2024a) investigated a Top-K sparse gating Gaussian
MoE model (Shazeer et al., 2017; Fedus et al., 2022a),
which activated only one or a few experts for each input.
Their findings suggested that turning on exactly one expert
per input would remove the interaction of gating parameters
with those of experts, and therefore, accelerate the parameter
estimation rates.

While the theoretical advances in MoE modeling from re-
cent years have been remarkable, a persistent and significant
limitation of all existing contributions in the literature is the
reliance on the strong assumption of a well-specified model,
namely that the data are sampled from a (say, Gaussian)
MoE model. This is of course, an unrealistic assumption
that does not reflect real-world data (Li et al., 2023; Pham
et al., 2024). Unfortunately, very little is known about the
statistical properties of MoE models in mis-specified but
more realistic regression settings.

In this paper, we partially address this gap by introducing
and analyzing a more general regression framework for MoE
models in which, conditionally on the features, the response
variables are not sampled from a gated MoE but are instead
noisy realization of an unknown and deterministic gated
MoE-type regression function, as described next.

Set-up. We assume that an i.i.d. sample of size n:
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) in Rd × R is generated
according to the model

Yi = fG∗(Xi) + εi, i = 1, . . . , n, (1)

where ε1, . . . , εn are independent Gaussian noise variables
such that E[εi|Xi] = 0 and Var(εi|Xi) = ν for all 1 ≤
i ≤ n. Note that, the Gaussian assumption is just for the
simplicity of proof argument. Furthermore, we assume
that X1, . . . , Xn are i.i.d. samples from some probability
distribution µ. Above, the regression function fG∗(·) takes
the form of a softmax gating MoE with k∗ experts, namely

fG∗(x) :=

k∗∑

i=1

exp((β∗
1i)

⊤x+ β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j)

· h(x, η∗i ),

(2)

where (β∗
0i, β

∗
1i, η

∗
i )

k∗
i=1 are unknown parameters in R ×

Rd × Rq and G∗ :=
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,η
∗
i )

denotes the
associated mixing measure. The function h(x, η) is known
as the expert function, which we assumed to be of parametric

form. We will consider general expert functions as well
as the widely used ridge expert functions h(x; (a, b)) =
σ(a⊤x+b), compositions of a non-linear activation function
σ(·) with an affine function. See Section 2 below for further
restrictions on the model. In practice, since the true number
of experts k∗ is unknown, it is customary to fit a softmax
gating MoE model of the form (2) with up to k > k∗ experts,
where k is a given threshold. We call this setting an over-
specified setting.

In order to estimate the ground-truth parameters
(β∗

0i, β
∗
1i, η

∗
i )

k∗
i=1 in the above model, we can no longer rely

on maximum likelihood estimation. Instead we will deploy
the computationally efficient and popular least squares
method (see, e.g., van de Geer, 2000). Formally, the mixing
measure is estimated with

Ĝn := argmin
G∈Gk(Θ)

n∑

i=1

(
Yi − fG(Xi)

)2
, (3)

where Gk(Θ) := {G =
∑k′

i=1 exp(β0i)δ(β1i,ηi) : 1 ≤ k′ ≤
k, (β0i, β1i, ηi) ∈ Θ} is the set of all mixing measures
with at most k components. The goal of this paper is to
investigate the convergence properties of estimator Ĝn in
fixed-dimensional setting. To the best of our knowledge, this
is the first statistical analysis of the least squares estimation
under the MoE models, as previous works (Mendes & Jiang,
2011; Nguyen et al., 2023b) focus on maximum likelihood
methods.

Challenges. We highlight two subtle major challenges in
analyzing the regression model (2), which require the formu-
lation of novel identifiability conditions and new techniques.
To the best of our knowledge, these issues have not been
noted before in the regression literature.

(C.1) Expert characterization. In our analysis (which
conforms to the latest approaches to MoE modeling), we
represent the discrepancy fĜn

(·)− fG∗(·) between the es-
timated and true regression function as a weighted sum of
linearly independent terms by applying Taylor expansions to
the function x 7→ F (x;β1, η) := exp(β⊤

1 x)h(x, η). In or-
der to guarantee good convergence rates, it is necessary that
the function F and its derivatives are linearly independent
(in the space of squared-integrable functions of the features
X). This property will be ensured by formulating novel
and non-trivial algebraic condition on the expert functions,
which we refer to as strong identifiability. The derivation
of that condition requires us to adopt new proof techniques
since those in previous works (Nguyen et al., 2023b; 2024a)
apply only for linear experts.

(C.2) Singularity of polynomial experts. An instance of ex-
pert functions that does not satisfy the strong identifiability
condition is a polynomial of an affine function. For simplic-
ity, let us consider h(x, η) = a⊤x + b, where η = (a, b).
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Then, the function F mentioned in the challenge (C.1) be-
comes F (x;β1, a, b) = exp(β⊤

1 x)(a⊤x + b). Under this
seemingly unproblematic settings, we encounter an unex-
pected phenomenon. Specifically, there exists an interaction
between the gating parameter β1 and the expert parameters
a, b, captured by the partial differential equation (PDE)

∂2F

∂β1∂b
(x;β∗

1i, a
∗
i , b

∗
i ) =

∂F

∂a
(x;β∗

1i, a
∗
i , b

∗
i ). (4)

Complex functional interactions of this form are not new
– they have been thoroughly characterized in the softmax
gating Gaussian MoE model by (Nguyen et al., 2023b).
However, and contrary to the case of data drawn from a
well-specified softmax gating Gaussian MoE model, in our
setting the above interaction causes the estimation rate of all
the parameters β∗

1i, a
∗
i , b

∗
i to be slower than any polynomial

rates, and thus, could potentially be OP (1/ log(n)). It is
important to note that this singular, rather surprising, phe-
nomenon takes place as we consider a deterministic MoE
model instead of a probabilistic one, which requires us to
develop new techniques.

Overall contributions. Our contributions are three-fold
and can be summarized as follows (see also Table 1 for a
summary of the expert estimation rates):

1. Parametric rate for regression function. In our first
main result, Theorem 2.1, we demonstrate a parametric
estimation rate for the regression function fG∗(·). In par-
ticular, we show that ∥fĜn

− fG∗∥L2(µ) = OP (n
−1/2),

where ∥ · ∥L2(µ) denotes the L2 norm with respect to the
probability measure µ of the input X . This result will be
leveraged to obtain more complex estimation rates for the
model parameters.

2. Strongly identifiable experts. We formulate a gen-
eral strong identifiability condition for expert functions in
Definition 3.1 which ensures a faster, even parametric, es-
timation rates for the model parameters. To that effect,
we propose a novel loss function D1 among parameters
in equation (7) and establish in Theorem 3.2 the L2-lower
bound ∥fG − fG∗∥L2(µ) ≳ D1(G,G∗) for any G ∈ Gk(Θ).
Given the bound ∥fĜn

− fG∗∥L2(µ) = OP (n
−1/2) in The-

orem 2.1, we deduce that the convergence rate of the LSE
Ĝn to the true mixing measure G∗ is also parametric on the
sample size, i.e. D1(Ĝn, G∗) = OP (n

−1/2). This leads to
an expert estimation rate of order at least OP (n

−1/4).

3. Ridge experts: Secondly, we focus ridge expert func-
tions consisting of simple two-layer neural networks, which
include a linear layer followed by an activation layer, i.e.,
h(x, η) = σ(a⊤x + b), where η = (a, b). In these very
common settings, we give a condition called strong indepen-
dence in Definition 4.1 to characterize activation functions
that induce faster expert estimation rates. Interestingly, un-
der the strongly independent settings of the activation func-

tion σ, we demonstrate in Theorem 4.4 that even when the
activation function σ is strongly independent, the expert es-
timation rates are still slower than any polynomial rates and
could be as slow as OP (1/ log(n)) if at lease one among
parameters a∗1, . . . , a

∗
k∗

vanishes. Otherwise, we show in
Theorem 4.2 that the expert estimation rates are no worse
than OP (n

−1/4).

Lastly, we consider the settings when the activation function
σ is not strongly independent, e.g., polynomial experts of
the form h(x, η) = (a⊤x+b)p, where p ∈ N and η = (a, b)
(of which linear experts are special cases). This choice can
be regarded as an ridge expert associated with the activation
function σ(z) = zp, which violates the strong independence
condition. As a consequence, we come across an unfore-
seen phenomenon in Theorem 4.6: the rates for estimating
experts become universally worse than any polynomial rates
due to an intrinsic interaction between gating and expert
parameters via the PDE (4).

Practical implications. There are two main practical impli-
cations from our theoretical results:

(i) Expert network design. Firstly, based on the the strong
identifiability condition provide in Definition 3.1, we can
verify that plenty of widely used expert functions, namely
feed-forward networks with activation functions sigmoid(·),
tanh(·) and GELU(·), are strongly identifiable. Therefore,
our findings suggest that such experts enjoy faster estimation
rates than others. This indicates that our theory is potentially
useful for designing experts in practical applications.

(ii) Sample inefficiency of polynomial experts. Secondly,
Theorem 4.6 reveals that a class of polynomial experts,
including linear experts, are not good choices of expert
functions for MoE models due to its significantly slow es-
timation rates. This observation aligns with the findings in
(Chen et al., 2022) which claims that a mixture of non-linear
experts achieves a way better performance than a mixture
of linear experts.

Outline. The paper is organized as follows. In Section 2,
we obtain a parametric rate for the least squares estimation
of softmax gating MoE model fG∗(·) under the L2-norm.
Subsequently, we establish estimation rates for experts that
satisfy the strong identifiability condition in Section 3. We
then investigate ridge experts, including polynomial experts
in Section 4. Finally, we conclude the paper and provide
some future directions in Section 5. Rigorous proofs and a
simulation study are deferred to the supplementary material.

Notations. We let [n] stand for the set {1, 2, . . . , n} for
any n ∈ N. Next, for any set S, we denote |S| as its
cardinality. For any vectors v := (v1, v2, . . . , vd) ∈ Rd and
α := (α1, α2, . . . , αd) ∈ Nd, we let vα = vα1

1 vα2
2 . . . vαd

d ,
|v| := v1 + v2 + . . . + vd and α! := α1!α2! . . . αd!, while
∥v∥ denotes its 2-norm value. Lastly, for any two positive
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Table 1. Summary of expert estimation rates (up to a logarithmic factor) under the softmax gating mixture of experts. In this work, we
analyze three types of expert functions including strongly identifiable experts h(x, η), ridge experts σ(a⊤x+ b) and polynomial experts
(a⊤x+ b)p. For ridge experts, we consider two complement regimes: all the experts are input-dependent (Regime 1) vs. there exists an
input-independent expert (Regime 2). Additionally, the notation Aj(Ĝn) stands for the Voronoi cels defined in equation (6).

Expert
Index

Strongly-
Identifiable
Experts

Ridge Experts with Strongly Independent Activation Polynomial
Experts

Regime 1 Regime 2

j : |Aj(Ĝn)| = 1 OP (n
−1/2) Slower than OP (n

−1/2r),∀r ≥ 1

j : |Aj(Ĝn)| > 1 OP (n
−1/4) Slower than OP (n

−1/2r),∀r ≥ 1

sequences {an}n≥1 and {bn}n≥1, we write an = O(bn) or
an ≲ bn if an ≤ Cbn for all n ∈ N, where C > 0 is some
universal constant. The notation an = OP (bn) indicates
that an/bn is stochastically bounded.

2. The Estimation Rate for the Regression
Function

In this section, we establish an important result, showing
that, under minimal assumptions on the regression function,
the least squares plug-in estimator of the regression function
fĜn

(·) is consistent, and converges to the true regression
function fG∗(·) at the rate 1/

√
n with respect to the L2(µ)-

distance, where µ is the feature distribution.

Assumptions. Throughout the paper, we impose the fol-
lowing standard assumptions on the model parameters. We
recall that the dimension of the parameter space is fixed.

(A.1) We assume that the parameter space Θ is a compact
subset of R×Rd ×Rq , while the input space X is bounded.
These assumptions help guarantee the convergence of least
squares estimation.

(A.2) For the experts h(x, η∗1), . . . , h(x, η
∗
k∗
) being different

from each other, we assume that parameters η∗1 , . . . , η
∗
k∗

are
pair-wise distinct. Furthermore, these experts functions are
Lipschitz continuous with respect to their parameters and
bounded.

(A.3) In order that the softmax gating MoE fG∗(·) is identi-
fiable, i.e., fG(x) = fG∗(x) for almost every x implies that
G ≡ G∗, we let β∗

0k∗
= 0 and β∗

1k∗
= 0d.

(A.4) To ensure that the softmax gate is input-dependent,
we assume that at least one among gating parameters
β∗
11, . . . , β

∗
1k∗

is non-zero.

Theorem 2.1. Given a least squares estimator Ĝn defined in
equation (3), the model estimation fĜn

admits the following
convergence rate:

∥fĜn
− fG∗∥L2(µ) = OP (

√
log(n)/n). (5)

The proof of Theorem 2.1 is in Appendix A.1. It can be seen
from the bound (5) that the rate for estimating the entire
softmax gating MoE model fG∗(·) is of order OP (n

−1/2)
(up to logarithmic factor), which is parametric on the sample
size n. More importantly, this result suggests that if we
can construct a loss function among parameters D such
that ∥fĜn

− fG∗∥L2(µ) ≳ D(Ĝn, G∗), then it follows that

D(Ĝn, G∗) = OP (n
−1/2). As a consequence, we achieve

parameter estimation rates through the previous bound, and
therefore, our desired expert estimation rates.

3. Strongly Identifiable Experts
In this section, we derive estimation rates for the parameters
of the softmax gating MoE regression function (2) assuming
that the class of expert functions satisfy a novel regularity
condition which we refer to as strong identifiability; see
Definition 3.1 below.

Let us recall that in order to establish the expert estima-
tion rates, our approach is to establish the L2-lower bound
∥fĜn

− fG∗∥L2(µ) ≳ D(Ĝn, G∗) mentioned in Section 2,
where D is an appropriate loss function to be defined later.
For that purpose, a key step is to decompose the quantity
fĜn

(x)−fG∗(x) into a combination of linearly independent
terms, where

fG∗(x) :=

k∗∑

i=1

exp((β∗
1i)

⊤x+ β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j)

· h(x, η∗i ).

This can be done by using Taylor expansions to the prod-
uct of a softmax numerator and an expert denoted by
x 7→ F (x;β1, η) = exp(β⊤

1 x)h(x, η). Therefore, to ob-
tain our desired decomposition, we present in the following
definition a condition that ensures the derivatives of F with
respect to its parameters are linearly independent.

Definition 3.1 (Strong Identifiability). We say that an ex-
pert function x 7→ h(x, η) is strongly identifiable if it is
twice differentiable with respect to its parameter η and the
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following set of functions in x is linearly independent:

{
xν · ∂

|τ |h
∂ητ

(x, ηj) : j ∈ [k], ν ∈ Nd, τ ∈ Nq,

0 ≤ |ν|+ |τ | ≤ 2
}
,

for almost every x for any k ≥ 1 and pair-wise distinct
parameters η1, . . . , ηk.

As indicated in Definition 3.1, the main distinction between
the strong identifiability and standard identifiability condi-
tions of the expert function h (Ho et al., 2022) is that we
further require the first and second-order derivatives of the
expert function h with respect to their parameter are also
linearly independent. Intuitively, the linear independence
of functions in Definition 3.1 helps eliminate potential in-
teractions among parameters expressed in the language of
partial differential equations (see e.g., equation (10) and
equation (16) where gating parameters β1 interact with ex-
pert parameters a). Such interactions are demonstrated to
result in significantly slow expert estimation rates (see The-
orem 4.4 and Theorem 4.6).

Example. It can be checked that the strong identifiability
condition holds for several experts used in practice, includ-
ing feed-forward networks with activations like sigmoid,
tanh and GeLU and non-linear transformed input are
strongly identifiable experts. For simplicity, let us consider
a 2-layer expert network with normalized input, i.e.

h(x, (a, b)) = σ
(
a

x

∥x∥ + b
)
,

where σ is the sigmoid function and x, a, b,∈ R (The argu-
ment also holds with layer normalization as well). Then, by
taking the derivatives of the expert function h(·, (a, b)) w.r.t
its parameters up to the second order, we can verify that
the set mentioned in Definition 3.1 is linearly independent,
which means that the expert h(·, (a, b)) is strongly identifi-
able. The non-linear transformation is involved to ensure
the linearly independence between the terms ∂h

∂a and x∂h
∂b

mentioned in Definition 3.1. Otherwise, the strong identi-
fiability condition is not satisfied. For instance, the ridge
expert h(x, (a, b)) = σ(ax+ b) is not strongly identifiable
due to the PDE ∂h

∂a = x∂h
∂b .

Next, to compute the expert estimation rates, we propose
a loss function based on the notion of Voronoi cells, put
forward by (Manole & Ho, 2022), as follows.

Voronoi loss. Given an arbitrary mixing measure G with
k′ ≤ k components, we partition its components to the
following Voronoi cells Aj ≡ Aj(G), which are generated
by the components of G∗:

Aj := {i ∈ [k′] : ∥ωi − ω∗
j ∥ ≤ ∥ωi − ω∗

ℓ ∥,∀ℓ ̸= j}, (6)

where ωi := (β1i, ηi) and ω∗
j := (β∗

1j , η
∗
j ) for any j ∈ [k∗].

Notably, the cardinality of Voronoi cell Aj is exactly the
number of fitted components that approximates ω∗

j . Then,
the Voronoi loss function used for our analysis is given by:

D1(G,G∗) :=
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j)
∣∣∣

+
∑

j:|Aj |>1

∑

i∈Aj

exp(β0i)
[
∥∆β1ij∥2 + ∥∆ηij∥2

]

+
∑

j:|Aj |=1

∑

i∈Aj

exp(β0i)
[
∥∆β1ij∥+ ∥∆ηij∥

]
, (7)

where we denote ∆β1ij := β1i − β∗
1j and ∆ηij := ηi − η∗j .

Above, if the Voronoi cell Aj is empty, then we let the
corresponding summation term be zero. Additionally, it can
be checked that D1(G,G∗) = 0 if and only if G ≡ G∗.
Thus, when D1(G,G∗) is sufficiently small, the differences
∆β1ij and ∆ηij are also small. This property indicates that
D1(G,G∗) is an appropriate loss function for measuring
the discrepancy between the LSE Ĝn and the true mixing
measures G∗. However, since the loss D1(G,G∗) is not
symmetric, it is not a proper metric. Finally, computing the
Voronoi loss function D1 is efficient as its computational
complexity is at the order of O(k × k∗).

Equipped with the Voronoi loss function D1, we are now
ready to characterize the parameter estimation rates as well
as the expert estimation rates in the following theorem.

Theorem 3.2. Suppose that the expert function h(x, η) sat-
isfies the condition in Definition 3.1, then the following
L2-lower bound holds true for any G ∈ Gk(Θ):

∥fG − fG∗∥L2(µ) ≳ D1(G,G∗).

Furthermore, this bound and the result in Theorem 2.1 imply
that D1(Ĝn, G∗) = OP (

√
log(n)/n).

The proof of Theorem 3.2 is in Appendix A.2. A few re-
marks regarding the results of Theorem 3.2 are in order.

(i) Firstly, the parameters β∗
1j , η

∗
1j that are approximated by

more than one component, i.e. those for which |Aj(Ĝn)| >
1, enjoy the same estimation rate of order OP (n

−1/4). Addi-
tionally, since the expert h(x, η) is twice differentiable over
a bounded domain, it is also a Lipschitz function. Therefore,

by denoting Ĝn :=
∑k̂n

i=1 exp(β̂0i)δ(β̂n
1i,η̂

n
i ), we obtain that

sup
x

|h(x, η̂ni )− h(x, η∗j )| ≤ L1 ∥η̂ni − η∗j ∥

≲ OP (n
−1/4), (8)

for any i ∈ Aj(Ĝn), where L1 ≥ 0 is a Lipschitz constant.
Consequently, the rate for estimating a strongly identifiable
expert h(x, η∗j ) continues to be OP (n

−1/4) as long as it is
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fitted by more than one expert. On the other hand, when
considering the softmax gating Gaussian MoE, (Nguyen
et al., 2023b) pointed out that the estimation rates for lin-
ear experts could be OP (n

−1/12) when they are fitted by
three experts, i.e., |Aj(Ĝn)| = 3. Moreover, these rates
will become even slower if their number of fitted experts
increases. This comment highlights how the strong identifia-
bility condition proposed in this paper immediately implies
fast estimation rates,

(ii) Secondly, the rates for estimating parameters β∗
1j , η

∗
j that

are fitted by exactly one component, i.e., |Aj(Ĝn)| = 1, are
faster than those in Remark (i), of order OP (n

−1/2). By
employing the same arguments as in equation (8), we deduce
that the expert h(x, η∗j ) admits the estimation rate of order
OP (n

−1/2), which matches its counterpart in (Nguyen et al.,
2023b).

4. Ridge Experts
In this section, we turn to the softmax gating MoE models
with ridge experts, i.e two-layer neural networks comprised
of a linear layer and an activation layer of the form

h(x, η∗j ) = σ((a∗j )
⊤x+ b∗j ), (9)

where σ : R → R is the (usually, nonlinear) activation
function and η∗j = (a∗j , b

∗
j ) ∈ Rd×R are expert parameters.

Ridge experts are commonly deployed in deep-learning ar-
chitectures and generative models, and they fail to satisfy
the strong identifiability condition from the last section. To
overcome this issue, we instead formulate a strong indepen-
dence condition on the activation function itself, which will
guarantee fast estimation rates, provided that all the expert
parameters are non-zero. Interestingly, when one or more
parameters are zero, so that the corresponding experts are
constant functions, we show slow, non-polynomial rates in
the sample size.

In Section 4.2, we then examine polynomial activation func-
tions, which violates the strong independence condition. In
this case we again demonstrate slow rates.

4.1. On Strongly Independent Activation

To begin with, let us recall from Section 3 that our goal
is to establish the L2-lower bound ∥fĜn

− fG∗∥L2(µ) ≳

D(Ĝn, G∗) where G∗ :=
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i )

,

fG∗(x) :=

k∗∑

i=1

exp((β∗
1i)

⊤x+ β∗
0i)∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j)

× σ((a∗i )
⊤x+ b∗i ),

and D is a loss function among parameters that will be de-
fined later. In our proof techniques, we first need to represent

the term fĜn
(x) − fG∗(x) as a weighted sum of linearly

independent terms by applying Taylor expansions to the
function F (X;β1, a, b) = exp(β⊤

1 x)σ(a⊤x + b). Never-
theless, we notice that if a∗i = 0d for some i ∈ [k∗], then
there is an interaction between gating and expert parameters
expressed in the language of PDE as follows:

∂F

∂β1
(x;β∗

1i, a
∗
i , b

∗
i ) = σ′(b∗i ) ·

∂F

∂a
(x;β∗

1i, a
∗
i , b

∗
i ). (10)

The above PDE leads to a number of linearly dependent
terms in the decomposition of fĜn

(x) − fG∗(x), which
could negatively affect the expert estimation rates. To under-
stand the effects of the previous interaction better, we split
the analysis into two following regimes of parameters a∗i
where the interaction (10) vanishes and occurs, respectively:

• Regime 1: All parameters a∗1, . . . , a
∗
k∗

are different
from 0d;

• Regime 2: At least one among parameters a∗1, . . . , a
∗
k∗

is equal to 0d.

Subsequently, we will conduct an expert convergence analy-
sis in each of the above regimes.

4.1.1. REGIME 1: INPUT-DEPENDENT EXPERTS

Under this regime, since all the parameters a∗1, . . . , a
∗
k∗

are
different from 0d, the PDE (10) does not hold true, and
thus, we do not need to deal with linearly dependent terms
induced by this PDE. Instead, we establish a strong inde-
pendence condition on the activation σ in Definition 4.1 to
guarantee that there are no interactions among parameters,
i.e. the derivatives of the function x 7→ F (x;β1, a, b) =
exp(β⊤

1 x)σ(a⊤x+ b) and its derivatives up to the second
order are linearly independent.

Definition 4.1 (Strong Independence). We say that an acti-
vation function σ : R → R is strongly independent if it is
twice differentiable and the set of functions in x

{
xνσ(τ)(a⊤j x+ bj) :ν ∈ Nd, τ ∈ N,

0 ≤ |ν|, τ ≤ 2, j ∈ [k]
}
,

is linearly independent, for almost all x, for any pair-wise
distinct parameters (a1, b1), . . . , (ak, bk) and k ≥ 1, where
σ(τ) denotes the τ -th derivative of σ.

Example. We can verify that sigmoid(·) and Gaussian er-
ror linear units GELU(·) (Hendrycks & Gimpel, 2023) are
strongly independent activation functions. By contrast, the
polynomial activation σ(z) = zp is not strongly indepen-
dent for any p ≥ 1.

Just like in the previous section, we construct an appropriate
loss function among parameters that is upper bounded by the

6
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L2(µ) distance between the corresponding softmax gating
MoE regression functions to obtain expert estimation rates.

Voronoi loss. Tailored to the setting of Regime 1, the
Voronoi loss of interest is given by

D2(G,G∗) :=
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j)
∣∣∣

+
∑

j:|Aj |>1

∑

i∈Aj

exp(β0i)
[
∥∆β1ij∥2 + ∥∆aij∥2 + |∆bij |2

]

+
∑

j:|Aj |=1

∑

i∈Aj

exp(β0i)
[
∥∆β1ij∥+ ∥∆aij∥+ |∆bij |

]
,

where we denote ∆aij := ai − a∗j and ∆bij := bi − b∗j .
Theorem 4.2. Assume that the experts take the form
σ(a⊤x + b), where the activation function σ(·) satisfies
the condition in Definition 4.1, then the following L2-lower
bound holds true for any G ∈ Gk(Θ) under the Regime 1:

∥fG − fG∗∥L2(µ) ≳ D2(G,G∗).

Furthermore, this bound and the result in Theorem 2.1 imply
that D2(Ĝn, G∗) = OP (

√
log(n)/n).

See Appendix A.3 for a proof. Theorem 4.2 indicates the
LSE Ĝn converges to G∗ at the parametric rate OP (n

−1/2)
under the loss function D2. From the formulation of this
loss, we deduce the following rates.

(i) For parameters β∗
1j , a∗j and b∗j fitted by one compo-

nent, i.e., |Aj(Ĝn)| = 1, the estimation rate is of order
OP (n

−1/2). Moreover, as the strongly independent σ is
twice differentiable, the function x 7→ σ(a⊤x + b) is Lip-
schitz continuous with some Lipschitz constant L2 ≥ 0.

Thus, denoting Ĝn :=
∑k̂n

i=1 exp(β̂0i)δ(β̂n
1i,â

n
i ,̂b

n
i )

, we have

sup
x

|σ((âni )⊤x+ b̂ni )− σ((a∗j )
⊤x+ b∗j )|

≤ L2 · ∥(âni , b̂ni )− (a∗j , b
∗
j )∥

≤ L2 · (∥âni − a∗j∥+ |̂bni − b∗j |)
≲ OP (n

−1/2). (11)

As a consequence, the estimation rate for the expert
σ((a∗j )

⊤x+ b∗j ) is also of order OP (n
−1/2).

(ii) For parameters, say β∗
1j , a∗j and b∗j , fitted by more than

one component, i.e. |Aj(Ĝn)| > 1, the corresponding rates
are OP (n

−1/4). By reusing the arguments in equation (11),
we deduce that the expert σ((a∗j )

⊤x+ b∗j ) admits the esti-
mation rate of order OP (n

−1/4).

4.1.2. REGIME 2: INPUT-INDEPENDENT EXPERTS

Recall that under this regime, at least one among parameters
a∗1, . . . , a

∗
k∗

equal to 0d. Without loss of generality, we may

assume that a∗1 = 0d. This means that the the value of the
first expert σ((a∗1)

⊤x+ b∗1) no longer depends on the input
x. In this case, there exists an interaction among the gating
parameter β1 and the expert parameter a captured by the
PDE

∂F

∂β1
(x;β∗

11, a
∗
1, b

∗
1) = σ′(b∗1) ·

∂F

∂a
(x;β∗

11, a
∗
1, b

∗
1). (12)

The significance of this fact is that, owing to the the above
PDE, the following Voronoi loss function among param-
eters is not majorized by the L2(µ) distance between the
corresponding expert functions:

D3,r(G,G∗) :=
k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(β0i)− exp(β∗
0j)
∣∣∣

+

k∗∑

j=1

∑

i∈Aj

exp(β0i)
[
∥∆β1ij∥r + ∥∆aij∥r + |∆bij |r

]
,

(13)

for any r ≥ 1. This is formalized in the next result, whose
proof can be found in Appendix A.4.

Proposition 4.3. Let the expert function take the form
σ(a⊤x + b), and suppose that not all the parameters
a∗1, . . . , a

∗
k∗

are different from 0d, then we obtain that

lim
ε→0

inf
G∈Gk(Θ):

D3,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D3,r(G,G∗) = 0,

for any r ≥ 1.

The above proposition, combined with Theorem 2.1, in-
dicates that the parameter estimation rate in this situation
ought to be slower than any polynomial of 1/

√
n. This is

indeed the case, as confirmed by the following minimax
lower bound.

Theorem 4.4. Assume that the experts take the form
σ(a⊤x + b), then the following minimax lower bound of
estimating G∗ holds true for any r ≥ 1 under the Regime 2:

inf
Gn∈Gk(Θ)

sup
G∈Gk(Θ)\Gk∗−1(Θ)

EfG [D3,r(Gn, G)] ≳ n−1/2,

where EfG indicates the expectation taken w.r.t the product
measure with fn

G and the infimum is over all estimators
taking values in Gk.

The proof of Theorem 4.4 is in Appendix A.5. This result
together with the formulation of the Voronoi loss D3,r in
equation (13) leads to a singular and striking phenomenon
that, to the best of our knowledge, has never been observed
in previous work (Ho et al., 2022; Chen et al., 2022; Nguyen
et al., 2023b). Specifically,

7
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(i) The rates for estimating the parameters β∗
1j , a∗j and b∗j are

slower than any polynomial rate OP (n
−1/2r) for any r ≥ 1.

In particular, they could be as slow as OP (1/ log(n)).

(ii) Recall from equation (11) that

sup
x

|σ((âni )⊤x+ b̂ni )− σ((a∗j )
⊤x+ b∗j )|

≤ L2 · (∥âni − a∗j∥+ |̂bni − b∗j |). (14)

Consequently, the expert estimation rates might also be
significantly slow, of order OP (1/ log(n)) or worse, due
to the interaction between gating and expert parameters
in equation (12). It is worth noting that these slow rates
occur even when the activation function σ meets the strong
independence condition in Definition 4.1. This observation
suggests that all the expert parameters a∗1, . . . , a

∗
k∗

should
be different from 0d. In other words, every expert of the
form σ(a⊤x+ b) in the MoE model should depend on the
input value.

4.2. On Polynomial Activation

We now focus on a specific setting in which the activation
function σ is formulated as a polynomial, i.e. σ(z) = zp,
for some p ∈ N. Concretely, for all j ∈ [k∗], we set

h(x, η∗j ) = ((a∗j )
⊤x+ b∗j )

p, x ∈ X , (15)

and call it a polynomial expert. Notably, it can be verified
that this activation function violates the strong independence
condition in Definition 4.1 for any p ∈ N. For simplicity,
let us consider only the setting when p = 1, i.e., h(x, η∗j ) =
(a∗j )

⊤x+ b∗j , with a note that the results for other settings
of p can be argued in a similar fashion.

Since the strong independence condition in Definition 4.1
is not satisfied, we have to deal with an interaction among
parameters, capture by following PDE:

∂2F

∂β1∂b
(x;β∗

1i, a
∗
i , b

∗
i ) =

∂F

∂a
(x;β∗

1i, a
∗
i , b

∗
i ), (16)

where F (x;β1, a, b) := exp(β⊤
1 x)(a⊤x+ b) is the product

of softmax numerator and the expert function. Though this
interaction has already been observed and analyzed in pre-
vious work (Nguyen et al., 2023b), its effects on the expert
convergence rate in the present settings are totally different
as we consider a deterministic MoE model rather than a
probabilistic model. In particular, (Nguyen et al., 2023b)
argued that the interaction (16) led to polynomial expert
estimation rates which were determined by the solvability
of a system of polynomial equations. On the other hand,
we show in the Proposition 4.5 below that such interac-
tion makes the ratio ∥fG − fG∗∥L2(µ)/D3,r(G,G∗) vanish
when the loss D3,r(G,G∗) goes to zero as shown in the next
proposition, whose proof can be found in Appendix A.6.

Proposition 4.5. Let the expert functions take the form
a⊤x+ b, then the following limit holds for any r ≥ 1:

lim
ε→0

inf
G∈Gk(Θ):

D3,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D3,r(G,G∗) = 0.

Just like in the previous section, we arrive at a significantly
slow expert estimation rates.

Theorem 4.6. Assume that the experts take the form a⊤x+
b, then we achieve the following minimax lower bound of
estimating G∗:

inf
Gn∈Gk(Θ)

sup
G∈Gk(Θ)\Gk∗−1(Θ)

EfG [D3,r(Gn, G)] ≳ n−1/2,

for any r ≥ 1, where EfG indicates the expectation taken
w.r.t the product measure with fn

G.

Proof of Theorem 4.6 is in Appendix A.7. A few comments
regarding the above theorem are in order (see also Table 2):

(i) Theorem 4.6 reveals that using polynomial experts will
result in the same slow rates as using input-independent ex-
perts, as described in Theorem 4.4. More specifically, the es-
timation rates for parameters β∗

1i, a
∗
i and b∗i are slower than

any polynomial rates, and could be of order OP (1/ log(n))
because of the interaction in equation (16).

(ii) Additionally, we have that

sup
x

∣∣∣((âni )⊤x+ b̂ni )− ((a∗j )
⊤x+ b∗j )

∣∣∣

≤ sup
x

∥âni − a∗j∥ · ∥x∥+ |̂bni − b∗j |.

Since the input space X is bounded, we deduce that the rates
for estimating polynomial experts (a∗j )

⊤x+b∗j could also be
as slow as OP (1/ log(n)). This is remarkable, especially in
contrast to the polynomial rates of linear expert established
by (Nguyen et al., 2023b) in probabilistic softmax gating
experts. Hence, for the expert estimation problem, the per-
formance of a mixture of linear experts cannot compare to
that of a mixture of non-linear experts. It is worth noting
that this claim aligns with the findings in (Chen et al., 2022).

5. Conclusions
In this paper, we have analyzed the convergence rates of
the least squares estimator under a deterministic softmax
gating MoE model. We have shown that expert functions
that satisfy a novel condition referred to as strong identifi-
ability enjoy estimation rates of polynomial orders. When
specializing to experts of the form ridge function, polyno-
mial rates can be guaranteed under another condition, called
strongly independent activation, provided that all the expert
parameters are non-zero. In contrast, when at least one
of the expert parameters vanishes, we have unveiled the
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Table 2. Comparison of parameter and expert estimation rates under the probabilistic softmax gating mixture of linear experts (Nguyen
et al., 2023b) and the deterministic one (Ours). Here, we denote r̄j := r̄(|An

j |), where the function r̄(·) represents for the solvability of a
system of polynomial equations in (Nguyen et al., 2023b). Some specific values of this function are given by: r̄(2) = 4 and r̄(3) = 6.

Parameters a∗j Parameters b∗j Experts (a∗j )⊤x+ b∗j

Model Type j : |An
j | = 1 j : |An

j | > 1 j : |An
j | = 1 j : |An

j | > 1 j : |An
j | = 1 j : |An

j | > 1

Probabilistic OP (n
−1/2) OP (n

−1/r̄j ) OP (n
−1/2) OP (n

−1/2r̄j ) OP (n
−1/2) OP (n

−1/2r̄j )

Deterministic Slower than OP (n
−1/2r),∀r ≥ 1

surprising fact that expert estimation rates become slower
than any polynomial rates. Furthermore, we also prove that
polynomial experts, which violate the strong identifiabil-
ity condition, also experience such slow rates under any
parameter settings.

Limitations. Our analysis has two following limitations:

(L.1) The theoretical results established in the paper are
under the assumption that the data are generated from a
regression model where the regression function is a softmax
gating MoE. This assumption can be violated in real-world
settings when the data are not necessarily generated from
that model. Under those misspecified settings, the regression
function is an arbitrary function g which is not necessarily
a mixture of experts. Then, the least square estimator Ĝn

defined in equation (3) converges to the mixing measure
G ∈ Gk that minimizes the L2-distance between fG and
g. Since the current analysis of the least square estimation
under the misspecified settings of statistical models is mostly
conducted when the function space is convex (van de Geer,
2000), it is inapplicable to our setting where the space Gk is
non-convex. Therefore, we believe that further techniques
should be developed to analyze the misspecified settings,
which is beyond the scope of our work.

(L.2) The depth of an expert network has not been consid-
ered in capturing the convergence rate of expert estimation.
In particular, we demonstrate in Theorem 3.2 that any choice
of expert network which satisfies the strong identifiability
condition will lead to polynomial expert estimation rates
regardless of its depth. Secondly, although ridge experts of
the form h(x, (a, b)) = σ(a⊤x + b) are not strongly iden-
tifiable, we show in Theorem 4.2 that if the activation σ
satisfies the strong independence condition in Definition 4.1,
then the expert estimation rates are also polynomial. On the
other hand, for ridge experts with activation σ violating the
strong independence condition, e.g. polynomial experts, we
find that increasing the depth of the expert network would
not help improve the slow expert estimation rates in The-
orem 4.6 due to an intrinsic interaction among parameters
of polynomial experts (expressed in the language of partial

differential equations). We believe that technical tools need
to be further developed to understand the effects of the net-
work depth on the expert estimation problem. As it stays
beyond the scope of our work, we leave that direction for
future work.

Future directions. There are some potential directions to
which our current theory can extend. Firstly, we can lever-
age our techniques to capture the convergence behavior of
different types of experts under the MoE models with other
gating functions, namely Top-K sparse gate (Shazeer et al.,
2017), dense-to-sparse gate (Nie et al., 2022), cosine similar-
ity gate (Li et al., 2023), Laplace gate (Han et al., 2024), and
sigmoid gate (Csordás et al., 2023). Such analysis would
enrich the knowledge of expert selection given a specific
gating function. Additionally, we can develop our current
techniques to provide a comprehensive understanding of
more complex MoE models such as hierarchical MoE (Zhao
et al., 1994; Jacobs et al., 1997) and multigate MoE (Ma
et al., 2018; Liang et al., 2022), which have remained elusive
in the literature.
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Supplementary Material for
“On Least Square Estimation in Softmax Gating Mixture of Experts”

In this supplementary material, we provide proofs for the main results in the paper in Appendix A, while we leave proofs for
the identifiability of the softmax gating mixture of experts in Appendix B. Finally, we run several numerical experiments in
Appendix C to empirically justify our theoretical results.

A. Proofs of Main Results
In this appendix, we provide proofs for main results in the paper.

A.1. Proof of Theorem 2.1

For the proof of the theorem, we first introduce some notation. Firstly, we denote by Fk(Θ) the set of regression functions
w.r.t all mixing measures in Gk(Θ), that is, Fk(Θ) := {fG(x) : G ∈ Gk(Θ)}. Additionally, for each δ > 0, the L2 ball
centered around the regression function fG∗(x) and intersected with the set Fk(Θ) is defined as

Fk(Θ, δ) :=
{
f ∈ Fk(Θ) : ∥f − fG∗∥L2(µ) ≤ δ

}
.

In order to measure the size of the above set, Geer et. al. (van de Geer, 2000) suggest using the following quantity:

JB(δ,Fk(Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t,Fk(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ, (17)

where HB(t,Fk(Θ, t), ∥ · ∥L2(µ)) stands for the bracketing entropy (van de Geer, 2000) of Fk(Θ, u) under the L2-norm,
and t ∨ δ := max{t, δ}. By using the similar proof argument of Theorem 7.4 and Theorem 9.2 in (van de Geer, 2000) with
notations being adapted to this work, we obtain the following lemma:

Lemma A.1. Take Ψ(δ) ≥ JB(δ,Fk(Θ, δ)) that satisfies Ψ(δ)/δ2 is a non-increasing function of δ. Then, for some
universal constant c and for some sequence (δn) such that

√
nδ2n ≥ cΨ(δn), we achieve that

P
(
∥fĜn

− fG∗∥L2(µ) > δ
)
≤ c exp

(
−nδ2

c2

)
,

for all δ ≥ δn.

We now demonstrate that when the expert functions are Lipschitz continuous, the following bound holds:

HB(ε,Fk(Θ), ∥.∥L2(µ)) ≲ log(1/ε), (18)

for any 0 < ε ≤ 1/2. Indeed, for any function fG ∈ Fk(Θ), since the expert functions are bounded, we obtain that
fG(x) ≤ M for all x where M is bounded constant of the expert functions. Let τ ≤ ε and {π1, . . . , πN} be the τ -cover
under the L2 norm of the set Fk(Θ) where N := N(τ,Fk(Θ), ∥ · ∥L2(µ)) is the η-covering number of the metric space
(Fk(Θ), ∥ · ∥L2(µ)). Then, we construct the brackets of the form [Li(x), Ui(x)] for all i ∈ [N ] as follows:

Li(x) := max{πi(x)− τ, 0},
Ui(x) := max{πi(x) + τ,M}.

From the above construction, we can validate that Fk(Θ) ⊂ ∪N
i=1[Li(x), Ui(x)] and Ui(x) − Li(x) ≤ 2min{2τ,M}.

Therefore, it follows that

∥Ui − Li∥2L2(µ) =

∫
(Ui − Li)

2dµ(x) ≤
∫

16τ2dµ(x) = 16τ2,

which implies that ∥Ui − Li∥L2(µ) ≤ 4τ . By definition of the bracketing entropy, we deduce that

HB(4τ,Fk(Θ), ∥ · ∥L2(µ)) ≤ logN = logN(τ,Fk(Θ), ∥ · ∥L2(µ)). (19)
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Therefore, we need to provide an upper bound for the covering number N . In particular, we denote ∆ := {(β0, β1) ∈
R × Rd : (β0, β1, η) ∈ Θ} and Ω := {η ∈ Rq : (β0, β1, η) ∈ Θ}. Since Θ is a compact set, ∆ and Ω are also compact.
Therefore, we can find τ -covers ∆τ and Ωτ for ∆ and Ω, respectively. We can check that

|∆τ | ≤ OP (τ
−(d+1)k), |Ωτ | ≲ OP (τ

−qk).

For each mixing measure G =
∑k

i=1 exp(β0i)δ(β1i,ηi) ∈ Gk(Θ), we consider other two mixing measures:

G̃ :=

k∑

i=1

exp(β0i)δ(β1i,ηi)
, G :=

k∑

i=1

exp(β0i)δ(β1i,ηi)
.

Here, ηi ∈ Ωτ such that ηi is the closest to ηi in that set, while (β0i, β1i) ∈ ∆τ is the closest to (β0i, β1i) in that set. From
the above formulations, we get that

∥fG − fG̃∥2L2(µ) =

∫ [ k∑

i=1

exp((β1i)
⊤x+ β0i)∑k

j=1 exp((β1j)⊤x+ β0j)
· [h(x, ηi)− h(x, ηi)

]2
dµ(x)

≤ k

∫ k∑

i=1

[
exp((β1i)

⊤x+ β0i)∑k
j=1 exp((β1j)⊤x+ β0j)

· [h(x, ηi)− h(x, ηi)

]2
dµ(x)

≤ k

∫ k∑

i=1

[h(x, ηi)− h(x, ηi)]
2 dµ(x)

≤ k

∫ k∑

i=1

[L1 · ∥ηi − ηi∥]2 dµ(x)

≤ k2(L1τ)
2,

which indicates that ∥fG − fG̃∥L2(µ) ≤ L1kτ . Here, the second inequality is according to the Cauchy-Schwarz inequality,
the third inequality occurs as the softmax weight is bounded by 1, and the fourth inequality follows from the fact that the
expert h(x, ·) is a Lipschitz function with Lipschitz constant L1. Next, we have

∥fG̃ − fG∥2L2(µ) ≤ k

∫ k∑

i=1

[(
exp((β1i)

⊤x+ β0i)∑k
j=1 exp((β1j)⊤x+ β0j)

− exp((β1i)
⊤x+ β0i)∑k

j=1 exp((β1j)
⊤x+ β0j)

)
· h(x, ηi)

]2
dµ(x)

≤ kM2L2

∫ k∑

i=1

[
∥β1i − β1i∥ · ∥x∥+ |β0i − β0i|

]2
dµ(x)

≤ kM2L2

∫ k∑

i=1

(τ ·B + τ)2dµ(x)

≤ [kMLτ(B + 1)]2,

where L ≥ 0 is a Lipschitz constant of the softmax weight. This result implies that ∥fG̃ − fG∥L2(µ) ≤ kML(B + 1)τ .
According to the triangle inequality, we have

∥fG − fG∥L2(µ) ≤ ∥fG − fG̃∥L2(µ) + ∥fG̃ − fG∥L2(µ) ≤ [L1k + kML(B + 1)] · τ.

By definition of the covering number, we deduce that

N(τ,Fk(Θ), ∥ · ∥L2(µ)) ≤ |∆τ | × |Ωτ | ≤ OP (n
−(d+1)k)×O(n−qk) ≤ O(n−(d+1+q)k). (20)

Combine equations (19) and (20), we achieve that

HB(4τ,Fk(Θ), ∥ · ∥L2(µ)) ≲ log(1/τ).
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Let τ = ε/4, then we obtain that

HB(ε,Fk(Θ), ∥.∥L2(µ)) ≲ log(1/ε).

As a result, it follows that

JB(δ,Fk(Θ, δ)) =

∫ δ

δ2/213
H

1/2
B (t,Fk(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ. (21)

Let Ψ(δ) = δ · [log(1/δ)]1/2, then Ψ(δ)/δ2 is a non-increasing function of δ. Furthermore, equation (21) indicates that
Ψ(δ) ≥ JB(δ,Fk(Θ, δ)). In addition, let δn =

√
log(n)/n, then we get that

√
nδ2n ≥ cΨ(δn) for some universal constant

c. Finally, by applying Lemma A.1, we achieve the desired conclusion of the theorem.

A.2. Proof of Theorem 3.2

In this proof, we aim to establish the following inequality:

inf
G∈Gk(Θ)

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0. (22)

For that purpose, we divide the proof of the above inequality into local and global parts in the sequel.

Local part: In this part, we demonstrate that

lim
ε→0

inf
G∈Gk(Θ):D1(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0. (23)

Assume by contrary that the above inequality does not hold true, then there exists a sequence of mixing measures
Gn =

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,η
n
i ) in Gk(Θ) such that D1n := D1(Gn, G∗) → 0 and

∥fGn
− fG∗∥L2(µ)/D1n → 0, (24)

as n → ∞. Let us denote by An
j := Aj(Gn) a Voronoi cell of Gn generated by the j-th components of G∗. Since our

arguments are asymptotic, we may assume that those Voronoi cells do not depend on the sample size, i.e. Aj = An
j . Thus,

the Voronoi loss D1n can be represented as

D1n :=

k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
∣∣∣+

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
∥∆βn

1ij∥2 + ∥∆ηnij∥2
]

+
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
[
∥∆βn

1ij∥+ ∥∆ηnij∥
]
, (25)

where we denote ∆βn
1ij := βn

1i − β∗
1j and ∆ηnij := ηni − η∗j .

Since D1n → 0, we get that (βn
1i, η

n
i ) → (β∗

1j , η
∗
j ) and

∑
i∈Aj

exp(βn
0i) → exp(β∗

0j) as n → ∞ for any i ∈ Aj and
j ∈ [k∗]. Now, we divide the proof of local part into three steps as follows:

Step 1. In this step, we decompose the term Qn(x) := [
∑k∗

j=1 exp((β
∗
1j)

⊤x+β∗
0j)] · [fGn

(x)− fG∗(x)] into a combination
of linearly independent elements using Taylor expansion. In particular, let us denote F (x;β1, η) := exp(β⊤

1 x)h(x, η) and
H(x;β1) = exp(β⊤

1 x)fGn(x), then we have

Qn(x) =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, η
n
i )− F (x;β∗

1j , η
∗
j )
]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

F (x;β∗
1j , η

∗
j )−H(x;β∗

1j)
]

:= An(x)−Bn(x) + En(x). (26)
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Decomposition of An. Next, we continue to separate the term An into two parts as follows:

An(x) :=
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, η
n
i )− F (x;β∗

1j , η
∗
j )
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, η
n
i )− F (x;β∗

1j , η
∗
j )
]

:= An,1(x) +An,2(x).

By means of the first-order Taylor expansion, we have

An,1(x) =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
∑

|α|=1

(∆βn
1ij)

α1(∆ηnij)
α2 · ∂F

∂βα1
1 ∂ηα2

(x;β∗
1j , η

∗
j ) +R1(x),

where R1(x) is a Taylor remainder such that R1(x)/D1n → 0 as n → ∞. By taking the first derivatives of F w.r.t its
parameters, we get

∂F

∂β1
(x;β∗

1j , η
∗
j ) = x exp((β∗

1j)
⊤x)h(x, η∗j ) = x · F (x;β∗

1j , η
∗
j ),

∂F

∂η
(x;β∗

1j , η
∗
j ) = exp((β∗

1j)
⊤x) · ∂h

∂η
(x, η∗j ) := F1(x;β

∗
1j , η

∗
j ).

Thus, we can rewrite An,1(x) as

An,1(x) =
∑

j:|Aj |=1

Cn,1,j(x) +R1(x), (27)

where

Cn,1,j(x) =
∑

i∈Aj

exp(βn
0i)
[
(∆βn

1ij)
⊤x · F (x;β∗

1j , η
∗
j ) + (∆ηnij)

⊤F1(x;β
∗
1j , η

∗
j )
]
.

Next, by applying the second-order Taylor expansion, An,2(x) can be represented as

An,2(x) =
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)

2∑

|α|=1

1

α!
(∆βn

1ij)
α1(∆ηnij)

α2 · ∂
|α1|+|α2|F
∂βα1

1 ∂ηα2
(x;β∗

1j , η
∗
j ) +R2(x),

where R2(x) is a Taylor remainder such that R2(x)/D1n → 0 as n → ∞. The second derivatives of F w.r.t its parameters
are given by

∂2F

∂β∂β⊤ (x;β∗
1j , η

∗
j ) = xx⊤ · F (x;β∗

1j , η
∗
j ),

∂2F

∂β∂η⊤
(x;β∗

1j , η
∗
j ) = x · [F1(x;β

∗
1j , η

∗
j )]

⊤,

∂2F

∂η∂η⊤
(x;β∗

1j , η
∗
j ) = exp((β∗

1j)
⊤x) · ∂2h

∂η∂η⊤
:= F2(x;β

∗
1j , η

∗
j )

Therefore, the term An,2(x) becomes

An,2(x) =
∑

j:|Aj |>1

[Cn,1,j(x) + Cn,2,j(x)] +R2(x), (28)

where

Cn,2,j(x) :=
∑

i∈Aj

exp(βn
0i)

{[
x⊤
(
Md ⊙ (∆βn

1ij)(∆βn
1ij)

⊤
)
x
]
· F (x;β∗

1j , a
∗
j , b

∗
j )

+
[
x⊤(∆βn

1ij)(∆ηnij)
⊤F1(x;β

∗
1j , η

∗
j )
]
+
[
(∆ηnij)

⊤
(
Md ⊙ F2(x;β

∗
1j , η

∗
j )
)
(∆ηnij)

]}
,
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with Md being an d× d matrix whose diagonal entries are 1
2 while other entries are 1.

Decomposition of Bn. Subsequently, we also divide Bn into two terms based on the Voronoi cells as

Bn(x) =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

:= Bn,1(x) +Bn,2(x).

By means of the first-order Taylor expansion, we have

Bn,1(x) =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)(∆βn

1ij)
⊤x ·H(x;β∗

1j) +R3(x), (29)

where R3(x) is a Taylor remainder such that R3(x)/D1n → 0 as n → ∞. Meanwhile, by applying the second-order Taylor
expansion, we get

Bn,2(x) =
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
(∆βn

1ij)
⊤x+ (∆βn

1ij)
⊤
(
Md ⊙ xx⊤

)
(∆βn

1ij)
]
·H(x;β∗

1j) +R4(x), (30)

where R4(x) is a Taylor remainder such that R4(x)/D1n → 0 as n → ∞.

Putting the above results together, we see that [An(x) − R1(x) − R2(x)]/D1n, [Bn(x) − R3(x) − R4(x)]/D1n and
En(x)/D1n can be written as a combination of elements from the following set

{
F (x;β∗

1j , η
∗
j ), x

(u)F (x;β∗
1j , η

∗
j ), x

(u)x(v)F (x;β∗
1j , η

∗
j ) : u, v ∈ [d], j ∈ [k∗]

}
,

∪
{
[F1(x;β

∗
1j , η

∗
j )]

(u), x(u)[F1(x;β
∗
1j , η

∗
j )]

(v) : u, v ∈ [d], j ∈ [k∗]
}
,

∪
{
[F2(x;β

∗
1j , η

∗
j )]

(uv) : u, v ∈ [d], j ∈ [k∗]
}
,

∪
{
H(x;β∗

1j), x
(u)H(x;β∗

1j), x
(u)x(v)H(x;β∗

1j) : u, v ∈ [d], j ∈ [k∗]
}
.

Step 2. In this step, we prove by contradiction that at least one among coefficients in the representations of [An −R1(x)−
R2(x)]/D2n, [Bn −R3(x)−R4(x)]/D2n and En(x)/D2n does not go to zero as n tends to infinity. Indeed, assume that
all of them converge to zero. Then, by considering the coefficients of

• F (x;β∗
1j , η

∗
j ) for j ∈ [k∗], we get that 1

D1n
·∑k∗

j=1

∣∣∣
∑

i∈Aj
exp(βn

0i)− exp(β∗
0j)
∣∣∣→ 0;

• x(u)F (x;β∗
1j , η

∗
j ) for u ∈ [d] and j : |Aj | = 1, we get that 1

D1n
·∑j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥∆βn

1ij∥1 → 0;

• [F1(x;β
∗
1j , η

∗
j )]

(u) for u ∈ [d] and j : |Aj | = 1, we get that 1
D1n

·∑j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥∆ηnij∥1 → 0;

• [x(u)]2F (x;β∗
1j , η

∗
j ) for u ∈ [d] and j : |Aj | > 1, we get that 1

D1n
·∑j:|Aj |>1

∑
i∈Aj

exp(βn
0i)∥∆βn

1ij∥2 → 0;

• [F2(x;β
∗
1j , η

∗
j )]

(uu) for u ∈ [d] and j : |Aj | > 1, we get that 1
D1n

·∑j:|Aj |>1

∑
i∈Aj

exp(βn
0i)∥∆ηnij∥2 → 0;

By taking the summation of the above limits, we obtain that 1 = D1n/D1n → 0 as n → ∞, which is a contradiction.
Therefore, not all the coefficients in the representations of [An(x)−R1(x)−R2(x)]/D1n, [Bn(x)−R3(x)−R4(x)]/D1n

and En(x)/D1n go to zero.

Step 3. In this step, we point out a contradiction following from the result in Step 2. Let us denote by mn the maximum of the
absolute values of the coefficients in the representations of [An(x)−R1(x)−R2(x)]/D1n, [Bn(x)−R3(x)−R4(x)]/D1n

and En(x)/D1n. Since at least one among those coefficients does not approach zero, we obtain that 1/mn ̸→ ∞.
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Recall the hypothesis in equation (24) that ∥fGn
− fG∗∥L2(µ)/D1n → 0 as n → ∞, which indicates that ∥fGn

−
fG∗∥L1(µ)/D1n → 0. By means of the Fatou’s lemma, we have

0 = lim
n→∞

∥fGn
− fG∗∥L1(µ)

mnD1n
≥
∫

lim inf
n→∞

|fGn
(x)− fG∗(x)|
mnD1n

dµ(x) ≥ 0.

This result implies that [fGn(x)− fG∗(x)]/[mnD1n] → 0 for almost every x. Since the term
∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j) is

bounded, we deduce that Qn(x)/[mnD1n] → 0, or equivalently,

1

mnD1n
·
[
(An,1(x)−R1(x) +An,2(x)−R2(x))− (Bn,1(x)−R3(x) +Bn,2(x)−R4(x)) + En(x)

]
→ 0. (31)

Let us denote

1

mnD1n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij) → ϕ1,j ,
1

mnD1n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij)(∆βn
1ij)

⊤ → ϕ2,j ,

1

mnD1n
·
∑

i∈Aj

exp(βn
0i)(∆ηnij) → φ1,j ,

1

mnD1n
·
∑

i∈Aj

exp(βn
0i)(∆ηnij)(∆ηnij)

⊤ → φ2,j ,

1

mnD1n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij)(∆ηnij)
⊤ → ζj ,

1

mnD1n
·
( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)
→ ξj .

Here, at least one among ϕ
(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j and ξj , for j ∈ [k∗], is different from zero, which results from Step 2.
Additionally, let us denote Fτj := Fτ (x;β

∗
1j , η

∗
j ) and Hj = H(x;β∗

1j) for short, then from the formulation of

• An,1 in equation (27), we get

An,1 −R1(x)

mnD1n
→

∑

j:|Aj |=1

[
ϕ⊤
1,jx · Fj + φ⊤

1,jF1j

]
. (32)

• An,2 in equation (28), we get

An,2 −R2(x)

mnD2n
→

∑

j:|Aj |>1

{[
ϕ⊤
1,jx+ x⊤

(
Md ⊙ ϕ2,j

)
x
]
· Fj + [φ⊤

1,j + x⊤ζj ] · F1j +
[
Md ⊙ φ2,j

]
⊙ F2j

}
.

(33)

• Bn,1 in equation (29), we get

Bn,1 −R3(x)

mnD2n
→

∑

j:|Aj |=1

[ϕ⊤
1,jx ·Hj ]. (34)

• Bn,2 in equation (30), we get

Bn,2 −R4(x)

mnD2n
→

∑

j:|Aj |>1

[
ϕ⊤
1,jx+ x⊤

(
Md ⊙ ϕ2,j

)
x
]
·Hj . (35)

• En(x) in equation (26), we get

En(x)

mnD2n
→

k∗∑

j=1

ξj [Fj −Hj ]. (36)

Due to the result in equation (31), we deduce that the limits in equations (32), (33), (34), (35) and (36) sum up to zero.

Now, we show that all the values of ϕ(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j and ξj , for j ∈ [k∗], are equal to zero. For that purpose, we first
denote J1, J2, . . . , Jℓ as the partition of the set {exp((β∗

1j)
⊤x) : j ∈ [k∗]} for some ℓ ≤ k∗ such that

17
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(i) β∗
1j = β∗

1j′ for any j, j′ ∈ Ji and i ∈ [ℓ];

(ii) β∗
1j ̸= β∗

1j′ when j and j′ do not belong to the same set Ji for any i ∈ [ℓ].

Then, the set {exp((β∗
1j1

)⊤x), . . . , exp((β∗
1jℓ

)⊤x)}, where ji ∈ Ji, is linearly independent. Since the limits in equa-
tions (32), (33), (34), (35) and (36) sum up to zero, we get for any i ∈ [ℓ] that

∑

j∈Ji:|Aj |=1

[
(ξj + ϕ⊤

1,jx) · hj + φ⊤
1,jh1j

]
+

∑

j∈Ji:|Aj |>1

{[
ϕ⊤
1,jx+ x⊤

(
Md ⊙ ϕ2,j

)
x
]
· hj

+ [φ⊤
1,j + x⊤ζj ] · h1j +

[
Md ⊙ φ2,j

]
⊙ h2j

}
−

∑

j∈Ji:|Aj |=1

[(ϕ⊤
1,jx+ ξj) · fG∗(x)]

−
∑

j∈Ji:|Aj |>1

[
ξj + ϕ⊤

1,jx+ x⊤
(
Md ⊙ ϕ2,j

)
x
]
· fG∗(x) = 0,

where we denote hj := h(x, η∗j ), h1j := ∂h
∂η (x, η

∗
j ) and h2j := ∂2h

∂η∂η⊤ (x, η∗j ). Recall that the expert function h satisfies
conditions in Definition 3.1, then the following set is linearly independent

{
xν · ∂

|τ1|+|τ2|h
∂ητ1∂ητ2

(x, η∗j ), x
ν · fG∗(x) : ν ∈ Nd, τ1, τ2 ∈ Nq, 0 ≤ |ν|+ |τ1|+ |τ2| ≤ 2, j ∈ [k∗]

}
.

is linearly independent. Therefore, we obtain that ξj = 0, ϕ1,j = φ1,j = 0d and ϕ2,j = φ2,j = ζj = 0d×d for any j ∈ Ji
and i ∈ [ℓ]. In other words, those results hold true for any j ∈ [k∗], which contradicts to the fact that at least one among
ϕ
(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j and ξj , for j ∈ [k∗], is different from zero. Thus, we achieve the inequality (23), i.e.

lim
ε→0

inf
G∈Gk(Θ):D1(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0.

As a consequence, there exists some ε′ > 0 such that

inf
G∈Gk(Θ):D1(G,G∗)≤ε′

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0.

Global part: Given the above result, it suffices to demonstrate that

inf
G∈Gk(Θ):D1(G,G∗)>ε′

∥fG − fG∗∥L2(µ)/D1(G,G∗) > 0. (37)

Assume by contrary that the inequality (37) does not hold true, then we can find a sequence of mixing measures G′
n ∈ Gk(Θ)

such that D1(G
′
n, G∗) > ε′ and

lim
n→∞

∥fG′
n
− fG∗∥L2(µ)

D1(G′
n, G∗)

= 0,

which indicates that ∥fG′
n
− fG∗∥L2(µ) → 0 as n → ∞. Recall that Θ is a compact set, therefore, we can replace the

sequence G′
n by one of its subsequences that converges to a mixing measure G′ ∈ Gk(Ω). Since D1(G

′
n, G∗) > ε′, we

deduce that D1(G
′, G∗) > ε′.

Next, by invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥fG′
n
− fG∗∥2L2(µ) ≥

∫
lim inf
n→∞

∣∣∣fG′
n
(x)− fG∗(x)

∣∣∣
2

dµ(x).

Thus, we get that fG′(x) = fG∗(x) for almost every x. From Proposition B.1, we deduce that G′ ≡ G∗. Consequently, it
follows that D1(G

′, G∗) = 0, contradicting the fact that D1(G
′, G∗) > ε′ > 0.

Hence, the proof is completed.
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A.3. Proof of Theorem 4.2

In this proof, we focus on demonstrating the following inequality:

inf
G∈Gk(Θ)

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0. (38)

To this end, we divide the proof of the above inequality into local and global parts in the sequel.

Local part: In this part, we show that

lim
ε→0

inf
G∈Gk(Θ):D2(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0. (39)

Assume by contrary that the above inequality does not hold true, then there exists a sequence of mixing measures
Gn =

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i )

in Gk(Θ) such that D2n := D2(Gn, G∗) → 0 and

∥fGn − fG∗∥L2(µ)/D2n → 0, (40)

as n → ∞. Let us denote by An
j := Aj(Gn) a Voronoi cell of Gn generated by the j-th components of G∗. Since our

arguments are assymptotic, we may assume that those Voronoi cells do not depend on the sample size, i.e. Aj = An
j . Thus,

the Voronoi loss D2n can be represented as

D2n :=

k∗∑

j=1

∣∣∣
∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
∣∣∣+

∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
∥∆βn

1ij∥2 + ∥∆anij∥2 + |∆bnij |2
]

+
∑

j:|Aj |=1

∑

i∈Aj

exp(β0i)
[
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |
]
, (41)

where we denote ∆βn
1ij := βn

1i − β∗
1j , ∆anij := ani − a∗j and ∆bnij := bni − b∗j .

Since D2n → 0, we get that (βn
1i, a

n
i , b

n
i ) → (β∗

1j , a
∗
j , b

∗
j ) and exp(βn

0i) → exp(β∗
0j) as n → ∞ for any i ∈ Aj and

j ∈ [k∗]. Now, we divide the proof of local part into three steps as follows:

Step 1. In this step, we decompose the term Qn(x) := [
∑k∗

j=1 exp((β
∗
1j)

⊤x+β∗
0j)] · [fGn(x)− fG∗(x)] into a combination

of linearly independent elements using Taylor expansion. In particular, let us denote F (x;β1, a, b) := exp(β⊤
1 x)σ(a⊤x+ b)

and H(x;β1) = exp(β⊤
1 x)fGn

(x), then we have

Qn(x) =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, a
n
i , b

n
i )− F (x;β∗

1j , a
∗
j , b

∗
j )
]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

F (x;β∗
1j , a

∗
j , b

∗
j )−H(x;β∗

1j)
]

:= An(x)−Bn(x) + En(x). (42)

Decomposition of An(x). Next, we continue to separate the term An(x) into two parts as follows:

An(x) :=
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, a
n
i , b

n
i )− F (x;β∗

1j , a
∗
j , b

∗
j )
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
F (x;βn

1i, a
n
i , b

n
i )− F (x;β∗

1j , a
∗
j , b

∗
j )
]

:= An,1 +An,2.
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By means of the first-order Taylor expansion, we have

An,1 =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
∑

|α|=1

(∆βn
1ij)

α1(∆anij)
α2(∆bnij)

α3 · ∂F

∂βα1
1 ∂aα2∂bα3

(x;β∗
1j , a

∗
j , b

∗
j ) +R1(x),

where R1(x) is a Taylor remainder such that R1(x)/D2n → 0 as n → ∞. By taking the first derivatives of F w.r.t its
parameters, we get

∂F

∂β1
(x;β∗

1j , a
∗
j , b

∗
j ) = x exp((β∗

1j)
⊤x) · σ((a∗j )⊤x+ b∗j ) = x · F (x;β∗

1j , a
∗
j , b

∗
j ),

∂F

∂a
(x;β∗

1j , a
∗
j , b

∗
j ) = x exp((β∗

1j)
⊤x) · σ(1)((a∗j )

⊤x+ b∗j ) = x · F1(x;β
∗
1j , a

∗
j , b

∗
j ),

∂F

∂b
(x;β∗

1j , a
∗
j , b

∗
j ) = exp((β∗

1j)
⊤x) · σ(1)((a∗j )

⊤x+ b∗j ) = F1(x;β
∗
1j , a

∗
j , b

∗
j ),

where we denote Fτ (x;β
∗
1j , a

∗
j , b

∗
j ) = exp((β∗

1j)
⊤x) · σ(τ)((a∗j )

⊤x+ b∗j ). Thus, we can rewrite An,1 as

An,1 =
∑

j:|Aj |=1

Cn,1,j(x) +R1(x), (43)

where

Cn,1,j(x) =
∑

i∈Aj

exp(βn
0i)
[
(∆βn

1ij)
⊤x · F (x;β∗

1j , a
∗
j , b

∗
j ) + ((∆anij)

⊤x+ (∆bnij)) · F1(x;β
∗
1j , a

∗
j , b

∗
j )
]
.

Next, by applying the second-order Taylor expansion, An,2 can be represented as

An,2 =
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)

2∑

|α|=1

1

α!
(∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3 · ∂

|α1|+|α2|+α3F

∂βα1
1 ∂aα2∂bα3

(x;β∗
1j , a

∗
j , b

∗
j ) +R2(x),

where R2(x) is a Taylor remainder such that R2(x)/D2n → 0 as n → ∞. The second derivatives of F w.r.t its parameters
are given by

∂2F

∂β∂β⊤ (x;β∗
1j , a

∗
j , b

∗
j ) = xx⊤ · F (x;β∗

1j , a
∗
j , b

∗
j ),

∂2F

∂β1∂a⊤
= xx⊤ · F1(x;β

∗
1j , a

∗
j , b

∗
j ),

∂2F

∂β1∂b
= x · F1(x;β

∗
1j , a

∗
j , b

∗
j ),

∂2F

∂a∂a⊤
= xx⊤ · F2(x, β

∗
1j , a

∗
j , b

∗
j ),

∂2F

∂a∂b
= x · F2(x, β

∗
1j , a

∗
j , b

∗
j ),

∂2F

∂b2
= F2(x, β

∗
1j , a

∗
j , b

∗
j ).

Therefore, the term An,2 becomes

An,2 =
∑

j:|Aj |>1

[Cn,1,j(x) + Cn,2,j(x)] +R2(x), (44)

where

Cn,2,j(x) :=
∑

i∈Aj

exp(βn
0i)

{[
x⊤
(
Md ⊙ (∆βn

1ij)(∆βn
1ij)

⊤
)
x
]
· F (x;β∗

1j , a
∗
j , b

∗
j )

+
[
x⊤
(
Md ⊙ (∆anij)(∆anij)

⊤
)
x+ (∆bnij)(∆βn

1ij)
⊤x+ x⊤(∆βn

1ij)(∆anij)
⊤x
]
· F1(x;β

∗
1j , a

∗
j , b

∗
j )

+
[1
2
(∆bnij)

2 + (∆bnij)(∆anij)
⊤x
]
· F2(x;β

∗
1j , a

∗
j , b

∗
j )

}
.
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Decomposition of Bn(x). Subsequently, we also divide Bn(x) into two terms based on the Voronoi cells as

Bn(x) =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

+
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
H(x;βn

1i)−H(x;β∗
1j)
]

:= Bn,1 +Bn,2.

By means of the first-order Taylor expansion, we have

Bn,1 =
∑

j:|Aj |=1

∑

i∈Aj

exp(βn
0i)(∆βn

1ij)
⊤x ·H(x;β∗

1j) +R3(x), (45)

where R3(x) is a Taylor remainder such that R3(x)/D2n → 0 as n → ∞. Meanwhile, by applying the second-order Taylor
expansion, we get

Bn,2 =
∑

j:|Aj |>1

∑

i∈Aj

exp(βn
0i)
[
(∆βn

1ij)
⊤x+ x⊤

(
Md ⊙ (∆βn

1ij)(∆βn
1ij)

⊤
)
x
]
·H(x;β∗

1j) +R4(x), (46)

where R4(x) is a Taylor remainder such that R4(x)/D2n → 0 as n → ∞.

Putting the above results together, we see that [An(x) − R1(x) − R2(x)]/D2n, [Bn(x) − R3(x) − R4(x)]/D2n and
En(x)/D2n can be written as a combination of elements from set S := ∪3

τ=0Sτ in which

S0 :=
{
F (x;β∗

1j , a
∗
j , b

∗
j ), x

(u)F (x;β∗
1j , a

∗
j , b

∗
j ), x

(u)x(v)F (x;β∗
1j , a

∗
j , b

∗
j ) : u, v ∈ [d], j ∈ [k∗]

}
,

S1 :=
{
F1(x;β

∗
1j , a

∗
j , b

∗
j ), x

(u)F1(x;β
∗
1j , a

∗
j , b

∗
j ), x

(u)x(v)F1(x;β
∗
1j , a

∗
j , b

∗
j ) : u, v ∈ [d], j ∈ [k∗]

}
,

S2 :=
{
F2(x;β

∗
1j , a

∗
j , b

∗
j ), x

(u)F2(x;β
∗
1j , a

∗
j , b

∗
j ), x

(u)x(v)F2(x;β
∗
1j , a

∗
j , b

∗
j ) : u, v ∈ [d], j ∈ [k∗]

}
,

S3 :=
{
H(x;β∗

1j), x
(u)H(x;β∗

1j), x
(u)x(v)H(x;β∗

1j) : u, v ∈ [d], j ∈ [k∗]
}
.

Step 2. In this step, we prove by contradiction that at least one among coefficients in the representations of [An(x) −
R1(x)−R2(x)]/D2n, [Bn(x)−R3(x)−R4(x)]/D2n and En(x)/D2n does not go to zero as n tends to infinity. Indeed,
assume that all of them converge to zero. Then, by considering the coefficients of

• F (x;β∗
1j , a

∗
j , b

∗
j ) for j ∈ [k∗], we get that 1

D2n
·∑k∗

j=1

∣∣∣
∑

i∈Aj
exp(βn

0i)− exp(β∗
0j)
∣∣∣→ 0;

• x(u)F (x;β∗
1j , a

∗
j , b

∗
j ) for u ∈ [d] and j : |Aj | = 1, we get that 1

D2n
·∑j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥∆βn

1ij∥1 → 0;

• x(u)F1(x;β
∗
1j , a

∗
j , b

∗
j ) for u ∈ [d] and j : |Aj | = 1, we get that 1

D2n
·∑j:|Aj |=1

∑
i∈Aj

exp(βn
0i)∥∆anij∥1 → 0;

• F1(x;β
∗
1j , a

∗
j , b

∗
j ) for j : |Aj | = 1, we get that 1

D2n
·∑j:|Aj |=1

∑
i∈Aj

exp(βn
0i)|∆bnij |1 → 0;

• [x(u)]2F (x;β∗
1j , a

∗
j , b

∗
j ) for u ∈ [d] and j : |Aj | > 1, we get that 1

D2n
·∑j:|Aj |>1

∑
i∈Aj

exp(βn
0i)∥∆βn

1ij∥2 → 0;

• [x(u)]2F2(x;β
∗
1j , a

∗
j , b

∗
j ) for u ∈ [d] and j : |Aj | > 1, we get that 1

D2n
·∑j:|Aj |>1

∑
i∈Aj

exp(βn
0i)∥∆anij∥2 → 0;

• F2(x;β
∗
1j , a

∗
j , b

∗
j ) for j : |Aj | > 1, we get that 1

D2n
·∑j:|Aj |>1

∑
i∈Aj

exp(βn
0i)∥∆bnij∥2 → 0.

By taking the summation of the above limits, we obtain that 1 = D2n/D2n → 0 as n → ∞, which is a contradiction.
Therefore, not all the coefficients in the representations of [An(x)−R1(x)−R2(x)]/D2n, [Bn(x)−R3(x)−R4(x)]/D2n

and En(x)/D2n go to zero.

Step 3. In this step, we point out a contradiction following from the result in Step 2. Let us denote by mn the maximum of the
absolute values of the coefficients in the representations of [An(x)−R1(x)−R2(x)]/D2n, [Bn(x)−R3(x)−R4(x)]/D2n

and En(x)/D2n. Since at least one among those coefficients does not approach zero, we obtain that 1/mn ̸→ ∞.
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Recall the hypothesis in equation (40) that ∥fGn
− fG∗∥L2(µ)/D2n → 0 as n → ∞, which indicates that ∥fGn

−
fG∗∥L1(µ)/D2n → 0. By means of the Fatou’s lemma, we have

0 = lim
n→∞

∥fGn
− fG∗∥L1(µ)

mnD2n
≥
∫

lim inf
n→∞

|fGn(x)− fG∗(x)|
mnD2n

dµ(x) ≥ 0.

This result implies that [fGn
(x) − fG∗(x)]/[mnD2n] for almost every x. Since the term

∑k∗
j=1 exp((β

∗
1j)

⊤x + β∗
0j) is

bounded, we deduce that Qn(x)/[mnD2n] → 0, or equivalently,

lim
n→∞

1

mnD2n
·
[
(An,1 −R1(x) +An,2 −R2(x))− (Bn,1 −R3(x) +Bn,2 −R4(x)) + En(x)

]
→ 0. (47)

Let us denote

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij) → ϕ1,j ,
1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij)(∆βn
1ij)

⊤ → ϕ2,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆anij) → φ1,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆anij)(∆anij)

⊤ → φ2,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆bnij) → κ1,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆bnij)

2 → κ2,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆βn

1ij)(∆anij)
⊤ → ζ1,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆bnij)(∆βn

1ij) → ζ2,j ,

1

mnD2n
·
∑

i∈Aj

exp(βn
0i)(∆bnij)(∆anij) → ζ3,j ,

1

mnD2n
·
( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)
→ ξj .

Here, at least one among ϕ
(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j , κ1,j , κ2,j and ξj , for j ∈ [k∗], is different from zero, which results from
Step 2. Additionally, let us denote Fτj := Fτ (x;β

∗
1j , a

∗
j , b

∗
j ) and Hj = H(x;β∗

1j) for short, then from the formulation of

• An,1 in equation (43), we get

An,1 −R1(x)

mnD2n
→

∑

j:|Aj |=1

[
ϕ⊤
1,jx · Fj + (κ1,j + φ⊤

1,jx) · F1j

]
. (48)

• An,2 in equation (44), we get

An,2 −R2(x)

mnD2n
→

∑

j:|Aj |>1

{[
ϕ⊤
1,jx+ x⊤

(
Md ⊙ ϕ2,j

)
x
]
· Fj + [κ1,j + (φ1,j + ζ2,j)

⊤x+ x⊤ζ1,jx] · F1j

+
[1
2
κ2,j + ζ⊤3,jx+ x⊤

(
Md ⊙ φ2,j

)
x
]
· F2j (49)

• Bn,1 in equation (45), we get

Bn,1 −R3(x)

mnD2n
→

∑

j:|Aj |=1

[ϕ⊤
1,jx ·Hj ]. (50)

• Bn,2 in equation (46), we get

Bn,2 −R4(x)

mnD2n
→

∑

j:|Aj |>1

[
ϕ⊤
1,jx+ x⊤

(
Md ⊙ ϕ2,j

)
x
]
·Hj . (51)
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• En(x) in equation (42), we get

En(x)

mnD2n
→

k∗∑

j=1

ξj [Fj −Hj ]. (52)

Due to the result in equation (47), we deduce that the limits in equations (48), (49), (50), (51) and (52) sum up to zero.

Now, we show that all the values of ϕ(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j , κ1,j , κ2,j and ξj , for j ∈ [k∗], are equal to zero. For that
purpose, we first denote J1, J2, . . . , Jℓ as the partition of the set {exp((β∗

1j)
⊤x) : j ∈ [k∗]} for some ℓ ≤ k∗ such that

(i) β∗
0j = β∗

0j′ for any j, j′ ∈ Ji and i ∈ [ℓ];

(ii) β∗
0j ̸= β∗

0j′ when j and j′ do not belong to the same set Ji for any i ∈ [ℓ].

Then, the set {exp((β∗
0j1

)⊤x), . . . , exp((β∗
0jℓ

)⊤x)}, where ji ∈ Ji, is linearly independent. Since the limits in equa-
tions (48), (49), (50), (51) and (52) sum up to zero, we get for any i ∈ [ℓ] that

∑

j∈Ji:|Aj |=1

[
(ϕ⊤

1,jx+ ξj) · σj + (κ1,j + φ⊤
1,jx) · σ(1)

j

]
+

∑

j∈Ji:|Aj |>1

{[
ξj + ϕ⊤

1,jx+ x⊤
(
Md ⊙ ϕ2,j

)
x
]
· σj

+ [κ1,j + (φ1,j + ζ2,j)
⊤x+ x⊤ζ1,jx] · σ(1)

j +
[1
2
κ2,j + ζ⊤3,jx+ x⊤

(
Md ⊙ φ2,j

)
x
]
· σ(2)

j

}

−
∑

j∈Ji:|Aj |=1

[(ϕ⊤
1,jx+ ξj) · fG∗(x)]−

∑

j∈Ji:|Aj |>1

[
ξj + ϕ⊤

1,jx+ x⊤
(
Md ⊙ ϕ2,j

)
x
]
· fG∗(x) = 0,

where we denote σ
(τ)
j := σ(τ)((a∗j )

⊤x + b∗j ). Additionally, as (a∗1, b
∗
1), . . . , (a

∗
k∗
, b∗k∗

) are pairwise distinct, the experts
(a∗1)

⊤x+ b∗1, . . . , (a
∗
k∗
)⊤x+ b∗k∗

are also pairwise distinct. Recall that the function σ satisfies conditions in Definition 4.1,
then the following set is linearly independent

{
xνσ

(τ)
j , xνfG∗(x) : ν ∈ Nd, τ ∈ N, 0 ≤ |ν|, τ ≤ 2, j ∈ [k∗]

}
.

is linearly independent. Therefore, we obtain that κ1,j = κ2,j = ξj = 0, ϕ1,j = φ1,j = ζ2,j = ζ3,j = 0d and
ϕ2,j = φ2,j = ζ1,j = 0d×d for any j ∈ Ji and i ∈ [ℓ]. In other words, those results hold true for any j ∈ [k∗], which
contradicts to the fact that at least one among ϕ

(u)
1,j , ϕ(uu)

2,j , φ(u)
1,j , φ(uu)

2,j , κ1,j , κ2,j and ξj , for j ∈ [k∗], is different from zero.
Thus, we achieve the inequality (39), i.e.

lim
ε→0

inf
G∈Gk(Θ):D2(G,G∗)≤ε

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0.

As a consequence, there exists some ε′ > 0 such that

inf
G∈Gk(Θ):D2(G,G∗)≤ε′

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0.

Global part: Given the above result, it suffices to demonstrate that

inf
G∈Gk(Θ):D2(G,G∗)>ε′

∥fG − fG∗∥L2(µ)/D2(G,G∗) > 0. (53)

Assume by contrary that the inequality (53) does not hold true, then we can find a sequence of mixing measures G′
n ∈ Gk(Θ)

such that D2(G
′
n, G∗) > ε′ and

lim
n→∞

∥fG′
n
− fG∗∥L2(µ)

D2(G′
n, G∗)

= 0,
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which indicates that ∥fG′
n
− fG∗∥L2(µ) → 0 as n → ∞. Recall that Θ is a compact set, therefore, we can replace the

sequence G′
n by one of its subsequences that converges to a mixing measure G′ ∈ Gk(Ω). Since D2(G

′
n, G∗) > ε′, we

deduce that D2(G
′, G∗) > ε′.

Next, by invoking the Fatou’s lemma, we have that

0 = lim
n→∞

∥fG′
n
− fG∗∥2L2(µ) ≥

∫
lim inf
n→∞

∣∣∣fG′
n
(x)− fG∗(x)

∣∣∣
2

dµ(x).

Thus, we get that fG′(x) = fG∗(x) for almost every x. From Proposition B.1, we deduce that G′ ≡ G∗. Consequently, it
follows that D2(G

′, G∗) = 0, contradicting the fact that D2(G
′, G∗) > ε′ > 0.

Hence, the proof is completed.

A.4. Proof of Proposition 4.3

It is sufficient to show that the following limit holds true for any r ≥ 1:

lim
ε→0

inf
G∈Gk(Θ):D3,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

D3,r(G,G∗)
= 0. (54)

To this end, we need to construct a sequence of mixing measures (Gn) that satisfies D3,r(Gn, G∗) → 0 and

∥fGn
− fG∗∥L2(µ)

D3,r(Gn, G∗)
→ 0,

as n → ∞. Recall that under the Regime 2, at least one among parameters a∗1, . . . , a
∗
k∗

is equal to 0d. Without loss of
generality, we may assume that a∗1 = 0d. Next, let us take into account the sequence Gn =

∑k∗+1
i=1 exp(βn

0i)δ(βn
1i,a

n
i ,b

n
i )

in
which

• exp(βn
01) = exp(βn

02) =
1
2 exp(β

∗
01) and exp(βn

0i) = exp(β∗
0(i−1)) for any 3 ≤ i ≤ k∗ + 1;

• βn
11 = βn

12 = β∗
11 and βn

1i = β∗
1(i−1) for any 3 ≤ i ≤ k∗ + 1;

• an1 = an2 = a∗1 = 0d and ani = a∗i−1 for any 3 ≤ i ≤ k∗ + 1;

• bn1 = b∗1 +
c
n , bn2 = b∗1 +

2c
n and bni = b∗i−1 for any 3 ≤ i ≤ k∗ + 1,

where c ∈ R will be chosen later. Consequently, we get that

D3,r(Gn, G∗) =
1

2
exp(β∗

01)
[ cr
nr

+
(2c)r

nr

]
= O(n−r).

Next, we demonstrate that ∥fGn
− fG∗∥L2(µ)/D3,r(Gn, G∗) → 0. To this end, consider the quantity Qn(x) :=

[
∑k∗

j=1 exp((β
∗
1j)

⊤x+ β∗
0j)] · [fGn(x)− fG∗(x)], and decompose it as follows:

Qn(x) =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
exp((βn

1i)
⊤x)σ((ani )

⊤x+ bni )− exp((β∗
1j)

⊤x)σ((a∗j )
⊤x+ b∗j )

]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
exp((βn

1i)
⊤x)fGn

(x)− exp((β∗
1j)

⊤x)fGn
(x)
]

+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

exp((β∗
1j)

⊤x)σ((a∗j )
⊤x+ b∗j )− exp((β∗

1j)
⊤x)fGn

(x)
]

:= An(x)−Bn(x) + En(x).
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From the definitions of βn
1i, a

n
i and bni , we can verify that Bn(x) = En(x) = 0. Additionally, we can represent An(x) as

An(x) =

2∑

i=1

exp(β∗
01) exp((β

∗
11)

⊤x)
[
σ(bni )− σ(b∗1)

]
.

When r is odd: By applying the Taylor expansion up to order r-th, we get that

An(x) =

2∑

i=1

exp(β∗
01) exp((β

∗
11)

⊤x)
r∑

α=1

(bni − b∗1)
α

α!
· σ(α)(b∗1) +R1(x)

=
[ r∑

α=1

(1 + 2α)σ(α)(b∗1)
α!nr

· cα
]
exp((β∗

11)
⊤x+ β∗

01) +R1(x),

where R1(x) is a Taylor remainder such that R1(x)/D3,r(Gn, G∗) → 0. Note that
[∑r

α=1
(1+2α)σ(α)(b∗1)

α!nα · cα
]

is an
odd-order polynomial of c. Thus, we can choose c as a root of this polynomial, which leads to the fact that An(x) = 0.
From the above results, we deduce that Qn(x)/D3,r(Gn, G∗) → 0, or equivalently, [fGn(x)−fG∗(x)]/D3,r(Gn, G∗) → 0
as n → ∞ for almost every x. As a consequence, we achieve that ∥fGn

− fG∗∥L2(µ)/D3,r(Gn, G∗) → 0.

When r is even: By means of the Taylor expansion of order (r + 1)-th, we have

An(x) =

2∑

i=1

exp(β∗
01) exp((β

∗
11)

⊤x)
r+1∑

α=1

(bni − b∗1)
α

α!
· σ(α)(b∗1) +R2(x)

=
[ r+1∑

α=1

(1 + 2α)σ(α)(b∗1)
α!nr

· cα
]
exp((β∗

11)
⊤x+ β∗

01) +R2(x),

where R2(x) is a Taylor remainder such that R2(x)/D3,r(Gn, G∗) → 0. Since
[∑r+1

α=1
(1+2α)σ(α)(b∗1)

α!nα · cα
]

is an odd-
degree polynomial of variable c, we can argue in a similar fashion to the scenario when r is odd to obtain that ∥fGn −
fG∗∥L2(µ)/D3,r(Gn, G∗) → 0.

Combine results from the above two cases of r, we reach the conclusion of claim (54).

A.5. Proof of Theorem 4.4

Based on the result of Proposition 4.3, we demonstrate that the following minimax lower bound holds true for any r ≥ 1:

inf
Gn∈Gk(Θ)

sup
G∈Gk(Θ)\Gk∗−1(Θ)

EfG [D3,r(Gn, G)] ≳ n−1/2. (55)

Indeed, from the Gaussian assumption on the noise variables, we obtain that Yi|Xi ∼ N (fG∗(xi), σ
2) for all i ∈ [n]. Now,

from Proposition 4.3, for sufficiently small ε > 0 and a fixed constant C1 > 0 that we will choose later, we can find a
mixing measure G′

∗ ∈ Gk(Θ) such that D3,r(G
′
∗, G∗) = 2ε and ∥fG′

∗
− fG∗∥L2(µ) ≤ C1ε. From Le Cam’s lemma (Yu,

1997), as the Voronoi loss function D3,r satisfies the weak triangle inequality, we obtain that

inf
Gn∈Gk(Θ)

sup
G∈Gk(Θ)\Gk∗−1(Θ)

EfG [D3,r(Gn, G)] ≳
D3,r(G

′
∗, G∗)
8

exp(−nEX∼µ[KL(N (fG′
∗
(x), σ2),N (fG∗(x), σ

2))])

≳ ε · exp(−n∥fG′
∗
− fG∗∥2L2(µ)),

≳ ε · exp(−C1nε
2), (56)

where the second inequality is due to the fact that KL(N (fG′
∗
(x), σ2),N (fG∗(x), σ

2)) =
(fG′

∗
(x)− fG∗(x))

2

2σ2
.

By choosing ε = n−1/2, we obtain that ε · exp(−C1nε
2) = n−1/2 exp(−C1). As a consequence, we achieve the desired

minimax lower bound in equation (55).
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A.6. Proof of Proposition 4.5

We need to prove that the following limit holds true for any r ≥ 1:

lim
ε→0

inf
G∈Gk(Θ):D3,r(G,G∗)≤ε

∥fG − fG∗∥L2(µ)

D3,r(G,G∗)
= 0. (57)

For that purpose, it suffices to build a sequence of mixing measures (Gn) such that both D3,r(Gn, G∗) → 0 and

∥fGn
− fG∗∥L2(µ)

D3,r(Gn, G∗)
→ 0,

as n → ∞. To this end, we consider the sequence Gn =
∑k∗+1

i=1 exp(βn
0i)δ(βn

1i,a
n
i ,b

n
i )

, where

• exp(βn
01) = exp(βn

02) =
1
2 exp(β

∗
01) +

1
2nr+1 and exp(βn

0i) = exp(βn
0(i−1)) for any 3 ≤ i ≤ k∗ + 1;

• βn
11 = βn

12 = β∗
11 and βn

1i = βn
1(i−1) for any 3 ≤ i ≤ k∗ + 1;

• an1 = an2 = a∗1 and ani = ani−1 for any 3 ≤ i ≤ k∗ + 1;

• bn1 = b∗1 +
1
n , bn2 = b∗1 − 1

n and bni = b∗i−1 for any 3 ≤ i ≤ k∗ + 1.

As a result, the loss function D3,r(Gn, G∗) is reduced to

D3,r(Gn, G∗) =
1

nr+1
+
[
exp(β∗

01) +
1

nr+1

]
· 1

nr
= O(n−r). (58)

which indicates indicates that D3,r(Gn, G∗) → 0 as n → ∞. Now, we prove that ∥fGn
− fG∗∥L2(µ)/D3,r(Gn, G∗) → 0.

For that purpose, let us consider the quantity Qn(x) := [
∑k∗

j=1 exp((β
∗
1j)

⊤x + β∗
0j)] · [fGn

(x) − fG∗(x)]. Then, we
decompose Qn(x) as follows:

Qn(x) =

k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
exp((βn

1i)
⊤x)((ani )

⊤x+ bni )− exp((β∗
1j)

⊤x)((a∗j )
⊤x+ b∗j )

]

−
k∗∑

j=1

∑

i∈Aj

exp(βn
0i)
[
exp((βn

1i)
⊤x)fGn

(x)− exp((β∗
1j)

⊤x)fGn
(x)
]

+

k∗∑

j=1

( ∑

i∈Aj

exp(βn
0i)− exp(β∗

0j)
)[

exp((β∗
1j)

⊤x)((a∗j )
⊤x+ b∗j )− exp((β∗

1j)
⊤x)fGn

(x)
]

:= An(x)−Bn(x) + En(x).

From the definitions of βn
1i, a

n
i and bni , we can rewrite An(x) as follows:

An(x) =

2∑

i=1

1

2
exp(βn

01) exp((β
∗
11)

⊤x)(bni − b∗1) =
1

2
exp(βn

01) exp((β
∗
11)

⊤x)[(bn1 − b∗1) + (bn2 − b∗1)] = 0.

Additionally, it can also be checked that Bn(x) = 0. Next, we have En(x) = O(n−(r+1)), therefore, it follows that
En(x)/D3,r(Gn, G∗) → 0. As a consequence, Qn(x)/D3,r(Gn, G∗) → 0 as n → ∞ for almost every x. Since the term∑k∗

j=1 exp((β
∗
1j)

⊤x + β∗
0j) is bounded, we deduce that [fGn

(x) − fG∗(x)]/D3,r → 0 for almost every x. This result
indicates that ∥fGn

− fG∗∥L2(µ)/D3,r → 0 as n → ∞. Hence, the proof of claim (57) is completed.

A.7. Proof of Theorem 4.6

By leveraging the result of Proposition 4.5 and the arguments for Theorem 4.4 in Appendix A.5, we achieve the following
minimax lower bound for any r ≥ 1:

inf
Gn∈Gk(Θ)

sup
G∈Gk(Θ)\Gk∗−1(Θ)

EfG [D3,r(Gn, G)] ≳ n−1/2. (59)
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B. Identifiability of the Softmax Gating Mixture of Experts
Proposition B.1. If fG(x) = fG∗(x) holds true for almost every x, then we get that G ≡ G′.

Proof of Proposition B.1. Since fG(x) = fG∗(x) for almost every x, we have

k∑

i=1

Softmax
(
(β1i)

⊤x+ β0i

)
· h(x, ηi) =

k∗∑

i=1

Softmax
(
(β∗

1i)
⊤x+ β∗

0i

)
· h(x, η∗i ). (60)

As the expert function h satisfies the conditions in Definition 3.1, the set {h(x, η′i) : i ∈ [k′]}, where η′1, . . . , η
′
k′ are distinct

vectors for some k′ ∈ N, is linearly independent. If k ̸= k∗, then there exists some i ∈ [k] such that ηi ̸= η∗j for any j ∈ [k∗].
This implies that Softmax((β1i)

⊤x+ β0i) = 0, which is a contradiction. Thus, we must have that k = k∗. As a result,
{
Softmax

(
(β1i)

⊤x+ β0i

)
: i ∈ [k]

}
=
{
Softmax

(
(β∗

1i)
⊤x+ β∗

0i

)
: i ∈ [k∗]

}
,

for almost every x. WLOG, we may assume that

Softmax
(
(β1i)

⊤x+ β0i

)
= Softmax

(
(β∗

1i)
⊤x+ β∗

0i

)
, (61)

for almost every x for any i ∈ [k∗]. It is worth noting that the Softmax function is invariant to translations, then
equation (61) indicates that β1i = β∗

1i + v1 and β0i = β∗
0i + v0 for some v1 ∈ Rd and v0 ∈ R. However, from the

assumptions β1k = β∗
1k = 0d and β0k = β∗

0k = 0, we deduce that v1 = 0d and v0 = 0. Consequently, we get that β1i = β∗
1i

and β0i = β∗
0i for any i ∈ [k∗]. Then, equation (60) can be rewritten as

k∗∑

i=1

exp(β0i) exp
(
(β1i)

⊤x
)
h(x, ηi) =

k∗∑

i=1

exp(β∗
0i) exp

(
(β∗

1i)
⊤x
)
h(x, η∗i ), (62)

for almost every x. Next, we denote P1, P2, . . . , Pm as a partition of the index set [k∗], where m ≤ k, such that
exp(β0i) = exp(β∗

0i′) for any i, i′ ∈ Pj and j ∈ [k∗]. On the other hand, when i and i′ do not belong to the same set Pj , we
let exp(β0i) ̸= exp(β0i′). Thus, we can reformulate equation (62) as

m∑

j=1

∑

i∈Pj

exp(β0i) exp
(
(β1i)

⊤x
)
h(x, ηi) =

m∑

j=1

∑

i∈Pj

exp(β∗
0i) exp

(
(β∗

1i)
⊤x
)
h(x, η∗i ),

for almost every x. Recall that β1i = β∗
1i and β0i = β∗

0i for any i ∈ [k∗], then the above leads to

{ηi : i ∈ Pj} ≡ {η∗i : i ∈ Pj},

for almost every x for any j ∈ [m]. As a consequence,

G =

m∑

j=1

∑

i∈Pj

exp(β0i)δ(β1i,ηi) =

m∑

j=1

∑

i∈Pj

exp(β0i)δ(β∗
1i,η

∗
i )

= G∗.

Hence, we reach the conclusion of this proposition.

C. Numerical Experiments
In this section, we conduct a simulation study to empirically demonstrate that the convergence rates of least square estimation
under the softmax gating MoE model with ridge experts h1(x, (a, b)) = sigmoid(ax+ b) are significantly faster than those
obtained when using linear experts h2(x, (a, b)) = ax+ b. We conduct those experiments under both the exact-specified
setting (when the true number of experts k∗ is known) and the over-specified setting (when the true number of experts k∗ is
unknown).

Synthetic Data. First, we assume that the true mixing measure G∗ =
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i )

is of order k∗ = 2 and
associated with the following ground-truth parameters:
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β∗
01 = 0.0, β∗

11 = 1.0, a∗1 = −1.0, b∗1 = 2.0,

β∗
02 = 0.0, β∗

12 = 0.0, a∗2 = 1.0, b∗2 = 2.0.

Then, we generate i.i.d samples {(Xi, Yi)}ni=1 by first sampling Xi’s from the uniform distribution Uniform[0, 1] and then
sampling Yi’s from the regression equation

Yi = fG∗(Xi) + εi,

where ε1, . . . , εn are independent Gaussian noise variables such that E[εi|Xi] = 0 and Var(εi|Xi) = 1.

Initialization. For each k ∈ {k∗, k∗ + 1}, we randomly distribute elements of the set {1, 2, ..., k} into k∗ different
Voronoi cells A1,A2, . . . ,Ak∗ , each contains at least one element. Moreover, we repeat this process for each replication.
Subsequently, for each j ∈ [k∗], we initialize parameters β1i by sampling from a Gaussian distribution centered around its
true counterpart β∗

1j with a small variance, where i ∈ Aj . Other parameters β0i, ai, bi are also initialized similarly.

Training. We use the stochastic gradient descent algorithm to minimize the mean square losses. We conduct 20 sample
generations for each configuration, across a spectrum of 20 different sample sizes n ranging from 104 to 105. Finally,
we generate log-log scaled plots for the Voronoi loss functions. For ridge experts, we use the Voronoi loss D2 given in
Section 4.1.1, while for linear experts, we use the Voronoi loss D3,r in Section 4.2.

• Exact-specified setting: Under this setting, as the true number of experts k∗ is known, we set k = k∗ = 2.

• Over-specified setting: Under this setting, as k∗ is unknown, we over-specified the true model by setting k = 3.

Remark. From Figure 1, it can be seen that under the exact-specified and over-specified settings, the convergence rates of
least square estimators Ĝn when using linear experts are significantly slow, at orders O(n−0.06) and O(n−0.04), respectively.
This observation totally aligns with our theoretical result in Theorem 4.6.

On the other hand, Figure 2 indicates that when using ridge experts, the least square estimator Ĝn converges to G∗ at much
faster rates, at order O(n−0.54) under the exact-specified setting, and at order O(n−0.57) under the over-specified setting.
These empirical rates match the theoretical rate O(n−0.5) captured in Theorem 4.2.
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2× 10−1
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4× 10−1

L
os

s

0.4 n−0.06

D(Ĝn, G∗)

(a) Exact-specified setting

104 105

Sample size

7× 10−1

8× 10−1

9× 10−1

L
os

s

1.2 n−0.04

D(Ĝn, G∗)

(b) Over-specified setting

Figure 1. Log-log scaled plots illustrating empirical convergence rates of parameter estimation in the softmax gating mixture of linear
experts under the exact-specified setting (Figure 1a) and the over-specified setting (Figure 1b). The blue curves depict the mean
discrepancy between the least squares estimator Ĝn and the true mixing measure G∗ under the loss D3,r , accompanied by error bars
signifying two empirical standard deviations. Additionally, an orange dash-dotted line represents the least-squares fitted linear regression
line for these data points.
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(a) Exact-specified setting
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(b) Over-specified setting

Figure 2. Log-log scaled plots illustrating empirical convergence rates of parameter estimation in the softmax gating mixture of ridge
experts with the sigmoid activation under the exact-specified setting (Figure 2a) and the over-specified setting (Figure 2b). The blue curves
depict the mean discrepancy between the least squares estimator Ĝn and the true mixing measure G∗ under the loss D2, accompanied by
error bars signifying two empirical standard deviations. Additionally, an orange dash-dotted line represents the least-squares fitted linear
regression line for these data points.
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