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ABSTRACT

Federated Learning (FL) enables collaborative model training among several par-
ticipants, while keeping local data private at the participants’ premises. However,
despite its merits, FL remains vulnerable to privacy attacks, and in particular, to
membership inference attacks that allow adversaries to deduce confidential in-
formation about participants’ training data. In this paper, we propose DINAR, a
novel privacy-preserving FL method. DINAR follows a fine-grained approach that
specifically tackles FL neural network layers that leak more private information
than other layers, thus, efficiently protecting the FL model against membership
inference attacks in a non-intrusive way. And in order to compensate for any po-
tential loss in the accuracy of the protected model,DINAR combines the proposed
fine-grained approach with adaptive gradient descent. The paper presents our ex-
tensive empirical evaluation of DINAR, conducted with six widely used datasets,
four neural networks, and comparing against five state-of-the-art FL privacy pro-
tection mechanisms. The evaluation results show that DINAR reduces the mem-
bership inference attack success rate to reach its optimal value, without hurting
model accuracy, and without inducing computational overhead. In contrast, ex-
isting FL defense mechanisms incur an overhead of up to +36% and +3,000% on
respectively FL client-side and FL server-side computation times.

1 INTRODUCTION

Nowadays, advancements in Machine Learning (ML), along with the need of better privacy,
have given rise to Federated Learning (FL) paradigm. FL enables collaborative model training
among decentralized participants’ devices, while keeping local data private at the participants’
premises (McMahan et al., 2017). Thus, participants contribute by training their respective local
models using their private data, and only transmit their local model parameters to a FL server,
which aggregates these parameters to produce a global model. FL has various applications, such
as e-health monitoring (Wu et al., 2022), disease diagnosis (Li et al., 2019), and fraud detection in
banking systems (Grimm et al., 2021). Despite the privacy benefits offered by FL, recent studies
have highlighted the vulnerability of FL systems to privacy inference attacks (Nasr et al., 2019; Lyu
et al., 2020). These attacks, particularly Membership Inference Attacks (MIAs) (Shokri et al., 2017),
exploit the parameters of the shared models to infer sensitive information about the training data of
other participants. In a white-box FL configuration, where the model architecture and parameters
are known to all participants, membership inference attacks pose a significant threat to privacy. For
instance, an attacker on the server-side could discern from the aggregated parameters whether a
specific individual’s data was included in the training process. Similarly, a malicious participant on
the client-side could deduce whether the data of a particular individual was used for training and
potentially uncover sensitive information.

To address these privacy concerns, various FL defense mechanisms have been proposed (Abadi
et al., 2016; Naseri et al., 2020; Papernot et al., 2018; 2017). These mechanisms leverage tech-
niques such as cryptographic methods and secure multiparty computation (Zhang et al., 2019; Xu
et al., 2019; Chen et al., 2021), trusted execution environments (Lebrun et al., 2022; Messaoud
et al., 2022), perturbation-based methods and differential privacy (Naseri et al., 2020; Sun et al.,
2019). Software and hardware-based cryptographic solutions provide interesting theoretical privacy
guarantees, although at the expense of high computational overhead. Whereas existing perturbation-
based methods negatively impact model utility and quality. Thus, our objective is to precisely strike
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a balance between FL model privacy, model utility and computational cost for enabling effective
privacy-preserving FL, especially in the case of cross-silo FL systems (e.g., banking systems, hos-
pitals, etc.) where the FL server shares the global model with the participating clients and not with
external parties.

In this paper, we propose DINAR, a fine-grained privacy-preserving FL method that tackles mem-
bership inference attacks. This approach is motivated by an interesting observation made in recent
studies (Mo et al., 2021a;b), and confirmed in our empirical analysis in §3, that is there is a layer in
neural networks that leaks more private information than other layers. Thus, DINAR is based on a
simple yet effective approach that consists in protecting more specifically the FL model layer that is
the most sensitive to membership privacy leakage.

DINAR runs at the FL client-side, and allows to protect both the global FL model and the client
models. Whereas for its own model predictions the client uses its privacy sensitive layer as part of
the model, that privacy sensitive layer is obfuscated before sending client model updates to the FL
server. Thus, the aggregated model produced by the FL server includes an obfuscated version of the
privacy sensitive layer. And when the client receives the protected global model from the server,
it first restores its local privacy sensitive layer (i.e., the non-obfuscated version of that layer) that
was stored during the previous FL round, and integrates it into its copy of the global model, before
actually using the resulting personalized model for client predictions. Furthermore, in order to
improve the utility of the protected model, DINAR leverages the adaptive gradient descent technique
to further maximize the accuracy of the model (Duchi & Hazan, 2011). Indeed, given the high-
dimensional nature of optimization problems in neural networks, adaptive gradient descent allows
to dynamically adjust the model learning rate for each dimension in an iterative manner.

In particular, the paper makes the following contributions:

• We present an empirical analysis on several datasets and neural networks to characterize
how much each layer of a neural network leaks membership privacy information.

• To the best of our knowledge, we propose the first fine-grained FL privacy-preserving
method against MIAs, that specifically obfuscates the most privacy sensitive layer, for an
effective yet non-intrusive privacy protection.

• We conduct extensive empirical experiments of our solution DINAR with six widely used
datasets and four neural networks. We also compare DINAR against five state-of-the-art
FL privacy protection mechanisms. Our evaluation results show that DINAR reduces the
membership inference attack success rate to reach its optimal value, without hurting model
accuracy, and without inducing computational overhead. In contrast, existing FL defense
mechanisms incur an overhead of up to +36% and +3,000% on respectively client-side and
server-side computation times.

2 BACKGROUND AND RELATED WORK

2.1 FEDERATED LEARNING

In Federated Learning (FL), instead of sharing raw data, several clients collaboratively train a pre-
dictive model. This allows better privacy, since clients only share their local model parameters to a
server, that orchestrates the FL distributed protocol, while clients keep their raw data private on their
devices. At each FL round, clients that are selected by the FL server to participate to that round train
their local models using their own data. They then transmit their model updates to the FL server,
which aggregates them to produce a new version of the global model shared with the clients. The
classical algorithm used for model aggregation is FedAvg (Li et al., 2020b), a weighted averaging
scheme that considers the amount of data each client has when aggregating the model updates. Fur-
thermore, we consider the case where the FL server shares the global model with the participating
clients and not with external parties. This is usually the case in cross-silo FL systems such as in
banking systems, or between medical centers.

2.2 MEMBERSHIP INFERENCE ATTACK THREAT MODEL

Membership inference attacks (MIAs) aim to infer whether a data sample has been used to train
a given model. Such attacks exploit vulnerabilities in the parameters and statistical properties of
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the trained model to reveal information about the training data. Thus, it is important to safeguard
individuals’ confidentiality against MIAs that cause significant privacy violations, in particular, in
areas involving highly sensitive information such as health applications, financial systems, etc.

Attacker’s Objective and Capabilities. We consider the standard setting of a membership in-
ference attack and its underlying attacker’s capabilities Shokri et al. (2017). The objective of the
attacker is to determine whether a given data sample was used by other participants for model train-
ing. An attacker can be on the client-side or the server-side. If the attacker is on the client-side, its
goal is to determine, based on the global model, whether a data sample has been used for training
by other clients, without knowing to which client it actually belongs. If the attacker is on the server-
side, it is also able to determine, based on a client model, whether a data sample has been used by
that client for training. The attacker has access to the parameters of the model for which it tries to
violate privacy.

2.3 RELATED WORK

Cutting-edge research in countering membership inference attacks has made significant strides
through innovative approaches, encompassing cryptographic techniques, secure hardware, and
perturbation-based methods as summarized in Appendix B - Table 3. Cryptography-based solu-
tions such as PEFL (Zhang et al., 2019), HybridAlpha (Xu et al., 2019), Chen et al. (Chen et al.,
2021), or Secure Aggregation (Zheng et al., 2022), offer robust privacy solutions, with interesting
theoretical guarantees. However, they tend to incur high computational costs due to complex en-
cryption and decryption processes. Furthermore, these solutions often protect either the client-side
or the server-side model, but not both, leaving potential vulnerabilities in the other unprotected com-
ponent. Interestingly, solutions based on Trusted Execution Environments (TEEs) emerge as another
alternative for better privacy protection (Lebrun et al., 2022; Messaoud et al., 2022). However, be-
cause of the high dimension of underlying models, striking a tight balance between privacy and
computational overhead remains challenging.

On the other hand, perturbation methods, such as differential privacy (DP) with algorithm-specific
random noise injection, serve as interesting safeguards against potential information leakage. When
applied in the context of FL, DP has two main forms, namely Local Differential Privacy (LDP)
that applies on client model parameters before transmission to the FL server (Chamikara et al.,
2022), and Central Differential Privacy (CDP) where the server applies DP on aggregated model
parameters before sending the resulting model to the clients (Naseri et al., 2020). WDP applies
norm bounding and Gaussian noise with a low magnitude, which provides a good model utility (Sun
et al., 2019). However, attack mitigation is limited, whereas computational costs. Recent works,
such as PFA (Liu et al., 2021), MR-MTL (Liu et al., 2022), DP-FedSAM (Shi et al., 2023), and
PrivateFL (Yang et al., 2023), allow better privacy and model utility. However, in practice, existing
DP-based FL methods can only effectively improve privacy at the expense of utility, as shown in
the evaluation presented later in the paper. Another approach to counter inference attacks in FL is
through gradient compression techniques, since such techniques reduce the amount of information
available for the attacker (Fu et al., 2022). However, such techniques also decrease the model utility.
In summary, existing FL privacy-preserving methods tackling MIAs either rely on cryptographic
techniques and secure environments which induce a high computational overhead, or reduce model
utility and quality with classical perturbation-based methods. In contrast, we propose a novel method
that follows a finer-grained approach applying obfuscation on specific parts of model parameters that
leak privacy sensitive information. This results in good privacy protection, good model utility, and
no perceptible computational overhead.

3 MOTIVATION OF A FINE-GRAINED PRIVACY-PRESERVING APPROACH

Recent studies analyzed the sensitivity and privacy risk of neural networks at a fine-grained level, to
better characterize how much each layer of the model leaks privacy information (Mo et al., 2021a;b).
As claimed in these studies, a similar pattern appears in all models, namely, there is a layer that
leaks more private information than other layers. To better illustrate this behavior, we conduct an
empirical analysis with four different datasets (GTSRB, CelebA, Texas100, Purchase100) and their
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underlying models, deployed in a FL setting1. More precisely, we aim to characterize how much
each layer of a model helps an attacker conducting MIAs to better infer if a given data sample
was member of the model training set or not. In other words and as described in §2.2, such an
attacker is able to differentiate between member data samples and non-member data samples. Thus,
using a trained FL model, we conduct, on the one hand, a set of predictions with member data
samples, and on the other hand, another set of predictions with non-member data samples. We
then compute the gradients of each layer resulting from the predictions of member samples, and
the gradients of each layer resulting from the predictions of non-member samples. Finally, we
compute the generalization gap of each layer, i.e., the difference between the gradients of member
data samples and the gradients of non-member data samples. Thus, the higher the generalization
gap, the more successful MIA is, i.e., the easier it is for the MIA to differentiate between members
and non-members, as shown in recent studies (Li et al., 2020a; Wu et al., 2023). Our empirical
results are presented in Figure 1, where the generalization gap is computed using the widely used
Jensen-Shannon divergence (Menéndez et al., 1997). We observe that different layers of a model
may exhibit different generalization gaps. We also observe a similar behavior in all the model
architectures, namely, the generalization gap of the penultimate layer is notably higher than the
generalization gap of the other layers. Thus, that layer leaks more privacy sensitive information
(i.e., membership-related information), as shown in other studies (Mo et al., 2021a;b).

(a) GTSRB (b) CelebA (c) Texas100 (d) Purchase100

Figure 1: Layer-level analysis of divergence between member data samples and non-member data
samples, using Jensen-Shannon divergence, when FL models are not protected against MIAs – FL
models of GTSRB and CelebA include eight convolutional layers and one fully connected layer ,
and FL models of Texas100 and Purchase100 have six fully connected layers

4 DESIGN PRINCIPLES OF DINAR

We propose DINAR2, a novel FL scheme for privacy protection against MIAs. The objective of
DINAR is threefold: (i) improving resilience of models against MIAs, (ii) preserving model util-
ity, and (iii) avoiding additional computational overheads. Whereas existing privacy-preserving FL
methods either apply perturbation on all model layers, or use cryptographic techniques and secure
environments, which induce a high computational overhead (as shown in §2.3 and §5.4), the intu-
ition behind DINAR is to specifically handle the most privacy sensitive layer of a FL model, i.e., the
layer which reveals more client’s privacy information than the others. This allows a non-intrusive yet
effective solution to protect FL models against MIAs. DINAR is based on a prior knowledge of the
most privacy sensitive layer of a model architecture, either based on prior studies such as (Mo et al.,
2021a;b), or based on an empirical analysis of model architectures and datasets such as in Figure 1.

Figure 2: DINAR pipeline

DINAR runs at the client-side, for each FL
client that wants better protection against
MIAs. Each DINAR instance on a client runs
independently from the other clients’ DINAR
instances, and the interaction between the FL
server and the clients follows the classical FL
protocol, where at each FL round the clients
send their local model updates to the server, and
the server sends the aggregated global model to

1A description of the datasets, models and experimental setup can be found in §5.1.
2DINAR: fine-graineD prIvacy-preserviNg federAted leaRning
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the clients. DINAR pipeline is presented in Fig-
ure 2, and consists of the successive stages of client model personalization, adaptive model training
for improving model utility, and model obfuscation, that are detailed in the following. Furthermore,
Algorithm 1 describe the different steps of DINAR pipeline.

Algorithm 1: DINAR algorithm on FL Clienti
Inputs: θ: global model parameters; p: private layer index
Output: θi: client model parameters

Local variables:
θ
p
i
∗: parameters of private layer of client model

(Bi, Y ) = {(Bi1, Y1), . . . , (B
i
x, Yx)}: training batches of Clienti

η : learning rate

1 Model Personalization
2 for j in {1..J} do
3 if j 6= p then
4 θ

j
i ← θj // Use jth layer parameters from global model

5 else
6 θ

j
i ← θ

p
i
∗ // Restore parameters of client’s private layer

7 Adaptive Model Training
8 G← 0 //Set initial accumulated gradients matrix
9 foreach local training epoch do

10 foreach (Bik, Yk) ∈ (Bi, Y )) do
11 Ŷk ← θi(B

i
k) // Perform local prediction

12 loss← L(Yk, Ŷk) // Compute model loss
13 G← G +∇θ.loss2 // Compute new cumulated gradients

14 θi ← θi − η
∇θ.loss√
G+1e−5 // Update local model

15 Model Obfuscation
16 θ

p
i
∗ ← θ

p
i // Save parameters of client’s private layer

17 θ
p
i ← random values // Obfuscate parameters of client’s private layer

18 return θi

4.1 MODEL OBFUSCATION

In the following, we consider a modelM with J layers, and model parameters θ, where θ1 . . . θJ are
the parameters of the respective layers 1 . . . J . We denote p the index of the privacy sensitive layer of
model M . At each FL round, Clienti that participates to that round updates its model parameters θi
through local training. Before sending the local model updates to the FL server, the client obfuscates
the privacy sensitive layer of its model, namely θpi that is the client model parameters of layer p.
This obfuscation can be performed by applying differential privacy on θpi layer (i.e., DINAR/DP),
or by simply replacing the actual value of θpi by random values (i.e., DINAR). The resulting local
model updates are sent to the FL server for aggregation. Note that the raw parameters of the privacy
sensitive layer (i.e., before obfuscation) are stored at the client side in θpi

∗, and will be used in other
stages of the DINAR pipeline.

4.2 MODEL PERSONALIZATION

As a first step of DINAR pipeline, when Clienti participates to a FL round, it first receives the
parameters θ of the global model M . Here, θp, i.e., the model parameters of the privacy sensitive
layer p, correspond to obfuscated values. Clienti integrates to its local model parameters θi all global
model layer parameters but the parameters θp of layer p. Instead, Clienti restores for that layer θpi

∗,
its previously stored and non-obfuscated local model parameters of layer p. Thus, while the global
FL model is protected against MIAs, Clienti makes use of an effective personalized local model.
This allows client model’s privacy sensitive information to remain protected, while client data still
contributes to the overall improvement of the global model through collaborative training.

4.3 ADAPTIVE MODEL TRAINING

While DINAR’s model obfuscation and model personalization tackle model privacy against MIAs,
DINAR pipeline also includes a stage to improve model utility through adaptive learning. This relies
on the optimization of the loss function, denoted as L, for each Clienti and its local model Mi. L
represents the cumulative errors of the client model Mi across its training and testing data batches.
In order to minimize the loss function L, client model parameters θi are updated at each local train-
ing epoch, given a learning rate η (with η ∈ [0, 1]). The latter serves as a coefficient that scales the
computed gradient values at each learning epoch. To address model convergence challenges, DI-
NAR leverages the adaptive gradient descent technique, which mitigates the issues associated with
local minima and saddle points (Duchi & Hazan, 2011). Firstly, when training intricate models like
Convolutional Neural Networks (CNNs) over multiple iterations, adaptive gradient descent allows
a deliberate convergence, exhibiting a slower learning rate compared to algorithms such as Adam
and RMSProp, particularly during the initial iterations (Kingma & Ba, 2015b; Mukkamala & Hein,
2017). Secondly, given the high-dimensional nature of optimization problems in neural networks,
this technique dynamically adjusts the learning rate for each dimension in an iterative manner, which
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holds true for both Adam and Adagrad. However, Adagrad does not implement momentum Karim-
ireddy et al. (2020) contrary to Adam; as suggested and empirically observed by Jin et al. (2022),
integrating momentum to the optimization algorithm may cause client-drift because of low participa-
tion rates of client devices, and incure potential convergence issues. Such a behaviour may even be
exacerbated while increasing the number of client participants and introducing non-IID distributions
between participants.

4.4 ANALYTICAL INSIGHTS

Figure 3 puts into perspective two aspects of a fine-grained analysis of model layers
for privacy purposes. On the one hand, Figure 3(a) shows how much one can de-
termine the divergence between member data samples that were used for model train-
ing and non-member data samples, by analyzing the one or the other of model layers.
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Figure 3: Per-layer
analysis of divergence
between members and
non-member vs. resi-
ience to MIAs with a
fine-grained protection
considering different
obfuscated layers

In this case, we consider CelebA dataset with a model containing eight
convolutional layers. On the other hand, Figure 3(b) presents the result
of a fine-grained protection that obfuscates the one or the other of lo-
cal model layers. We observe that obfuscating the layer that leaks more
membership information is actually sufficient to reach the optimal pro-
tection of the overall client model against MIAs3. Whereas obfuscating
other layers that leak less membership information is not sufficient for
the protection of the overall client model. This is the basis of the heuris-
tics provided by DINAR. Note that similar behavior is observed with
other datasets and models, although not presented here due to space lim-
itation.

Furthermore, in order to provide an insight on DINAR’s ability to pre-
serve both privacy and model utility, we analyze the impact of DINAR
and the considered baselines on the behavior of protected models. In
Figure 4, we measure the loss of the attacked model separately for mem-
ber and non-member data samples of Cifar-10, considering different de-
fense methods. We evaluate the effectiveness of each defense technique
in reducing loss distribution discrepancies between members and non-
members, and in minimizing loss values. Ideally, the loss distribution
of members and non-members should match, thus, resulting in model’s
lack of insightful information to distinguish members and non-members.
First, we observe that in the no defense case, the loss distributions be-
tween members and non-members are very different, thus, enabling suc-
cessful MIAs. DP-based techniques (i.e., LDP, CDP, WDP) reduce loss
distribution discrepancies, however, at the expense of more frequent high
loss values (i.e., lower model utility) due to noise added to all model
layers’ parameters. In contrast, a fine-grained obfuscation approach as
followed by DINAR results in similar and more frequently low loss dis-
tributions of members and non-members, making MIAs more difficult
and maintaining a good model utility.

(a) No Defense (b) LDP (c) CDP (d) WDP (e) DINAR

Figure 4: Model loss distribution with different FL privacy-preserving techniques. The dark curve
shows the loss distribution for member data samples, and the light curve shows the distribution for
non-members

350% is the optimal attack AUC that could be reached by a random protection approach, since determining
the occurrence of a MIA is a binary decision.
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5 EXPERIMENTAL EVALUATION

5.1 DATASETS AND EXPERIMENT SETUP

Datasets. We conduct experiments using a diverse set of datasets and models, encompassing four
image datasets (Cifar-10, Cifar-100, GTSRB, and CelebA), a tabular dataset (Purchase100), and a
raw audio dataset (Speech Commands). For each dataset, half of the data is used as the attacker’s
prior knowledge to conduct MIAs (Shokri et al., 2017), and the other half is partitioned into training
(80%) and test (20%) sets. These datasets are sum up in Table 1, and further detailed in Appendix C.

Baselines. Our evaluation compares DINAR with different defense scenarios, including a
no-defense baseline and five state-of-the-art solutions. Three of them, LDP (Chamikara
et al., 2022), CDP (Naseri et al., 2020), and WDP (Sun et al., 2019), are inspired by
Differential Privacy and employ various approaches for privacy preservation. We also in-
clude a cryptographic solution based on Secure Aggregation (SA) (Zheng et al., 2022)
and another defense solution based on Gradient Compression (GC) (Fu et al., 2022).

Table 1: Used datasets and models
Dataset #Records #Features #Classes Data type Model
Cifar-10 50,000 3,072 10 Images ResNet20
Cifar-100 50,000 3,072 100 Images ResNet20
GTSRB 51,389 6,912 43 Images VGG11
CelebA 202,599 4,096 32 Images VGG11

Speech Commands 64,727 16,000 36 Audio M18
Purchase100 97,324 600 100 Tabular 6-layer FCNN

These solutions, LDP, CDP, and WDP, em-
ploy various approaches for privacy preser-
vation. For LDP and CDP, we set the pri-
vacy budget parameter ε = 2.2 and the
probability of privacy leakage δ = 10−5,
following the findings of (Naseri et al.,
2020). In the case of WDP, a norm bound
of 5 is considered, and Gaussian noise with
a standard deviation of σ = 0.025 is applied. These settings ensure an optimal level of privacy
preservation in our experiments. We also evaluate DINAR against a variant, DINAR/DP, that ap-
plies differential privacy to the private layer instead of generating random values for obfuscating
that layer. As in DINAR, DINAR/DP personalizes FL client models (c.f., §4.2). DINAR/DP uses
the same hyper-parameters as LDP. Furthermore, for a fair comparison of model accuracy of the
different defense methods, we also consider a variant (referred to with +) of each state-of-the-art
defense method where adaptive model training is applied (c.f., §4.3).

Experimental setup. The software prototype of DINAR is available: https://anonymous.
4open.science/r/dinar_87CD.4 All the experiments are conducted on an NVIDIA A40
GPU. We use PyTorch 1.13 to implement DINAR, and the underlying classification models. For
the state-of-the-art defense mechanisms based on differential privacy, we employ the Opacus li-
brary (Yousefpour et al., 2021). We consider a FL system with 5 FL clients. Data are carefully
divided into disjoint splits for each FL client, following a non-IID distribution. We run 50 FL
rounds for Cifar-10, Cifar-100, GTSRB and CelebA, 80 FL rounds for Speech Commands, and 300
for Purchase100. We consider 5 local epochs per round for each FL client. Each dataset is splited
into 80% for training, and 20% for testing.The learning rate is set to 10−3, and the batch size is
64. We evaluate FL privacy-preserving methods by measuring the attack AUC, as well as the model
accuracy under maximum attack, and several cost-related metrics, as detailed in Appendix D.

5.2 EVALUATION OF PRIVACY PROTECTION

We first measure the effectiveness of DINAR in countering MIAs, i.e., minimizing the attack AUC
against both global and local models, considering Cifar-10 dataset. The attacker runs a white
box membership inference attack, as described (Shokri et al., 2017). For each dataset and un-
derlying model, we compare DINAR with defense baselines. We systematically evaluate DI-
NAR, WDP, LDP, and CDP on both local and global models, considering the utility and the
membership inference attack AUC. In Figure 5, we first plot distinctly the average attack AUC
against local models. In all plots, each bar represents one defense scenario amongst the base-
lines we consider. Our results show that DINAR exhibits privacy mitigation rates that closely ap-
proach the 50% mark across all datasets, indicating a strong level of privacy protection. This
holds true for both global and local model inference attacks, while differencial privacy mech-

4Anonymous link will be replaced by public git link in the camera-ready.
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anisms are less constant at protecting the models. It is worth noting that DINAR achieves re-
ducing the privacy leakage of local models by 19% in the best case, as shown by Figure 5,
while differential privacy reveals its limits in that case: WDP only reduces the privacy leakage
by 6% and in the best case, and even CDP is worse than DINAR by only reducing it by 15%.
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By concealing sensitive layers and replacing parameters by random val-
ues, DINAR enables the perturbation of the attacked model outputs as
received by the attacker, thereby mitigating membership inference at-
tacks. Indeed, the attacker receives an altered version of the model with
randomized private layer parameters. And when the attacker tries to re-
produce the behavior of the target model, the randomization necessarily
impacts the outputs of the model, which makes them barely comparable
to the outputs of the shadow model. This counters the logic of MIAs,
and explains the drop of the attack AUC. When it comes to DINAR/DP,
which provides protection by applying DP to the protected layer, we ob-
serve a lower protection than DINAR, due to the fact that the noisy data
still shares some similarities with raw data. More extensive results with
other datasets and models are presented in Appendix E, and corroborate
our observations.

5.3 ANALYZING PRIVACY VS. UTILITY TRADE-OFF

With the objective of empirically confirming DINAR’s ability to balance both privacy and model
utility in a FL system, we evaluate its impact on local models behavior. We conduct the experiments
on different datasets, by running the same attack scenario as the one presented in §5.2, introducing
the consideration of both privacy and model utility metrics. Figure 6 shows our results by plotting
both metrics on two axes: the x axis represents the average local model accuracy, while the y-axis
plots the overall attack AUC we previously defined. In a best-case scenario, the dot should be
located in the bottom-right corner of each plot, meaning that the effective defense mechanism both
preserves the model accuracy and decreases the attack AUC to 50%. We observe that WDP, CDP
and LDP achieve reasonable attack mitigation but often reduce model utility. For example, on the
Purchase100 dataset, WDP reduces attack AUC by 2%, while CDP reduces it by 28%; however,
with a significant reduction of model accuracy by 20%. DINAR/DP, which preserve a good model
utility, is able to reduce the attack AUC by 10%, although, not fully protecting the model agains
MIAs. In contrast, DINAR reaches the optimal attack AUC, with a model accuracy drop lower than
1%. In most cases, DINAR strikes a balance between privacy preservation and utility, demonstrating
the effectiveness of mitigating membership information leakage in a fine-grained FL approach.

5.4 COST OF PRIVACY-PRESERVING MECHANISMS
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Figure 7: Computational
cost of FL defense mech-
anisms

In the following, we evaluate the possible overheads induced by privacy-
preserving FL mechanisms across key metrics, such as model training
duration at the client-side andmodel aggregation duration at the server-
side. We additionally evaluate peak GPU memory usage for training and
privacy protection at the client-side in Appendix K. In the following,
we report on the costs of different defense mechanisms with the GTSRB
dataset and VGG11 model, although other evaluations of overheads were
conducted with other datasets and models, and resulted to similar obser-
vations.

Model Training Time. We examine different scenarios to evaluate the
average training duration per FL round for each client.

This duration refers to the total time required for all the local training
epochs of a client during a FL round. The impact of privacy mechanisms
like LDP, CDP, WDP, SC and SA on the training duration is depicted in
Figure 7(a). We notice that incorporating privacy-preserving techniques
that are based on differential privacy may have a negative effect on the
overall training duration. Despite the improvements made by the Opacus
framework in speeding up differential privacy, there is still a significant
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Figure 6: Trade-off between privacy and utility in different FL defense scenarios

cost. In the worst-case scenario, adding noise results in a training dura-
tion increased by 36%. However, it is important to highlight that DINAR
effectively addresses the computational overhead associated with differ-
ential privacy without compromising system performance.

FL Aggregation Time. We conduct measurements to determine the
average duration for server aggregation in various scenarios, that we plot in Figure 7(b). This in-
volved tracking the time taken from when the server received all weights to be aggregated until it
sent the aggregated weights. Notably, the use of CDP resulted in a significant increase in aggrega-
tion duration, reaching up to 30 times longer for GTSRB with VGG. This prolonged duration can be
attributed to CDP’s design principle, which involves introducing noise to the parameter aggregate
before transmission to clients. This process substantially extends the time required for aggregation,
measured in seconds in our case. However, when employing DINAR, LDP, and WDP, the durations
exhibit similar orders of magnitude compared to the scenario without any baseline. This suggests
that these privacy mechanisms do not impose a substantial additional cost in terms of aggregation
time, presenting a more efficient alternative.

6 CONCLUSION

DINAR heuristics has the potential to better protect the privacy of FL systems against membership
inference attacks, both for global FL model and client models. DINAR follows a simple yet effec-
tive fine-grained approach that consists in protecting more specifically the model layer that is the
most sensitive to membership privacy leakage. This provides effective and non-intrusive FL privacy
protection. Furthermore, DINAR compensates for any potential loss in the accuracy of the protected
model by leveraging adaptive gradient descent and, thus, further maximizing model utility. Our
empirical evaluation using various widely used datasets, neural networks, and state-of-the-art FL
privacy protection mechanisms demonstrated the effectiveness of DINAR in terms of privacy, util-
ity and cost. Beyond FL defense against membership inference attacks, we envision that similar
fine-grained protection approaches could be used for other types of privacy attacks, such as property
inference attacks, and model inversion attacks. In addition, another interesting research direction to
explore is helping in automatically determining the neural network layers that are the most sensi-
tive to privacy leakage depending on the actual threat model, type of privacy attack, and FL model
architecture.
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A APPENDIX – NOTATIONS

Table 2: Notations
Notation Description

N Number of FL clients
Di Local training data of Clienti
M Global FL model
J Number of layers in global FL model
Mi Local model of Clienti
θ Global model parameters
θi Model parameters of Clienti
θj Parameters of the jth layer of global model
θji Parameters of the jth layer of Clienti’s model

p
The index of the private layer of a model, e.g., θpi are
the parameters of the private layer of Mi

θpi
∗ Non-obfuscated parameters of private layer

of Mi stored on Clienti
η Model learning rate
L Model loss function

B APPENDIX – SUMMARY OF RELATED WORK ON PROTECTION AGAINST
MEMBERSHIP INFERENCE ATTACKS IN FEDERATED LEARNING

Table 3: Comparison of FL privacy-preserving methods against MIAs
Privacy-preserving category Protection method Model protection against MIAs Model utility Negligible overhead

Cryptography-based methods
PEFL (Zhang et al., 2019) 3 3 77

HybridAlpha (Xu et al., 2019) 3 3 77
Chen et al. (Chen et al., 2021) 3 3 77

Secure Aggregation (Zheng et al., 2022) 3 3 7

TEE-based methods MixNN (Lebrun et al., 2022) 3 3 77
GradSec (Messaoud et al., 2022) 3 3 77

Perturbation-based methods

CDP (Naseri et al., 2020) 3 7 7
LDP (Naseri et al., 2020) 3 7 7

FedGP Triastcyn & Faltings (2020) 3 7 7
WDP (Sun et al., 2019) 7 3 7
PFA (Liu et al., 2021) 7 3 7

MR-MTL (Liu et al., 2022) 7 3 7
DP-FedSAM (Shi et al., 2023) 7 3 7
PrivateFL (Yang et al., 2023) 7 3 7

Gradient Compression Fu et al. (Fu et al., 2022) 3 3 7
Our method DINAR 3 3 3

C APPENDIX – DETAILED DESCRIPTION OF DATASETS AND MODELS

CelebA. CelebFaces Attributes Dataset is a large face images dataset, with 202,599 images for
facial recognition and attribute detection. A subset of 40,000 images, resized to 64x64 pixels, was
randomly selected. We create 32 classes by combining five pre-annotated binary facial attributes
(Male, Pale Skin, Eyeglasses, Chubby, Mouth slightly Opened) for each picture (Liu et al., 2015).
The VGG11 architecture was employed for image processing (Simonyan & Zisserman, 2015).

Cifar-10 and Cifar-100. These are image dataset that consists of 60,000 images categorized into
10 classes for Cifar-10, and contains 100 classes for Cifar-100 (Krizhevsky et al., 2010). These
datasets encompass a wide range of objects such as airplanes, automobiles, birds, cats, and more.
Each image in these datasets has a resolution of 32x32 pixels. For our experiments, we employ the
ResNet-20 model.

Speech Commands. This dataset is a Google-released audio waveform for speech recognition
classification (Warden, 2018). It consists of 64,727 utterances from 1,881 speakers pronouncing 35
words (respectively 35 classes). Each audio record was transformed into a frequency spectrum with
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a duration of 1 second. For classification, we use the M18 classifier, a convolutional model with 18
layers and 3.7M parameters (Dai et al., 2017).

GTSRB. German Traffic Sign Recognition Benchmark dataset comprises 51,389 records across
43 classes, specifically designed for traffic sign recognition. It captures real-world traffic scenar-
ios, including variations in lighting, weather conditions, and camera angles. This dataset is widely
used for evaluating traffic sign recognition algorithms and developing machine learning models for
autonomous driving. We use VGG11 model architecture for this dataset (Houben et al., 2013; Si-
monyan & Zisserman, 2015).

Purchase100. It is a tabular dataset adapted from Kaggle’s ”Acquire Valued Shoppers” challenge,
consisting of 97,324 records with 600 binary features representing customer purchases. The goal
was to classify customers into 100 types based on their buying behavior Shokri et al. (2017). For
modeling, we use a fully-connected neural network architecture with layers of sizes 4096, 2048,
1024, 512, 256, and 128, leveraging Tanh activation functions and a fully-connected classification
layer (Jia et al., 2019).

D APPENDIX – DETAILED DESCRIPTION OF EVALUATION METRICS

Attack AUC. The attack success rate on a given model measures the percentage of successful MIAs
conducted by an adversary. The attack AUC (Area Under the Curve) is a single value that measures
the overall performance of the binary classifier implementing MIAs. The AUC value is within
the range [50%–100%], where the minimum value represents the performance of a random MIA
attacker, and the maximum value would correspond to a perfect attacker. The attack AUC is a robust
overall measure to evaluate the performance of MIAs because its calculation involves all possible
attacker’s binary classification thresholds. Since the weakest (i.e., most naive) MIA attacker would
reach a minimum attack AUC of 50%, the best defense against MIAs would approach that optimal
value of attack AUC of 50%. Thus, we use attack AUC as a means to evaluate the privacy of a
model.

Overall Model Privacy Metric. In a FL system that consists of the global FL model M , and N
clients models M1 . . .MN , we define a metric for measuring the overall privacy of all these models.
Namely, we measure the highest potential privacy leakage from both the global model and clients’
local models. Given the FAUC function for computing the attack AUC of a model, the overall model
privacy of the FL system is computed as follows:

Max

(
FAUC(M),

∑N
i=1 FAUC(Mi)

N

)

Overall Model Utility Metric. We evaluate the utility of a protected model by measuring its accu-
racy, namely the ratio of correctly classified instances to the total number of instances. Considering
DINAR’s approach for protecting FL clients’ models, we consider the average of accuracy of clients’
protected models. Given N clients, Mi the model of each Clienti, and FAcc the function that calcu-
lates accuracy of a model, the overall model utility metric is as follows:∑N

i=1 FAcc(Mi)

N

Cost-Related Metrics. We also evaluate the additional costs that can be induced by a privacy-
preserving FL mechanism, both in terms of execution times and memory usage. For instance, we
measure the necessary time for a client to train a model during a FL round. We also measure the
necessary time for the FL server to perform aggregation of client model updates. Finally, we measure
the memory used by a client during model training,.
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(b) CelebA – local models
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(d) Cifar-100 – global model
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(e) CelebA – global model

No defense

No defense
 +
WDP

WDP + LD
P

LD
P + CDP

CDP + GC SA

DIN
AR/D

P

DIN
AR

45

50

55

60

65

70

75

80

85

A
tt

a
ck

 A
U

C
 (

%
)

75
76

58
59

50 50 50 50 50

75

60

50

(f) Purchase100 – global model
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models
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(h) GTSRB – local models
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Figure 8: Privacy leakage with DINAR and state-of-the-art protection mechanisms with Cifar-10–
The horizontal dashed line represents the optimal value of attack AUC (50%)

E APPENDIX – ADDITIONAL EVALUATION OF PRIVACY PROTECTION

In the following, we provide extended results for the experimental scenario described for Cifar-10
in §5.2, for all considered datasets. We provide our results in Figure 8 for other datasets, showing
a similar tendency; Differential Privacy based solutions provide a visible protection but limited in
some cases, in particular on local models. For instance, even if LDP and CDP reduce the Attack
AUC to 50% for the Purchase100 dataset, they still struggle in the cases of Cifar-100, CelebA,
GTSRB and Speech Commands. In exchange, DINAR provides the best privacy protection in all
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cases, by reducing the attack AUC to 50%, corresponding to the optimal protection value. These
results confirm our analysis of the behaviour of DINAR on Cifar-10, that remains constant for all
datasets. These results corroborate our initial observation that DINAR remains the most efficient
protection technique in case the objective is to protect both local and global models.

F APPENDIX – PRIVACY PROTECTION UNDER NON-IID FL SETTINGS

In the following, we consider different non-IID FL settings, and evaluate their impact on the actual
privacy protection achieved by different protection methods. We vary the non-IID FL dataset distri-
bution using the Dirichlet function (Kotz et al., 2004) and its α parameter. The lower the Dirichlet’s
α value is, the more non-IID FL distribution is. Figure 9 presents the results of the evaluation of
different non-IID distributions of the GTSRB dataset, and compares the utility and the resilience of
clients’ models to membership inference attacks when different privacy protection methods are ap-
plied, as well as when no defense is applied. Overall, for all cases but DINAR, the lower the non-IID
distribution is, the higher the attack success rate is since the membership inference shadow model
is able to better learn on such data. In the case of DINAR, the privacy protection is independent
from the underlying non-IID setting and remains minimal at 50%. When it comes to model utility,
obviously, the lower the non-IID distribution is, the higher the model utility is, although, DINAR
reaches the highest model accuracy when protecting the model.
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(d) α = ∞ (i.e., IID)

Figure 9: Privacy leakage vs. model utility under different non-IID FL settings – GTSRB dataset

G APPENDIX – PRIVACY PROTECTION UNDER DIFFERENT NUMBERS OF
CLIENTS

We evaluate the impact of different numbers of FL clients on the actual performance of DINAR.
Figure 10 reports the attack AUC vs. the client model accuracy, comparing DINAR against the no
defense baseline. In each case, the whole Purchase100 dataset was splitted into subsets for the
different FL clients. Obviously, the fewer the clients are, the higher the client model accuracy is,
since fewer clients implies more data per client. However, and independently from the number of
clients, DINAR is able to counter MIAs with an attack AUC of 50%.
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Figure 10: Privacy leakage vs. model utility under different numbers of FL clients – Purchase100

H APPENDIX – PRIVACY PROTECTION OF MORE OR LESS VULNERABLE
DATA SAMPLES

In the following, we evaluate the actual privacy achieved by different protection mechanisms by
considering more specifically, on the one hand, data points that are easier to infer by the membership
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inference attacker5, and on the other hand, data points that are more difficult to infer by the attacker.
Figure 11 presents the attack AUC vs. the client model accuracy of such an evaluation with the
Purchase100 dataset. Obviously, the attack is more efficient on the most vulnerable data points
with no defense, reaching an attack AUC approaching 100%. Privacy protection techniques based
on gradient compression and WDP+ also provide less protection for more vulnerable data points,
compared to less vulnerable ones. In contrast, DINAR as well as the other protection methods
(i.e., secure aggregation, and other DP-based methods) provide good protection independently from
the level of vulnerability of data points, although the former provides better model utility.
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Figure 11: Privacy leakage vs. model utility for more or less vulnerable data points – Purchase100

I APPENDIX – PRIVACY PROTECTION WITH DIFFERENT PRIVACY BUDGETS
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Figure 12: Privacy leakage vs.
model utility under different DP
privacy budgets – Purchase100

In the following, we consider the recent PrivateFL-LDP differ-
ential privacy-based method (Yang et al., 2023), with different
privacy budgets. We evaluate its actual resilience to member-
ship inference attacks, and the model accuracy. We also com-
pare PrivateFL-LDP against DINAR and against the case where
no defense is applied. Figure 12 presents these results. Obvi-
ously, small privacy budgets provide better privacy. However,
in order to reach the best privacy protection of 50%, PrivateFL-
LDP drastically degrades the model accuracy to 13%. Whereas
DINAR is able to keep a high model accuracy close to the no
defense baseline, while effectively protecting against the MIAs.

J APPENDIX – ABLATION STUDY
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Figure 13: Ablation study – Pur-
chase100

In order to evaluate the actual impact of the adaptive gradient
descent in DINAR on the performance of the model, we report
an ablation study where DINAR uses other state-of-the-art gra-
dient descent optimizers, such as Adam (Kingma & Ba, 2015a),
ADGD (Malitsky & Mishchenko, 2020), and AdaMax (Kingma
& Ba, 2015a). Figure 13 presents the highest membership in-
ference attack AUC against the models. Moreover, although not
shown in the figure, all considered gradient descent techniques
provide the same privacy protection level (i.e., an attack AUC of
50%).

5Data points with a high inference confidence score by the attacker, i.e., a confidence score above the
quantile of 0.8.
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K APPENDIX – MEMORY-RELATED COST OF FL PRIVACY-PRESERVING
MECHANISMS

Our study delves deep into the realm of GPU memory usage in privacy-preserving federated
learning, unraveling captivating insights. Through meticulous analysis, we unveil the impact
of various privacy mechanisms, including LDP, CDP, WDP, GC and SA on memory consump-
tion during local model training. They show that in that case, running differential privacy
algorithms increases the GPU Memory usage by 168% compared to a no defense scenario.
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Figure 14: Cost of FL privacy-
preserving mechanisms in terms
of memory usage – GTSRB with
VGG11

In exchange, DINAR does not introduce any computational com-
parable operation by definition, resulting in having no significant
impact on GPU memory usage. Our findings paint a compelling
picture, showcasing a systematic increase in GPU memory usage
with the implementation of these privacy measures. First, the ad-
dition of calibrated noise, a fundamental technique in differential
privacy, requires storing the noise values, which increases mem-
ory usage. Second, tracking and managing the privacy budget,
which represents the maximum allowable privacy loss, neces-
sitates additional memory to maintain the budget information.
Lastly, the need for maintaining an aggregation buffer to col-
lect model updates before applying privacy mechanisms adds to
the memory requirements. This reasonably explains why DINAR
is optimal from the perspective of GPU memory in comparison
with differential privacy, as it doesn’t involve noise addition nor
privacy budget management.

18


	Introduction
	Background and Related Work
	Federated Learning
	Membership Inference Attack Threat Model
	Related Work

	Motivation of a Fine-Grained Privacy-Preserving Approach
	Design Principles of Dinar
	Model Obfuscation
	Model Personalization
	Adaptive Model Training
	Analytical Insights

	Experimental Evaluation
	Datasets and Experiment Setup
	Evaluation of Privacy Protection
	Analyzing Privacy vs. Utility Trade-off 
	Cost of Privacy-Preserving Mechanisms

	Conclusion
	Appendix – Notations
	Appendix – Summary of Related Work on Protection Against Membership Inference Attacks in Federated Learning
	Appendix – Detailed Description of Datasets and Models
	Appendix – Detailed Description of Evaluation Metrics
	Appendix – Additional Evaluation of Privacy Protection
	Appendix – Privacy Protection under Non-IID FL Settings
	Appendix – Privacy Protection under Different Numbers of Clients
	Appendix – Privacy Protection of More or Less Vulnerable Data Samples
	Appendix – Privacy Protection with Different Privacy Budgets
	Appendix – Ablation Study
	Appendix – Memory-Related Cost of FL Privacy-Preserving Mechanisms

