
Local Coherence or Global Validity? Investigating
RLVR Traces in Math Domains

Soumya Rani Samineni∗
SCAI, Arizona State University,

Tempe, US
ssamine4@asu.edu

Durgesh Kalwar∗
SCAI, Arizona State University,

Tempe, US
dkalwar@asu.edu

Vardaan Gangal
SCAI, Arizona State University

Tempe, US
vgangal3@asu.edu

Siddhant Bhambri
SCAI, Arizona State University

Tempe, US
siddhantbhambri@asu.edu

Subbarao Kambhampati
SCAI, Arizona State University,

Tempe, US
rao@asu.edu

Abstract

Reinforcement Learning with Verifiable Rewards (RLVR)-based post-training
of Large Language Models (LLMs) has been shown to improve accuracy on
reasoning tasks and continues to attract significant attention. Existing RLVR
methods, however, typically treat all tokens uniformly without accounting for
token-level advantages. These methods primarily evaluate performance based on
final answer correctness or Pass@K accuracy, and yet make claims about RL post-
training leading to improved reasoning traces. This motivates our investigation
into the effect of RL post-training on intermediate tokens which are not directly
incentivized. To study this, we design an experimental setup using the GRPO
algorithm with Qwen-2.5-0.5B model on the GSM8K dataset. We introduce trace
coherence, a First-Order Logic (FOL)-based measure to capture the consistency of
reasoning steps by identifying errors in the traces. We distinguish between trace
validity and trace coherence, noting that the former implies logical soundness while
the latter measures local coherence via lack of errors. Our results show that RL
post-training overall improves trace coherence with the most significant gains on
problems where the base model fails but the RL model succeeds. Surprisingly, RL
enhances local coherence without necessarily producing valid or correct solutions.
This highlights a crucial distinction: improved local coherence in reasoning steps
does not guarantee final answer correctness. We argue that claims of improved
reasoning via RL must be examined with care, as these may be based on improved
trace coherence, which may not translate into fully valid mathematical proofs.

1 Introduction

Following the release of Deepseek R1[6], post-training Large Language Models (LLMs) using
Reinforcement Learning with Verifiable Rewards (RLVR) has gained widespread attention. Since

∗equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI: The 5th
Workshop on Mathematical Reasoning and AI.

then several works have expanded on reinforcement learning based post-training by altering the loss
function, modifying advantage estimation, and utilizing base model resets [10, 18, 16, 9]. However,
recent analysis by [12] highlights structural limitations of current RLVR approaches, particularly due
to the uniform distribution of advantages across all tokens. Further, [17] argued that the accuracy of
RLVR models cannot surpass that of the base model demonstrating empirically that Pass@K accuracy
drops relative to the base model as K increases. Also, [4] shows that the performance gains can be
predicted using entropy of the base model.

However, these works primarily focus on the limitations of RLVR in terms of final answer accuracy
and do not examine its effect on intermediate tokens, or reasoning traces. Since RLVR verifies only
the final answer and distributes rewards uniformly across all tokens, its impact on the reasoning
process at the token level lacks investigation. While there have been frequent claims that RLVR
improves reasoning, the effect of integrating verifier signals during training on the structure and
quality of reasoning traces has not been formally studied.

Since formal verification of intermediate reasoning steps is not tractable at scale, we cannot directly
evaluate trace validity. Instead, we introduce a proxy metric called trace coherence, which reflects
the consistency of reasoning steps. It is important to note here that while trace validity implies
coherence, the opposite may not be true., Particularly, we measure trace coherence by analyzing
the presence of errors (or lack thereof) in the reasoning steps, where errors are defined using a
First-Order Logic (FOL) framework (§3). To experimentally analyze this problem, we design an
experimental setup (§4) to study the effect of RLVR on traces using a mathematical reasoning
benchmark, particularly GSM8K [3].

Our results (§5) show that RLVR surprisingly improves trace coherence across Pass@K evaluations,
especially on problems where the base model fails but the RL-trained model produces a correct final
answer. These findings highlight a key distinction that RL post-training can improve local coherence
in reasoning traces, captured through error patterns while not guaranteeing the correctness or full
trace validity. This distinction is important for interpreting the effects of RLVR on reasoning quality
beyond final answer accuracy.

2 Related Work

Reasoning traces have been studied since the release of DeepSeek R1[6] to better interpret LLMs
and their improved task performance. Thoughtology [11] provides a systematic analysis of the
length, structure, and content of traces generated by DeepSeek R1, focusing on interpretability
and safety. However, [1] show that optimizing traces for user interpretability can reduce model
performance, revealing a trade-off between interpretability and LLM’s task performance. In addition,
[14, 2] demonstrate a lack of correlation between trace validity and final answer correctness during
Supervised Fine-Tuning (SFT) on maze problems where it is feasible to check trace validity because
of formal verifiers. However, trace validity or trace coherence in the context of RLVR post-training,
especially for mathematical reasoning tasks, remains underexplored due to challenges in trace
analysis. In this work, we systematically address these challenges by defining FOL-based error tags
and LLM-as-a-judge [5] to evaluate trace coherence.

In early evaluations of LLM performance using Chain-of-Thought (CoT) traces, various taxonomies
of errors specific to mathematical reasoning were introduced [7, 15, 8], which are summarized in
Table 1. These categories have been widely used to identify reasoning mistakes and systematically
evaluate LLM performance.

Table 1: Comparison of error categorizations for intermediate trace analysis across prior works.
Minerva CoT ([7]) Chain-of-Thought ([15]) Examiner ([8])
Incorrect Data, Format Error,
Incorrect Calculation, Misunderstands
Question, Incorrect Reasoning,
Solution Too Short, Hallucinated,
Repeats Question, Other Mistakes

Calculator Error, Symbol Mapping
Error, One Step Missing, Semantic
Understanding Error, Incoherent
Chain-of-Thought

Calculation Error, Counting Error,
Context Value Error, Hallucination,
Unit Conversion Error, Operator
Error, Formula Confusion Error,
Missing Step, Contradictory Step

While these error categories have been effective for evaluation and improve the reasoning performance
of LLMs through error identification, they often overlap and are neither mutually exclusive nor

2

exhaustive, limiting their use for formally defining trace coherence. To address this, we propose a
new set of error categories, motivated by First-Order Logic and designed to be mutually exclusive to
study trace coherence (see Table 2).

3 Methodology

3.1 Error Categories for Mathematical Reasoning

Table 2: Error categories and their subtypes.
Error Category Description / Subtypes

False Premise Conceptual Misunderstanding; Semantic Error; False Assumption;
Units Misinterpretation; Incorrect Derivation Step from problem description;

False Rule Type / Operand Mismatch; Inference Violation; Operation
Misapplication; Quantifier Misuse; Missing Necessary Steps

Calculator Error Simple numeric or arithmetic mistakes
Format Error Final answer not formatted as required, e.g., missing \boxed

Mathematical reasoning problems, particularly popular benchmarks like GSM8K, typically require
between two and eight steps to solve. These problems primarily involve performing a sequence of
elementary calculations using basic arithmetic operations (+, −, ×, ÷) to arrive at the final answer.
Each problem can be formalized as comprising: assumptions or facts, an expression or formula to
compute the answer, and intermediate steps to produce quantities essential for deriving the final
answer. This structure naturally aligns with the construction of FOL representations. Based on the
error categorization, we define a set of error types with clear distinctions between them shown in 2.

3.2 Trace Coherence and Pass@K Evaluation Using LLMs

Figure 1: Evaluation accuracy

To assess trace coherence, we first apply our FOL-
based error categories to model responses gen-
erated during RLVR post-training. We leverage
the translative capabilities of LLMs, particularly
prompt GPT-4o to convert each response into a
FOL representation and classify errors according
to our taxonomy(see Appendix B for details).

Following previous work [17], which evaluated
the final accuracy of RL post-trained models
across different values of Pass@K, we extend the
analysis to measure trace coherence at different
Pass@K in addition to accuracy. For each value
of k, we define the metrics as follows:

Pass@K Accuracy: A trace is considered correct
if any of the k responses is correct, and incorrect
if all k responses are incorrect.

Pass@K Trace Coherence: We check for coherence only when the answers are correct, consider c
are correct out of k responses. A trace is considered coherent if at least one of the c responses is error
free, and incoherent otherwise.

4 Experimental Setup

Datasets: We perform our analysis on the GSM8K dataset, a widely used benchmark of grade-school
math problems. It contains 8.5K problems, each comprising a question and its corresponding answer,
divided into 7.5K training problems and 1K test problems.

Base Model: Our experiments use Qwen-2.5-0.5B from the Qwen-2.5 family as the base model. The
model is fine-tuned using the VERL pipeline [13]. See training hyperparameters in appendix C.

3

(a) Pattern 00 & 01, Pass@1 (b) Pattern 10 & 11, Pass@1

Figure 2: Confusion matrices for patterns 00 & 01 (left) and 10 & 11 (right) at Pass@1.

LLM for Evaluation: We employ GPT-4o to classify errors in the reasoning traces. The prompts
used for evaluation are provided in Appendix A.

Evaluation Dataset: To assess the LLM’s classification accuracy for error tagging, we curated a
human-annotated dataset. It contains 25 responses for each error type and 100 responses with no
errors. Each response with an error tag is annotated with one error type.

5 Results and Discussion

Figure 1 shows the LLM’s evaluation accuracy on human-annotated responses curated as described
in experimental setup. The accuracy reported is 57.8%. with Format Error which has low recall due
to conversion to FOL.

The test dataset for LLM evaluation was partitioned into four patterns based on the correctness of the
base model and the RL model: Pattern 00 corresponds to cases where both models produced incorrect
final answers; Pattern 01 where the RL Model was correct while the base model was incorrect; Pattern
11 where both models were correct; and Pattern 10, a rare case where the RL model was incorrect
while the base model was correct.

Figure 2a presents the confusion matrices for Patterns 00 and 01 for Pass@1. Additional results for
Pass@4 and Pass@16 are provided in appendix D. For Pattern 00, by definition of Pass@K trace
coherence, traces become invalid when the final answers are incorrect. In contrast, for Pattern 01, the
RL model substantially improves trace coherence, reaching approximately 85% across all Pass@K
values compared to 0% for the base model. Thus pattern 01 Shows an improvement in trace coherence
where the RL model got the final answers correct.

Figure 2b reports results for Patterns 11 and 10 for Pass@1, and results for Pass@4 and Pass@16
could be found in appendix D. For Pattern 10, coherence is invalid for the RL model as all answers
are incorrect across passes while for Pattern 11, the RL model shows a consistent improvement in
trace coherence achieving up to 96% across Pass@K values compared to the base model. Overall,
these results indicate that RLVR improved trace coherence in cases where the RL model achieves
correct final answers.

6 Conclusion

In this work, we investigated the effect of Reinforcement Learning with Verifiable Rewards (RLVR)
on the intermediate reasoning steps of Large Language Models (LLMs). While prior studies focused

4

primarily on final answer accuracy, we introduced the concept of trace coherence which which
is implied by trace validity for cases where formal correctness is infeasible to verify, such as in
math word problems. Trace coherence acts as a proxy for trace validity by evaluating the impact
of RLVR on reasoning traces using an error taxonomy grounded in First-Order Logic (FOL). By
leveraging LLMs-as-a-Judge to classify errors in intermediate steps, we systematically evaluated
trace coherence across different Pass@K values on the GSM8K benchmark. Our results demonstrate
that RLVR post-training improves trace coherence, particularly in problems where the final answers
become correct after RLVR post training. This suggests that RLVR can enhance perceived trace
quality through improvements in local coherence. We thus draw a clear distinction that, while RLVR
improves trace coherence, it does not amount to trace validity or overall correctness in mathematical
reasoning problems. Improvements in trace coherence reflect local consistency but should not be
mistaken for improved correctness unless validated through systematic and formal evaluation.

Acknowledgment

This research is supported in part by grants from ONR (N00014-25-1-2301 and N00014-23-1-2409),
DARPA (HR00112520016), DoD RAI (via CMU subcontract 25-00306-SUB-000), an Amazon
Research Award, and a generous gift from Qualcomm. We thank the entire Yochan group for their
helpful discussions.

References
[1] Siddhant Bhambri, Upasana Biswas, and Subbarao Kambhampati. Do cognitively interpretable

reasoning traces improve llm performance? arXiv preprint arXiv:2508.16695, 2025.

[2] Siddhant Bhambri, Upasana Biswas, and Subbarao Kambhampati. Interpretable traces, unex-
pected outcomes: Investigating the disconnect in trace-based knowledge distillation. arXiv
preprint arXiv:2505.13792, 2025.

[3] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[4] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning
for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

[5] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li,
Yinghan Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

[6] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[7] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quan-
titative reasoning problems with language models. Advances in neural information processing
systems, 35:3843–3857, 2022.

[8] Xiaoyuan Li, Wenjie Wang, Moxin Li, Junrong Guo, Yang Zhang, and Fuli Feng. Evaluating
mathematical reasoning of large language models: A focus on error identification and correction.
arXiv preprint arXiv:2406.00755, 2024.

[9] Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

[10] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

5

[11] Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad
BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han
Lù, et al. Deepseek-r1 thoughtology: Let’s think about llm reasoning. arXiv preprint
arXiv:2504.07128, 2025.

[12] Soumya Rani Samineni, Durgesh Kalwar, Karthik Valmeekam, Kaya Stechly, and Subbarao
Kambhampati. Rl in name only? analyzing the structural assumptions in rl post-training for
llms. arXiv preprint arXiv:2505.13697, 2025.

[13] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In
Proceedings of the Twentieth European Conference on Computer Systems, pages 1279–1297,
2025.

[14] Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Subbarao Kamb-
hampati. Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens.
ArXiv, abs/2505.13775, 2025.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[16] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

[17] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

[18] Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learn-
ing approach for concise mathematical reasoning in language models. arXiv preprint
arXiv:2504.09696, 2025.

A Prompt for error categorization for GSM8K Dataset

ERROR TAGGING PROMPT

1. Read the problem carefully and understand what is being asked.
2. Verify the model response by converting it into First-Order Logic (FOL) and identifying
any errors based on the taxonomy below.
3. You MUST return a valid JSON object with exactly these three keys: "First-Order
Logic", "error tags", "rationale".
ERROR TAXONOMY (use these exact labels):

1. False Premise – The model makes incorrect assumptions or misinterprets the
problem:

• Assumes data not given in the problem
• Misinterprets key terms or relationships
• Ignores important given information
• Uses wrong units or constants (e.g., week ̸= 7 days)

2. False Rule – The model applies incorrect mathematical logic:
• Uses wrong formulas or operations
• Applies operations to incompatible types
• Makes logical inference errors
• Misunderstands mathematical relationships
• Omits intermediate calculations needed for the answer
• Only flag if the step is truly necessary for correctness

6

3. Calculator Error – The model makes wrong addition, subtraction, multiplication,
or division:

• ONLY flag if calculator arithmetic is wrong (e.g., 5× 6 = 10 instead of 30)
• Do NOT flag if calculations are correct but final answer differs from expected
• Do NOT flag if correct math is applied to wrong numbers

4. Format Error
• ONLY flag if the final answer is not within boxed.

5. None – No errors found (use empty list []):
• All calculations are correct
• All necessary steps shown
• Correct interpretation of problem

Examples: 1. Problem: "In a survey, 40% of students said they like basketball, 30% said
they like chess, and 20% said they like both. If 200 students were interviewed, how many
students like either basketball or chess?"
Model Response: "Number of students who like basketball = 200 × 0.4 = 80
Number of students who like chess = 200 × 0.3 = 60
Total students who like basketball or chess = 80 + 60 = 140
boxed140"
error_tags: ["False Rule"]
rationale: The model incorrectly assumes the sets of basketball and chess fans are disjoint.
Since 20% of students like both sports, the correct total should subtract the overlap:
80 + 60 − 40 = 100. Adding the numbers directly violates the rules of set union, leading to
an overcount.

2. Problem:"Today, at the school science lesson, Jake learned that there are 8 more solar
systems for every planet in the galaxy. If there are 20 planets in the galaxy, how many solar
systems and planets are there altogether?"
Model Response: "The galaxy has 20 planets. Each planet has 8 solar systems. Total solar
systems = 20 × 9 = 180. Total planets + solar systems = 180 + 20 = 200.
boxed200"
error_tags: ["False Premise"]
rationale: "The model misinterprets the problem by considering 9 more solar systems for
every planet’ as ’9 solar systems per planet instead of 8, given in the problem"

3. Problem: "If Alice purchased 3600 acorns for nine times the price Bob paid, and Bob paid
$6000 for his acorns, how much did Alice pay for each acorn?"
Model Response:"Total Alice paid = 9 × Total Bob paid = 9 × 6000 = 54000
Price per acorn for Alice = 15
boxed15"
error_tags: ["False Rule"]
rationale: "The model correctly computes the total amount Alice paid but skips the division
step that shows how the per-acorn price is calculated: Price per acorn for Alice = 54000 /
3600 = 15. This missing step is necessary to make the logical reasoning complete."

4. Problem: "Erica sees 9 butterflies in the garden. She sees one-third of them fly away. How
many butterflies are left in the garden?"
Model Response: "One-third of 9 = 4. Remaining butterflies = 9 - 4 = 5.
boxed5"
error_tags: ["Calculator Error"]
rationale: "The calculation ’one-third of 9 = 4’ is mathematically wrong. It should be 9 ÷ 3 =
3. This is an actual calculator error."

5. Problem: "5 geckos eat 6 insects each. 3 lizards eat twice as much as the geckos. How
many total insects were eaten?"
Model Response: "Geckos eat: 5 × 6 = 30 insects. Lizards eat: 3 × 12 = 36 insects. Total: 30

7

+ 36 = 66 insects.
boxed66"
error_tags: []
rationale: "All arithmetic calculations are mathematically correct: 5 × 6 = 30, 3 × 12 = 36,
and 30 + 36 = 66. No arithmetic errors present. GIven data is used correctly. No False
premise, rule applied properly and all steps are used correctly."

7. Problem: "There are 4 tables with 4 legs each, 1 sofa, 2 chairs with 4 legs each, 3 tables
with 3 legs each, 1 table with 1 leg, and 1 rocking chair with 2 legs. How many legs total?"
Model Response: "4 tables × 4 legs = 16, 1 sofa × 4 legs = 4, 2 chairs × 4 legs = 8, 3 tables ×
3 legs = 9, 1 table × 1 leg = 1, 1 rocking chair × 2 legs = 2. Total: 16 + 4 + 8 + 9 + 1 + 2 = 40
legs.
boxed40"
error_tags: []
rationale: "The model makes reasonable assumptions (sofa has 4 legs) based on common
knowledge. All calculations are correct: 4×4=16, 1×4=4, 2×4=8, 3×3=9, 1×1=1, 1×2=2,
total=40. No errors present."

8. Problem: "If Alice purchased 3600 acorns for nine times the price Bob paid, and Bob paid
$6000 for his acorns, how much did Alice pay for each acorn?"
Model Response: "Bob’s price per acorn = $6000 ÷ b. Alice’s total payment = 9 × $6000 =
$54,000. Alice’s price per acorn = $54,000 ÷ 3600 = $15.
boxed15"
error_tags: []
rationale: "The model correctly calculates Alice’s price per acorn. While it mentions Bob’s
price per acorn calculation (which is not needed), it still arrives at the correct final answer:
$54,000 ÷ 3600 = $15. No errors present." OUTPUT FORMAT (JSON):
{

"First-Order Logic": "Signature: ...\nFormalization: ...\nDerivation:
...\nCheck: ...",
"error_tags": ["error_type"],
"rationale": "Brief explanation for each error tag applied"

}
Instructions: 1) Convert the given model response into First-Order Logic with sections:
Signature (variables/constants), Formalization (First order Logic statements), Derivation
(logical steps), Check (verification).

2) Compare the model’s FOL against the problem requirements. Identify where the premises
contradict the problem, rules are invalid, steps are missing, or arithmetic is incorrect.

3) For False Premise: Only apply if the model makes unreasonable assumptions that contra-
dict the problem or common sense

• Do NOT apply False Premise for reasonable inferences based on common knowledge
(e.g., assuming standard furniture has typical leg counts)

• Do NOT apply False Premise when the model correctly identifies that certain
information is not needed for the solution

• Do NOT apply False Premise when the model correctly sets up mathematical
relationships and solves them properly

4) For False Rule: Only apply if the model uses an incorrect mathematical rule or operation
(e.g., adding percentages incorrectly, using wrong formulas)

• Do NOT apply False Rule if the model correctly follows the problem’s mathematical
requirements

5) For Calculator Error:
• Only flag if addition, subtraction, multiplication and division are incorrect (e.g.,
5× 6 = 10, is incorrect multiplication)

8

• Do NOT apply calculator error tag if the addition, subtraction, multiplication and
division are correct

6) For “None” error tag: Only return empty error_tags [] if the model response is
completely correct with no errors of any type.

• A response with correct calculations, complete steps, and accurate premises should
have error_tags: []

• Do NOT return “None” as an error tag – use an empty list [] instead
• Only flag errors when they actually exist

7) Output ALL applicable error_tags from the allowed set, only if there are errors. Return
empty list [] if there are no errors.

8) Provide a brief rationale for each error tag applied.

CRITICAL RULES:
• Use exact error labels: "False Premise", "False Rule", "Calculator
Error".

• For no errors, use empty list: []
• Only flag errors that actually exist
• Be conservative – when in doubt, don’t flag an error
• Focus on the most obvious/clear errors first
• CALCULATOR ERROR RULE: Only flag if the actual math is wrong (e.g.,
5 × 6 = 10). Do NOT flag if calculations are correct but the answer differs from
expected

IMPORTANT: Return ONLY a valid JSON object. Do not include any other text before or
after the JSON.

B Error Categories description with Examples

1. False Premise:
• Conceptual Misunderstanding: Misinterpreting the overall scenario or problem

structure. Example: Reading “4 vacations per year” as “4 vacations total”.
• Semantic Error: Misusing terms or values that distort the intended meaning. Example:

Treating a monthly salary of $600 as annual.
• False Assumption: Introducing facts not supported by the problem. Example: Assum-

ing “the pineapple drink is spilled” when only “a drink” is mentioned.
• Units Misinterpretation: Confusing or conflating measurement units or quantities.

Example: Interpreting a tank’s total volume as water poured.
2. False Rule:

• Type / Operand Mismatch: Operation applied to incompatible types, units, or domains.
Example: Adding 10% of monthly salary to compute an annual raise.

• Inference Violation: Conclusion does not logically follow from valid premises. Exam-
ple: From “some cats are black,” infer “all black things are cats.”

• Operation Misapplication: The operation or rule itself is inappropriate for the problem
context. Example: Using compound interest for a one-time insurance fee.

• Quantifier Misuse: Misplacing or misinterpreting logical quantifiers ∀ and ∃, causing
overgeneralization or unwarranted restriction. Example: Interpreting “each” as “all at
once.”

• Missing necessary steps: Key reasoning or computation steps are skipped, breaking
the logical chain to reach a valid conclusion.

3. Calculator Error:

9

• Simple numeric or arithmetic mistakes only if the numeric calculation is mathemati-
cally incorrect.

• Examples: 5× 6 = 10 instead of 30; miscomputing 7.5+ 2.5 = 11; 9÷ 3 = 4 instead
of 3.

4. Format Error: The final answer to be formatted according to the instruction in the
boxed

C Training Hyper-parameters

The training batch size is set to 64, with a mini-batch size of 8. We sample 5 responses per question
prompt. During training, the response rollouts for each question are generated with a temperature of
0.6., The maximum prompt length is set to 512 for GSM8K, while the maximum response length
is fixed at 1024. The learning rate is set to 1e-6. And, we set the KL divergence coefficient to
β = 1e− 3. All experiments on the GSM8K dataset are conducted using a single A100 80GB GPU.
Both the Qwen and Llama family models are trained for 145 global time steps, corresponding to 5
epochs. Model evaluation is performed at three different time steps (0, 10, and 100) on the GSM8K
test dataset, using Pass@K (k = 1, 4, 16). For response sampling during evaluation, we set the
temperature to 1.0 and top-p to 0.95.

The source code will be provided on acceptance.

D Additional Results

(a) Pattern 00 & 01, pass@4 (b) Pattern 00 & 01, pass@16

(c) Pattern 10 & 11, pass@4 (d) Pattern 10 & 11, pass@16

Figure 3: Confusion matrices for patterns 00, 01, 10 and 11 at pass@4 and pass@16

10

	Introduction
	Related Work
	Methodology
	Error Categories for Mathematical Reasoning
	Trace Coherence and Pass@K Evaluation Using LLMs

	Experimental Setup
	Results and Discussion
	Conclusion
	Prompt for error categorization for GSM8K Dataset
	Error Categories description with Examples
	Training Hyper-parameters
	Additional Results

