
Under review as submission to TMLR

Koopman Embedded Equivariant Control

Anonymous authors
Paper under double-blind review

Abstract

An efficient way to control systems with unknown nonlinear dynamics is to find an appropriate
embedding or representation for simplified approximation (e.g. linearization), which facilitates
system identification and control synthesis. Nevertheless, there has been a lack of embedding
methods that can guarantee (i) embedding the dynamical system comprehensively, including
the vector fields (ODE form) of the dynamics, and (ii) preserving the consistency of control
effect between the original and latent space. To address these challenges, we propose
Koopman Embedded Equivariant Control (KEEC) to learn an embedding of the states and
vector fields such that a Koopman operator is approximated as the latent dynamics. Due to
the Koopman operator’s linearity, learning the latent vector fields of the dynamics becomes
simply solving linear equations. Thus in KEEC, the analytical form of the greedy control
policy, which is dependent on the learned differential information of the dynamics and value
function, is also simplified. Meanwhile, KEEC preserves the effectiveness of the control
policy in the latent space by preserving the metric in two spaces. Our algorithm achieves
superior performances in the experiments conducted on various control domains, including
the image-based Pendulum, Lorenz-63 and the wave equation.

1 Introduction

Many real-world system dynamics are unknown and highly nonlinear, which limits the applications of classical
control methods. Although model-based control methods have been widely studied to learn the dynamics
from the data, e.g., in Chua et al. (2018); Deisenroth et al. (2009); Müller et al. (2012); Nagabandi et al.
(2018); Williams et al. (2017), the learned dynamics can still be highly non-linear or black-box, making it still
analytically intractable and computationally inefficient. One effective class of methods addressing this issue
is to find a proper representation that embeds the dynamical system into a latent space (Ha & Schmidhuber,
2018), in which the system evolution is simple (e.g. locally linear) (Banijamali et al., 2018; Levine et al., 2019;
Mauroy & Goncalves, 2016; Mauroy et al., 2020; Watter et al., 2015; Weissenbacher et al., 2022; Williams
et al., 2015), such that various control methods such as iterative Linear Quadratic Programming can be used.

However, current embedding methods have primarily focused on next-step predictions through local lineariza-
tion approaches (Bruder et al., 2019a; Kaiser et al., 2019; Bruder et al., 2019b; Li et al., 2019). The learned
dynamics neglect the vector fields or metrics, which lead to the learned latent dynamics and the optimal
control policy derived based on it inconsistent with the original ones. These methods lack a formal and
theoretical guarantee that the system is comprehensively embedded into the latent space, including the vector
fields and flows 1. Thus, the effect of control may not be preserved when the control policy inversely mapped
back to the original space. The sufficient conditions for preserving the control effects are the equivariance of
the dynamics (Maslovskaya, 2018) and the metric preservation of the latent space (Jean et al., 2017). In
this paper, we aim to find an isometric and equivariant mapping such that the flows and vector fields of the
original nonlinear dynamics are comprehensively mapped to a latent controllable system, thus preserving the
control effect in both the original and latent spaces.

Related works in this field fall into two main streams: embedding for control and symmetry in control.
Embedding to control algorithms aims to map complex, high-dimensional, nonlinear dynamics into a latent

1Given the control policy, the system dynamics and trajectories under this control policy can be viewed as vector fields and
corresponding flows, respectively (Field, 2007).

1

Under review as submission to TMLR

space with local linearization, often using Variational Autoencoder (VAE) structures (Watter et al., 2015;
Kaiser et al., 2019; Nair et al., 2018). These algorithms ensure a bijection between the original and latent
spaces (Huang, 2022; Levine et al., 2019), however, they do not embed the necessary differential and metric
information with equivariance, causing the control effect to be inconsistent in both spaces. Conversely,
symmetry in control theory has been crucial in identifying invariant properties of systems (Field, 2007),
leading to effective control policies. Research has underscored the value of symmetric representations in
learning dynamics for tasks with evident (e.g., rotation and translation invariance) symmetries (Adams
& Orbanz, 2023; Bloem-Reddy & Teh, 2020; Bronstein et al., 2017), such as work in robotics control
tasks under special orthogonal group (SO(2)) action by Wang et al. (2021). However, these methods may
struggle in scenarios with unknown dynamics and less evident symmetries. Recent advancements include
methods designed to learn implicit symmetries, such as meta-sequential prediction for image prediction with
implicit disentanglement frameworks (Miyato et al., 2022; Koyama et al., 2023). These approaches achieve
disentanglement as a by-product of training symmetric dynamical systems by Fourier representation. Such
properties are important in maintaining consistency in control policies across different spaces.

In this paper, we propose Koopman Embedded Equivariant Control (KEEC) to learn an equivariant embedding
of dynamical system based on Koopman operator theory. Our contributions are that unlike existing works em-
bedding methods and Koopman methods (Chua et al., 2018; Deisenroth et al., 2009; Bruder et al., 2019a;b; Li
et al., 2019; Mauroy et al., 2020; Weissenbacher et al., 2022) to merely embed the states, we embed the vector
fields that require the derivatives of the states as well to the latent space. We formally propose that equivari-
ance and isometry are two properties to preserve the control effects in latent space. By embedding with the
two properties, our method maintains a better consistency between original dynamics and the latent linear dy-
namics. In addition, in the latent space, the dynamics simplify to a linear function of the state given the action,
which improves computational efficiency of learning dynamics. Based on the control-affine assumption and
Hamiltonian-Jacobi theory, we manage to derive a greedy control policy dependent on the learned differential
information of the dynamics and value function analytically. Our numerical experimental results demonstrate
KEEC’s superiority over existing methods in controlling unknown nonlinear dynamics across various tasks,
such as Gym (Towers et al., 2023)/image Pendulum, Lorenz-63, and the wave equation achieving higher control
rewards, shorter trajectories and improved computational efficiency. Figure 1 takes pendulum control as an ex-
ample to demonstrate the control framework of the KEEC and shows the learned vector field on the latent space.

(a) Linear embedding of control system given action at (the
pendulum trajectory)

(b) Embedded latent uncon-
trolled vector field

(c) Embedded latent con-
trolled vector field

Figure 1: Figure 1(a) is an overview of KEEC. The left panel (Figure 1(b)) shows the embedded latent uncontrolled
vector field of the pendulum, and the right panel (Figure 1(c)) shows the corresponding embedded latent controlled
vector field. Under the controlled vector field, the pendulum contracts to the target point. More information is
available in Section 4.

2

Under review as submission to TMLR

2 Preliminary

2.1 Optimal Control: A Geometric Perspective

State at time t, st is used to indicate the current status of the system. The collection of all states form state
space denoted by M . The dynamics in unknown and nonlinear control-affine system is affected by action at

in action space A, usually formulated as an Ordinary Differential Equation (ODE):
ṡt = f(st, at) = fM (st) +B(st)at, (1)

where fM and B are called the drift (action-independent) and actuation (action-dependent) terms. The
Equation 1 expresses the time-derivative of state st given action at. The collection of time-derivatives at each
point st ∈M forms a vector field on M .

A flow consists of the collection of all trajectories of the states, denoted by F∆t. F∆t : M ×A →M is the
flow map of the dynamical system, representing the state transition over time ∆t. The system state at time
t+ ∆t under control action at is:

st+∆t = F∆t(st, at) = st +
∫ t+∆t

t

f(sτ , aτ)dτ. (2)

The reward function r : M × A → R is commonly a quadratic form in control system satisfying r(s, a) =
r1(s) + r2(a). A control policy is a mapping π : M → A. our objective is to maximize the value function

V π(st) = E[
∑

τ

γτr(sτ , aτ) | sτ , aτ ∼ π], ∀st ∈M ⊂ Rm, (3)

where γ ∈ (0, 1) is the discount factor. Other notations are in Appendix A and B.

2.2 Embedding for Control

Solving control problems in an unknown and nonlinear system in equation 1 is challenging. Thus, we aim to
learn an embedding g that transform the system in the original state space M to a latent space N , in which
the control problem can be easily solved. For example, mapping the original system to a latent one where the
dynamics is linear evolving. It thus motivates our study by answering the question: What properties should
the embedding g satisfy?

An embedding g for control problems first should preserve the system dynamics, i.e. mapping the state
dynamics from M to N . This can be satisfied if the embedding is equivariant.

Equivariance. A map g : M → N is equivariant function if F latent ◦ g = g ◦ F (Hall & Hall, 2013), where
F latent is the flow in latent space, equivariant with respect to flow F under the map g.

Equivariant map ensures that F latent ◦ g(st) = g ◦ F (st), i.e., the transitions of states remain consistent
between the original and latent spaces. In addition, preserving the metric on both spaces is essential for
maintaining the consistency of reward/cost functions and control effects across both spaces.

Isometry. Let M and N be metric spaces with metrics dM and dN . A map g : M → N is an isometry if
for any s1, s2 ∈M , we have dM (s1, s2) = dN (g(s1), g(s2)) (Field, 2007).

Isometry can guarantee the reward/cost functions on the original space M and latent space N . This is
because most reward/cost function is highly dependent on the distance between current state to the optimal
state, such as the reward design in MuJoCo (Todorov et al., 2012). Furthermore, the distance-preserving
property of the trajectory ensures that the latent and original trajectories are consistent with one another.

An equivariant and isometric map g can comprehensively map the original system to a latent system and
guarantee the consistent control performances. While, solving the nonlinear control problem with unknown
dynamics remains challenging. To simplify the problem, we aim for a latent system that has simple dynamics on
the latent space N . Works have been done by linearizing the dynamics (Watter et al., 2015; Kaiser et al., 2019).
However, they didn’t comprehensively map the flows and vector fields original dynamics to the latent space.

3

Under review as submission to TMLR

3 Koopman Embedded Equivariant Control

In this section, we consider an embedding function g mapping the original state dynamics to a latent
dynamics. We introduce the Koopman operator for optimal control by proposing Koopman Embedded
Equivariant Control (KEEC). We learn an isometric and equivariant function to embed the control
dynamics into a latent space such that the latent dynamics can be represented by a Koopman operator. The
organization of this section is as follows. We first introduce in section 3.1 leveraging Koopman operator,
an infinite-dimensional linear operator, as a equivariant linear representation of dynamical system F in
equation 1. Then in section 3.2, in order to embed the vector field fM , we demonstrate that the infinitesimal
generator of the Koopman operator rather than the operator itself can be used to represent the equivariant
latent vector field. In section 3.3, we demonstrate our methods for learning an equivariant embedding with
finite-dimensional approximation of Koopman operator. Finally in section 3.4, we leverage the value-based
methods to solve the simplified equivariant control problems.

3.1 Koopman Operator as Latent Dynamics

We utilize the Koopman operator to simplify the dynamics of a nonlinear system. We aim to embed the original
state space M into a latent space N with function g : M → N . Denote the space of continuously differentiable
functions as C1(M). In an uncontrolled dynamical system, the Koopman Operator K∆t : C1(M)→ C1(M)
is an infinite-dimensional linear operator that governs the evolution of observables (functions in C1(M)) over
a time period ∆t (Das, 2023). Mathematically, for any function g ∈ C1(M), the Koopman operator satisfies:
K∆tg = g ◦ F∆t.

The inclusion of the control action can be seen as extending the Koopman framework to a system where
the evolution of functions depends on both the state and the action. The goal is to define an operator that
tracks how functions evolve under the influence of action. In this paper, considering the system evolving as:
st+∆t = F∆t(st, at), given action at, the Koopman operator then describes how the function g(st) evolves
when an action at is applied:

g(F∆t(st, at)) = (Kat

∆tg)(st). (4)

equation 4 demonstrates the equivariance between two dynamics K and F . K and F essentially describe
the same state transition but in different spaces. Formally, Kat(zt) = zt+∆t, where zt := g(st) ∈ N and
zt+∆t := g(st+∆t) ∈ N are the latent states. Refer to Appendix D for more details about the equivariance.

In the rest of the paper, we omit the superscript action a given the common setting of control. K pushes
the latent state z forward in time along the controlled dynamics. In this way, the map g is an equivariant
function and evolves globally in a linear manner due to the Koopman operator, even if the original dynamics
is nonlinear. However, merely approximating the Koopman operator K and map g does not fully capture the
vector fields induced by the ODE of the time-derivative dynamics.

3.2 Modelling the Equivariant Latent Vector Fields

Vector fields are not embedded with simple Koopman operator since only the dynamics F is mapped in the
latent space, and the vector field requiring the derivatives of latent states have been lacking. To address this,
we first discuss embedding the drift term in equation 1 by setting no control (at ≡ 0).

Based on group theory and Lie theory, the Koopman operator K can be treated as a linear one-parameter
semigroup (Bonnet-Weill & Korda, 2024). Given equation 1, F is smooth. Thus, the Koopman operator
has an infinitesimal generator P, where K∆t = exp(P∆t). Here P is well-defined on the dense subset of
function space C1(M) (more details refer to D).

According to Sophus Lie (Lie, 1893), the one-parameter Lie group is generated by the Lie algebra. In other
words, the smooth vector field induces a flow K∆t. According to equation 4, the time derivative of the latent
states under the flow K∆t is:

Lfg(st) = lim
∆t→0

g ◦ F∆t − g
∆t (st) = lim

∆t→0

K∆tg − g
∆t (st) = Pg(st). (5)

4

Under review as submission to TMLR

L denoted as the Lie derivative. equation 5 shows that with no control, the underlying dynamical system can
be globally linearized due to that ġ = d

dt exp(Pt)g = Pg. Therefore, the homogeneous part in the ODE, i.e.
the drift term in the dynamics vector field in equation 1, can be fully embedded and also linearized.

As for the actuation term of the dynamics, since the homogeneous part is embedded, and the derivatives of
states are embedded by map g, the remaining inhomogeneous part in the ODE (actuation) is also automatically
embedded. Although the actuation term is not linearized, it is still possible in practice to find an embedding
g such that the latent actuation term becomes a simple function of latent state, such as constant or linear
function. We formally demonstrate the equivariant embedding as follows.
Theorem 3.1 (Equivariant Vector Field). Given that the unknown nonlinear control-affine dynamics in
equation 1, with the Koopman operator and its infinitesimal generator, the equivariant dynamical system
evolves on N as:

żt = Pzt + (Uzt)at, (6)

where zt = g(st), st ∈M is the original state, and żt is the derivative w.r.t time t. The U is a state-dependent
operator that maps the latent state zt to a linear operator acting on the action at. (Further details and Proof
in Appendix F.1)

According to this theorem, the system under Koopman representation has well-defined vector fields equivariant
to the original vector fields in the dynamics ODE.

Our embedding enables that the latent dynamics can be simply learned by solving linear equations, which can
stabilize the learning procedure (see Section 3.3). Besides, due to the assumption of control-affine systems,
the embedded system dynamics actuation part (Uzt) provides the information of vector fields to derive an
analytical form of policy extraction, i.e. representing greedy policy with value function (see Section 3.4). We
then derive the flow of the equivariant vector field for later embedding learning.
Proposition 3.2 (Equivariant Flow). According to derived operators P,U in equation 6, the equivariant
flow under the two operators can be derived as

z∆t = exp(P∆t)z0 + P−1(exp(P∆t)− I)(Uzt)a0, (7)

where I is the identity operator. (Proof in Appendix F.1)

These two theorems describe the differential and integral forms of the latent dynamics and can be derived
from one another. The equivariant flow in equation 7 will be used to predict the next latent state, zt+∆t ≈
exp(P∆t)zt + P−1(exp(P∆t)− I)(Uzt)at.

3.3 Learning Equivariant Embedding

To comprehensively embed the original space, two properties need to be satisfied, i.e., equivariance and
isometry. Equivariance guarantees that the learned flows and vector fields are consistent under embedding.
Isometry makes the metric consistent and preserves the control effect in both spaces. KEEC leverages the
auto-encoder structure to learn the equivariant and isometric embedding. And to learn the latent dynamics
and its vector field, instead of learning the Koopman operator K itself, we learn the vector field parameters
derived from K: P and U .

The Koopman operator is inherently infinite-dimensional, and traditional methods that approximate it with
finite-dimensional models or manually selected feature functions for embedding (Budišić et al., 2012; Kutz
et al., 2016), such as polynomials, often lead to inaccuracies and incomplete representations of nonlinear
dynamics. Moreover, these feature functions typically struggle with high-dimensional data, limiting their
applicability to large-scale systems (Tu, 2013). Instead, deep learning, which is well-suited for representing
arbitrary functions. In our work, we employ a deep auto-encoder to learn the embeddings that naturally fit
with the Koopman framework (Lusch et al., 2018; Brunton et al., 2021). Denote the encoder-decoder pair
as gen

θ : Rm → Rn, gde
ϕ : Rn → Rm, mapping between original space M and latent space N , parameterized

by θ and ϕ. Let st0:t1 represents consecutive states from t0 to t1. The dataset consists of state transitions
{s(j) = s

(j)
0:L, s

(j)
+ = s

(j)
1:L+1}J

j=1 and corresponding actions {a(j) = (a(j)
0 , ..., a

(j)
L)}J

j=1.

5

Under review as submission to TMLR

Identifying the latent dynamics. Given one tuple of data (s(j),a(j), s
(j)
+), we firstly map the state

sequence to the latent space, such as z(j) =
(
gen

θ (s(j)
0), ..., gen

θ (s(j)
L)

)
, , and similarly z

(j)
+ corresponds to

s
(j)
+ . We then approximate the P̂ and Û by solving a least square problem according to Theorem 3.1 and

Proposition 3.2 as

P̂, Û = arg min
P,U
∥[exp(P∆t)z + P−1(exp(P∆t)− I)(Uz)a]− z+∥, (8)

where P̂ ∈ Rn×n, Û ∈ Rn×d×n. By concatenating z and z ∗ a, where ∗ denotes the column-wise Kronecker
product, we define Λ =

[
z, z ∗ a

]T ∈ RL×(n+n×d), the problem equation 8 can be simplified and yield a
solution such as (see equation 28 in Appendix F.1),

C = 1
∆t (z+ − z)Λ

(
ΛT Λ

)† ∈ Rn×(n+n×d), [P̂, Û] =
[
C1:n, C(n+1:n+n)×d

]
, (9)

where Ci:j represents the ith to jth columns of C, and we have żt ≈ P̂zt + (Ûzt)at

Equivariance Loss. KEEC learns the equivariant vector fields in the latent space by training the encoder
according to our proposed loss function, consisting of two terms. The first is equivariance loss, simplified to
the name forward loss:

Efwd =
t0+(L−1)∆t∑

t=t0

{
∥gde

ϕ (ẑt+∆t)− st+∆t∥+ ∥gde
ϕ ◦ gen

θ (st)− st∥
}
, (10)

where ẑt+∆t = exp
(

∆tP̂
)
zt + P̂−1(exp

(
P̂∆t

)
− I)(Ûzt)at. To calculate ẑt+∆t, the solutions of P̂ and Û

from equation 9 are used, which results in a more efficient and robust joint training procedure. In the loss
function Efwd, ∥gde

ϕ (ẑt+∆t)− st+∆t∥ represents the correction of the equivariant flow; ∥gde
ϕ ◦ gen

θ (st)− st∥ is
the standard identity loss in auto-encoder, imposing the equivariant constraints required by learning the
embedding gen

θ .

Control tasks often rely on metric information (Lewis et al., 2012), which, in our KEEC framework, is
implicitly defined on the latent space. The inconsistency in metric information can lead to diverse control
effects in the latent space compared to the original space (Jean et al., 2019). A consistent metric by an
isometry embedding is a sufficient condition for preserving this control effect.

Isometry Loss. Here, we introduce the second loss term isometry loss:

Emet =
t0+(L−1)∆t∑

t=t0

∣∣∣∥zt+∆t − zt∥ − ∥st+∆t − st∥
∣∣∣, (11)

which is the absolute error between the distance measured in the latent space and the original space. In fact,
Emet is used to embed metric information consistently. The scale of Emet evaluates the Distortion2 of latent
space by embedding gen

θ . It is worth noting that Emet and ∥gde
ϕ ◦ gen

θ (st)− st∥ in equation 10 together make
gen

θ a local isometric diffeomorphic representation. More specifically, for arbitrary points s1, s2 ∈ M , the
metric is invariant under embedding gen

θ such that dM (s1, s2) = dN (gen
θ (s1), (gen

θ (s2)), where dM and dN are
the metric in the space M and the latent space N (Yano & Nagano, 1959). Isometry loss Emet is one of the
key points to preserve the KEEC’s control effect after mapping back to the original space. Without this loss
function, the latent space may be distorted from its original, affecting the control consistency between the
two spaces.

Finally, the loss is a linear combination of forward loss and isometry loss with a penalty λmet ∈ (0, 1):

E = (1− λmet)Efwd + λmetEmet. (12)

E can be minimized by optimizing the parameters in the auto-encoder gen
θ , gde

ϕ using stochastic gradient
descent methods (See Algorithm 1 for details).

2Give two metric space (X, dX), (Y, dY) and a function g : X → Y . The distortion of g is defined as dis(g) =
supx1,x2 ∥dX(x1, x2) − dY (g(x1), g(x2))∥ (Federer, 2014). As an example, we see if g is an isometry, the distortion is 0
so that X and Y are perfectly matched.

6

Under review as submission to TMLR

3.4 Optimal Control on Equivariant Vector Field

KEEC solves the control tasks on the latent space rather than in the original space. We follow model-based
RL framework to conduct control (see Appendix C). Inspired by the Hamiltonian-Jacobi theory (Carinena
et al., 2006), our control policy is based on a latent value function. Within this framework, the optimal
control policy is determined by the vector field along the steepest ascent direction of the latent value function.

To perform control in the latent space, the value function should be invariant under the embedding g.
This indicates that the control effect should be preserved under embedding. The lemma below proves this
invariance.
Lemma 3.3 (Invariant Value Function). Under isometry embedding g, the value function is invariant to
embedding g for arbitrary policy π:

V π(s) = V π(g(s)). (13)

As shown by the research (Jean et al., 2019; Maslovskaya, 2018), the optimal control solutions remain
consistent across both original and latent spaces under the isometry embedding g. This implies that the
integral of cumulative rewards along equivariant flow remains invariant, directly deriving the invariant value
function. With this invariance property, Lemma 3.3 demonstrates that we can solve the control problems
based on the latent value function without mapping back to the original space. In the following, we denote
the latent value function as V π

g := V π ◦ g.

Hamiltonian-Jacobi Optimal Value Function. The value function and reward function defined on the
latent space are represented as Vg and rg. With the Bellman Optimality B∗, by using equation 4, Vg can be
expressed as

B∗Vg(zt) = max
at∈A

rg(zt, at) + γVg(K∆tzt), (14)

where zt = g(st). We apply temporal difference TD(0) to learn the latent value function parametrized by
neural networks (more details in Appendix E). Then, we can obtain the analytical optimal policy from the
learned value function. By the Hamiltonian-Jacobi theory (Carinena et al., 2006), the optimal action for Vg

in equation 14 can be transformed as
max

Xg

LXg
Vg(zt), (15)

where Xg(zt) := Pzt + (Uzt)at represents the corresponding latent vector field dependent on the action .
When Xg(zt) points in the steepest ascent direction of Vg(zt), it will be the optimal control policy. In this
scenario, we reframe the policy optimization problem as the optimization of the controlled vector field Xg.
The derived analytical policy is in the following.
Theorem 3.4 (Greedy Policy on Equivariant Vector Fields). Under Theorem 3.1 and Lemma 3.3, the
optimal policy for the value function in the latent space has an analytical solution:

π∗(zt) = −[∇arg(zt, ·)]†(γ∇zV
T

g · U(z))∆t (16)

where symbol † represents the inverse map with respect to a. (Proof in F.2; Corollary of quadratic-form latent
value function in Appendix F.1).

Then the control can be performed directly with the extracted policy in equation 16 given a well-trained
value function. We can apply the automatic differentiation (Paszke et al., 2017) to compute the derivative
∇zVg. We provided the pseudo algorithm for KEEC control in Algorithm 2 in Appendix G.

4 Numerical Experiments

In this section, we empirically evaluated the performances of KEEC in controlling the unknown nonlinear
dynamical systems. We compared KEEC with four baselines: (a) Embed to control (E2C) - prediction,
consistency, and curvature (PCC) (Levine et al., 2019); (b) Data-driven model predictive control (MPC)
- model predictive path integral (MPPI) (Williams et al., 2017); (c) Online RL - soft actor-critic (SAC)

7

Under review as submission to TMLR

Algorithm 1 KEEC: Learning

Learning Equivariant Vector Field
Require: Data D = {{T i

t }
t0+L∆t
t=t0

}Nsample
i=1 :

transition tuple T i
t = (si

t, a
i
t, r

i
t),

time-interval ∆t; learning rate α;
number of training epochs Kflow.

1: Initialize auto-encoder gen
θ0 , gde

ϕ0

2: for Training epoch k = 0, ...,Kflow do
3: Map to the latent space N

∀s ∈ D : z = gen
θk (s)

4: Compute operators P̂, Û using equation 8.
5: Compute the loss E by equation 12
6: Update auto-encoder:

θk+1, ϕk+1 = θk + α∇θE , ϕk + α∇ϕE .
7: end for
8: return auto-encoder {gen

θ , gde
ϕ }

operators {P̂, Û}

Learning Value Function
Require: optimal state s∗; reward function R;

number of training episodes Kvalue.
9: Initialize value net Ṽg(·, ψ0)

10: Initialize replay buffer DReplay = {}
11: for Training episodes k = 0, ...,Kvalue do
12: z0 = gen

θ (s0)
13: for t = 1, ..., T do
14: Perform optimal policy equation 16
15: Predict next state zt+1 using equation 7
16: Compute reward rt = R(gde

ϕ0(zt), at)
17: DReplay = DReplay ∪ (zt, at, zt+1, rt)
18: end for
19: Update value net with TD loss.
20: end for
21: return value net Ṽg(·, ψ)

(Haarnoja et al., 2018); (d) Offline RL - conservative Q-learning (CQL) (Kumar et al., 2020). These baselines
covered a wide range of control methods for unknown dynamics, comprehensively investigating KEEC’s
control effectiveness. The experimental comparisons were conducted on a standard control benchmark - Gym
and image-based pendulum- and two well-known physical systems - Lorenz-63 and wave equation.

Control tasks. (1) Pendulum task involved swinging up and stabilizing a pendulum upright. We generated
1,000 trajectories; each has 50 steps with random controls using OpenAI Gym (Towers et al., 2023). In the
gym version, the state was the pendulum’s angle and angular velocity. In the image version, the same
dynamics were simulated, but the state was defined as the image of the corresponding angle and angular
velocity with 96× 48 pixels (see Figure 6 in Appendix H.1). (2) Lorenz-63 system, a 3-dimension system
known for its chaotic behaviour, was adapted with an affine controller acting on each dimension of the system.
The goal was stabilizing the system on one of its strange attractors. In this environment, the state was
defined by the system’s three variables. We generated a dataset of 1,000 random control trajectories, each
with 500 steps. (3) Wave equation is a second-order partial differential equation (PDE) system describing
the wave propagation. The objective was stabilizing the waves to zero using ten controllers across the domain.
The state was defined as the phase space, consisting of 50 states with their time derivatives. We generated
5,000 trajectories with random control using the controlgym (Zhang et al., 2023), each with 100 time steps
(See more task details in Appendix H.1).

Training Details. For each system, the reward r was recorded as the quadratic reward3 r(st, at) =
−(∥st− s∗∥2

R2
+ ∥at∥2

R1
), where s∗ is the specified optimal state and R1, R2 are two positive definite matrices.

The dataset was constructed by slicing the trajectories for training KEEC into multi-step L = 8, and slicing
the trajectories for PCC, MPPI, and CQL into single-step L = 1, and then shuffling all slices. For the online
algorithm SAC, the number of interactions with the environments is the same as the number of transition
pairs in the offline data. All models were trained on the corresponding loss function using the Adam optimizer
(Kingma & Ba, 2015). Appendix H.2 provides more details of the baselines and training details.

3The quadratic reward functions cover a broad range of RL problems. With the quadratic form, R1 ∈ Rm×m will be used in
the numerical experiments.

8

Under review as submission to TMLR

(a) Pendulum (left) and Lorenz-63 (right) (b) wave equation - SAC (left) and KEEC (right)

Figure 2: Qualitative results. In (a-left), the Pendulum started at (−3, 6) with a goal state of (0, 0). A
zoomed-in view of [−0.1, 0.1] × [−0.3, 0.3] showed control stability. In (a-right), the goal was the strange
attractor (−8,−8, 27) of Lorenz-63 system and we visualized the control trajectories of KEEC and the
baselines. In (b), we showed the control trajectories of the KEEC in (b-right) and the best baseline SAC in
(b-left). This task aimed to steer the system state to the zero state. Control trajectories of other baselines
were shown in Appendix H.1.

Ablation Studies Computation Time

E
pi

so
di

c
R

ew
ar

d

C
om

pu
ta

tio
n

Ti
m

e
(s

)

(a) Pendulum (b) Lorenz-63 (c) Wave equation (d) Magnitude of 𝝀𝒎𝒆𝒕	(e) Latent dimension 𝒏

Figure 3: Quantitative results on evaluation time and ablation studies on latent dimension n and magnitude
of the isometric constraint λmet. Left: box-plots show the distributions of evaluation time. The white line
in the box indicates the median. Our approach is consistently faster than the MPC-based methods and
comparable to the RL methods. Right: different dimensions of the latent space (d) and our model’s episodic
reward with different magnitudes of λmet (e).

Table 1: Quantitative results. The results were the mean and standard deviation (±) of episodic rewards,
evaluated with 100 initial states uniformly sampled from initial regions. We omitted the results of SAC, CQL,
and MPPI on the image-based pendulum as their implementations did not support image inputs.

Pendulum (OpenAI Gym | Image) Lorenz-63 Wave Equation
SAC −95.1± 48.7 N/A −4491.8± 1372.4 −1007.6± 74.4
CQL −128.2± 76.9 N/A −5782.5± 921.6 −4117.5± 561.2
MPPI −187.2± 78.7 N/A −8768.4± 1831.1 −34.5k ± 2267.2
PCC −104.7± 49.2 −216.1± 45.3 −5123.6± 1289.3 −2249.2± 133.6

KEEC (w/o Emet) −852.3± 128.7 −205.7± 33.7 −8951.9± 1927.4 −28.9k ± 3219.5
KEEC −94.9± 44.8 −202.3± 32.6 −2531.4± 1121.8 −277.6± 29.2

Evaluation and Results. We reported the control performances in each system, particularly the mean and
standard deviation of the episodic rewards. These results were evaluated with multiple runs using different

9

Under review as submission to TMLR

(a) Learned Vg with Emet (b) latent space with Emet (c) Learned Vg w/o Emet (d) latent space w/o Emet

Figure 4: Comparison of learned value function Vg and latent space with and without(w/o) the Emet in pendulum
task. The colours on the original coordinates and the space indicated the magnitude of Vg. The spaces in (b) and (c)
were visualized using Locally Linear Embedding (Roweis & Saul, 2000) to project from 8 to 3 dimensions.

random seeds and initial states sampled uniformly from specific regions. Episode lengths were set at 100 for
the pendulum, 500 for Lorenz-63, and 200 for the wave equation. Additional details about the evaluation were
detailed in Appendix H.3. Table 1 showed how KEEC outperformed the baseline algorithms by comparing
the mean and standard deviations of the episodic rewards on the different control tasks. This phenomenon is
more evident in Lorenz-63 and the wave equation; since their behaviours are highly nonlinear or even chaotic,
MDP and simply locally linearized models can not sufficiently capture the pattern of dynamics.

In Figure 2, we presented the trajectories produced by various algorithms for three control tasks. By
embedding vector field and metric information, KEEC improved control stability, as evidenced by the smooth
trajectories and control robustness (Figure 2). Conversely, other baselines exhibited a “zig-zag” trajectory
as they approached the goal state (see Figure 2(a)-left). In the Lorenz-63 task, the baselines’ trajectories
showed diverse control paths sensitive to minor perturbations due to the system’s chaotic behaviour. KEEC,
however, converged to the Lorenz attractor with minimal fluctuations (Figure 2(a)-right). This difference was
because KEEC embedded vector field information (Figure 1(c)), enhancing control stability beyond control
methods that rely on next-step predictions. For the wave equation task, we showed the control trajectories of
best baseline-SAC and KEEC in Figure 2(b)). The results show that KEEC outperformed other algorithms,
which struggled to effectively control a complex, nonlinear, and time-dependent field in high-dimensional
PDE control. While SAC came closest to achieving success (see Figure 2(b)-left), it still failed to stabilize the
phase space to zero. Figure 3(a-c) shows computation times for all methods. KEEC, with linear dynamics
and an analytical control policy, is much faster than MPPI and PCC. Although computing the gradient of
the value net, ∇zVg via automatic differentiation makes KEEC slightly slower than MDP-based RL methods,
the times remain comparable.

4.1 Ablation study

On top of comparing the performance of KEEC to the baselines, we revisited the wave equation control
problem and performed an ablation analysis to assess the effects and sensitivity to (1) the magnitude of
isometry loss λmet equation 11, and (2) the latent dimension n

Latent dimension n. In the main experiments, we set the latent dimension n = 64. To evaluate the
model’s performance under different latent dimensions, we varied the dimension from 32 to 256 while keeping
other settings fixed. Figure 3(e) illustrates how the latent dimension n affects the algorithm’s performance.
When n is too small (e.g., 32), the latent space lacks sufficient capacity to fully capture the original dynamics
linearly. Dimensions of 64 and 128 yield good control performance, but larger dimensions increase sample
complexity, resulting in degraded performance with the same dataset.

Isometry loss magnitude λmet. Figure 3(d) shows that our approach is robust for λmet ∈ [0.1, 0.3],
though stronger constraints hinder learning control dynamics, indicating a trade-off. Control performance
degraded significantly without constraints, as shown in Table 1. These results align with the theoretical
analysis in Sections 3.2 and 3.3, emphasizing the need to preserve metrics for consistent control performance.
Figure 4 visualizes the learned latent space for an inverted pendulum. With Emet, the learned space was

10

Under review as submission to TMLR

smooth by preserving the metric (Figure 4(b)), while without it, the space was distorted, and the optimal
state cannot be observed (Figure 4(d)).

5 Conclusion

This paper introduces KEEC, a novel representation learning algorithm for unknown nonlinear dynamics
control. By integrating principles from Lie theory and Koopman theory, KEEC constructs equivariant flows
and vector fields. Because of the inherent equivariance and consistent metric, KEEC preserves the control
effect across the original and latent space. Inspired by the Hamiltonian-Jacobi theory, KEEC utilizes the
learned differential information to derive an analytical control policy, which improves computational efficiency
and control robustness. We demonstrate these superiors in the numerical experiments, in which KEEC
outperforms a wide range of competitive baselines.

Limitations. Our method relies on embedding the vector fields of the unknown dynamics to derive an
analytical control policy to improve the control stability and avoid intensive numerical control optimization.
Since the vector fields are characterized locally, we require the time step ∆t to be sufficiently small. Our
approach may struggle with environments with a large time step ∆t (i.e., low observation frequency). An
ablation study on how the magnitude of time step ∆t influences the control performance is required. In
addition, our experiments on the image-based pendulum also demonstrated KEEC’s effectiveness with image
observations and potentially other types of observations. However, for handling different types of observations,
the design of the auto-encoder neural network is crucial in our approach. A generic auto-encoder design could
degrade our method’s performance in identifying and controlling dynamical systems.

References
Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. Manifolds, tensor analysis, and applications, volume 75.

Springer Science & Business Media, 2012.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ryan P Adams and Peter Orbanz. Representing and learning functions invariant under crystallographic
groups. arXiv preprint arXiv:2306.05261, 2023.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable embedding. In
International Conference on Artificial Intelligence and Statistics, pp. 1751–1759. PMLR, 2018.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific, 2012.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks. The
Journal of Machine Learning Research, 21(1):3535–3595, 2020.

Benoît Bonnet-Weill and Milan Korda. Set-valued koopman theory for control systems. arXiv preprint
arXiv:2401.11569, 2024.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Daniel Bruder, Brent Gillespie, C David Remy, and Ram Vasudevan. Modeling and control of soft robots
using the koopman operator and model predictive control. arXiv preprint arXiv:1902.02827, 2019a.

Daniel Bruder, C David Remy, and Ram Vasudevan. Nonlinear system identification of soft robot dynamics
using koopman operator theory. In 2019 International Conference on Robotics and Automation (ICRA),
pp. 6244–6250. IEEE, 2019b.

11

Under review as submission to TMLR

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for dynamical
systems. arXiv preprint arXiv:2102.12086, 2021.

Marko Budišić, Ryan Mohr, and Igor Mezić. Applied koopmanism. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 22(4), 2012.

John Charles Butcher and Gerhard Wanner. Runge-kutta methods: some historical notes. Applied Numerical
Mathematics, 22(1-3):113–151, 1996.

José F Carinena, Xavier Gracia, Giuseppe Marmo, Eduardo Martínez, Miguel C Munoz-Lecanda, and Narciso
Roman-Roy. Geometric hamilton–jacobi theory. International Journal of Geometric Methods in Modern
Physics, 3(07):1417–1458, 2006.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

Suddhasattwa Das. Lie group valued koopman eigenfunctions. Nonlinearity, 36(5):2149, 2023.

Suddhasattwa Das, Dimitrios Giannakis, and Joanna Slawinska. Reproducing kernel hilbert space com-
pactification of unitary evolution groups. Applied and Computational Harmonic Analysis, 54:75–136,
2021.

Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7-9):1508–1524, 2009.

Cornelia Druţu and Michael Kapovich. Geometric group theory. American Mathematical Soc., 2018.

Herbert Federer. Geometric measure theory. Springer, 2014.

Michael Field. Dynamics and symmetry, volume 3. World Scientific, 2007.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Brian C Hall and Brian C Hall. Lie groups, Lie algebras, and representations. Springer, 2013.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

Changcun Huang. On a mechanism framework of autoencoders. arXiv preprint arXiv:2208.06995, 2022.

Frédéric Jean, Sofya Maslovskaya, and Igor Zelenko. Inverse optimal control problem: the sub-riemannian
case. IFAC-PapersOnLine, 50(1):500–505, 2017.

Frédéric Jean, Sofya Maslovskaya, and Igor Zelenko. On projective and affine equivalence of sub-riemannian
metrics. Geometriae Dedicata, 203(1):279–319, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski,
Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based reinforcement learning
for atari. arXiv preprint arXiv:1903.00374, 2019.

12

https://github.com/hill-a/stable-baselines

Under review as submission to TMLR

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:2110.06169, 2021.

Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, and Takeru Miyato. Neural fourier transform: A general
approach to equivariant representation learning. arXiv preprint arXiv:2305.18484, 2023.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode decomposition:
data-driven modeling of complex systems. SIAM, 2016.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine Learning
Research, 4:1107–1149, 2003.

Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, and Hung Bui. Prediction, consistency,
curvature: Representation learning for locally-linear control. arXiv preprint arXiv:1909.01506, 2019.

Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. John Wiley & Sons, 2012.

Shuai Li, Yangming Li, Bu Liu, and Timmy Murray. Model-free control of lorenz chaos using an approximate
optimal control strategy. Communications in Nonlinear Science and Numerical Simulation, 17(12):4891–
4900, 2012.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koopman
operators for model-based control. arXiv preprint arXiv:1910.08264, 2019.

Sophus Lie. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. BG
Teubner, 1893.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of
nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Xiaoteng Ma, Xiaohang Tang, Li Xia, Jun Yang, and Qianchuan Zhao. Average-reward reinforcement learning
with trust region methods. arXiv preprint arXiv:2106.03442, 2021.

Yunqian Ma and Yun Fu. Manifold learning theory and applications, volume 434. CRC press Boca Raton,
2012.

Sofya Maslovskaya. Inverse Optimal Control: theoretical study. PhD thesis, Université Paris Saclay (COmUE),
2018.

Alexandre Mauroy and Jorge Goncalves. Linear identification of nonlinear systems: A lifting technique based
on the koopman operator. In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6500–6505.
IEEE, 2016.

Alexandre Mauroy, Y Susuki, and I Mezić. Koopman operator in systems and control. Springer, 2020.

Mayank Mittal, Marco Gallieri, Alessio Quaglino, Seyed Sina Mirrazavi Salehian, and Jan Koutník. Neural
lyapunov model predictive control: Learning safe global controllers from sub-optimal examples. arXiv
preprint arXiv:2002.10451, 2020.

Takeru Miyato, Masanori Koyama, and Kenji Fukumizu. Unsupervised learning of equivariant structure from
sequences. Advances in Neural Information Processing Systems, 35:768–781, 2022.

13

Under review as submission to TMLR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Berndt Müller, Joachim Reinhardt, and Michael T Strickland. Neural networks: an introduction. Springer
Science & Business Media, 2012.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE international conference
on robotics and automation (ICRA), pp. 7559–7566. IEEE, 2018.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems, 31, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based reinforcement
learning. In Conference on robot learning, pp. 258–272. PMLR, 2020.

Hideki Omori. Infinite-dimensional Lie groups, volume 158. American Mathematical Soc., 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Pablo Pedregal. Functional analysis, sobolev spaces, and calculus of variations. 2024.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

Barry Saltzman. Finite amplitude free convection as an initial value problem—i. Journal of atmospheric
sciences, 19(4):329–341, 1962.

Alexander A Schekochihin. Lectures on ordinary differential equations. University of Oxford, 2022.

Rudolf Schmid. Infinite dimentional lie groups with applications to mathematical physics. 2004.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Xiaohang Tang, Afonso Marques, Parameswaran Kamalaruban, and Ilija Bogunovic. Adversarially robust
decision transformer. arXiv preprint arXiv:2407.18414, 2024.

14

Under review as submission to TMLR

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL
https://zenodo.org/record/8127025.

Jonathan H Tu. Dynamic mode decomposition: Theory and applications. PhD thesis, Princeton University,
2013.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. In International
Conference on Learning Representations, 2021.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. Advances in neural information processing
systems, 28, 2015.

Matthias Weissenbacher, Samarth Sinha, Animesh Garg, and Kawahara Yoshinobu. Koopman Q-learning:
Offline reinforcement learning via symmetries of dynamics. In International Conference on Machine
Learning, pp. 23645–23667. PMLR, 2022.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1714–1721. IEEE, 2017.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346,
2015.

Stephen J Wright. Numerical optimization. Springer New York, NY, 2006.

Dongjun Wu and Guang-Ren Duan. Further geometric and lyapunov characterizations of incrementally stable
systems on finsler manifolds. IEEE Transactions on Automatic Control, 67(10):5614–5621, 2021.

Yiming Yang, Xiaoyuan Cheng, Daniel Giles, Sibo Cheng, Yi He, Xiao Xue, Boli Chen, and Yukun Hu.
Tensor-var: Variational data assimilation in tensor product feature space. arXiv preprint arXiv:2501.13312,
2025.

Kentaro Yano and Tadashi Nagano. The de rham decomposition, isometries and affine transformations in
riemannian spaces. In Japanese journal of mathematics: transactions and abstracts, volume 29, pp. 173–184.
The Mathematical Society of Japan, 1959.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations, volume 43.
Springer Science & Business Media, 1999.

Xiangyuan Zhang, Weichao Mao, Saviz Mowlavi, Mouhacine Benosman, and Tamer Başar. Controlgym:
Large-scale safety-critical control environments for benchmarking reinforcement learning algorithms. arXiv
preprint arXiv:2311.18736, 2023.

A Appendix

15

https://zenodo.org/record/8127025

Under review as submission to TMLR

A Table of Notations

Notations Meaning
a action
f time derivative of the dynamical system
g isometry embedding
gen

θ encoder
gde

ϕ decoder
g Lie algebra
s state
r reward
rg reward in latent space
z state in latent space
A action space
B∗ Bellman optimality
D Dataset
F flow of dynamical system
M original state space of dynamical system
N latent space
GL generalized linear group

Hom(·, ·) homomorphic category
K Koopman operator
L Lie derivative
P Lie algebra of one-parameter group
r1,r2 reward functions related to action and state respectively
S state space
B actuation matrix
U actuation matrix

V, Vg value function and latent value function
X,Xg vector fields and equivariant (or latent) vector fields

∆t discretized time interval
λmetric penalty coefficient of isometric loss in loss function
λcost penalty coefficient of action in reward function
θ parameters of encoder
ϕ parameters of decoder
ψ parameters of latent value function
π control policy

□∗,□∗ pullback and pushforward symbols

16

Under review as submission to TMLR

B Important Definitions

Definition B.1 (Manifold, Riemannian Metric and Riemannian Manifold (Abraham et al., 2012)). A
manifold M is a Hausdorff, second countable, locally Euclidean space. It is said of dimension n if it is
locally Euclidean of dimension n. If a manifold with a globally defined differential structure, it is called a
smooth manifold (Abraham et al., 2012). The manifold equipped a Riemannian product (Riemannian metric)
structure ⟨·, ·⟩ is called Riemannian manifold denoted by a pair (M, ⟨·, ·⟩).

Definition B.2. A smooth function of class Ck is a function that has continuous derivatives up to the k-th
order. Specifically, if a function f : U → R (where U is an open subset of Rn) is said to be of class Ck, it
satisfies the following properties:

• The function f has partial derivatives of all orders from 1 up to k.

• These partial derivatives are continuous up to the k-th order.

In formal terms, a function f is of class Ck if:

f ∈ Ck(U) if ∂|α|f

∂xα1
1 · · · ∂x

αn
n

exists and is continuous for all multi-indices |α| ≤ k,

where α = (α1, . . . , αn) is a multi-index representing the orders of partial differentiation.

Definition B.3 (Group (Druţu & Kapovich, 2018)). A group is non-empty set G with a binary operation on
G, here denoted as “·”, then the group can be written as (G, ·), three axioms need to be satisfied on group:

• Associativity. for all a, b, c in G, one has (a · b) · c = a · (b · c);

• Identity Element. There exists an element e in G such that, for every a in G, one has e · a = a and
a · e = a, such an element is unique in a group;

• Inverse Element. For each element a in G, there exists an element b in G such that a · b = e, the b is
unique commonly denoted as a−1.

Definition B.4 (Vector Field). Let U ⊆ Rn be an open subset. A vector field on U is a smooth (continuously
differentiable) function

f : U → Rn

that assigns to each point s = (s1, s2, . . . , sn) ∈ U a vector

f(s) = (f1(s), f2(s), . . . , fn(s)) .

Definition B.5 (Lie Group Action). Let G be a Lie group and M be a smooth manifold. A Lie group action
of G on M is a group action:

σ : G×M →M, (g, s) 7→ g · s (17)
such that the action map σ is smooth.

Definition B.6 (Flow). Given a vector field f on an open subset U ⊆ Rn, a flow generated by vector field f
is a family of diffeomorphisms

Ft : U → U, t ∈ R,

satisfying the following properties:

17

Under review as submission to TMLR

1. Initial Condition: For all s ∈ U ,
F0(s) = s.

2. Group Property: For all s, t ∈ R and x ∈ U ,

Fs+t(s) = Fs(Ft(s)).

3. Differential Equation: For each s ∈ U , the curve ϕ(t) = Ft(s) is a solution to the ordinary
differential equation

d

dt
ϕ(t) = f(ϕ(t)),

with initial condition ϕ(0) = s.

Typically, the flow map F can be treated as a local one-parameter Lie group of parameterized by t.

Definition B.7 (Lie Derivative (Lie, 1893)). The Lie derivative of a function g : M → R with respect to
vector field X at a point s ∈M is the function

(LXg)(s) = lim
t→0

g(ϕs(t))− g(s)
t

, (18)

where ϕs(t) the flow through s.

Definition B.8 (Infinitesimal Generator). Suppose ϕ : R→ GL(n,R) is a one-parameter group. Then there
exists a unique n × n matrix X such that ϕ(t) = exp(tX) for all t ∈ R. It follows from the result that is
differentiable, and the matrix X can then be recovered from ϕ as

dϕ(t)
dt

∣∣∣∣
t=0

= d

dt

∣∣∣∣
t=0

exp(tX) = (X exp(tX))
∣∣∣∣
t=0

= X exp(0) = X, (19)

where X is called infinitesimal generator.

18

Under review as submission to TMLR

C Model-based RL

The most well-known and popular reinforcement learning methods are model-free (Lillicrap, 2015; Mnih
et al., 2015; Schulman, 2015; Schulman et al., 2015; 2017; Vinyals et al., 2019; Ma et al., 2021). Model-free
RL has been widely used in many areas and manage to optimize the performance of models especially in
language tasks (Achiam et al., 2023; Touvron et al., 2023; Ouyang et al., 2022). Despite of the generalization
ability and scalability of model-free RL, when it comes to applying to continuous control, results from the
traditional control theory and the induced analytical closed-form policy extraction, which can potentially be
used to reduce the sample complexity, have been ignored. In this work, we leverage these missing advantages
to develop our algorithm under the model-based RL framework. In addition, model-based RL is more suitable
to be used in the setting of offline learning. Model-free offline RL is well-explored (Kumar et al., 2020;
Kostrikov et al., 2021; Fujimoto & Gu, 2021; Chen et al., 2021; Tang et al., 2024). However, model-based
offline RL has an advantage that the offline data can be used to learn the dynamics once, and transferred
to other tasks. For instance, in the tasks of swing-up and balance in inverted-pendulum (Todorov et al.,
2012), where these two tasks have different starting points, but share the same dynamics.

Based on the dynamics equation 1, a model-based RL decision-making process is provided. The sequential
actions {aτ} are determined by a policy π(· | sτ), the target is to maximize the expected accumulated reward
r : M → R in the future, such that

V π(st) = E[
∑

τ

γτr(sτ , aτ) | sτ , aτ ∼ π], ∀st ∈M, (20)

where V π : M → R is the value function to measure the future expected accumulated reward for the arbitrary
state, γ ∈ (0, 1) is the discounted factor, and s0 ∈M is the initial state.

The control part of KEEC is derived from model-based RL (Okada & Taniguchi, 2020; Mittal et al., 2020).
The algorithm aims to search an action sequence in an infinite horizon as a control policy, expressed as
at:t+(L−1)∆t = (at, at+∆t, · · · , at+(L−1)∆t). The optimal actions under model-based RL can be defined as:

a∗
t:t+(L−1)∆t︸ ︷︷ ︸

search optimal policy for L−step rollout

∈ arg max E[
t+(L−1)∆t∑

τ=t

γτr(sτ , aτ)︸ ︷︷ ︸
L−step rollout

+γLV (st+L∆t)],

s.t. sτ+∆t = F∆t(sτ , aτ), ∀τ ∈ {t, t+ ∆t, · · · , t+ (L− 1)∆t}, ∀ aτ ∈ A.

(21)

C.1 Bellman Optimality

The value function approximation in the model-based RL framework is considered as a control certificate.
Based on the original work (Bellman, 1966), the N−step look-forward latent value function can be represented
as

B∗Ṽ k
g (zt) = max

at:t+(L−1)∆t

t+(L−1)∆t∑
τ=t

γτrg(zτ , aτ) + γLṼ k
g (zt+L∆t), ∀st ∈ S, (22)

where B∗ is the Bellman optimality and k+ 1, k ∈ L+ are the number of iterations of the approximated value
function Ṽg. It is known that the approximated value function contracts to a fixed point (Bertsekas, 2012;
Lagoudakis & Parr, 2003), such that

lim sup
k→∞

∥Ṽ k
g − V ∗

g ∥∞ ≤ ϵ,

where V ∗
g is the optimal value function and ϵ is arbitrary small.

In original dynamic programming methods, the search for optimal actions relies on the discretization of
the state space. However, the number of states and actions increases exponentially with refinement, and
optimization eventually becomes a costly computational problem. To overcome the drawbacks of other
embedding control works, the analytical form of the optimal policy can be derived by discovering the vector
fields on the latent space.

19

Under review as submission to TMLR

D Koopman Semigroup and Equivariance

Koopman Semigroup (Das, 2023). The Koopman operator Kt acts on a function space by composition
with the flow map Ft, effectively implementing time shifts in function g. Various choices exist for the function
space, such as L2(M) and spaces of continuous functions. In this context, we restrict our attention to C1(M),
the space of once continuously differentiable functions on the space M . Specifically, for a function g ∈ C1(M)
and time t ∈ R, the Koopman operator Kt : C1(M)→ C1(M) is defined as:

(Ktg)(s) = g(Ft(s)),

where Ft : M →M is the flow map with interval time t.

In general, if Ft is a Ck flow for some k ≥ 1, then Kt maps the space Cr(M) into itself for every 0 ≤ r ≤ k.
The infinitesimal generator P of the Koopman operator Kt is defined by:

Pg := lim
t→0

1
t
(Ktg − g), g ∈ D(P),

where D(P) ⊆ C1(M) is the domain of P, consisting of functions for which this limit exists. Typically,
P : C1(M)→ C0(M) when Ft is sufficiently smooth.

Notably, P is an unbounded operator on C1(M), meaning it is not defined on the entire space but rather on
a dense subset D(P). This dense subset ensures that P can approximate its behavior across C1(M) through
limits of convergent sequences within D(P).

Furthermore, when considering C1(M) ∩ L2(M), the action of the extended generator P̂ coincides with that
of P on this intersection, ensuring consistency across different function spaces. According to the strong
operator topology, the Koopman semigroup {Kt} can be approximated by exp(tPn) for a Cauchy sequence
{Pn} of bounded operators converging to P on D(P). Sepcifically, for each g ∈ C1(M) ∩ L2(M), we have
limn→∞ ∥Kg − exp(Pnt)g∥2 → 0.

The family of Koopman operators {Kt}t∈R forms a one-parameter group of linear operators, satisfying:

Kt+s = Kt ◦ Ks, K0 = Identity operator.

This group structure implies that Kt = exp(tP), where exp(tP) is defined via the operator exponential for
the generator P.

The generator P acts as a differentiation operator:

Pg = Lg,

where X is the vector field defining the flow Ft, and L denotes the Lie derivative of g along X. Consequently,
P generates the vector fields of g in the function space C1(M), facilitating a linear representation of the
potentially nonlinear system.

Group Representation and Equivariance. Let (ρ, V) and (τ,W) be group representations of C. A
linear map g : V →W is called C−linear map if g(ρ(c)v) = τ(c)g(v) for any v ∈ V and c ∈ C, that is if the
diagram in D commutes (Koyama et al., 2023).

V V

W W

ρ(c)

g g

τ(c)

A C−linear map is a homomorphism of the representation of C. If there is a bijective C−map between two
representations of C, they C−isomorphic, or isomorphic for short. When the isomorphism exists, the two
representations ρ and τ are said to be completely equivalent.

20

Under review as submission to TMLR

Discussion of Equivariance of Flow and Vector Fields under Koopman Operator. Back to our
case, our target is to construct the representation of one-parameter group - flow map. The flow Ft : M →M
generated by the vector fields is a diffeomorphism Diff(M) that can be equivalently described in the Koopman
framework by the automorphism Kt. According to infinite-dimensional Lie group theory, when M ⊂ Rm is
compact, the group of diffeomorphisms Diff(M) can be endowed with a Fréchet-Lie group structure. Similarly,
the group of automorphisms Aut(C∞(M)) 4 also forms a Fréchet-Lie group. Under the topology of local
uniform convergence of all partial derivatives on C∞(M), there exists an isomorphism between these two
Fréchet-Lie groups. This isomorphism preserves both the group structure and the smooth manifold structure,
establishing a deep connection between diffeomorphisms of M and automorphisms of the function space.
The associated Lie algebras of these groups are the vector fields V ect(M) for Diff(M) and the derivations
(generator) Der(C∞(M)) 5 6 for Aut(C∞(M)). The isomorphism between Diff(M) and Aut(C∞(M)) induces
an isomorphism between their respective Lie algebras, V ect(M) and Der(C∞(M)). This correspondence
implies that a vector field f ∈ V ect(M) on the manifold M is equivalent to a derivation P ∈ Der(C∞(M))
on the function space, defined by Pg = ∇g · f for all g ∈ C∞(M). The detailed proof can be found in (Omori,
2017; Schmid, 2004). Consequently, the flow maps Ft and the Koopman operators Kt are intertwined by
this isomorphism, making them equivariant under the constructed representations. Similarly, the vector
fields f ∈ V ect(M) and the derivations P ∈ Der(C∞(M)) are equivariant under the induced representations.
Please be note that the local flow Ft can always be mollified to a smooth function with arbitrary small error
(Pedregal, 2024), and thus above isomorphic map g can always be found.

Convergence Property. Our method distinguishes itself from previous work by focusing on the learning
of the infinitesimal generator P. One advantage of this approach is the ability to approximate and capture
mixed spectra with strong convergence. We consider the Koopman operator Kt, which acts on the square-
integrable space L2(M) = Hc ⊕Hp, where Hc and Hp represent the continuous and atomic (point) spectra,
respectively. The generator P of the Koopman operator is a densely defined, unbounded operator with domain
D(P) ⊂ L2(M). In our approach, we approximate P by constructing a compactified version, P̂ , following the
compactification procedure described in (Das et al., 2021). Specifically, it is shown in (Das et al., 2021) that
the operator P̂ = ΠPΠ is a compact operator with a purely atomic spectrum, providing an approximation
to the original unbounded generator P. Here, Π is a projection operator that maps L2(M) to the feature
function space spanned by g, which is dense and countable in L2(M). The approximated operator P̂ can be
expressed as P̂ = limt→0+

ΠKtΠ−I
t , consistent with our learning process as described in Equations (8) and

(9) of our work. Moreover, P̂ achieves strong convergence in operator topology to P as t → 0+, implying
that the spectral properties of P̂ approximate those of P. This convergence also ensures that the spectral
measures of P̂ approximate those of P, effectively capturing both the atomic and continuous components of
the Koopman spectrum. Consequently, the approximated Koopman evolution operator exp

(
P̂t

)
achieves

strong convergence to Kt, even when the Koopman operator has a mixed spectrum. This result is supported
rigorously by Corollary 4 in (Das et al., 2021), highlighting the quality of the approximation.

E Additional Details of Value Learning

The parameter ψ is optimized using stochastic gradient descent to minimize the following loss for value
learning:

Eevf =
∑

(zt,a∗
t ,zt+∆t)∈DReplay

∥rg(zt, a
∗
t) + γṼg(zt+∆t, ψ)− Ṽg(zt, ψ)∥, (23)

where a∗ = π∗(zt) and DReplay is the replay buffer storing the system trajectories under the control policy
π∗ in equation 16. The analytical form of the optimal action is performed directly on the continuous space

4Aut(C∞(M)) refers to the set of all automorphisms (structure-preserving bijective maps) of the space of smooth functions
C∞(M) on space M . This group consists of all maps that preserve the algebraic and differentiable structure of the space of
smooth functions.

5The Lie algebra of derivations Der(C∞(M)) associated with the group of automorphism Aut(C∞(M)) is a mathematical
structure that describes the infinitesimal transformations of the space of smooth functions C∞(M) on manifold M .

6A derivation on C∞(M) is a linear map D : C∞(M) → C∞(M) that satisfies the Leibniz rule: D(fg) = fD(g) +
gD(f) ∀f, g ∈ C∞(M).

21

Under review as submission to TMLR

via learned equivariant vector fields equation 6. In addition to computational efficiency, the convergence of
Ṽg(·, ψ) enables a fast convergence rate to V π∗

g , as shown in the following theorem.
Theorem E.1 (Quadratic Convergence of Value Functions). When Theorem 3.4 holds, the approximated
latent value function Ṽg(·, ψ) will point-wisely converge to the optimal V π∗

g , and the convergence rate is
quadratic as follows:

∥Ṽ k+1
g − V π∗

g ∥ = O(∥Ṽ k
g − V π∗

g ∥2), (24)

where the kth update of Ṽ k
g is calculated by minimizing Eevf in equation 23.

22

Under review as submission to TMLR

F Proofs of Main Theorems

This section provides proof of the lemma and theorems in the main text.

F.1 Proof of Theorem 3.1.

Proof. Before proving the lemma, the property of pushforward of diffeomorphism needs to be given.

Pushforward map (Ma & Fu, 2012). Let g be an embedding map g : M → N , for a vector field
X ∈ V ect(M) and flow ϕ : I →M and corresponding vector field (g∗X)(ϕ(t)) ∈ V ect(N), there exists

(g∗X)
(
ϕ(t)

)
= d

(
g
(
ϕ(t)

))
X(t), (25)

where g∗ is the pushforward operator.

Therefore, the pushforward can be represented as

d

dt
(Kat

t g)(st) = d(g(st))f(st, at)

= ∇(g(st)) · [fM (st) +B(st)at]

= ∂g

∂s
(st)fM (st) + ∂g

∂s
(st)B(st)at

= Pzt︸︷︷︸
embedding of drift part

+ U(zt)at︸ ︷︷ ︸
embedding of actuation part

,

(26)

where Pzt is the equivariant vector field without any action intervention. The ∂g
∂s (st)B(st) is the embedding

of the actuation matrix. Under the certain embedding condition, we can simplify the acutation part to a
interaction form as (Uzt)at, where U is a three-mode tensor.

According to the Theorem 3.1, the flow can be represented by the exponential map in Lie theory

z∆t = exp(P∆t)
(
z0 +

∫ ∆t

0
exp(−tP)U(zt)atdt

)
= exp(P∆t)z0 +

∫ ∆t

0
exp(P[∆t− t])U(zt)atdt

≈ exp(P∆t)z0 + P−1(exp(P∆t)− I)U(z0)a0

(27)

where the first line is the solution of non-homogeneous linear ODE (see Equation 2.61 on page 20 (Schekochi-
hin, 2022)). When the ∆t is sufficiently small, the right-side of the third line can be approximated as
P−1(exp(P∆t)− I)U(zt)at. Then the difference between z∆t and z0 can be

z∆t − z0

= exp(∆tP)z0 + P−1(exp(P∆t)− I)U(z0)a0 − z0

= (I + P∆t+
∑
n≥2

1
n!
dn(K∆t)
dtn

∆tn − I)z0 + P−1(I + P∆t+
∑
n≥2

1
n!
dn(K∆t)
dtn

∆tn − I)U(z0)a0

= Pz0∆t+ U(z0)a0∆t+O(∆t2).

(28)

F.2 Proof of Theorem 3.4 and Corollary F.1.

The proof is directly developed from the dynamic programming (Bertsekas, 2012) and the Hamilton-Jacobi-
Bellman (HJB) equation (Yong & Zhou, 1999).

In this case, the proof will be decomposed into two cases, one to prove a general case and another to prove
the solution of the special quadratic form of the reward function (covering a wide range of Linear Quadratic
Regulator problems).

23

Under review as submission to TMLR

1. Proof of Theorem 3.4 By the Bellman optimality, the optimal value function can be represented as a
similar form in Equation equation 14:

B∗V (st) = max
at

r(st, at) + γV (F∆t(st)). (29)

According to the Lemma 3.1 and Theorem 3.3, there exists a representation in latent space as

B∗Vg(zt) = max
at

rg(zt, at) + γVg(K∆t(zt)). (30)

In this scenario, it assumes that the value function V ∈ C1(M,R), then Vg ∈ C1(N,R).

By the definition of the HJB equation (Yong & Zhou, 1999), the standard form exists:

V (x(t+ ∆t), t+ ∆t) = V (x(t), t) + ∂V (x(t), t)
∂t

∆t+ ∂V (x(t), t)
∂x

· ẋ(t)∆t+ o(∆t), (31)

where x(t) is the state at time t, since in the value function is time-independent, the ∂V (x(t),t)
∂t = 0. Back to

the case, the integral form can be obtained as:

Vg(K∆t(zt)) = Vg(zt) +
∫ ∆t

0
LXgVg(zτ)dτ + o(∆t)

≈ Vg(zt) +∇zt
V T

g (zt) ·Xg(ϕ(t))∆t+ o(∆t)
(32)

The Lie derivative LXgVg(zτ) interprets the change value function Vg(zτ) under the vector field of Xg(zt) ∈
V ect(N). Instead of searching for a direction in Euclidean space, LXgVg(zτ) can be understood as the change
of value function along the tangent vector Xg(zt) (Wu & Duan, 2021) on the latent space. When the ∆t is
sufficiently small, the second line of equation 32 holds. Observing the right-hand side of equation 30 can be
replaced by Equation equation 32, the following equation can be obtained as

B∗Vg(zt) = max
at

rg(zt, at) + γVg(K∆t(zt))

= max
at

rg(zt, at) + γ(Vg(zt) +∇ztV
T

g (zt) ·Xg(zt)∆t+ o(∆t))

= max
at

rg(zt, at) + γVg(zt) + γ∇zt
V T

g (zt)[Pzt + U(zt)at]∆t+ o(∆t),

(33)

where the vector field of Xg(ϕ(t)) is defined as in equation 6. Typically, the reward function can be decomposed
as two separable functions defined on state and action, respectively. Here, the rg can be defined as

rg(z, a) = r1(a) + r2(z), (34)

where r1 and r2 are two independent functions. Plug-in the equation 32 into the equation 33, the following
form exists:

max
at

rg(zt, at) + γ
(
Vg(zt) +∇ztV

T
g (zt)[Pzt + U(zt)at]∆t+ o(∆t)

)
= max

at

rg(zt, at) + γVg(zt) + γ∇ztV
T

g (zt)[Pzt + U(zt)at]∆t+ o(∆t)

= max
at

rg(zt, at) + γ∇zt
V T

g (zt)[Pzt + U(zt)at]∆t︸ ︷︷ ︸
depedent on action

+γVg(zt) + o(∆t).
(35)

When the rg is a convex function, the optimization becomes a convex problem, which can be solved analytically.

Since rg is quadratic form, ∇arg(zt, ·) is a linear operator, and thus∇arg(zt, a) = ∇arg(zt, ·)a. The equation 35
can be solved by taking the gradient equal zero:

max
at

rg(zt, a) + γ∇ztV
T

g (zt)[Pzt + U(zt)at]∆t

⇒ ∇arg(zt, a) + γ∇zt
V T

g (zt)U(zt)∆t = 0
⇒ a∗

t = −[∇arg(zt, ·)]†(γ∇zV
T

g · U(zt))∆t,

(36)

24

Under review as submission to TMLR

Corollary F.1 (Analytical form of value function with quadratic form). Under Theorem 3.4, if the value
function Vg has a quadratic form, i.e., Vg(z) = −(z − z∗)TW (z)(z − z∗) + b with W (z) being symmetric
positive definite matrix, b being a constant, then, the optimal action is:

π∗(zt) =− γR†
1[zT

t W (zt) + 1
2γ(zt − z∗)T ∂W (zt)

∂z
(zt − z∗)]U(zt). (37)

Proof. For the reward function, the equation 34 becomes as

rg(z, a) = −aTR1a∆t− zTR2z∆t, (38)

where R1 and R2 are symmetric semi-positive definite matrices, and their dimensions rely on the dimension
of observables and actions. In this case, the value function will also become a quadratic form as

V (z) = −(z − z∗)TW (z)(z − z∗) + b, (39)

where z∗ is the target state in observable space and M(z) is a positive definite matrix. Correspondingly, the
equation 32 in quadratic form becomes

Vg(Kt(zt)) = Vg(zt) +∇ztV
T

g (zt) ·Xg(zt)∆t+ o(∆t)
= −(zt − z∗)TW (zt)(zt − z∗)− 2zT

t W (zt) · [Pzt + U(zt)at]∆t

− (zt − z∗)T ∂W (zt)
∂z

(zt − z∗) · [Pzt + U(zt)at]∆t+ o(∆t).

(40)

Meanwhile, the equation 33 can be

B∗Vg(zt) = max
at

rg(zt, at) + γVg(zt) + γ∇zt
V T

g (zt+1)[Pzt + U(zt)at]∆t+ o(∆t)

= max
at

−aT
t R1at∆t− zT

t R2zt∆t− γ(zt − z∗)TW (zt)(zt − z∗)− 2γzT
t W (zt) · [Pzt + U(zt)at]∆t

− γ(zt − z∗)T ∂W (zt)
∂z

(zt − z∗) · [Pzt + U(zt)at]∆t+ o(∆t).
(41)

Due to the convexity of the equation 41, taking the gradient equal to zero can yield the optimal action as

− 2R1at − 2γzT
t W (zt)U(zt)− γ(zt − z∗)T ∂W (zt)

∂z
(zt − z∗)U(zt) = 0

⇒ a∗
t = −γR†

1[zT
t W (zt) + 1

2(zt − z∗)T ∂W (zt)
∂z

(zt − z∗)]U(zt).
(42)

F.3 Proof of Invariant Value Learning Convergence

Approximation in value space with one-step greedy TD amounts to a step of Newton’s method for solving
HJB equation. In the following proof, the convergence of the latent value function {Ṽg(ψk)}∞

k=1 is treated as
a Cauchy net in the functional space contracting to the fixed point V π∗

g . The proof has a natural connection
to Newton-Raphson method (Wright, 2006).
Lemma F.2 (Newton-Raphsom Method (Nocedal & Wright, 1999)). Consider a contraction map E : Y → Y
and the fixed point y∗ = limn→∞ En(y0) for some initial vector y0 ∈ Y ⊂ Rn and y∗ = E(y∗). The step-wise
difference is defined as

D(yk) = E(yk)− yk (43)

where ∀yk ∈ C2 and the contraction operator E indicates the fact that limk→∞ D(yk)→ 0, the Newton’s step
is to update yk+1 as

yk+1 = yk − [∇D(yk)T]−1D(yk) (44)

where D(yk) is differentiable and the ∇D(yk) is an invertible square matrix for all k.

25

Under review as submission to TMLR

Proposition F.3 (Quadratic convergence of Newton-Raphson). Under the condition of Lemma 3.1, every
step iteration yk+1 = yk − [∇D(yk)T]−1D(yk). When D(y) is C1−regularity as ρmin(∇D(y)) > C1 7 and
satisfying the following condition as

∥∇D(yn)−∇D(ym)∥ ≤ C2∥yn − ym∥2, for some compact sets.

Thus, the convergence rate is quadratic as ∥yk+1 − y∗∥ = O(∥yk − y∗∥2).

Proof.

∥yk+1 − y∗∥ = ∥yk − [∇D(yk)T]−1D(yk)− y∗∥ (45)

The error gap D(yk) can be calculated as variational form as:

D(yk) =
∫ 1

0
∇D(y∗ + t(yk − y∗))dt(yk − y∗). (46)

Plug the equation 46 to equation 45, we get

⇒∥yk − y∗ − [∇D(yk)T]−1D(yk)∥

=∥[∇D(yk)T]−1

[
[∇D(yk)T](yk − y∗)−D(yk)

]
∥

=∥[∇D(yk)T]−1

[
[∇D(yk)T](yk − y∗)−

∫ 1

0
∇D(y∗ + t(yk − y∗))dt(yk − y∗)

]
∥

≤∥∇D(yk)T]−1∥∥
∫ 1

0
[D(yk)T]−∇D(y∗ + t(yk − y∗))dt∥∥yk − y∗∥

≤C2∥∇D(yk)T]−1∥∥yk − y∗∥2

≤C2

γ
∥yk − y∗∥2

(47)

where it is easy to see the quadratic convergence relationship ∥yk+1 − y∗∥ = O(∥yk − y∗∥2).

Finally, the proof of quadratic convergence of ∥Ṽ k+1
g − V ∗

g ∥ = O(∥Ṽ k
g − Ṽ ∗

g ∥2) can be a direct result from the
equation 47.

Let’s give some analysis to connect to the Theorem 3.4 and Corollary F.1. This analysis provides a one-step
rollout case. The multi-step rollout case can be extended following the one-step rollout. It should be noted
that the multi-step rollout can be understood as a larger step size to make the convergence of the invariant
value function. The core idea behind Newton’s step is to use the second-order information to guide the
convergence of value function V k

g (θ). The second-order information of V k
g (θ) is from the Bellman optimality

B∗. By observing equation 23, one-step Temporal Difference is updated by using rg(zt, a
∗
t) instead of using

rg(zt, at). The a∗ derived from provide a piece of second-order information. The value function is defined on
the latent space, and a well-learned latent space can boost the convergence of the invariant value function by
vector field information. Compared to the conventional RL methods, such as soft actor-critic RL, the policy π
is updated incrementally, and it is impossible to discover a piece of second-order information to guide the policy.

The proof of the quadratic convergence rate can be analogous to Newton’s step. The fact is significantly
different from the actor-critic RL methods, where the policy π needs to be updated incrementally. The
conventional RL relies on asynchronous updating of value function and policy, which causes a low convergence
rate (Sutton & Barto, 2018). This paper’s analytical form of optimal policy provides “curvature information”
to boost the convergence rate.

7ρ represents the Eigenvalue of matrix.

26

Under review as submission to TMLR

G Pseudo algorithm for KEEC control

Algorithm 2 KEEC: Control
Require: trained encoder gen

θ , trained value net Ṽg(·, ψ) from Algorithm 1;
reward function R1; optimal state s∗; max control time Tmax; environment Env

1: initial state s0 ∈M
2: t = 0
3: while t ≤ Tmax do
4: Map to latent space zt = gen

θ (st)
5: perform optimal action at = π(zt) from the lifted policy with Equation equation 16 or equation 37
6: Observe next state st+1 = Env(st, at)
7: t← t+ 1
8: end while

27

Under review as submission to TMLR

H Experiment Settings

H.1 Description of the tasks

Pendulum. The swing-up pendulum problem is a classic control problem involving a pendulum swinging
from a downward hanging position to an unstable inverted position. In the controlgym-based control, the
problem has two state dimensions: angular θ and angular velocity θ̇. In the image-based control, we simulate
the pendulum with the same dynamics, but the state is defined as the binary images of two consecutive states
(the θ̇ can be learned by locally differencing). The image has size 96× 48, as the number of pixels (see Figure
6).

The pendulum motion equitation can be expressed as follows:
d2θ

dt2
= 3g

2l sin θ + 3
ml2

a, (48)

where l is the pendulum length, m is mass, g is the gravitational acceleration, and a is the applied torque.
Parameter settings commonly used in such studies, i.e., m = 1, l = 1, g = 10, and a ∈ [−2, 2], are used in this
study. In addition to the results presented in the main context, we show four KKEC control trajectories of
the inverted pendulum (gym) with random initials and the 3D visualization of the learned value function in
Figure 5.

(a) Example control trajectories with four random
initials, where + indicates the initials and the yellow
star indicates the optimal state. The background
contour map indicates the magnitude of the value
function (red indicates high value and blue indicates
low value)

(b) 3D visualization of learned value function

Figure 5: The visualization of the learned value function and the KEEC control trajectories of the swing-up
pendulum.

Lorenz-63 system. The Lorenz-63 model (Lorenz, 1963; Saltzman, 1962; Yang et al., 2025), which consists
of three coupled nonlinear ODEs,

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz (49)

used as a model for describing the motion of a fluid under certain conditions: an incompressible fluid between
two plates perpendicular to the direction of the earth’s gravitational force. In particular, the equations

28

Under review as submission to TMLR

(a) Image of pendulum state (1, 3) (b) Image of pendulum goal state (0, 0)

Figure 6: Demonstration of states in the image-based pendulum control task: the image is the concatenated
frames from two consecutive states (last timestep and current timestep).

29

Under review as submission to TMLR

(a) (b) (c) (d)

Figure 7: (a) and (c) uncontrolled and KEEC controlled 3d phase trajectories of Lorenz-63, where the arrows in (c)
indicate the moving direction. (b) and (d) uncontrolled and controlled state trajectories of Lorenz-63.

describe the rate of change of three quantities with respect to time: x is proportional to the rate of convection,
y to the horizontal temperature variation, and z to the vertical temperature variation. The constants σ, ρ,
and β are system parameters proportional to the Prandtl number, Rayleigh number, and coupling strength.
In this paper, we take the classic choices σ = 10, ρ = 28, and β = 8

3 which leads to a chaotic behavior
with two strange attractors (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) and −(

√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1). Its state

is s = (x, y, z) ∈ R3 bounded up and below from ±30. Our implementation and control settings are based on
the (Li et al., 2012) which modifies the Lorenz-63 system with three action inputs a = (ax, ay, az) ∈ [−3, 3]3
on each of the variable as,

dx

dt
= σ(y − x) + ax,

dy

dt
= x(ρ− z)− y + ay,

dz

dt
= xy − βz + az, (50)

The goal is to steer the system’s dynamics toward a state s∗ = 0 with appropriate control inputs. Although
the system naturally approaches the attractors, its stabilization is extremely challenging due to fractal
oscillation and sensitivity to perturbations. The numerical integration of the system equation 50 using the
fourth order Runge-Kutta (Butcher & Wanner, 1996) with a time step ∆t = 0.1. Figure 7 presents four
trajectories of the Lorenz-63 system, both uncontrolled and KEEC controlled. This comparison effectively
illustrates the effect of KEEC on stabilizing the Lorenz-63 system.

Wave Equation. The wave equation is a fundamental second-order PDE in physics and engineering,
describing the propagation of various types of waves through a homogeneous medium. The temporal dynamics
of the perturbed scalar quantity u(x, t) propagating as a wave through one-dimensional space is given by

∂2u

∂t2
− c2 ∂

2u

∂x2 = a(x, t) (51)

where c is a constant representing the wave’s speed in the medium, and a(x, t) is a source term that acts as a
distributed control force,

a(x, t) =
na−1∑
j=0

Φj(x)aj(t). (52)

The control force consists of na control inputs aj(t), each acting over a specific subset of the spatial domain,
defined by its corresponding forcing support function Φj(x) (see Figure 8 for the demonstration of the
controller in our implementations). Such a control force can be used to model the addition of energy to the
system or other external influences that affect the PDE dynamics. The uncontrolled solution of the wave
equation for c = 0.1 and initial condition u(x, t = 0) = sech(10x− 5) can be found in Figure 9. We use the
implementation and control environment by the Python package controlgym8 (Zhang et al., 2023). The wave
equation with periodic boundary condition is solved by first transforming (51) into a coupled system of two

8https://github.com/xiangyuan-zhang/controlgym

30

https://github.com/xiangyuan-zhang/controlgym

Under review as submission to TMLR

Figure 8: Demonstration of how distributed control inputs influence the dynamics of the wave equation
through forcing support functions. In our setting, the forcing support functions corresponding to na = 10
control inputs are shown, each with a width of 0.1, uniformly affecting the state components of the physical
domain.

Figure 9: The uncontrolled solution to the wave equation in a spatial domain [0, 1] with parameters, c = 0.01. The initial
condition is u(x, t = 0) = sech(10x− 5) and ψ(x, t = 0) = 0. (left): Contour plot that shows the value of the state variable over
the total simulation time (x-axis) and across the spatial domain (y-axis). (middle): 1D line representing the state variable at
fixed times. The x- and y-axes represent spatial coordinates and values of the state variable, respectively. The colour of the lines
corresponds to the time stamps within the total simulation time. (right): 3D surface plot showing the value of the state variable
(z-axis) over time (y-axis) and across the spatial domain (x-axis).

PDEs, with first-order time derivatives defined as ψ(x, t) = ∂u
∂t representing the rate at which the scalar

quantity u(x, t) is changing locally.

In our implementation, we discretized the spatial domain [0, 1] with ∆x = 0.02 and results the discretized field
u∆x(x, t) = [u0, u∆x, ..., u1] ∈ R25. The system state is defined as the combination of discretized u(x, t) and
discretized time derivative ψ(x, t) such as s = [u0, u∆x, ..., u1, ψ0, ψ∆x, ..., ψ1] ∈ R50. We set the control term
a(x, t) with na = 5 control inputs aj(t) = 1 with support function Φj(x) = [0.2j, 0.2(j + 1)], as illustrated in
Figure 8. We visualize the control trajectories of all the baselines and KEEC in Figures 10, 11, 12, 13, and 14.

31

Under review as submission to TMLR

Figure 10: KEEC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 11: SAC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 12: CQL controlled solution to the wave equation. The figure convention is consistent with Figure 9.

32

Under review as submission to TMLR

Figure 13: MPPI controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 14: PCC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

33

Under review as submission to TMLR

H.2 Training details and baselines.

At a high level, KEEC and other baselines are implemented in Pytorch (Paszke et al., 2019). Both training
and evaluations are conducted on a Mac studio with a 24-core Apple M2 Ultra CPU and 64-core Metal
Performance Shaders (MPS) GPU. The evaluation is conducted on the CPU.

All models were trained using the Adam optimizer (Kingma & Ba, 2015), with the decaying learning rate
initially set to 0.001. For KEEC, 100 training epochs are used for system identification with a batch size of
128, and 50 training epochs are used for learning the value function with a batch size of 256. The latent
space dimensions are set at 8, 8, 16, and 64 for the pendulum (gym, image) and Lorenz-63, wave equation
tasks, respectively. We set the lose weight λmet = 0.3. Both offline models (CQL, MPPI, and PCC) were
trained for 100 epochs with a batch size of 256, while the online SAC was updated every 10 steps with the
same batch size and a 100k replay-memory buffer for a total of 250k gradient iterations. We use the following
Pytorch (Paszke et al., 2019) implementations for the baselines. For all the baselines, we keep the default
model and hyper-parameter settings, adapting only the state-action dimensions for each task. Additionally,
the hidden dimensions of the models are set to be the same as the latent space dimension of KEEC.

• SAC: Stable Baselines 3 (Hill et al., 2018):https://github.com/hill-a/stable-baselines.

• CQL: The implementation is based on the provided code of (Kumar et al., 2020):https://github.
com/aviralkumar2907/CQL.

• MPPI: The implementation is based on the provided code of (Williams et al., 2017):https://github.
com/UM-ARM-Lab/pytorch_mppi.

• PCC: The implementation is based on the provided code of (Levine et al., 2019): https://github.
com/VinAIResearch/PCC-pytorch.

H.3 Evaluation details

The table 2 shows the general settings for the conducted evaluations.

Table 2: Evaluation settings.

initial region goal state horizon noises
pendulum (gym) [−2.9,−π] × [−8, 8] (0, 0) 100 N/A

pendulum (image) [−2.9,−π] × [0] (0, 0) 100 N/A
Lorenz-63 [−1,−17,−20] ± [1, 1, 1] (−8,−8, 27) 500 N/A

Wave equation u(x, 0) = sech(10x− 5), ψ(x, 0) = 0 0 ∈ R50 200 N (0, 10−2)

The SAC, CQL, and KEEC are standard feedback control algorithms that determine control actions based on
the observed state. Below, we provide additional settings for two other baseline methods, MPPI and PCC:

• MPPI: The planning horizons are set to 10, 10, 50, and 20 for the pendulum (gym, image), Lorenz-63,
and wave equation tasks, respectively. The number of sampled trajectories for integral evaluations is
fixed at 100 across all tasks.

• PCC: This method utilizes the iLQR algorithm to perform control in its latent space. For the two
pendulum tasks, we keep the default settings as outlined in the original paper. For the Lorenz-63
and wave equation tasks, the latent cost matrices are set to match the cost matrices R1 and R2 in
the original spaces. The planning horizons are set to 10 for each pendulum task, 50 for Lorenz-63,
and 20 for the wave equation. The number of iLQR iterations is consistently set at 5 for all tasks.

34

https://github.com/hill-a/stable-baselines
https://github.com/aviralkumar2907/CQL
https://github.com/aviralkumar2907/CQL
https://github.com/UM-ARM-Lab/pytorch_mppi
https://github.com/UM-ARM-Lab/pytorch_mppi
https://github.com/VinAIResearch/PCC-pytorch
https://github.com/VinAIResearch/PCC-pytorch

Under review as submission to TMLR

H.4 Model Architecture

In the implementations, an autoencoding architecture is used for Koopman embedding, where the encoder
and decoder are symmetric and contain only three Fully Connected (FC) layers each. The performance of
the proposed KEEC can be easily verified using a simple design and demonstrates its potential to solve
more complex control tasks with more well-designed neural networks. It is recalled that m, d represents the
dimension of the environmental state and input control signal, respectively, whereas n is the dimension of
latent space (i.e. the finite approximated dimension of our Koopman operators). For the latent value function,
two types of model architectures were employed: (1) Multi-Layer Perception (MLP) and (2) Quadratic Form
Vg(z) = (z − z∗)TW (z)(z − z∗) where W (z) = W

1
2 (z)TW

1
2 (z) ensures the positive definiteness and z∗ is the

encoded optimal state s∗. Specifically, the general network structure is listed in Table 3, including the specific
sizes used and the different activation functions.

Table 3: KEEC model architecture in our implementation

Components Layer Weight Size Bias Size Activation Function
Encoder FC m× n

2
n
2 Tanh

Encoder FC n
2 × n n Tanh

Encoder FC n× n n Tanh
Encoder FC n× n n None
Decoder FC n× n n Tanh
Decoder FC n× n

2
n
2 Tanh

Decoder FC n
2 ×m m Tanh

Decoder FC n
2 ×m m None

Value Function (MLP) FC n× n n ReLU
Value Function (MLP) FC n× n

2
n
2 ReLU

Value Function (MLP) FC n
2 ×

n
2

d
2 ReLU

Value Function (MLP) FC n
2 × 1 1 None

Value Function (Quadratic) FC n× (n× n) n× n None

As discussed in the main text, no extra parameters are used for training the two lifted P and U instead
of solving the least square minimization problem (8) with an analytical solution to obtain P̂ and Û with
regularization 10−3. The solved solutions in each batch were averaged over all the training data. In evaluation,
the two approximated lifted operators P̂ ∈ Rn×n and Û ∈ Rn×d are loaded into the dynamics model and
used in the control tasks.

35

	Introduction
	Preliminary
	Optimal Control: A Geometric Perspective
	Embedding for Control

	Koopman Embedded Equivariant Control
	Koopman Operator as Latent Dynamics
	Modelling the Equivariant Latent Vector Fields
	Learning Equivariant Embedding
	Optimal Control on Equivariant Vector Field

	Numerical Experiments
	Ablation study

	Conclusion
	Appendix
	Table of Notations
	Important Definitions
	Model-based RL
	Bellman Optimality

	Koopman Semigroup and Equivariance
	Additional Details of Value Learning
	Proofs of Main Theorems
	Proof of Theorem 3.1.
	Proof of Theorem 3.4 and Corollary F.1.
	Proof of Invariant Value Learning Convergence

	Pseudo algorithm for KEEC control
	Experiment Settings
	Description of the tasks
	Training details and baselines.
	Evaluation details
	Model Architecture

