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Revisiting VAE for Unsupervised Time Series Anomaly Detection:
A Frequency Perspective

Anonymous Author(s)

ABSTRACT
Time series Anomaly Detection (AD) plays a crucial role for web
systems. Various web systems rely on time series data to monitor
and identify anomalies in real time, as well as to initiate diagno-
sis and remediation procedures. Variational Autoencoders (VAEs)
have gained popularity in recent decades due to their superior de-
noising capabilities, which are useful for anomaly detection. How-
ever, our study reveals that VAE-based methods face challenges
in capturing long-periodic heterogeneous patterns and detailed
short-periodic trends simultaneously. To address these challenges,
we propose Frequency-enhanced Conditional Variational Autoen-
coder (FCVAE), a novel unsupervised AD method for univariate
time series. To ensure an accurate AD, FCVAE exploits an innova-
tive approach to concurrently integrate both the global and local
frequency features into the condition of Conditional Variational
Autoencoder (CVAE) to significantly increase the accuracy of re-
constructing the normal data. Together with a carefully designed
“target attention”mechanism, our approach allows themodel to pick
the most useful information from the frequency domain for better
short-periodic trend construction. Our FCVAE has been evaluated
on public datasets and a large-scale cloud system, and the results
demonstrate that it outperforms state-of-the-art methods. This con-
firms the practical applicability of our approach in addressing the
limitations of current VAE-based anomaly detection models.

Relevence Statement: Our paper is highly relevant to the track “In-
ternet systems, applications, andWeb of Things (WoT) applications.”
and previous papers in this conference[7, 9, 11, 14, 16, 29, 32, 45, 46].
It presents a novel method for anomaly detection in time series
data, which is integral to the monitoring and real-time performance
of various web and WoT systems, aligning with the track’s focus
on web performance, measurements, and characterization. Addi-
tionally, our work offers a new perspective on data management
and stream processing for web applications, while also sharing
experiences and lessons from the deployment of our innovative
web-based algorithm.
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1 INTRODUCTION
Anomalies are rare in real-world time series data [37], making it
difficult to label them and train a supervised model for anomaly de-
tection [46]. Instead, unsupervised machine learning techniques are
commonly used [5, 13, 15, 23, 30, 46, 50, 53–55]. These techniques
can be divided into two categories: prediction-based [13, 15, 55] and
construction-based [5, 23, 30, 46, 50]. Both types aim to identify nor-
mal values and compare them to actual values to detect anomalies.
Prediction-based methods were originally developed for forecast-
ing future data points, regardless of whether they were normal
or anomalous. However, these methods may overfit to anomalous
patterns and underperform. On the other hand, Variational Au-
toEncoders (VAEs) [18], the leading construction-based approach,
encode raw time series into a lower-dimensional latent space and
then reconstruct them back to their original dimensions. VAEs are
well-suited for detecting anomalies, but existing VAE-based anom-
aly detection models have not yet reached optimal performance. In
this paper, we aim to re-examine the VAE model and improve its
effectiveness in anomaly detection.

In order to more effectively demonstrate the challenges associ-
ated with VAE-based techniques, we provide an example in Figure 1.
The original curve is displayed in the first sub-figure, with anom-
alies highlighted in red ③. The subsequent four sub-figures repre-
sent curves reconstructed by four distinct VAE-methods, including
our proposed method (referred to as FCVAE). The reconstruction
error is indicated by the green shaded area ⑤. To achieve superior
AD performance, the reconstructed result should closely resemble
the original curve for normal points, while deviating significantly
for anomalous points ③. As evident in the figure, all VAE-based
methods successfully disregard the anomalies during reconstruc-
tion. However, the reconstruction results for some normal points,
particularly those marked by a blue rectangle ① and ellipse ④, are
not satisfactory. This substantially impacts the overall performance,
leading us to identify three key challenges that we address in the
subsequent sections.
Challenge 1: Capturing similar yet heterogeneous periodic
patterns. From Figure 1, periodic patterns can be observed in the
curves, with one such period emphasized by the red shaded area
②. However, the shapes across different periods vary. As demon-
strated by the blue ellipse, existing VAE-based methods (as shown
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Figure 1: Comparison of four KPI reconstruction methods
presented in our paper, highlighting anomalies in red ③.
The green shade ⑤ represents the difference between the
reconstructed values and the original values, the red shade
② represents a long period, and the blue ellipse ④ indicates
peaks and valleys that are not properly reconstructed, the
blue rectangle ① will be magnified in Figure 2 for detailed
comparison.

(a) Original Values (b) Transformed Spectrogram

Figure 2: A detailed view of the region enclosed by a blue
rectangle ① in Figure 1, where the shaded area represents the
value range before applying a sliding window average.

in the second sub-figure) are unable to capture these heterogeneous
patterns effectively. This observation naturally leads to the idea
of utilizing conditional VAE to map data into distinct Gaussian
spaces by considering the timestamp as a condition. Unfortunately,
as illustrated in the fourth sub-figure (Time CVAE [23]), the results
are unsatisfactory, which we will further discuss below.

Challenge 2: Capturing detailed trends. Reconstructing monot-
onous patterns (i.e., trends) might appear straightforward at first
glance. However, upon a closer examination of the local window
(highlighted in a blue rectangle ① in Figure 1 and magnified in
Figure 2(a), it becomes evident that existing methods fail to restore
detailed patterns within this time frame. In Figure 2(a), the two
green lines initially overestimate the ground truth (purple curve)
but subsequently underestimate it for the remainder of the window.
This is primarily because existing methods aim to minimize the
overall reconstruction error without focusing on “point-to-point”
dependencies, e.g., the precise upward and downward ranges fol-
lowing a specific point. This omission results in fluctuating recon-
struction outcomes (as seen in the second sub-figure). Although
CNN attempts to model point-to-point dependencies within the
window, it still produces coarse-grained fluctuations (visible in the
third sub-figure in Figure 1). The reason of unsatisfactory result
of CNN-CVAE lies in Figure 2(b). Upon converting the curves re-
constructed by various methods (Figure 2(b)), it becomes evident
that the primary cause of these phenomena is the absence of
some frequencies (smaller amplitude of certain frequencies) in
existing methods, hindering the reconstruction of detailed patterns.
This observation logically suggests the possibility of employing
frequency as the conditional factor in a Conditional Variational
Autoencoder (CVAE). Nonetheless, employing frequency as the
condition in CVAE presented a new challenge.
Challenge 3: A large number of sub-frequencies make the sig-
nal in condition noisy and difficult to use. Directly converting
the entire window into the frequency-domain results in numerous
sub-frequencies, adding noise and obstructing effective VAE-based
reconstruction. To address these challenges, we sub-divide the en-
tire window into smaller ones and propose a target attention
method to select the most useful sub-window frequencies.

In this paper, we introduce a novel unsupervised anomaly detec-
tion algorithm, named FCVAE (Frequency-enhanced Conditional
Variational AutoEncoder). Different from current VAE-based anom-
aly detectionmethods, FCVAE innovatively incorporates both global
and local frequency information to guide the encoding-decoding
procedures, that both heterogeneous periodic and detailed trend
patterns can be effectively captured. This in turn enables more
accurate anomaly detection. Our paper’s contributions can be sum-
marized as follows:

• Our analysis of the widely-used VAE model for anomaly
detection reveals that existing VAE-based models fail to
capture both heterogeneous periodic patterns and detailed
trend patterns. We attribute this failure to the missing of
some frequency-domain information, which current meth-
ods fail to reconstruct.

• Our study systematically improves the long-standing VAE
by focusing on frequency. Our proposed FCVAE makes the
VAE-based approach the state-of-the-art in anomaly detec-
tion once more. This is significant because VAE-based meth-
ods can inherently handle mixed anomaly-normal training
data, while prediction-based methods cannot.

• Evaluations demonstrate that our FCVAE substantially sur-
passes state-of-the-art methods (0%–40% on public datasets
and 10% in a real-world web system in terms of F1 score).
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Comprehensive ablation studies provide an in-depth analy-
sis of the model, revealing the reasons behind its superior
performance.

The replication package for this paper, including all our data,
source code, and documentation, is publicly available online at
https://anonymous.4open.science/r/FCVAE.

2 PRELIMINARIES
2.1 Problem Statement
To facilitate comprehension, we employ the notation established
by [22]. Given a UTS data x = [𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑡 ] and label series
L = [𝑙0, 𝑙1, 𝑙2, · · · , 𝑙𝑡 ], where 𝑥𝑖 ∈ R, 𝑙𝑖 ∈ {0, 1}, and 𝑡 ∈ N. x
represents the entire time series data array, while 𝑥𝑖 signifies the
metric value at time 𝑖 . L denotes the label of time series x. We define
the UTS anomaly detection task as follows:

Given a UTS x = [𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑡 ], the objective of UTS anomaly
detection is to utilize the data [𝑥0, 𝑥1, · · · , 𝑥𝑖−1] preceding each point
𝑥𝑖 to predict 𝑙𝑖 . Based on the value of 𝑙𝑖 , we can determine whether 𝑥𝑖
is an anomaly or not.

2.2 VAEs and CVAEs
VAE is composed of an encoder 𝑞𝜙 (z|x) and a decoder 𝑝𝜃 (z|x). VAE
can be trained by using the reparameterization trick. SGVB [35] is
a commonly used training method for VAE because of its simplicity
and effectiveness. It maximizes the evidence lower bound (ELBO) to
simultaneously train the reconstruction and generation capabilities
of VAE. The ELBO is defined in (1).

L = E𝑞𝜙 (z|x) [log𝑝𝜃 (x |z) + log𝑝𝜃 (z) − log𝑞𝜙 (z |x) ] (1)

DONUT [46] proposed the modified ELBO (M-ELBO) to weaken
the impact of abnormal and missing data in the window on the
reconstruction. M-ELBO is defined in (2), 𝛼𝑤 is defined as an indi-
cator, where 𝛼𝑤 = 1 indicates 𝑥𝑤 being not anomalous or missing,
and 𝛼𝑤 = 0 otherwise. 𝛽 is defined as (∑𝑊𝑤=1 𝛼𝑤)/𝑊 .

L = E𝑞𝜙 (z|x) [
𝑊∑︁
𝑤=1

𝛼𝑤 log𝑝𝜃 (𝑥𝑤 |z) + 𝛽log𝑝𝜃 (z |x) − log𝑞𝜙 (z |x) ] (2)

The overall structure of CVAE [39] is similar to VAE, and it com-
bines conditional generative models with VAE to achieve stronger
control over the generated data. The training objective of CVAE is
defined as (3), where c is the condition, similar to that of VAE.

L = E𝑞𝜙 (z|x,c) [log𝑝𝜃 (x |z, c) + log𝑝𝜃 (z) − log𝑞𝜙 (z |x, c) ] (3)

3 METHODOLOGY
3.1 Framework Overview
The proposed algorithm for anomaly detection is illustrated in
Figure 3 and comprises three main components: data preprocess-
ing, training, and testing. Given a data point 𝑥𝑡 , as defined in the
problem statement, its state can only be evaluated based on its
preceding points [𝑥0, 𝑥1, · · · , 𝑥𝑡 ]. To maintain model consistency, a
sliding window method is employed, where a window of𝑊 consec-
utive points, [𝑥𝑡−𝑊 +1, 𝑥𝑡−𝑊 +2, · · · , 𝑥𝑡 ], is utilized to determine if
𝑥𝑡 is anomalous. Following sliding window and data preprocessing,
a batch of data is input into the FCVAE model for offline training,
which will be presented in detail later. Subsequently, the trained

Figure 3: Overall Framework.

model is transferred to the online test module for testing and com-
puting the anomaly score.

3.2 Data Preprocessing
Data preprocessing encompasses standardization, filling missing
and anomaly points, and the newly introduced method of data
augmentation. The efficacy of data standardization and filling
missing and anomaly points has been substantiated in prior studies
[23, 26, 46]. Therefore, we directly incorporate these techniques
into our approach.

(a) Pattern Anomaly (b) Value Anomaly

Figure 4: Examples of the two most frequent anomalies,
where the red shaded area denotes the abnormal segments.

Previous data augmentation methods [21, 43, 49] often added
normal samples, such as variations of data from the time domain or
frequency domain. However, for our method, we train the model by
incorporating all the time series from the dataset together, which
provides sufficient pattern diversity. Furthermore, FCVAE has the
ability to extract pattern information due to the addition of fre-
quency information, so it can handle new patterns well. Nonethe-
less, even with the introduction of frequency information, anom-
alies are often challenging to be effectively addressed. For the model
to learn how to handle anomalies, we primarily focus on abnormal
data augmentation. In time series data, anomalies are mostly mani-
fested as pattern mutations or value mutations (shown in Figure 4),
so our data augmentation mainly targets to these two aspects. The
augmentation on the pattern mutation is generated by combining
two windows from different curves, with the junction acting as the
anomaly. Value mutation refers to changing some points in the win-
dow to randomly assigned abnormal values. With the augmented

3
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Figure 5: FCVAE Model Architecture.

Figure 6: Architecure of LFM.

anomaly data, M-ELBO in CVAE, which will be introduced in detail
later, can perform well even in an unsupervised setting without
true labels.

3.3 Network Architecture
The proposed FCVAE model is illustrated in Figure 5. It comprises
three main components: encoder, decoder, and a condition extrac-
tion block that includes a global frequency information extraction
module (GFM) and a local frequency information extraction module
(LFM). Equation (4) illustrates how our model works.

𝜇, 𝜎 = Encoder(x, LFM(x),GFM(x) )
z = Sample(𝜇, 𝜎 )
𝜇x, 𝜎x = Decoder(z, LFM(x),GFM(x) )

(4)

3.3.1 GFM. The GFM module (Figure 7) extracts the global fre-
quency information using the FFT transformation (F ). However,
not all frequency information is useful. The frequencies resulted
from the noise and anomalies in the time series data appear as long
tails in the frequency domain. Therefore, we employ a linear layer
after the FFT to filter out the useful frequency information that can
represent the current window pattern. Moreover, we incorporate
a dropout layer following Fedformer [56] to enhance the model’s
ability to learn the missing frequency information.

Figure 7: Architecure of GFM.

The 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 ∈ R1×𝑑 is calculated as (5), where d is the embedding
dimension of the global frequency information and F means FFT.

𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = Dropout(Dense(F(x) ) ) (5)

3.3.2 LFM. The attentionmechanism [42] has beenwidely adopted
in time series data processing due to its ability to dynamically pro-
cess dependencies between different time steps and focus on impor-
tant ones. Target attention, which is developed based on attention,
is widely used in the field of recommendation [4]. Specifically, tar-
get attention can weigh the features of the target domain, leading
to more accurate domain adaptation.

The GFM module extracts the frequency information from the
entire window, proving to be effective in reconstructing the data
within the whole window. However, we use a window to detect
whether the last point is abnormal, which poses a challenge because
the GFM module does not provide sufficient attention to the last
point. This can result in a situation where the reconstruction is
satisfactory for part of the window but not for another part, espe-
cially when changes in system services lead to the concept drift
in the time series data. Even in the absence of concept drift, GFM
cannot capture local changes as it extracts the average frequency
information from the entire window; hence, the reconstruction of
the last key point may be unsatisfactory. Nonetheless, as previously
mentioned, target attention can effectively address this issue, as
it captures the frequency information of the entire window while
paying a greater attention to the latest time point. Therefore, we
propose the LFM that incorporates the target attention.

As depicted in Figure 6, the LFM module operates by sliding
the entire window x to obtain several small windows x𝑠𝑤 . Subse-
quently, FFT and frequency information extraction are applied to
each small window. The most recent small window is used as the
query 𝑄 because it contains the last point that we want to detect.
The remaining small windows are utilized as keys 𝐾 and values 𝑉
for target attention. Finally, a linear layer is employed to facilitate
the model in learning to extract the most important and useful
part of the local frequency information, and dropout is also applied
to enhance the model’s ability to reconstruct some of the local
frequency information like GFM.

4
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x𝑠𝑤 = SlidingWindow(x)
𝑄 = Select(Dense(F(x𝑠𝑤 ) ) )
𝐾,𝑉 = Dense(F(x𝑠𝑤 ) )
𝑓𝑙𝑜𝑐𝑎𝑙 = Dropout(FeedFawrd( (𝜎 (𝑄 · 𝐾⊤ ) · 𝑉 ) )

(6)

The calculation of 𝑓𝑙𝑜𝑐𝑎𝑙 ∈ R1×𝑑 in LFM is given by (6), where
𝑑 is the embedding dimension of the local frequency information,
which is the same as that of GFM. Here, x𝑠𝑤 ∈ R𝑛×𝑘 represents a
group of small windows extracted from the original window, where
𝑘 is the dimension of the small windows and 𝑛 is the number of
small windows. The Select function is employed to select the latest
window as the query𝑄 and the Dense function means dense neural
network. The softmax function 𝜎 is used to calculate the attention
weights for the small windows.

3.4 Training and Testing
The training process of FCVAE incorporates three key technologies:
CVAE-based modified evidence lower bound (CM-ELBO), missing
data injection, as well as the newly proposed masking the last
point. As shown in (7), CM-ELBO is obtained by applying M-
ELBO [46] to CVAE. Missing data injection [26, 46] is a commonly
used technique in VAE that we directly apply. We observed that an
anomalous point in time series data manifests as an outlier value
in the time domain. However, when the data are transformed into
the frequency domain, all frequency information is shifted, leading
to a challenge. The impact of this issue will be amplified when the
last point is abnormal, as we specifically aim to detect whether
the last point is abnormal given the whole window. While we use
the frequency enhancement method and frequency selection to
mitigate this problem to some extent, we mask the last point as
zero during the extraction of the frequency condition to address
this issue further.

L = E𝑞𝜙 (z|x,c) [
𝑊∑︁
𝑤=1

𝛼𝑤 log𝑝𝜃 (𝑥𝑤 |z, c) + 𝛽log𝑝𝜃 (z) − log𝑞𝜙 (z |x, c) ] (7)

While testing, FCVAE adopts the Markov Chain Monte Carlo
(MCMC)-based missing imputation algorithm proposed in [35] and
applied in [26] to mitigate the impact of missing data. Since our goal
is to detect the last point of a window, the last point is set to missing
for MCMC to obtain a normal value. This also allows for a better
adaptation to the last point mask mentioned earlier. FCVAE further
utilizes reconstruction probabilities as anomaly scores, which are
defined in equation (8).

AnomalyScore = −E𝑞𝜙 (z|x,c) [log𝑝𝜃 (x |z, c) ] (8)

4 EXPERIMENTS
4.1 Experiment Settings
4.1.1 Datasets. To evaluate the effectiveness of our proposed al-
gorithm, we conducted experiments on four datasets. Yahoo [2]
is an open data set for anomaly detection released by Yahoo lab.
KPI [24] KPI is collected from five large Internet companies (Sougo,
eBay, Baidu, Tencent, and Ali).WSD [1] Web service dataset (WSD)
contains real-world KPIs collected from three top-tier Internet com-
panies, Baidu, Sogou, and eBay, providing large-scale Web services.
NAB [20] The Numenta Anomaly Benchmark (NAB) is an open

dataset created by Numenta company for evaluating the perfor-
mance of time series anomaly detection algorithms.

4.1.2 Baseline Methods. To benchmark our model FCVAE against
existing methods, we chose the following approaches for evalua-
tion: SPOT [38], SRCNN [34], TFAD [49], DONUT [46], Informer
[55], Anomaly-Transformer [47], AnoTransfer [50], VQRAE [17].
SPOT represents a traditional statistical method rooted in extreme
value theory. SRCNN and TFAD are supervised methods relying
on high-quality labels. Donut, VQRAE, and AnoTransfer are unsu-
pervised reconstruction-based methods utilizing VAE for normal
value reconstruction. Informer is an unsupervised prediction-based
method that endeavors to predict normal values using an attention
mechanism. Anomaly-Transformer is an unsupervised anomaly
detection method leveraging the transformer architecture. It posits
that normal data exhibit stronger correlations with distant data.

4.1.3 Evaluation Metrics. In practical applications, operators tend
to be less concernedwith point-wise anomaly detection, i.e., whether
each individual point is classified as anomalous or not, and focus
more on detecting continuous anomalous segments in time series
data. Moreover, due to the substantial impact of anomalous seg-
ments, operators aim to identify such segments as early as possible.
To address these requirements, we adopt two metrics, best F1 and
delay F1, which are based on the works of DONUT [46] and SRCNN
[34], respectively.

Figure 8: Illustration of the adjustment strategy.

Best F1 is obtained by traversing all possible thresholds for anom-
aly scores, and subsequently applying a point adjustment strategy
to the prediction in order to compute the F1 score. Delay F1 is
similar to best F1 but employs a delay point adjustment strategy to
transform the prediction. The adjustment strategies are illustrated
in Figure 8, with a delay set to 1 as an example. The detector misses
the second anomalous segment because it takes two-time intervals
to detect this segment, exceeding the maximum delay threshold we
established. We configure the delay for all datasets to be 7, except
for Yahoo, where it is set to 3, and NAB, where it is set to 150. This
is because the anomaly segments in Yahoo are very short, while
in NAB, they are typically much longer, often spanning several
hundred data points.

4.1.4 Implementation Details. To guarantee the widespread appli-
cability, all the experiments described below were conducted under
entirely unsupervised conditions, without employing any actual
labels (all labels are set to zero). For consistency across all methods,
we trained a single model for all curves within a dataset. Regard-
ing hyperparameters, we conducted a grid search to identify the
most effective parameters for different datasets. Additionally, we
later evaluated the sensitivity of these parameters to ensure robust
performance.
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Table 1: Performance on test data.

Yahoo KPI WSD NAB
Method Best F1 Delay F1 Best F1 Delay F1 Best F1 Delay F1 Best F1 Delay F1

SPOT [38] 0.417 0.417 0.360 0.143 0.472 0.237 0.829 0.829
SRCNN [34] 0.251 0.198 0.786 0.678 0.170 0.053 0.828 0.575
DONUT [46] 0.215 0.215 0.454 0.364 0.224 0.158 0.935 0.797
VQRAE [17] 0.510 0.492 0.272 0.137 0.312 0.103 0.933 0.893

Anotransfer [50] 0.567 0.496 0.685 0.461 0.674 0.379 0.965 0.871
Informer [55] 0.707 0.671 0.918 0.822 0.557 0.393 0.973 0.892
TFAD [49] 0.805 0.802 0.752 0.680 0.628 0.455 0.734 0.248

Anomaly-Transformer [47] 0.274 0.029 0.868 0.346 0.728 0.137 0.971 0.911
FCVAE 0.857 0.842 0.927 0.835 0.831 0.631 0.976 0.917

4.2 Overall Performance
The performance of FCVAE and baseline methods across the four
datasets is depicted in Table 1. Our method surpasses all baselines
on four datasets regarding best F1 by 6.45%, 0.98%, 14.14% and 0.31%.
In terms of delay F1, our method outperforms all baselines on four
datasets by 4.98%, 1.58%, 38.68% and 0.65%.

The performance of various baseline methods on the datasets
exhibits considerable variation. For instance, SPOT [38] does not
excel on most datasets, as it erroneously treats extreme values as
anomalies, whereas anomalies are not always manifested as such.
SRCNN [34] is a reasonably proficient classifier, yet its performance
falls short compared to most other models. This underscores the fact
that implicitly extracting abnormal features is challenging. Informer
[55] outperforms most other baselines across different datasets,
as many anomalies exhibit notable value jumps, and prediction-
based methods can effectively manage this situation. However, it
struggles with anomalies induced by frequency changes. Anomaly-
Transformer [47] attains commendable results on most datasets
in terms of best F1 but demonstrates a low delay F1. It detects
anomalies based on the relationships with nearby points, and only
when the anomalous point is relatively central within the window
can it easily capture the correlation. Conversely, TFAD [49] achieves
favorable results on various datasets but exhibits a certain delay in
detection.

Moreover, our method surpasses DONUT [46] and VQRAE [17]
in terms of reconstruction-based methods. Although VQRAE [17]
introduces numerous modifications to the VAE, employing RNN
to capture temporal relationships, our method still outperforms it.
This finding implies that for UTS anomaly detection, it is imperative
to incorporate only key information while avoiding overloading
the model with superfluous data.

4.3 Different Types of Conditions in CVAE
In this context, we conduct experiments under identical settings
to evaluate different types of conditions. The chosen conditions
encompass information potentially useful for time series anom-
aly detection within the scope of our understanding, including
timestamps [50], time domain information, and frequency domain
information. To ensure consistency, we apply the same operation

on the time domain information as we do on the frequency domain
information.

As illustrated in Figure 9(a), the performance of employing the
frequency information as a condition surpasses that using the times-
tamp or time domain information. This can be readily compre-
hended, as timestamps carry limited information and typically re-
quire one-hot encoding, resulting in sparse data representation.
Time domain information is already incorporated in VAE, and uti-
lizing it as a condition may lead to redundant information without
significantly benefiting the reconstruction. Conversely, frequency
information, as a valuable and complementary prior, render-
ing it a more effective condition for anomaly detection.

4.4 Frequency VAE and FACVAE
Is CVAE the optimal strategy for harnessing the frequency infor-
mation in anomaly detection? In this study, we compare FCVAE
with an improved frequency-based VAE (FVAE) model, in which the
frequency information is integrated into VAE along with the input
to reconstruct the original time series. As depicted in Figure 9(b),
FCVAE surpasses FVAE. This outcome can be attributed to two pri-
mary reasons. Firstly, CVAE, due to its unique architecture that in-
corporates conditional information, intrinsically outperforms VAE
in numerous applications. Secondly, FVAE does not fully exploit
frequency information. Although it incorporates this additional in-
formation, it still lacks efficient utilization in practice, particularly
in the decoder. Consequently, the CVAE that incorporates the
frequency information as a condition represents the most
effective structure known to date.

4.5 GFM and LFM
We propose GFM and LFM to extract global and local frequency
information, respectively. However, do these two modules achieve
our intended effects through their designs? Additionally, it is worth
noting that GFM and LFM may overlap to some degree. Thus, we
would like to determine if combining the two can further enhance
the performance.

We conduct experiments and the results are depicted in Fig-
ure 9(c). It can be observed that, across the four datasets, employing
either LFM or GFM in FCVAE outperforms the VAE model under
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(a) Performance of CVAE using different
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Figure 9: Delay F1 score of different settings.

identical conditions of other settings except for NAB, where the
frequent oscillation of data results in inconsistency between the
information extracted from GFM and the data value of the cur-
rent time. For all datasets, when both LFM and GFM modules are
utilized concurrently, they synergistically enhance each other, re-
sulting in superior performance. Consequently, both global and
local frequency information play a crucial role in detecting
anomalies.

4.6 Attention Mechanism
It is crucial to discern whether the enhancement in LFM stems from
the reduced window size or the attention mechanism. Thus, we per-
form experiments by excluding the attention operation from LFM
while keeping GFM unaltered. Specifically, we utilized frequency
information either from the latest small window in LFM (Latest) or
from the average pooling of frequency information across all small
windows in LFM (Average Pooling).

The findings in Figure 9(d) demonstrate that without attention,
it is impossible to attain the original performance of FCVAE since
it is not feasible to determine the specific weight of each small
window in advance. However, the attention mechanism effec-
tively addresses this issue by assigning higher weights to
more informative windows.

(a) Spectrum of small windows for data
in the black dashed box on the right.

(b) Heatmap of LFM attention in a batch.
The 8-th window is the latest window.

Figure 10: A example of how attention mechanism works in
LFM.

We present a comprehensive explanation of the attention mech-
anism in LFM using a case. A specific data segment, denoted by the
black dashed box in Figure 10(b), is selected and all small windows
produced by LFM’s sliding window module are transformed into
the frequency domain to obtain their spectra. As illustrated in Fig-
ure 10(a), the 5-th (green) and the 8-th (red) windows exhibit the
highest similarity, where the 8-th window serves as the query 𝑄
for our attention. Upon examining Figure 10(b), it can be observed
that the heat value of the 5-th window is the highest, which corre-
sponds with the findings in Figure 10(a). Furthermore, we observe
from Figure 10(b) that the weight changes of LFM attention have a
certain temporal gradient. This is easily understood since adjacent
windows are similar.

4.7 Key Techniques in Framework
In this section, we evaluate the effectiveness of our novel data aug-
mentation technique, masking the last point, and the application
of CM-ELBO on four distinct datasets. The results are presented
in Table 2. Based on the results, it is clear that CM-ELBO plays
the most crucial role in most datasets, which aligns with our ex-
pectations. This is because it can tolerate abnormal or missing
data to a certain extent. Furthermore, masking the last point has
a substantial impact on the results, as when an anomaly occurs
at the last point of the window, it affects the entire frequency in-
formation. Effectively masking this point resolves the issue and
improves the detection accuracy. Data augmentation, on the other
hand, introduces some artificial anomalies to boost the performance
of CM-ELBO, particularly in unsupervised settings.

Table 2: Delay F1 of different settings.

Variants Yahoo KPI WSD NAB

w/o data augment 0.841 0.825 0.626 0.904
w/o mask last point 0.835 0.830 0.534 0.877

w/o CM-ELBO 0.690 0.757 0.435 0.897
FCVAE 0.842 0.835 0.631 0.917

4.8 Parameter Sensitivity
Our architecture incorporates several techniques, each with its own
set of parameters. The stability of a model to different parameters
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Figure 11: Delay F1 score of different settings.

is an important aspect to consider, and therefore we test the sensi-
tivity of our model parameters on two datasets, KPI and WSD. We
examine four aspects: the dimension of the condition, the window
size, the proportion of missing data injection, and the proportion of
data augmentation. The results, shown in Figure 11, indicate that
our model can achieve stable and excellent results under different
parameter settings.

5 PRODUCTION IMPACT AND EFFICIENCY
Our FCVAE approach has been incorporated as a crucial component
in a large-scale cloud system that caters to millions of users globally.
The system generates billions of time series data points on a daily
basis. The FCVAE detects anomalies in the cloud system, with the
primary goal of identifying any potential regressions in the system
that may indicate the occurrence of an incident.

Table 3: Online performance of FCVAE in production com-
pared to legacy detector. F1 represents Best F1, F1∗ represents
Delay F1.

Baseline FCVAE Improvement Inference efficiency
F1 F1∗ F1 F1∗ F1 F1∗ [points/second]

0.66 0.63 0.73 0.69 10.9% 11.1% 1195.7

Table 3 presents the online performance improvement achieved
by employing FCVAE over a period of one year. The experiments
were conducted on a 24GB memory 3090 GPU. The results demon-
strate substantial enhancements in both Best F1 and Delay F1 com-
pared to the legacy detector. This underscores the effectiveness
and robustness of our proposed method. Furthermore, our model is
lightweight and highly efficient, capable of processing over 1000
data points within 1 second. This far exceeds the speed at which
the system generates new temporal points.

6 RELATEDWORK
Traditional statisticalmethods [28, 31, 36, 41, 52] arewidely used
in time series anomaly detection because of their great advantages
in time series data processing. For example, [33] find the high
frequency abnormal part of data through FFT [41] and verify it
twice. Twitter [40] uses STL [6] to detect anomaly points. SPOT
[38] considers that some extreme values are abnormal, therefore,
detects them through Extreme Value Theory [8].

Supervised methods [19, 27, 34] mostly learn the features of
anomalies and identify them through classifiers based on the fea-
tures learned. Opprentice [27] efficiently combines the results of
many detectors through random forest. SRCNN [34] build a classi-
fier through spectral residual [12] and CNN. Some methods [3, 49]
obtain pseudo-labels through data augmentation to enhance the
learning ability.

Unsupervisedmethods are mainly divided into reconstruction-
based and prediction-based methods. Reconstruction-based meth-
ods [5, 17, 23, 25, 46] learn low-dimensional representations and
reconstruct the “normal patterns” of data and detect anomalies ac-
cording to reconstruction error. DONUT [46] proposed themodified
ELBO to enhance the capability of VAE. Buzz [5] is the first to pro-
pose a deep generative model. ACVAE [25] adds active learning and
contrastive learning. Prediction-based methods [15, 55] try to pre-
dict the normal values of metrics based on historical data and detect
anomalies according to the prediction error. LSTM [15] proposes
to use the LSTM model to predict normal values. Informer [55]
changes the relevant mechanism of self attention. In recent years,
transformer-based methods have been widely proposed. Anomaly-
Transformer [47] detect anomalies by comparing Kullback-Leible
(KL) divergence between two distributions. In recent years, some
methods [44, 48, 56] have begun to solve some practical problems
from the frequency domain.Moerover, many transfer learningmeth-
ods have been proposed in recent years [10, 23, 50, 51] since they
are very fast.

7 CONCLUSION
Our paper presents a novel unsupervised method for detecting
anomalies in UTS, termed FCVAE. At the model level, we introduce
the frequency domain information as a condition to work with
CVAE. To capture the frequency information more accurately, we
propose utilizing both GFM and LFM to concurrently capture the
features from global and local frequency domains, and employing
the target attention to more effectively extract the local information.
At the architecture level, we propose several new key technolo-
gies, including CM-ELBO, the augmentation of anomalous data
and masking the last point when extracting the frequency infor-
mation during training. These innovations further improves the
detection accuracy and efficiency. We carry out experiments on
four dataset and an online cloud system to evaluate our approach’s
accuracy, and comprehensive ablation experiments to demonstrate
the effectiveness of each module.
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