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Abstract

Large language models (LLMs) have shown
impressive capabilities on numerous natural
language processing tasks. However, LLMs
still struggle with numerical question answer-
ing for financial documents that include tab-
ular and textual data. Recent works have
showed the effectiveness of critic agents (i.e.,
self-correction) for this task given oracle la-
bels. Building upon this framework, this paper
examines the effectiveness of the traditional
critic agent when oracle labels are not avail-
able, and show, through experiments, that this
critic agent’s performance deteriorates in this
scenario. With this in mind, we present an im-
proved critic agent, along with the calculator
agent which outperforms the previous state-of-
the-art approach (program-of-thought) and is
safer. Furthermore, we investigate how our
agents interact with each other, and how this
interaction affects their performance.

1 Introduction

Tabular and textual data are ubiquitous in many
financial documents. In this paper, we focus on
the numerical reasoning ability of large language
models (LLMs) on financial data that includes tab-
ular and textual data — this is a challenging task
since LLLMs are known to struggle on numerical
reasoning for tabular data (Cao et al., 2023). More
generally, LLMs have a low numerical understand-
ing and processsing ability (Yang et al., 2024; Chen
and Lin, 2024). Therefore, there is a need to im-
prove the numerical reasoning ability of LLM ap-
proaches for tabular and textual data. Recently,
(Fatemi and Hu, 2024) presented a multi-agent
framework which used LLMs for numerical reason-
ing (given tabular and textual data) — at the core of
their approach is the use of the critic agent for crit-
icism. Their approach was shown to significantly
outperform the chain-of-thought (CoT) approach
for various sizes of LLaMA3 models, providing

us with a cost-effective alternative to larger LLMs.
While the initial results look promising, we noticed
that their results seem to disagree with another re-
cent work (Huang et al., 2024), which argued that
intrinsic self-correction, which has prompts that
are similar to those of the critic agent, does not
improve performance — their experiments are com-
prehensive but did not include tabular and textual
reasoning. Furthermore, it is not obvious whether
the results from textual data generalizes to tabu-
lar and textual data since the positional relation
of information in tables is different from text (Sui
et al., 2024). In this paper, we address this gap by
critically examining the effectiveness of the critic
agent and show that it does not outperform the CoT
approach. With this in mind we introduce an im-
proved critic agent and a calculator agent which
helps to boost the performance of LLMs.

Problem setup. Given table(s), text, and a nu-
merical question, the goal is to provide an LLM
approach (without any fine tuning) that is able to
answer the numerical question with high accuracy.

2 Related Work

We first provide a summary on approaches that
have been studied for tabular data alone, and then
provide a summary on approaches that have been
studied for both tabular and textual data.

Tabular data. (Sui et al., 2024) studied the rea-
soning capabilities of LLMs on tabular data and
empirically showed that LLMs have the basic struc-
tural understanding capabilities but are far from
perfect. The potential usefulness of LLMs for tab-
ular data motivated other works to use LLMs as
part of their approach for tabular reasoning. Two
major veins of successful approaches are either to
harness external tools like Python and SQL (Liu
et al., 2023; Zhang et al., 2024a; Abhyankar et al.,
2024), or to decompose the tables before answer-



ing the question (Wang et al., 2024; Ji et al., 2024).
We refer the interested reader to this survey (Zhang
et al., 2024b).

Tabular and textual data. Compared to tabular
data, this area is relatively less explored. TAT-
LLM (Zhu et al., 2024) fine-tuned a smaller LLM
(LLaMA 2) for the purpose of question answering
from tabular and textual data. While promising,
this approach faces challenges related to the high
computational costs and memory requirements as-
sociated with fine-tuning LLMs. Next, we look at
approaches that requires no extra training or fine-
tuning of LLMs:

* Program-of-Thought (PoT). (Chen et al.,
2023; Phogat et al., 2023) This approach in-
volves prompting the LLM directly for an ex-
ecutable Python code. The code is then run to
give the final answer.

¢ Critic. (Fatemi and Hu, 2024) A critic agent
is introduced to refine the previous Chain-of-
Thought (CoT) answer (Wei et al., 2022) from
the LLM. They showed that using oracle la-
bels, which are labels that indicates the cor-
rectness of the CoT answer, to guide the critic
agent (i.e., only using it when the CoT answer
is wrong), their approach is able to outperform
CoT.

* Domain Specific Language (DSL). (Phogat
etal., 2023) Additional LLM prompts are used
extract the calculation(s) from the first CoT
answer of the LLM, and then present the cal-
culations as a DSL program. The program is
then run to produce the final answer.

The previous state-of-the-art approach for finan-
cial document question answering is PoT. However,
the PoT approach is not purely intrinsic unlike the
critic agent (i.e., it relies on external tools). While
PoT is one viable solution to resolve the low nu-
merical processing ability of LLMs, it might be
dangerous to the user/company since it would re-
quire the execution of a generated program by the
LLM (and having an employee verify the generated
program leads to latency in the company’s work-
flow) — e.g., the code import os; os.rmdir()
is dangerous to the company. Therefore, there is
a need for a safer method to improve the LLMs’
numerical processing ability.

Main contributions. In this paper, we build on
the multi-agent framework of (Fatemi and Hu,
2024) to study the effectiveness of the critic agent
for numerical reasoning from tabular and textual
data, and also to introduce the calculator agent. Our
main contributions are as follows:

* We show, through our experiments, that the
critic agent is not able to outperform the CoT
approach when oracle labels are not avail-
able. Our result agrees with the hypothesis
of (Huang et al., 2024) and generalizes it to
the realm of tabular and textual reasoning.

* We adapt the ideas of (Li et al., 2024) to pro-
vide an improved critic agent that outperforms
the previous critic-agent approach when ora-
cle labels are not available.

* We introduce a calculator agent and show that
in most cases, it outperforms the previous
state-of-the-art approach (i.e., PoT) for ques-
tion answering from financial documents. We
also argue that it is a safer approach compared
to PoT.

3 Methodology

In this section, we extend the multi-agent frame-
work of (Fatemi and Hu, 2024), which includes
only the analyst and critic agent, to include the
improved critic agent and the calculator agent — a
potentially useful agent for numerical reasoning.
We describe each agent in detail and explain their
interactions.

3.1 Analyst Agent

The role of the analyst agent is the following: (i)
To provide CoT answer or Python code to solve
the given question — see Figure 1 for a visual il-
lustration. (ii) Acts as an intermediary between
the user and the other agents. Specifically, it pro-
cesses outputs returned from other agents (critic,
improved critic, and calculator) before returning
the final answer to the user — see Figures 2, 3, and
4 for a visual illustration.

3.2 Critic Agent and Improved Critic Agent

The critic agent is used to provide critique on an
answer provided for a given question. A visual
representation is provided in Figure 2. The critic
agent, together with an analyst agent, operates as
follows:



1. One LLM prompt is needed to ask the critic
agent to critique the CoT answer provided.

2. The critique, together with the previous CoT
answer, is then sent back to the analyst agent
via a LLM prompt made by the user.

3. The analyst agent processes the input and re-
turns the final answer to the user.

For this agent, we use the prompts provided in
(Fatemi and Hu, 2024, Figure 5). We also point
out that the steps above are similar to the 3-step
prompting strategy for self-correction introduced
in (Huang et al., 2024) if all the steps use the same
LLM. We show later in our Section 4 that this critic
agent does not outperform the CoT approach. With
this in mind, we introduce an improved critic agent
inspired by (Li et al., 2024) which hypothesized
that for question answering from textual data (but
not tabular and textual data together), the LLM has
the ability to gauge its own confidence — this ability
was capitalized by (Li et al., 2024) to show that
LLM does indeed have the intrinsic ability to self-
correct. The improved critic agent, together with
the analyst agent, operates as follows:

1. One LLM prompt is needed to ask the critic
agent to review the CoT answer provided and
decide whether to maintain or update its an-
SWer.

2. If the critic agent decides to maintain its an-
swer, then we will output that answer as the
final answer.

3. If the critic agent decides to update its answer,
then we will send both answers to the analyst
agent and ask it to check both answers and the
question again, before deciding on the final
answer and producing it as an output.

3.3 Calculator Agent

The calculator agent takes in a CoT answer and
returns the correct answer to all the calculations
present in the CoT answer. A visual representa-
tion is provided in Figure 3. The calculator agent,
together with an analyst agent, operates as follows:

1. One LLM prompt is needed to ask the calcu-
lator agent to extract out all the equations in
the input (i.e., the previous CoT answer). We
do this by few-shot learning, i.e., we give the
LLM a few examples of the desired outcome.

2. Python is then used by the calculator agent
to evaluate the extracted equations correctly.
Our extracted equations only contain numbers,
and the symbols “+7, “-7, “*” “/” “(”, and

“)”

3. The correct calculations are then sent back
in another LLM prompt, together with the
previous CoT answer, to the analyst agent to
get the final answer.

This is similar to the DSL approach of (Phogat
et al., 2023), but unlike their approach, we directly
use Python to evaluate the extracted calculations
without producing a DSL program — our extracted
calculations are syntactically simpler, relying only
on numbers and a few symbols. Furthermore,
(Phogat et al., 2023) used a zero-shot approach to
extract the calculations, whereas we use a few-shot
approach. (Phogat et al., 2023) showed that their
DSL approach does not outperform PoT, whereas
our calculator agent outperforms PoT in most cases
(shown later in Section 4.3).

Regarding step 2, while we have used Python
to evaluate the extracted calculations, we could
always swap it out for some calculator tool that
only performs calculations and nothing else. This
prevents the risk of dangerous code being executed,
which makes our method safer than PoT.

3.4 Interaction between all Agents

We look at how all 3 agents stated previously in-
teract with each other. A visual representation is
provided in Figure 4.

1. The user sends the context (instructions, ta-
ble, and text) and question over to the analyst
agent to receive a CoT answer.

2. The answer is then sent to the critic (or im-
proved critic) agent, and the critic (or im-
proved critic) agent and analyst agent interacts
to produce a refined answer — see Section 3.2
for specific steps of the interaction process.

3. The refined answer is then sent to the calcula-
tor agent, and the calculator agent and analyst
agent interacts to produce a more precise an-
swer — see Section 3.3 for specific steps of the
interaction process.
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Figure 1: Visualization of CoT and coder approach via
the analyst agent.

Critic agent User Analyst agent

Figure 2: Visualization of the critic and analyst agents.

4 Experiments

4.1 Implementation Details

We use a weaker LLM (w-LLM), one of the best
open models with 70B weights, and a stronger
LLM (s-LLM), one of the best close models, with
temperature set to 0 so that we can achieve con-
sistent results'. We point out that different agents
are built by prompting one LLM to carry out dif-
ferent tasks — the same LLM is used for the entire
approach. In other words, although we are mak-
ing multiple calls to the same LLM, we apply the
design abstraction of using multiple agents.

4.2 Dataset and Evaluation Metric

We apply our approach to the following popular
tabular and textual datasets:

e TATQA (Zhu et al., 2021): This dataset is built
from tables and paragraphs extracted from
financial reports. We use the dev dataset since
it has answers to all the questions, along with
the type of question (i.e., numerical or non-
numerical). The dev dataset contains both
numerical and non-numerical questions but
we only require the numerical questions from
the dataset, which is a total of 717 questions.

* FinQA (Chen et al., 2021): This dataset is
built from tables and paragraphs extracted
from financial reports. All questions are nu-
merical, testing numerical reasoning skills in-
cluding addition, subtraction, multiplication,
division, and numerical comparison. We use
the dev set since it contains all the answers

"For our company’s confidentiality purposes, we
anonymize our LLM names
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Figure 3: Visualization of the calculator and analyst
agents.
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Figure 4: Visualization of the critic, calculator, and
analyst agents.

to the questions. There is a total of 883 ques-
tions.

Questions where any of our approaches exceed the
context length are omitted. We denote the true
answer as a and the estimated answer as a. For the
evaluation metric, we use accuracy defined as

100% x ign{a:a}, (1)

where 7 is the total number of questions answered,
and 1{-} is the indicator function where 1{a =
a} = 1if a = a and 0 otherwise. We consider
the estimated answer a to be equivalent to the true
answer a if a and a are exactly the same, or if a can
be rounded to obtain a. For example, if a = 0.98,
then @ = 0.98 and @ = 0.979 are both accepted.

4.3 Main Results

We have two baseline methods: (i) using the analyst
agent to produce a CoT answer, and (ii) using the
analyst agent to produce an executable Python code
(a PoT answer) which can be executed to give us the
final answer. For both TATQA and FinQA dataset,
we experimented with the following approaches:

* “CoT” and “PoT”: This involves either asking
the analyst agent to output the CoT answer
(“CoT”) or Python code (“PoT”) (see Section
3.1 for details). The prompts used can be
found in Appendices A and B.



* “CoT + critic” and “CoT + i-critic”: For “CoT
+ critic”, this involves using the analyst agent
and the critic agent to get the final answer (see
Section 3.2 for details). For “CoT + critic”,
this involves using the analyst agent and the
improved critic agent to get the final answer
(see Section 3.2 for details). The prompts used
for “CoT + critic” can be found in Appendix
C, and the prompts used for “CoT + i-critic”
can be found in Appendix D.

“CoT + cal”: This involves using the analyst
agent and the calculator agent to get the fi-
nal answer (see Section 3.3 for details). The
prompts used can be found in Appendix E.

“CoT + critic + cal”: This involves using the
analyst agent, the critic agent, and the calcula-
tor agent to get the final answer (see Section
3.4 for details). The prompts used can be
found in Appendix F.

Before analyzing our results, we state the previ-
ous result of (Fatemi and Hu, 2024): They showed
that using w-LLM, CoT + critic performed 5.19%
better than CoT for TATQA, and CoT + critic per-
formed 3.83% better than CoT for FinQA.

The accuracy results for TATQA and FinQA are
stated in Table 1. For TATQA, we have the follow-
ing observations:

* For w-LLM, CoT + cal is the best performer.
Interestingly, CoT + critic performs worse
than CoT implying that the critic agent is not
useful — intuitively this can be viewed as the
agent overthinking and we provide an exam-
ple of this in Appendix C where the critic
agent makes a suggestion to change the previ-
ously correct answer from CoT.

* For s-LLM, PoT is the best perform. As ex-
pected, CoT + critic performs worse than CoT
while CoT + i-critic performs beteer than both
CoT +critic and CoT.

For FinQA, we have the following observations:

* For w-LLM, CoT + cal is again the best per-
former. Here, CoT + critic performs slightly
better than CoT implying some usefulness of
the critic agent. Despite the minor usefulness
of the critic agent, CoT + critic + cal does not
outperform CoT + cal.

* For s-LLM, CoT + cal performs the best, and
CoT + i-crtic outperforms CoT + critic. Inter-
estingly, CoT outperforms most of the other
approaches except CoT + cal and CoT + i-
critic + cal.

On average (under the “Combined” column in Ta-
ble 1), CoT + cal performs the best when using
w-LLM and CoT + i-critic + cal performs the best
when using s-LLM. This suggests that the calcula-
tor agent is very useful for numerical tabular and
textual reasoning, while the critic agent is not par-
ticularly useful — we provide an example of the
calculator agent correcting a wrong answer in Ap-
pendix E. Furthermore, on average, CoT + cal out-
performs PoT, which is the previous state-of-the-art
approach for financial document question answer-
ing.

Remark. Despite using the same LLLM model
(s-LLM) and datasets as (Fatemi and Hu, 2024),
our experiment results differ significantly. This is
because when comparing CoT + critic with CoT,
(Fatemi and Hu, 2024) only ran CoT + critic on the
questions that CoT got wrong (this is stated in the
last paragraph of Section 4.1 in their paper) — their
approach has access to oracle labels, which helps
in deciding whether to use the critic agent. This
is different from the way we evaluate the different
approaches, where we run every single approach on
the entire dataset. This implies that our experiments
account for the potential cases of the critic agent
changing a previously correct, whereas the work of
(Fatemi and Hu, 2024) does not.

Analysis of the critic agent. We investigate the
tendency of the critic agent to switch its answer.
The results are displayed in Figure 5. For both
datasets and LLMs, the proportion of answers that
were changed from correct to wrong, and the pro-
portion of answers that were changed from wrong
to correct are roughly the same. This implies that
the critic agent does not have a clear ability to im-
prove the answer.

Analysis of the improved critic agent. We inves-
tigate how the improved critic agent performs given
its confidence level. Our statistics for TATQA are
presented in Table 2, and our statistics for FinQA
are presented in Table 3. For TATQA, the rate of
confident is around the same for both w-LLM and
s-LLM. For FinQA, s-LLM tends to be more confi-
dent in its answers compared to w-LLM. The rate
of confident for both models in FinQA is lower



Approach TATQA FinQA Combined
w-LLM s-LLM w-LLM s-LLM w-LLM s-LLM
CoT 72.8% 844%  63.8% T4.0% 683%  79.2%
PoT 812%  92.1% 702% 71.6% 757%  81.9%
CoT+critic 713% 843% 64.1% 724% 67.7%  78.4%
CoT+i-critic 728%  858%  654% 127%  69.1%  79.3%
CoT+cal 83.4% 902% T720% 75.0% T77.7%  82.6%
CoT+critic+cal ~ 79.7%  84.0% 67.6% 71.3%  73.7%  77.7%
CoT+i-critic+cal 81.3% 91.1% 702%  743% 758%  82.7%

Table 1: Accuracy of different approaches for TATQA and FinQA. The best result for each column is highlighted in
blue and the second best is highlighted in green. The combined accuracy is obtained by taking the average over the
two datasets — the best result for both LLMs involve the calculator agent.

w-LLM s-LLM

Rate(corr|conf) 759%  87.0%
Rate(—corr|conf)  24.1%  13.0%
Rate(corr|—conf)  41.9%  72.2%
Rate(—corr|—conf)  58.1%  27.8%
Rate(conf) 90.9%  91.8%

Table 2: Confidence rates for TATQA where
Rate(corr|conf) means rate of correct answer given that
the LLM is confident.

w-LLM s-LLM

Rate(corr|conf) 69.8%  75.0%
Rate(—corr|conf)  302%  25.0%
Rate(corr|—conf)  37.9%  54.5%
Rate(—corr|—conf)  62.1%  45.5%
Rate(conf) 77.5%  88.9%

Table 3: Confidence rates for FinQA.

compared to TATQA implying that FinQA is the
more challenging dataset. For both datasets, the
rate of correct given confident is greater than the
rate of incorrect given confident, implying LLM
has some accurate sense of its confidence. As ex-
pected, s-LLM, the stronger model, has a higher
rate of gettting correct when it is confident.

5 Integer vs. Float Answers

Here we look at how our approaches differ in per-
formance for questions with integer answer versus
questions with float answer. The results are shown
in Tables 4 and 5. The key observations are as
follows:

* For TATQA, with w-LLM, CoT + cal per-
forms the best for integer answers and PoT
performs the best for float answers. With s-
LLM, CoT + i-critic performs the best for

6,08% \'/ 438%  470% " 5,14%

w-LLM w-LLM
= Correct to Wrong
2,90% ® Wrong to Correct 3,46%
1,88%
3,05% No Change
s-LLM s-LLM
TATQA FinQA

Figure 5: Analysis of the changes in the correctness of
answers by the critic agent. Pie charts on the left are for
TATQA and pie charts on the right are for FinQA.

integer answers and PoT performs the best for
float answers.

* For FinQA, with w-LLM, CoT + cal performs
the best for integer answers and float answers.
With s-LLM, CoT + i-critic + cal performs
the best for integer answers and CoT + cal
performs the best for float answers.

The results justify the importance of the improved
critic agent for questions with integer answers.

6 Conclusion

We provide empirical validation that the traditional
critic agent does not outperform CoT when oracle
labels are not available. With improvement in mind,
we present an improved critic agent and a calculator
agent, and show empirically that they can improve
the LLLM’s ability in financial question answering
safely.



Approach w-LLM s-LLM
int float int float

CoT 86.9% 61.2% 91.5% 78.6%
PoT 82 7% T9.9% 92.5% 91.7%
CoT + critic 853% 599% 91.2% 78.6%
CoT + i-critic 86.3% 61.8% 942% 78.9%
CoT + cal 879% 79.7% 93.2% 87.8%
CoT +critic+cal 83.0% 77.0% 86.4% 81.9%
CoT +i-critic+cal 859% 77.5% 932% 89.4%

Table 4: Accuracy of the approaches for the integer-answer questions and the float-answer questions of TATQA.

Approach w-LLM s-LLM
int float int float

CoT 75.1% 559% 79.8% 69.7%
PoT 759% 662% 75.1% 68.9%
CoT + critic 724% 583% 785% 67.9%
CoT + i-critic 75.5% 583% 78.8% 68.2%
CoT + cal 782% 67.6% 79.5% 71.7%
CoT +critic+cal  75.1% 624% 74.1% 69.2%
CoT +i-critic+cal 76.3% 659% 80.1% 69.9%

Table 5: Accuracy of the approaches for the integer-answer questions and the float-answer questions of FinQA.

7 Limitations

In this work, we considered two large language
models w-LLM and s-LLM — a weaker LLM and a
stronger LLM. It is important for us to choose the
same model (i.e., w-LLM) that was used in the pre-
vious work (Fatemi and Hu, 2024) which showed
the superiority of the critic agent. We acknowledge
that we did not exhaustively evaluate a large selec-
tion of large language models, but believe that our
choices should be sufficient.

Regarding the choice of dataset, we acknowl-
edge that both our datasets comes from the financial
domain, which is the scope of this paper. While the
domain scope of our dataset might be slightly nar-
row, we believe that our conclusions should apply
to other types of dataset since our key focus was on
the ability of our approaches to answer numerical
questions with regards to tabular and textual data;
our agents do not leverage on any aspects of the
financial domain (e.g., we did not use a financial
expert agent, or exploit any financial knowledge in
our framework).
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A Prompt for CoT
We provide the prompt used for the CoT approach.

"Calculate the change in Other assets: $18,111 - $9,521 =
<5  $8,590"

1,

"answer”: "$8,590"

Read the following texts and table carefully. Present your answer in
< the following JSON format:
{
"steps”: ["show the calculation steps”],
"answer”: "final numerical answer”
}
#HHE Text
{text}
### Table
{table}

### Question
{question}

B Prompt for PoT

We provide the prompt used for the coder approach.

Do not answer the question. Instead, your task is to write some python
< code that answers the question when it is executed.
Present your python code in the following format:

"python code here”
H##HE Text

{text}

### Table

{table}

### Question
{question}

C Example of Critic Agent Overthinking

We present one example of the critic agent over-
thinking from the TATQA dataset. The user’s
prompt are coloured in red, and the LLM’s output
are coloured in black. In the following example,
the correct answer is $8590 which tallies with the
CoT answer. However, the critic agent found fault
with the CoT answer and presented a new answer
which is wrong.

Read the following texts and table carefully. Present your answer in
<~ the following JSON format:

{
"steps”: ["show the calculation steps”],
"answer": "final numerical answer”

}

### Text

Other assets consist of the following (in thousands):

(1) In the first quarter of fiscal 2019, we invested 3.0 million Euro
<> ($3.4 million) in 3D-Micromac AG, a private company in Germany. The
< investment is included in other assets and is being carried on a
< cost basis and will be adjusted for impairment if we determine that
< indicators of impairment exist at any point in time.

### Table

| | Fiscal year-end | |

| | 2019 | 2018 |

| Assets related to deferred compensation arrangements (see Note 13) |
— $35,842 | $37,370 |

| Deferred tax assets (see Note 16) | 87,011 | 64,858 |

| Other assets(1) | 18,111 | 9,521 |

| Total other assets | $140,964 | $111,749 |

### Question
What was the change in Other assets in 2019 from 2018?

Here is the answer in the requested JSON format:

{
"steps”: [
"Get the value of Other assets in 2019 from the table: $18,111",

"Get the value of Other assets in 2018 from the table: $9,521",

Review a given context, question, and the response given by an agent.
< Then, you must reflect on the analysis and provide a detailed

< critique. Do not round numerical answers.

### Context and Question

### Text

Other assets consist of the following (in thousands):

(1) In the first quarter of fiscal 2019, we invested 3.0 million Euro
<~ ($3.4 million) in 3D-Micromac AG, a private company in Germany. The
< investment is included in other assets and is being carried on a
< cost basis and will be adjusted for impairment if we determine that
< indicators of impairment exist at any point in time.

##H# Table

| | Fiscal year-end | |

|| 2019 | 2018 |

| Assets related to deferred compensation arrangements (see Note 13) |
< $35,842 | $37,370 |

| Deferred tax assets (see Note 16) | 87,011 | 64,858 |

| Other assets(1) | 18,111 | 9,521 |

| Total other assets | $140,964 | $111,749 |

#i# Question

What was the change in Other assets in 2019 from 2018?
### Response

Here is the answer in the requested JSON format:

{
"steps”: [
"Get the value of Other assets in 2019 from the table: $18,111",
"Get the value of Other assets in 2018 from the table: $9,521",
"Calculate the change in Other assets: $18,111 - $9,521 =
<  $8,590"
1,
"answer”: "$8,590"
}

Here's my critique of the response:

**%Accuracy:** The response is partially accurate. The calculation of
< the change in Other assets is correct, but the values used are
< incorrect.

**Error Analysis:** The mistake lies in the values used for Other

<~ assets in 2019 and 2018. The correct values should be $18,111 (not
<~ just the value of "Other assets(1)" which is $3.4 million) and

—> $9,521, respectively. The correct calculation should be:

$140,964 (Total other assets in 2019) - $111,749 (Total other assets in
< 2018) = $29,215

*xImprovement Suggestions:#*x

1. Read the table carefully: The agent should have noticed that the
<> "Other assets” column is a total of three components, and not just
<~ the value of "Other assets(1)".

Understand the question: The question asks for the change in "Other
< assets”, not just the change in "Other assets(1)".

. Perform the correct calculation: The agent should have calculated
< the change in Total other assets, not just the change in one

< component of Other assets.

N

w

**Revised Response:**

{
"steps”: [
"Get the value of Total other assets in 2019 from the table:
s $140,964",
"Get the value of Total other assets in 2018 from the table:
s $111,749",
"Calculate the change in Total other assets: $140,964 -
—  $111,749 = $29,215"
1,
"answer”: "$29,215"
}

Given the following critique for a response given by an agent, output
< your answer to the question below in the following JSON format and
< nothing else:

{
"steps”: ["show the calculation steps and equations (if there are
— any)"],
"answer”: "final numerical answer”

}

### Context and Question

#HE Text

Other assets consist of the following (in thousands):

(1) In the first quarter of fiscal 2019, we invested 3.0 million Euro
< ($3.4 million) in 3D-Micromac AG, a private company in Germany. The
< investment is included in other assets and is being carried on a
< cost basis and will be adjusted for impairment if we determine that
[N

indicators of impairment exist at any point in time.



##H Table

| | Fiscal year-end | |

| | 2019 | 2018 |

| Assets related to deferred compensation arrangements (see Note 13) |
< $35,842 | $37,370 |

| Deferred tax assets (see Note 16) | 87,011
| Other assets(1) | 18,111 | 9,521 |

| Total other assets | $140,964 | $111,749 |

| 64,858 |

### Question

What was the change in Other assets in 2019 from 2018?
### Response

Here is the answer in the requested JSON format:

{
"steps”: [
"Get the value of Other assets in 2019 from the table: $18,111",
"Get the value of Other assets in 2018 from the table: $9,521",
"Calculate the change in Other assets: $18,111 - $9,521 =
<  $8,590"
"answer”: "$8,590"
}

### Critique
Here's my critique of the response:

**Accuracy:** The response is partially accurate. The calculation of
< the change in Other assets is correct, but the values used are
< incorrect.

**Error Analysis:x* The mistake lies in the values used for Other

< assets in 2019 and 2018. The correct values should be $18,111 (not
<~ just the value of "Other assets(1)" which is $3.4 million) and

— $9,521, respectively. The correct calculation should be:

$140,964 (Total other assets in 2019) - $111,749 (Total other assets in
— 2018) = $29,215

*xImprovement Suggestions:*x*

Read the table carefully: The agent should have noticed that the
"Other assets” column is a total of three components, and not just
the value of "Other assets(1)".

Understand the question: The question asks for the change in "Other
assets”, not just the change in "Other assets(1)".

—
—

N}

1.
—

3. Perform the correct calculation: The agent should have calculated
< the change in Total other assets, not just the change in one
< component of Other assets.

**Revised Response:**

{
"steps”: [
"Get the value of Total other assets in 2019 from the table:
s $140,964",
"Get the value of Total other assets in 2018 from the table:
s $111,749",
"Calculate the change in Total other assets: $140,964 -
s $111,749 = $29,215"
1,
"answer”: "$29,215"
}
{
"steps”: [
"Get the value of Total other assets in 2019 from the table:
<> $140,964",
"Get the value of Total other assets in 2018 from the table:
< $111,749",
"Calculate the change in Total other assets: $140,964 -
< $111,749 = $29,215"
"answer”: "$29,215"
}

D Prompt for Improved Critic Agent

We provide the prompts used for the CoT + i-critic
approach. The user’s prompts are colored in red,
and the LLM’s outputs are colored in black.

Read the following texts and table carefully. Present your answer in
< the following JSON format:
{

"steps”: ["show the calculation steps”],

"answer": "final numerical answer”

H#HHE Text
{text}

#i## Table
{table}

### Question
{question}

10

{CoT output}

Review your previous answer to the question below using the texts and
<~ table. If you are very confident about your answer, maintain your
< answer. Otherwise, update your answer. Present your final answer in
<~ the following JSON format:
{
"steps”: ["show the calculation steps”],
"answer"”: "final numerical answer”
3
##H Text
{text}
##H# Table
{table}
### Question
{question}
#i## Previous answer
{CoT output}

‘ {i-critic agent output} ‘

At this stage, if the i-critic agent is confident
of its output and wants to maintain the previous
CoT answer, we will output that answer as the fi-
nal answer. However, if the critic agent decides to
update its answer, then we will send both answers
to the analyst agent and ask it to check both an-
swers and the question again, before deciding on
the final answer and producing it as an output — the
corresponding prompts are presented below.

You gave two different answers in previous responses. Check the
< question and your answers again, and give the best answer. Present
< your final answer in the following JSON format:
i
"steps”: ["show the calculation steps"],
"answer”: "final numerical answer”
13

### First previous answer
{CoT output}

### Second previous answer
{i-critic agent output}

‘ {analyst agent output} ‘

E Success Example of CoT + Cal

We provide an example of the prompts that are
used. The user’s prompt are coloured in red, and the
LLM’s output are coloured in black. The following
example shows how the calculator agent can help
correct the CoT answer.

Read the following texts and table carefully. Present your answer in
< the following JSON format:

{
"steps”: ["show the calculation steps”],
"answer"”: "final numerical answer”

3}

#i#H# Text

Refranchisings and franchisee development — The following table

< summarizes the number of restaurants sold to franchisees, the

< number of restaurants developed by franchisees, and gains

<~ recognized in each fiscal year (dollars in thousands):

(1) Amounts in 2019, 2018, and 2017 include additional proceeds of $1.3
< million, $1.4 million, and $0.2 million related to the extension of
< the underlying franchise and lease agreements from the sale of

< restaurants in prior years.

(2) Charges are for operating restaurant leases with lease commitments
< in excess of our sublease rental income.

(3) Amounts in 2018 primarily represent $9.2 million of costs related

to franchise remodel incentives, $8.7 million reduction of gains
related to the modification of certain 2017 refranchising
transactions, $2.3 million of maintenance and repair expenses and
$3.7 million of other miscellaneous non-capital charges. Amounts in
2017 represent impairment of $4.6 million and equipment write-offs
of $1.4 million related to restaurants closed in connection with
the sale of the related markets, maintenance and repair charges,
and other miscellaneous non-capital charges.

PEELLLLY




Franchise acquisitions — In 2019 and 2018 we did not acquire any
franchise restaurants. In 2017 we acquired 50 franchise
restaurants. Of the 50 restaurants acquired, we took over 31
restaurants as a result of an agreement with an underperforming
franchisee who was in violation of franchise and lease agreements
with the Company. Under this agreement, the franchisee voluntarily
agreed to turn over the restaurants. The acquisition of the
additional 19 restaurants in 2017 was the result of a legal action
filed in September 2013 against a franchisee, from which legal
action we obtained a judgment in January 2017 granting us
possession of the restaurants. Of the 50 restaurants acquired in
2017, we closed eight and sold 42 to franchisees.
### Table

| 2019 | 2018 | 2017 |

Restaurants sold to franchisees | — | 135 | 178 |
New restaurants opened by franchisees | 19 | 11 | 18 |

Proceeds from the sale of company-operated restaurants: | | | |
Cash (1) | $1,280 | $26,486 | $99,591 |
Notes receivable | — | 70,461 | — |

| $1,280 | $96,947 | $99,591 |

[
Net assets sold (primarily property and equipment)
< $(30,597) |

| Lease commitment charges (2) | — | — | (11,737) |
| Goodwill related to the sale of company-operated restaurants | (2) |
— (4,663) | (10,062) |

| Other (3) | 88 | (24,791) | (9,161) |

| Gains on the sale of company-operated restaurants | $1,366 | $46,164
s | $38,034 |

### Question

What is the percentage constitution of cash in the total gains on the

PEETELLTELL

| $= | $(21,329) |

< sale of company-operated restaurants in 2019?
{
"steps”: [
"Get the total gains on the sale of company-operated
< restaurants in 2019 from the table: $1,366",
"Get the cash proceeds from the sale of company-operated
< restaurants in 2019 from the table: $1,280",
"Calculate the percentage of cash in the total gains: ($1,280 /
< $1,366) * 100%"
1,
"answer": "93.2%"
}

Given the following list of steps, filter out all the equations and
< list them out in JSON format below.

Use only numbers without commas (decimal points are allowed), and the
<~ symbols "+", AN G N

The answer must only include the JSON format and nothing else.

### Example

### List of steps

['The number of schemes is not provided in the context. Therefore, we
< cannot calculate the average defined contribution schemes. ']

### Answer

{

"answer”: []

}

### Example

### List of steps

['First, we need to find the difference between EBITDA and underlying

-, F

< EBITDA for each year.', 'EBITDA (FY19) = 79,046, underlying EBITDA
<~ (FY19) = 85,123, so the difference (FY19) = 85,123 - 79,046 = 6,077
< thousand.', 'EBITDA (FY18) = 63,954, underlying EBITDA (FY18) =
— 62,575, so the difference (FY18) = 63,954 - 62,575 = 1,379

< thousand.', 'Next, we need to find the average of these

— differences:', 'Average difference = (6,077 + 1,379) / 2 = 7,456 /
< 2 = 3,728 thousand dollars.']

##H# Answer

{

"answer”: ["85123-79046=6077", "63954-62575=1379",

— "(6077+1379)/2=7456/2=3728"]

}

### Example

### List of steps

['Percentage change = (183,191 - 7,081) / 7,081 * 100 = 2,493.634%",
— 'Alternatively, we can do ($176,110 + $7,081) x 100"]1']

##H# Answer

{

"answer"”: ["(183191-7081)/7081%100=2493.634", "(176110/7081)%100"]
}

### List of steps

{
"steps”: [
"Get the total gains on the sale of company-operated
< restaurants in 2019 from the table: $1,366",
"Get the cash proceeds from the sale of company-operated
< restaurants in 2019 from the table: $1,280",
"Calculate the percentage of cash in the total gains: ($1,280 /
<5 $1,366) * 100%"
1,
"answer”: "93.2%"
}
#i#H# Answer

"answer”: ["(1280/1366)%100"]
}
Given the following list of correct calculations for a response given
<> by an agent, improve on the response and output it in the following
< JSON format:
{
"steps”: ["show the calculation steps and equations (if there are
— any)"],
"answer”: "final numerical answer”
}
### Response
{
"steps”: [
"Get the total gains on the sale of company-operated
<~ restaurants in 2019 from the table: $1,366",
"Get the cash proceeds from the sale of company-operated
<> restaurants in 2019 from the table: $1,280",
"Calculate the percentage of cash in the total gains: ($1,280 /
<> $1,366) * 100%"
1,
"answer": "93.2%"
}
{
"correct calculations”: "['(1280/1366)*100=93.70424597364568"']"
i

Here is the improved response in the requested JSON format:

{
"steps”: [
"To find the percentage, divide the numerator (1280) by the
< denominator (1366) and multiply by 100.",
"The calculation is: (1280 + 1366) x 100"
]

"answer"”: "93.70%"

F Prompt for CoT + Critic + Cal

We provide the prompts used for the CoT + critic
+ cal approach. The user’s prompts are colored in
red, and the LLM’s output are colored in black.

Read the following texts and table carefully. Present your answer in
< the following JSON format.
Keep numbers in your answer of the same scale as those in the table.
For example, do not change 1,000 thousands to 1,000,000 in your answer.
{
"steps”: ["show the calculation steps and equations (if there are
— any)"1,
"answer"”: "final numerical answer”
}
#i## Text
{text}
#it# Table
{table}

### Question
{question}

{CoT output}

Review a given context, question, and the response given by an agent.
< Then, you must reflect on the analysis and provide a detailed

< critique. Do not round numerical answers.

### Context and Question

H#HHE Text

{text}

### Table

{table}

### Question
{question}

### Response
{CoT output}

{critic agent output}
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Given the following critique for a response given by an agent, output
< your answer to the question below in the following JSON format and
< nothing else:

"steps”: ["show the calculation steps and equations (if there are
— any)"],
"answer": "final numerical answer”

}

### Context and Question

#HHE Text

{text}

#i#t# Table

{table}

### Question
{question}

### Response

{CoT output}

### Critique

{critic agent output}

{analyst agent output}

Given the following list of steps, filter out all the equations and
< list them out in JSON format below.

Use only numbers without commas (decimal points are allowed), and the
< symbols "#", "=ttt on(r, Myt

The answer must only include the JSON format and nothing else.

### Example

### List of steps

['The number of schemes is not provided in the context. Therefore, we
< cannot calculate the average defined contribution schemes. ']

### Answer

{

"answer”: []

### Example

### List of steps

['First, we need to find the difference between EBITDA and underlying
EBITDA for each year.', 'EBITDA (FY19) = 79,046, underlying EBITDA
(FY19) = 85,123, so the difference (FY19) = 85,123 - 79,046 = 6,077
thousand.', 'EBITDA (FY18) = 63,954, underlying EBITDA (FY18) =
62,575, so the difference (FY18) = 63,954 - 62,575 = 1,379
thousand.', 'Next, we need to find the average of these
differences:', 'Average difference = (6,077 + 1,379) / 2 = 7,456 /
2 = 3,728 thousand dollars.']

##H# Answer

{

"answer": ["85123-79046=6077", "63954-62575=1379",

— "(6077+1379)/2=7456/2=3728"]

3

##H# Example

#HF List of steps

['Percentage change = (183,191 - 7,081) / 7,081 * 100 = 2,493.634%",
<> 'Alternatively, we can do ($176,110 + $7,081) x 100"]']

### Answer

{

"answer": ["(183191-7081)/7081x100=2493.634", "(176110/7081)%100"]

}

)

### List of steps
{analyst agent output}
### Answer

{calculator agent output}

Given the following list of correct calculations for a response given
< by an agent, improve on the response and output it in the following
< JSON format:

{
"steps”: ["show the calculation steps and equations (if there are
— any)"],
"answer": "final numerical answer”

3

### Response

{analyst agent output}

{

"correct calculations”: "{calculator agent output}”

}

{analyst agent output}

G Prompt for CoT + I-critic + Cal

We provide the prompts used for the CoT + i-critic
+ cal approach. The user’s prompts are colored in
red, and the LLM’s outputs are colored in black.
We first run the prompts in Appendix D to get the
output which we call “{CoT + i-critic output}”.
Afterwards, we have the following prompts:

Given the following list of steps, filter out all the equations and
< list them out in JSON format below.

Use only numbers without commas (decimal points are allowed), and the
< symbols "+", "-", kM on/Mon(M, MY

The answer must only include the JSON format and nothing else.

### Example

### List of steps

['The number of schemes is not provided in the context. Therefore, we
< cannot calculate the average defined contribution schemes. ']

### Answer

{

"answer”: []

3

### Example

### List of steps

['First, we need to find the difference between EBITDA and underlying
EBITDA for each year.', 'EBITDA (FY19) = 79,046, underlying EBITDA
(FY19) = 85,123, so the difference (FY19) = 85,123 - 79,046 = 6,077
thousand. ', 'EBITDA (FY18) = 63,954, underlying EBITDA (FY18) =
62,575, so the difference (FY18) = 63,954 - 62,575 = 1,379
thousand.', 'Next, we need to find the average of these
differences:', 'Average difference = (6,077 + 1,379) / 2 = 7,456 /
2 = 3,728 thousand dollars."']

##H# Answer

{

"answer": ["85123-79046=6077", "63954-62575=1379",

—  "(6077+1379)/2=7456/2=3728"]

}

##H# Example

##H# List of steps

['Percentage change = (183,191 - 7,081) / 7,081 * 100 = 2,493.634%"',
<~ 'Alternatively, we can do ($176,110 + $7,081) x 100"]']

### Answer

{

"answer”: ["(183191-7081)/7081%100=2493.634", "(176110/7081)x100"]

}

PEELLLL

#i## List of steps
{CoT + i-critic output}
#iH# Answer

{calculator agent output}

Given the following list of correct calculations for a response given
< by an agent, improve on the response and output it in the following
< JSON format:

{
"steps”: ["show the calculation steps and equations (if there are
— any)"],
"answer"”: "final numerical answer”

}

### Response

{CoT + i-criitic output}

{

"correct calculations”: "{calculator agent output}”

}

‘ {analyst agent output}
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