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Abstract

We consider stochastic graphical bandits, where af-
ter pulling an arm, the decision maker observes re-
wards of not only the chosen arm but also its neigh-
bors in a feedback graph. Most of existing work
assumes that the rewards are drawn from bounded
or at least sub-Gaussian distributions, which how-
ever may be violated in many practical scenarios
such as social advertising and financial markets.
To settle this issue, we investigate stochastic graph-
ical bandits with heavy-tailed rewards, where the
distributions have finite moments of order 1 + ε,
for some ε ∈ (0, 1]. Firstly, we develop one UCB-
type algorithm, whose expected regret is upper
bounded by a sum of gap-based quantities over the
clique covering of the feedback graph. The key
idea is to estimate the reward means of the selected
arm’s neighbors by more refined robust estimators,
and to construct a graph-based upper confidence
bound for selecting candidates. Secondly, we de-
sign another elimination-based strategy and im-
prove the regret bound to a gap-based sum with
size controlled by the independence number of the
feedback graph. For benign graphs, the indepen-
dence number could be smaller than the size of the
clique covering, resulting in tighter regret bounds.
Finally, we conduct experiments on synthetic data
to demonstrate the effectiveness of our methods.

1 INTRODUCTION

As one of the most classical problem in online sequential
decision-making, Multi-Armed Bandits (MAB) has been
successfully applied to various real-world scenes such as
medical trials [Villar et al., 2015, Gutiérrez et al., 2017],
news recommendation [Li et al., 2010], online advertising
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[Chen et al., 2013, Xu et al., 2013, Schwartz et al., 2017],
resource allocations [Lattimore et al., 2014], and online
routing [Kveton et al., 2015]. In its original stochastic form
[Robbins, 1952], at each round t, a player has to select an
arm i from K available candidates and receives a reward
generated independently from an unknown but fixed distri-
bution. The player’s goal is to minimize the regret over T
steps of the game, namely the difference between the cumu-
lative rewards of the chosen arms and that of the optimal
arm in hindsight. In order to achieve this goal, the player
needs to overcome the dilemma of exploration (learning
new information about all arms) and exploitation (selecting
the optimal arm based on available information). In the sem-
inal work, Lai and Robbins [1985] establish an Ω(K log T )
asymptotic regret lower bound and propose UCB policy that
attains this lower bound asymptotically. In the past decades,
plentiful algorithms and theoretical results for bandits have
been well developed [Bubeck and Cesa-Bianchi, 2012, Lat-
timore and Szepesvári, 2020].

However, one limitation of the stochastic MAB is that the
regret bound scales linearly with K, and thus may become
vacuous when the arm set gets very large. To address this
limitation, Mannor and Shamir [2011] introduce an impor-
tant variant of MAB termed Graphical Bandits (GB). In this
scene, there exists an undirected feedback graph with node
set consisting of K arms and edge set revealing the relation-
ship between arms. After pulling an arm, the decision maker
will observe the rewards from not only the chosen arm but
also its neighbors in the graph. Later, Caron et al. [2012]
consider the stochastic version of GB. They present UCB-
based algorithms for stochastic GB with bounded rewards
and provide regret bounds depending on the clique cover-
ing of the feedback graph, whose size can be much smaller
than K for benign graphs. For stochastic GB with bounded
rewards, Caron et al. [2012] proposed a lower bound of
Ω(log T ). However, no lower bounds have been proposed
for stochastic GB under the sub-Gaussian setting [Marinov
et al., 2022b].

While the stochastic GB has been extensively studied in
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the literature [Buccapatnam et al., 2014, 2017, Cohen et al.,
2016, Tossou et al., 2017, Liu et al., 2018a,b, Hu et al., 2019,
Lykouris et al., 2020, Marinov et al., 2022a], most previ-
ous studies assume that the rewards are drawn from either
bounded or at least sub-Gaussian distributions. Since the
sub-Gaussian random variables possess the characteristic
of exponentially decaying tails, we can use the empirical
mean to estimate the reward means of each arm, and guaran-
tee exponential deviations by the standard concentration of
measure techniques [Hoeffding, 1963]. However, there do
exist practical scenarios which do not behave sub-Gaussian
but can be modeled by the heavy-tailed distributions [Foss
et al., 2011], such as frequent price fluctuations for financial
markets [Rachev, 2003], preferential attachment in social
networks [Mahanti et al., 2013] and unevenly distributed
clicks of slogans in social advertising [Park et al., 2013].
Unfortunately, as heavy-tailed rewards no longer enjoy ex-
ponentially decaying tails, the empirical mean estimator can
only provide polynomial concentration properties [Catoni,
2012], making it much harder to estimate the reward means
of each arm.

In this study, we investigate stochastic GB with heavy-tailed
rewards, where the reward distributions are assumed to have
bounded (1+ε)-th moments for some ε ∈ (0, 1]. We present
two novel algorithms for this setting based on more re-
fined robust estimators. Firstly, we design one UCB-type
algorithm named RUNE, whose expected regret is upper
bounded by a sum of gap-based quantities over the clique
covering of the feedback graph. The key idea is to estimate
the reward means of the selected arm’s neighbors by trun-
cated empirical mean or median of means, and to construct
a graph-based upper confidence bound for selecting can-
didates. Secondly, we propose another elimination-based
algorithm termed RAAE and provide a regret bound by a
gap-based sum whose size is controlled by the independence
number of the feedback graph. For benign graphs, the in-
dependence number could be smaller than the size of the
clique covering, resulting in tighter regret bounds. To the
best of our knowledge, we provide the first regret bounds
for stochastic GB with heavy-tailed rewards. Please refer to
Table 1 for a comparison between our results and the previ-
ous results in stochastic graphical bandits. The contributions
of this work are summarized as follows:

• We propose one novel UCB-type algorithm for
stochastic GB with heavy-tailed rewards, named
RUNE. Our algorithm obtains a gap-based logarith-
mic regret bound of O(

∑
C∈C

v1/ε∆max
C log(NCT )

(∆min
C )(1+ε)/ε

+∑
C∈C ∆max

C ), where C is a clique cover of G, NC
is a quantity related to clique C ∈ C, ∆max

C is the
maximum reward gap of C, and ∆min

C is the minimum
nonzero reward gap of C.

• To further improve the regret bound, we design an-
other elimination-based algorithm termed RAAE and
provide a gap-based logarithmic regret bound of

O(
∑
i∈S

v1/ε log T

∆
1/ε
i

+ ∆max log T ), where ∆max is the

maximum suboptimal reward gap, S is a subset of the
first α suboptimal arms with the ties broken arbitrarily
and α is the independence number of G. This regret
bound is a substantial improvement over RUNE since
the independence number is smaller than the size of
clique covering for benign graphs.

• To demonstrate the effectiveness of our methods, we
present synthetic experiments for comparing RUNE
and RAAE with previous algorithms. The empirical
results support our theoretical results.

2 PRELIMINARIES AND RELATED
WORK

In this section, we first provide a formal description of
our problem setup, and then review related work about
stochastic bandits, including stochastic graphical bandits
and stochastic bandits with heavy-tailed rewards.

2.1 PROBLEM SETUP AND DEFINITIONS

We consider stochastic GB with a fixed undirected feedback
graph G = (V,E), where V = {1, 2, · · · ,K} denotes the
arm set, and E ⊆ V × V reveals the relationship between
arms. An edge (i, j) ∈ E means that when the arm i (or j) is
pulled at round t, the player will receive a reward from i and
also observe the reward of j. For each arm i ∈ V , we assume
that the reward Xi,t at round t is sampled independently
from an unknown but fixed distribution Pi with mean µi
and bounded (1 + ε)-th moments, i.e., EX∼Pi [|X|1+ε] ≤ v
or EX∼Pi [|X − µi|1+ε] ≤ v.

The player’s goal is to minimize the (pseudo) expected regret
over T steps of the game, which is defined as

E[RT ] = Tµ? −
T∑
t=1

µIt =
∑
i∈V

∆iE[Ti(T )] , (1)

where µ? = maxi∈V µi, It is the arm chosen by the player
at round t, ∆i := µ? − µi denotes the reward gap of arm
i relative to the optimal arm, and Ti(T ) =

∑T
t=1 I{It=i}

refers to the number of pulls for arm i up to time T .

Note that the player in MAB can only observe the rewards
from the selected arm It at round t, whereas in GB, the
rewards from its neighbors can be also observed. In other
words, the main difference between GB and MAB lies in
the fact that the number of observations made for arm i until
round T is no longer Ti(T ) in (1) but

Oi(T ) =

T∑
t=1

I{It∈N(i)} , (2)

where N(i) denotes the set consisting of arm i and its adja-
cent nodes in G. By the definitions, it can be verified that



Table 1: Comparison between different algorithms for stochastic graphical bandits. T is the number of rounds, K is the
number of arms, ∆i is the reward gap of arm i, v is an upper bound of the (1 + ε)-th moments, δ is the maximum degree in
the feedback graph G, C is a clique cover of G, NC is a quantity related to clique C ∈ C, ∆max

C is the maximum reward gap
of C, ∆min

C is the minimum nonzero reward gap of C, ∆max is the maximum suboptimal reward gap, S is a subset of the
first α suboptimal arms with the ties broken arbitrarily and α is the independence number of G.

Algorithm Regret (bounded in [0, 1]) Regret (bounded (1 + ε)-th raw moments) Regret (bounded (1 + ε)-th central moments)

UCB-N
[Caron et al., 2012]

O(
∑
C∈C

∆max
C log T

(∆min
C )2

+K) \ \

UCB-NE
[Hu et al., 2019]

O(
∑
C∈C

∆max
C log(NCT )

(∆min
C )2

+ |C|) \ \

UCB-LP
[Buccapatnam et al., 2014]

O(
∑
i∈D

log T
∆i

+Kδ) \ \

AAE-AlphaSample
[Cohen et al., 2016]

O(
∑
i∈S

log T
∆i

) \ \

RUNE-TEM
(Theorem 2)

O(
∑
C∈C

∆max
C log(NCT )

(∆min
C )2

+ |C|) O(
∑
C∈C

v1/ε∆max
C log(NCT )

(∆min
C )(1+ε)/ε

+
∑
C∈C ∆max

C ) \

RUNE-MoM
(Theorem 3)

O(
∑
C∈C

∆max
C log(NCT )

(∆min
C )2

+ |C|) \ O(
∑
C∈C

v1/ε∆max
C log(NCT )

(∆min
C )(1+ε)/ε

+
∑
C∈C ∆max

C )

RAAE-TEM
(Theorem 4)

O(
∑
i∈S

log T
∆i

) O(
∑
i∈S

v1/ε log T

∆
1/ε
i

+ ∆max log T ) \

RAAE-MoM
(Theorem 5)

O(
∑
i∈S

log T
∆i

) \ O(
∑
i∈S

v1/ε log T

∆
1/ε
i

+ ∆max log T )

Oi(T ) ≥ Ti(T ) holds for any feedback graph. Thus, the
player can provide a more accurate estimate for the mean of
each arm’s reward distribution, by utilizing the side infor-
mation of the feedback graph.

Before stating existing results, we introduce two standard
graph-theoretic definitions [West, 2001], which will be used
to describe regret bounds.

Definition 1 A clique in graph G = (V,E) is a subset of
vertices C ⊆ V such that all arms in C are neighbors with
each other. A clique covering C of G is a set of cliques such
that V = ∪C∈CC. The clique covering number χ̄(G) is the
size of the smallest clique covering in G.

Definition 2 An independent set in graph G = (V,E) is
a subset of vertices S ⊆ V that are not connected by any
edges with each other. Namely, S is independent if for any
u, v ∈ S, u 6= v, then (u, v) /∈ E. The independence num-
ber α(G) is the size of the maximum independent set in
G.

Note that each node in a maximum independent set must
consume one clique to cover, thus α(G) ≤ χ̄(G) for any
graph G, and the gap between them can be very large [Man-
nor and Shamir, 2011].

2.2 STOCHASTIC GRAPHICAL BANDITS

To fully exploit the side information of the feedback graph
G, previous work [Caron et al., 2012, Buccapatnam et al.,
2014, 2017, Cohen et al., 2016, Tossou et al., 2017, Liu
et al., 2018a,b, Hu et al., 2019, Lykouris et al., 2020] has
used the structural information of the feedback graph to
characterize their regret bounds.

One category of classical methods for stochastic GB is based
on UCB [Lai and Robbins, 1985, Agrawal, 1995, Auer et al.,
2002]. For stochastic MAB with bounded rewards, Auer
et al. [2002] propose UCB1 according to the principle of
Optimism in the Face of Uncertainty (OFU), which attains
an optimal regret bound of O(

∑
i:∆i>0

log T
∆i

+
∑K
i=1 ∆i).

Afterward, Caron et al. [2012] extend UCB1 [Auer et al.,
2002] to UCB-N for stochastic GB with bounded rewards,
where the main improvement is to update the estimated
values of not only the chosen arm but also its neigh-
bors at each round. They show that UCB-N attains an
O(
∑
C∈C

∆max
C log T

(∆min
C )2

+
∑K
i=1 ∆i) gap-based regret bound.

In addition, they present an Ω(log T ) regret lower bound
for this setting. Later, Hu et al. [2019] modify the index of
UCB-N to enlarge the exploration phase and improve the
bound to O(

∑
C∈C

∆max
C log(NCT )

(∆min
C )2

+
∑
C∈C ∆max

C ), where

NC = maxi∈C |N(i)| 14 is determined by the maximum
degree of clique C ∈ C. Note that the sum of gap-based
quantities in this bound is taken over the clique covering of
the feedback graph, instead of the whole arm set.

Besides, there is another class of algorithms for stochastic
GB based on the elimination technique [Even-Dar et al.,
2006, Auer and Ortner, 2010]. Buccapatnam et al. [2014,
2017] propose a strategy termed UCB-LP, which leverages a
linear programming (LP) induced by the feedback graph to
explicitly guide the exploration stage. UCB-LP obtains an
O(
∑
i∈D

log T
∆i

+Kδ) gap-based regret bound, where D is
a particularly selected dominated set of G (i.e., every node
in the graph is either in D or has at least one neighbor in D)
and δ is the maximum degree in the feedback graph. Further-
more, they established an LP-based lower bound, which is
also logarithmic with respect to T . Later, Cohen et al. [2016]
consider a harder setting where the feedback graph may be



directed, time-variant, and not entirely revealed to the player.
They propose an elimination-based algorithm and obtain an
O(
∑
i∈S

log T
∆i

) gap-based regret bound, where S is the set
of the αmax logK arms with the smallest gap and αmax is
an upper bound of the independence number of the feedback
graph over T rounds. Recently, Lykouris et al. [2020] pro-
pose a novel layering technique by using the independent
set for sampling and derive a similar O(

∑
i∈I

log2 T
∆i

) regret
bound for UCB-N, where I is any independent set of G. In
addition, other work [Tossou et al., 2017, Liu et al., 2018a,b,
Hu et al., 2019, Lykouris et al., 2020] applies Thompson
Sampling [Thompson, 1933] to stochastic GB and provides
the corresponding theoretical guarantees.

2.3 STOCHASTIC HEAVY-TAILED BANDITS

Liu and Zhao [2011] are the first to investgate stochastic
MAB with heavy-tailed rewards. In particular, they consider
reward distributions with finite moments of order 1 + ε for
some ε ∈ (0, 1]. They propose an algorithm based on a
deterministic sequencing of exploration and exploitation,
which attains a polynomial regret of O(T

1
1+ε ). In a sub-

sequent work, Bubeck et al. [2013] design a framework
termed Robust UCB by replacing the empirical mean in
UCB1 [Auer et al., 2002] with more refined robust esti-
mators, such as truncated empirical mean or median of
means. They obtain the first gap-based logarithmic regret
of O(

∑
i:∆i>0( v

∆i
)

1
ε log T +

∑K
i=1 ∆i), where v is an up-

per bound of the (1 + ε)-th moments. For stochastic MAB
with finite variances (ε = 1), this regret bound recovers the
optimal regret under the bounded or sub-Gaussian assump-
tion [Lai and Robbins, 1985, Auer et al., 2002]. Besides,
Bubeck et al. [2013] also provide a matching lower bound
of O(∆

− 1
ε

i log T ). Later, Medina and Yang [2016] extend
the results to stochastic linear bandits with infinite action
sets. They design two algorithms both with sublinear re-
gret bounds, which are subsequently improved to be nearly
optimal by Shao et al. [2018]. Recently, robust estimators
are applied by Xue et al. [2020] to design algorithms for
stochastic linear bandits with finite action sets, and nearly
optimal sublinear regret bounds are established. For other
settings, robust estimators are also employed by Lu et al.
[2019], Tao et al. [2022] to design algorithms for stochastic
lipschitz bandits with heavy-tailed rewards and stochastic
MAB with heavy-tailed rewards in the (local) differential
privacy model, respectively. In addition, heavy-tailed distri-
butions have been extensively studied in the offline setting
[Brownlees et al., 2015, Hsu and Sabato, 2016, Zhang and
Zhou, 2018].

3 MAIN RESULTS

We first propose two UCB-type algorithms termed RUN and
RUNE for stochastic graphical bandits with heavy-tailed

Algorithm 1 RUN-TEM

1: Input: Graph G = (V ;E), ε ∈ (0, 1], (1 + ε)-th raw
moment bound v, confidence level δ ∈ (0, 1)

2: Initialize: Set Oi(0) = 0 for each arm i ∈ V . Let µ̂i(t)
be the estimate mean value based on the first s observed
values Xi,1, · · · , Xi,s of arm i up to time t

3: for t > 1 do
4: Pull arm

It = argmax
i∈V

UCBi(t),

where UCBi(t) is computed by (8)
5: Receive reward XIt,t and observe rewards Xk,t (k ∈

N(It))
6: for arm k ∈ N(It) do
7: Ok(t) = Ok(t− 1) + 1
8: Compute the truncation level Bk,t,δ by (3)
9: Update the estimate value:

µ̂k(t) =
Ok(t− 1)µ̂k(t− 1) +Xk,tI{|Xk,t|≤Bk,t,δ}

Ok(t− 1) + 1

10: end for
11: end for

rewards. Next, we present another elimination-based algo-
rithm named RAAE with an improved regret bound. All the
technical lemmas and proofs are deferred to the supplemen-
tary due to the space limitation.

3.1 ROBUST UCB STRATEGY WITH FEEDBACK
GRAPH

The basic idea behind existing algorithms for stochastic GB
is to exploit the side information by sampling through the
feedback graph. In this section, we begin with a simple strat-
egy termed RUN and then present an improved algorithm
named RUNE.

Following the seminal work of Caron et al. [2012], we
propose Robust UCB-N (RUN) policy for stochastic GB
with heavy-tailed rewards. Since the rewards of each arm
no longer follow the sub-Gaussian distribution, their used
empirical mean estimator can only provide polynomial devi-
ations [Catoni, 2012]. To settle this issue, we employ RUN
with Truncated Empirical Mean (TEM) estimator, which
can guarantee exponential deviations for even heavy-tailed
rewards [Bubeck et al., 2013]. The key idea of TEM is to
truncate large rewards while computing the average value.
Since truncation will bias the distribution, we cannot use a
fixed truncation level uniformly over all time. Instead, we
use an increasing truncation levels sequence for each arm
i ∈ V :

Bi,t,δ =

(
vOi(t)

log(1/δ)

) 1
1+ε

, (3)



where δ ∈ (0, 1) is a confidence level predetermined by
the player. At each round t, we will compute the average
truncated reward of each arm i ∈ V :

µ̂i(t) =

∑t
s=1Xi,sI{|Xi,s|≤Bi,s,δ∩Is∈N(i)}

Oi(t)
, (4)

which is updated incrementally in our algorithm to reduce
the time complexity. Under the truncation level (3), we can
obtain the concentration properties of TEM in the following
proposition.

Proposition 1 Let δ ∈ (0, 1), ε ∈ (0, 1] be positive pa-
rameters. Let X1, X2, · · · , Xn be i.i.d. random variables
sampling from fixed distribution P with finite mean µ and
bounded (1 + ε)-th raw moments, i.e., EX∼P [|X|1+ε] ≤ v.
Consider the TEM estimator

µ̂T =
1

n

n∑
t=1

XtI{|Xt|≤Bt,δ} , (5)

where Bt,δ = ( vt
log(1/δ) )

1
1+ε , then with probability at least

1− δ,

µ̂T ≥ µ− 5v
1

1+ε

(
log(1/δ)

n

) ε
1+ε

, (6)

and also, with probability at least 1− δ,

µ̂T ≤ µ+ 5v
1

1+ε

(
log(1/δ)

n

) ε
1+ε

. (7)

By using the concentration properties in Proposition 1, we
construct an upper confidence bound based on the sum of
average truncated reward and a confidence term:

UCBi(t) = µ̂i(t− 1) + 5v
1

1+ε

(
log(1/δ)

Oi(t− 1)

) ε
1+ε

, (8)

where we take the convention
√

1/0 = +∞ so that all arms
get observed at least once.

At each round t, following the principle of OFU, we first pull
the arm It with the maximum UCB index defined in (8) with
ties broken arbitrarily. After that, we will receive reward
XIt,t of the selected arm and also observe rewards Xk,t of
all arm k in its neighbor set N(It). Finally, we update the
observation number Ok(t) and the estimate value µ̂k(t) for
all the arms k ∈ N(It) by the truncation level defined in (3).
The above procedure is summarized in Algorithm 1, and is
referred to as RUN-TEM.

Finally, we establish the following expected regret bound
for RUN-TEM.

Theorem 1 Let G = (V ;E), ε ∈ (0, 1] and v > 0. Assume
that the reward distributions Pi satisfy that,

EX∼Pi
[
|X|1+ε

]
≤ v (∀i ∈ V ) , (9)

then the expected regret of Algorithm 1 (RUN-TEM) with
δ = 1

t4 after T steps is upper bounded by

E[RT ] ≤ inf
C

{
40

(∑
C∈C

(10v)1/ε∆max
C

(∆min
C )(1+ε)/ε

)
log T

}

+

(
1 +

π2

3

) K∑
i=1

∆i ,

(10)

where ∆min
C := mini∈C\{i?}∆i is the minimum nonzero

reward gap in clique C and ∆max
C := maxi∈C ∆i is the

maximum reward gap in clique C.

Remark. If we choose C as the trivial covering {{i} : i ∈
V }, the above regret bound reduces exactly to

40
∑

i∈V :∆i>0

(
10v

∆i

) 1
ε

log T +

(
1 +

π2

3

) K∑
i=1

∆i , (11)

which matches the optimal regret bound for heavy-tailed
MAB proved by Bubeck et al. [2013]. Moreover, if G is a
complete graph, then the whole graph constitute a clique
covering and we further obtain the regret bound

40

(
(10v)1/ε∆max

∆
(1+ε)/ε
min

)
log T +

(
1 +

π2

3

) K∑
i=1

∆i , (12)

which is a substantial improvement over the regret bounds
of Robust UCB [Bubeck et al., 2013] since the leading
term is independent of K. Except for these two extremes, if
we choose more proper C, the regret bound of RUN-TEM
can be also improved significantly compared to the standard
regret bounds of heavy-tailed MAB, since we make effective
utilization on the side information of G.

In addition, when the rewards are generated from distribu-
tions with finite variances (ε = 1), RUN-TEM yields regret
bound

E[RT ] ≤ inf
C

{
40

(∑
C∈C

√
10v∆max

C

(∆min
C )2

)
log T

}

+

(
1 +

π2

3

) K∑
i=1

∆i ,

(13)

which enjoys the same order as the regret bound of UCB-
N [Caron et al., 2012]. However, when the rewards are
generated from distributions with infinite variances (0 <
ε < 1) [Shao and Nikias, 1993], the theoretical results of
UCB-N are no longer applicable, while our method still
enjoys a gap-based regret bound (10) with the leading term
scales logarithmically with T .

Although RUN-TEM can obtain a graph-based logarithmic
regret bound, the second term in (10) is still in the order
of O(K). To settle this issue, we further design Robust



UCB-NE (RUNE) strategy with an improved regret bound.
Inspired by Hu et al. [2019], we embed the side information
of the feedback graph into the principle of OFU and redefine
a graph-based UCB index for each arm i to enlarge the
exploration stage properly:

µ̂i(t− 1) + 5v
1

1+ε

(
log(|N(i)|/δ)
Oi(t− 1)

) ε
1+ε

, (14)

where |N(i)| is the size of arm i’s neighbor set and µ̂i(t−1)
is computed by the TEM estimator with an altered truncation
levels sequence

Bi,t,δ =

(
vOi(t)

log(|N(i)|/δ)

) 1
1+ε

. (15)

Except the above two parameters, other procedures follow
the same as Algorithm 1, and this policy is called RUNE-
TEM. Finally, we obtain a regret bound with constant terms
taking sum over the clique covering of the feedback graph
and logarithmic in the size of the cliques, which is summa-
rized in the following theorem.

Theorem 2 Consider the same preconditions as Theorem
1. Let δ = 1

t4 , then the expected regret of RUNE-TEM after
T steps is upper bounded by

E[R(T )] ≤ inf
C

{
40

(∑
C∈C

(10v)1/ε∆max
C

(∆min
C )

(1+ε)/ε

)
log T

+
∑
C∈C

[(
40(10v)1/ε∆max

C

(∆min
C )

(1+ε)/ε

)
logNC

+

(
1 +

π2

3

)
∆max
C

]}
,

(16)

where ∆min
C = mini∈C\{i?}∆i,∆

max
C = maxi∈C ∆i, and

NC = maxi∈C |N(i)| 14 is determined by the maximum
degree of clique C ∈ C.

Remark. Here, we provide a discussion about the difference
between RUN-TEM and RUNE-TEM. Given the same feed-
back graph G, the leading term of RUN-TEM and RUNE-
TEM is the same. However, the constant term of RUN-TEM
is in order O(

∑K
i=1 ∆i) while RUNE-TEM improves it to

O(
∑
C∈C [

∆max
C log(NC)

(∆min
C )(1+ε)/ε

+ ∆max
C ]), where the sum is only

taken over the clique covering of G, not all K arms. As a
result, RUNE-TEM can obtain a promotion in the constant
term when the clique size is large.

Note that RUNE-TEM can only be applied to the rewards
distributions with bounded (1 + ε)-th raw moments, which
means that the selected arms may change along with the
synchronized shift of all the reward distributions. Thus, it
would be more desirable to obtain a regret bound in terms
of the centered moments bound. To address this problem,
we employ RUNE with Median of Means (MoM) estima-
tor [Alon et al., 1999], and result in a translation-invariant

algorithm termed RUNE-MoM. The main idea is to first
divide the rewards Xi,1, · · · , Xi,n of each arm i ∈ V into
k various disjoint blocks with size N = dn/ke:

Xi = {Xi,1:N , · · · , Xi,((k−1)N+1):n} . (17)

After that, we compute separately the standard empirical
mean of each block s ∈ [k] by

µ̂s =
1

N

sN∑
t=(s−1)N+1

Xt . (18)

Finally, we acquire the mean estimate value µ̂i(t) by taking
a median value of these empirical means within each block:

µ̂i(t) = median(µ̂1, · · · , µ̂k) . (19)

For a particular arm set the block size k as following

k = d8 log(|N(i)|e−1/8/δ)e , (20)

where δ ∈ (0, 1) is a confidence level predetermined by the
player, we can obtain the properties of MoM described in
the following proposition.

Proposition 2 Let δ ∈ (0, 1), ε ∈ (0, 1] be positive pa-
rameters. Let X1, X2, · · · , Xn be i.i.d. random variables
sampling from fixed distribution P with finite mean µ and
bounded (1 + ε)-th central moments, i.e., EX∼P [|X −
µ|1+ε] ≤ v. Let k = d8 log(1/δ)e, N = dn/ke,

µ̂1 =
1

N

N∑
t=1

Xt, · · · , µ̂k =
1

N

kN∑
t=(k−1)N+1

Xt , (21)

be k empirical mean estimates, where each one is computed
on N rewards. Consider the MoM estimator

µ̂M = median(µ̂1, · · · , µ̂k) , (22)

then with probability at least 1− δ,

µ̂M ≥ µ− (12v)
1

1+ε

(
8 log(e1/8/δ)

n

) ε
1+ε

, (23)

and also, with probability at least 1− δ,

µ̂M ≤ µ+ (12v)
1

1+ε

(
8 log(e1/8/δ)

n

) ε
1+ε

. (24)

Through the concentration properties in Proposition 2, we
can redefine a graph-based UCB index for RUNE by

µ̂i(t− 1) + (12v)
1

1+ε

(
8 log(|N(i)|/δ)

n

) ε
1+ε

. (25)

Finally, we obtain the regret upper bound of RUNE-MoM
as following.



Theorem 3 Let G = (V ;E), ε ∈ (0, 1] and v > 0. Assume
that the reward satisfy the distributions Pi with mean µi
such that

EX∼Pi
[
|X − µi|1+ε

]
≤ v (∀i ∈ V ) , (26)

then the expected regret of RUNE-MoM with δ = 1
t4 after T

steps is upper bounded by

E[R(T )] ≤ inf
C

{
64

(∑
C∈C

(24v)1/ε∆max
C

(∆min
C )

(1+ε)/ε

)
log T

+
∑
C∈C

[(
64(24v)1/ε∆max

C

(∆min
C )

(1+ε)/ε

)
logNC

+

(
1 +

e1/8π2

3

)
∆max
C

]}
,

(27)

where ∆min
C = mini∈C\{i?}∆i,∆

max
C = maxi∈C ∆i, and

NC = maxi∈C |N(i)| 14 is determined by the maximum
degree of clique C ∈ C.

Remark. Note that the theoretical guarantee of RUNE-
MoM is in the same order as RUEN-TEM. However, the
regret bound of RUEN-TEM depends on the raw moment
bound while the regret bound of RUNE-MoM depends on
the central moment bound, which is translation invariant
under a synchronized shift of all the reward distributions.

3.2 ROBUST ACTIVE ARM ELIMINATION WITH
FEEDBACK GRAPH

Since the expected regret of RUNE is bounded by a sum of
gap-based quantities over the clique covering of G, which
may be unacceptable when the clique covering gets too
large. Thus, a question arises here is whether it is possi-
ble to further improve the regret. We answer this question
affirmatively by designing an elimination-based strategy

Inspired by AAE-AlphaSample [Cohen et al., 2016], we
propose Robust Active Arm Elimination (RAAE), described
in Algorithm 2, where the main idea is to sample each arm
a minimal number of times and eliminate the "bad" arms
one by one. To reduce the sampling times of each epoch, we
firstly select a maximal independent set from the sub-graph
induced by the active arm set and then play the arms in
it once. Although Cohen et al. [2016] consider a similar
setting, their theoretical results cannot be applied directly to
stochastic GB with heavy-tailed rewards. To settle this issue,
we adopt TEM or MoM estimator in RAAE and estimate
the reward mean of each arm by a graph-based sampling
mechanism.

We begin with RAAE equipped by TEM estimator. RAAE-
TEM works in epochs r = 1, 2, · · · . At each epoch r, the
player maintains an active arm set Vr, initialized by V1 = V ,
and selects a maximal independent set Ir greedily from the
subgraph induced by Vr. After that, the player pulls the arms

Algorithm 2 RAAE-TEM

1: Input: Graph G = (V,E) with K nodes, ε ∈ (0, 1],
(1 + ε)-th raw moment bound v, number of rounds T

2: Initialize: r ← 1, t← 1, V1 ← V, ε1 ← 1/4ε

3: while |Vr| > 1 and t ≤ T do
4: Select a maximal independent set Ir greedily from

the subgraph induced by set Vr
5: Compute the sampling times nr by (30)
6: for s = 1 to nr do
7: for all i ∈ Ir do
8: Pull arm i and receive reward Xi,t

9: Observe rewards of all arms in N(i)
10: Update Oj(t) and µ̂j(t) for all arms j ∈ N(i)

with the truncated level Bj,t described in (28)
11: t← t+ 1
12: end for
13: end for
14: Compute µ̂?r = maxi∈Vr µ̂i(t− 1)
15: Execute active arm elimination described by (29)
16: εr+1 ← εr/2

ε, r ← r + 1
17: end while
18: Play the arm left in Vr until T rounds have passed

in Ir once to update the average truncated rewards µ̂i(t) of
all the arms i ∈ Vr, with truncation levels

Bi,t =

(
vOi(t)

log(2KT )

) 1
1+ε

. (28)

Then, we will eliminate the arms in Vr that are known to be
sub-optimal with sufficient confidence:

Vr+1 = {i ∈ Vr : µ̂i(t− 1) ≥ µ̂?r − 2εr} , (29)

where µ̂?r = maxi∈Vr µ̂i(t − 1) and εr is the accuracy
parameter, initialize by 1/4ε. As the analysis will show,
by repeating this process for sampling times

nr =

⌈
(5(5v)1/ε log(2KT )

ε
(1+ε)/ε
r

⌉
, (30)

the mean rewards of all arms in Vr can be estimated within
εr accuracy. As a result, each suboptimal arm i with ∆i >
4εr will be eliminated with high probability at each epoch r.
Thus, we multiply εr by 1/2ε after each epoch to increase
the estimation accuracy. Finally, we obtain the following
regret bound of RAAE-TEM.

Theorem 4 Assume K ≥ 2 and T ≥ K. Suppose that the
independence number of feedback graph G = (V,E) is at
most α, and the reward distributions Pi satisfy that,

EX∼Pi
[
|X|1+ε

]
≤ v (∀i ∈ V ) , (31)



then the expected regret of Algorithm 2 (RAAE-TEM) after
T steps is at most

E[RT ] ≤ O

 ∑
i∈V (α)

v1/ε

∆
1/ε
i

log T + ∆max log T

 , (32)

where ∆max = maxi∈V ∆i, V (α) denotes a subset of the
first α suboptimal arms with ties broken arbitrarily.

Remark. If G is a complete graph, then α = 1 and the
above regret bound reduces to

O

(
log T

∆
1/ε
min

+ ∆max log T

)
, (33)

which is independent ofK. Inversely, ifG is an empty graph,
which means that E = ∅, then α = K and the above regret
is on the order of O(

∑
i:∆i>0( v

∆i
)

1
ε log T ) which has been

proved optimal for heavy-tailed MAB [Bubeck et al., 2013].
Except for these two extremes, the regret bound of RUN-
TEM can be improved significantly compared to Robust
UCB [Bubeck et al., 2013] when α < K.

We provide a discussion about the difference between
RAAE-TEM and RUNE-TEM. Note that the regret bound
of RUNE-TEM (16) is summed over the clique covering of
G and the gap-based quantities rely on the ratio of the maxi-
mum and minimum mean reward gaps within each clique,
which can be quite large in the worst case. However, the
regret bound of RAAE-TEM (32) is summed over the subset
of α arms with the smallest nonzero gaps and the gap-based
quantities only rely on the reciprocal of the mean reward
gaps. As α is much smaller than the size of the clique cover-
ing for benign graphs, we conclude that the regret bound of
RAAE-TEM is tighter than RUNE-TEM in this case.

Furthermore, we can employ RAAE with MoM estimator
to process heavy-tailed rewards with bounded (1 + ε)-th
central moments. By using Proposition 2, we reselect block
number k = d8 log(2KT )e, block size N = dn/ke and
sampling times

nr =

⌈
(8(12v)1/ε log(2e1/8KT ))

ε
(1+ε)/ε
r

⌉
, (34)

where εr is the same as that in RAAE-TEM. Finally, we
obtain the following regret bound of RAAE-MoM.

Theorem 5 Assume K ≥ 2 and T ≥ K. Suppose that the
independence numbers of feedback graph G = (V,E) is
at most α, and the reward distributions Pi with mean µi
satisfy that,

EX∼Pi
[
|X − µi|1+ε

]
≤ v (∀i ∈ V ) , (35)

then the expected regret of RAAE-MoM after T steps is at
most

E[RT ] ≤ O

 ∑
i∈V (α)

v1/ε

∆
1/ε
i

log T + ∆max log T

 , (36)

where ∆max = maxi∈V ∆i, V (α) denotes a subset of the
first α suboptimal arms with ties broken arbitrarily.

4 EXPERIMENTS

In this section, we present numerical results to demonstrate
the effectiveness of our algorithms. We compare our meth-
ods (RUNE-TEM, RAAE-TEM)1 with UCB-N [Caron et al.,
2012] and AAE-AlphaSample [Cohen et al., 2016].

Setup. We synthesize a stochastic GB problem with K =
30, there are 2 optimal arms assigned uniformly at random
from [K] and all other arms are sub-optimal. The means
of the optimal rewards are set to µ? = 1.0 and the means
of sub-optimal rewards are restricted to (0, 1.0). The time
horizon is set as T = 10000 for all experiments, and we
take the average of 10 independent runs of each algorithm.

Reward Distribution. To generate heavy-tailed rewards,
we consider Pareto random variable X with shape parame-
ters α and scale parameter xm, whose probability density
function can be written as following

fX(x) =

{
αxαm
xα+1 , x ≥ xm

0, x < xm
. (37)

In our experiments, we make α > 1, such that the expecta-
tion exists and can be computed in the form E[X] = αxm

α−1 .
Also, the r-th raw moments exists when r < α and can be
calculated by the formula E[Xr] =

αxrm
α−r . We can verify that

the smaller is α, the heavier is the distribution tail. To guar-
antee that the (1 + ε)-th raw moment is bounded by some
constant v > 0, we set α = 1.1 + ε, where ε = 0.3. Each
arm’s rewards are sampling independently from a predeter-
mined Pareto distribution with parameter α, xm = µ(α−1)

α
and the rewards of any two arms in a given round are gener-
ated independently.

Feedback Graph. We conduct experiments on two fixed
undirected graphs, One is a random graph, generated by the
Erdős-Rényi model [Erdős and Rényi, 1960]. In details, we
represent the edges by a random matrix E ∈ {0, 1}K×K ,
and assign Eij = 1 (i 6= j) with a fixed probability p and
Eii = 1 for all i ∈ [K]. The other is a deterministic graph
constructed by Lu et al. [2021] with K = 30, α = 10 and
χ̄ = 14, which is illustrated in Fig. 2.

Results. We present two results in Fig. 1. As can be seen,
the regret curves of elimination-based methods increase at
the beginning and then maintain stable after some epochs,
because they can find the best arms with high probabil-
ity. Furthermore, RAAE-TEM performs better than AAE-
AlphaSample in both settings, which is expected since it
can use more refined robust estimators to improve the esti-
mated accuracy. Also, RUNE-TEM suffers smaller regret

1Code will be made available at https://github.com/yutian-
007/graphical-bandits-with-heavy-tailed-rewards/.

https://github.com/yutian-007/graphical-bandits-with-heavy-tailed-rewards/
https://github.com/yutian-007/graphical-bandits-with-heavy-tailed-rewards/
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Figure 1: Comparison of our algorithms (RUNE-TEM, RAAE-TEM) versus UCB-N and AAE-AlphaSample for stochastic
GB with heavy-tailed rewards

Figure 2: Illustration of the Deterministic Graph [Lu et al.,
2021]

than UCB-N, since it has a preferable regret bound. Particu-
larly, RAAE-TEM performs better than RUNE-TEM, which
is consistent with our theoretical analysis.

5 CONCLUSION AND FUTURE WORK

We design two novel algorithms for stochastic graphical
bandits with heavy-tailed rewards, which only require the
existence of the (1 + ε)-th moments for some ε ∈ (0, 1].
One of our algorithms is based on UCB strategy and obtains
regret bounds depending on a sum of gap-based quantities
over the clique covering of the feedback graph. The other
one is based on successive elimination technique and enjoys
an improved regret bound depending on a gap-based sum
with size controlled by α, which is smaller than the size of
the clique covering for benign graphs. To the best of our
knowledge, we provide the first regret bounds for stochastic
GB with heavy-tailed rewards. Thus, a natural and chal-
lenging open problem is whether one can prove a lower
bound for this setting. Obtaining lower bounds seems highly

non-trivial even for stochastic GB under the sub-Gaussian
setting [Marinov et al., 2022b], and we leave it as a future
work.
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