
Adaptive Kernel Design for Bayesian Optimization
Is a Piece of CAKE with LLMs

Richard Cornelius Suwandi1 Yin Feng1∗ Juntao Wang1

Renjie Li1,2 Tsung-Hui Chang1 Sergios Theodoridis3
1The Chinese University of Hong Kong, Shenzhen

2University of Illinois at Urbana-Champaign 3University of Athens
{richardsuwandi, juntaowang}@link.cuhk.edu.cn

{yinfeng, changtsunghui}@cuhk.edu.cn
renjie2@illinois.edu, stheodor@di.uoa.gr

Abstract

The efficiency of Bayesian optimization (BO) relies heavily on the choice of the
Gaussian process (GP) kernel, which plays a central role in balancing exploration
and exploitation under limited evaluation budgets. Traditional BO methods often
rely on fixed or heuristic kernel selection strategies, which can result in slow
convergence or suboptimal solutions when the chosen kernel is poorly suited to
the underlying objective function. To address this limitation, we propose a freshly-
baked Context-Aware Kernel Evolution (CAKE) to enhance BO with large language
models (LLMs). Concretely, CAKE leverages LLMs as the crossover and mutation
operators to adaptively generate and refine GP kernels based on the observed data
throughout the optimization process. To maximize the power of CAKE, we further
propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective
kernel through balancing the model fit measured by the Bayesian information
criterion (BIC) with the expected improvement at each iteration of BO. Extensive
experiments demonstrate that our fresh CAKE-based BO method consistently
outperforms established baselines across a range of real-world tasks, including
hyperparameter optimization, controller tuning, and photonic chip design. Our
code is publicly available at https://github.com/richardcsuwandi/cake.

1 Introduction

Many important scientific and engineering problems require optimizing objective functions that are
noisy and expensive to evaluate. These objective functions often lack closed-form expressions, let
alone gradient information, making optimization particularly difficult [50]. Nonetheless, Bayesian
optimization (BO) has shown remarkable success in optimizing such functions, due to its ability to
operate on limited data and incorporate prior knowledge to guide the optimization process [17]. In the
past couple of decades, BO has been used for diverse tasks ranging from tuning hyperparameters in
machine learning [43, 29] to designing policies in robotics [9, 33] and recommending new molecules
in drug discovery [25, 49]. The main idea behind BO is to first construct a surrogate model, typically
using a Gaussian process (GP) [36], to represent the prior belief about the objective function. Then,
by conditioning on the observations and the prior, the posterior is calculated using Bayes’ rule to
reflect the updated belief about the objective function. Based on this posterior, an acquisition function
is further used to determine the next promising query positions while balancing exploration (i.e.,
moving to regions with high uncertainty) and exploitation (i.e., moving to regions with high expected
value).

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/richardcsuwandi/cake

Figure 1: Overview of CAKE. Starting with an initial population of kernels, the LLM acts as crossover
and mutation operators, proposing new kernels based on the given prompts. The proposed kernels are
then evaluated using a fitness calculator, and the fittest ones advance to the next generation.

Although the past decades have witnessed rapid development of BO, much of the focus has been
drawn on designing novel acquisition functions [2, 1]. In contrast, the challenge of appropriately
choosing the surrogate model has received comparatively less attention [40]. In the context of GPs,
most off-the-shelf BO methods simply use general-purpose kernels, such as the squared exponential
kernel or Matérn-5/2 kernel [43]. While convenient, this one-size-fits-all approach may introduce bias
that can negatively impact the sampling of potential solutions during optimization [15], especially
when the kernel’s assumptions do not align with the statistical properties of the underlying objective
function [37]. It has also been studied that with a poor choice of the kernel, BO may converge very
slowly, especially when optimizing complex functions in moderate-to-high dimensional spaces [16].
These considerations underscore the need for a more sophisticated kernel design in BO.

While the pursuit for automatic kernel design is not new [12, 54], existing approaches might not
be straightforward in the setting of BO. In BO, the objective function is typically expensive to
evaluate, limiting the number of evaluations we can perform and leaving us with a small number of
observations to tune the kernel. Moreover, since the functional form is generally unknown and the
gradient information is unavailable, it becomes infeasible to apply traditional optimization-based
kernel selection methods, such as [4, 19]. At its core, these challenges can be framed within the
few-shot learning setting, where swift learning and generalization from limited data are required.
Notably, these challenges align with the strengths of large language models (LLMs) [52], which
excel at generalizing from few-shot samples [8], thus enabling efficient exploration with limited
data. The in-context learning capability of LLMs also acts as implicit Bayesian inference [56, 20],
allowing them to encode prior knowledge about the optimization task, search space, and other relevant
information. LLMs’ ability in performing complex reasoning further enhances their capacity to
process contextual information and improve search performance [57]. Moreover, LLMs are also pre-
trained on massive internet data, which potentially contains transferable domain knowledge applicable
to various optimization tasks [29]. Given these insights, we aim to investigate the following question:
“Can LLMs, with their encoded knowledge and few-shot prompting, help to adaptively evolve kernel
structures based on the observed data, thereby improving the BO performance?”

Contributions. In this paper, we introduce Context-Aware Kernel Evolution (CAKE) to enable
adaptive BO using LLMs. Unlike conventional BO setups, which often rely on fixed kernels or
heuristic selection strategies, CAKE leverages the in-context learning capabilities of LLMs to
iteratively generate and refine expressive kernel structures based on the acquired data during the

2

optimization process (see Figure 1). CAKE is guided by few-shot prompting and operates entirely
in-context, without requiring fine-tuning or parameter updates to the LLM. To further complement
CAKE, we propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective kernel
through balancing the model fit measured by the Bayesian information criterion (BIC) with the
expected improvement at each iteration of BO. We demonstrate through extensive experiments that
our proposed method consistently outperforms established baselines across a range of real-world
optimization tasks, including optimizing the hyperparameters of machine learning models, tuning
controllers for dynamic environments, and designing photonic chips with optimal configurations.

2 Preliminaries

We first review some key concepts in BO and the so-called kernel grammar, which serve as the
bedrock for this paper.

Bayesian optimization. Consider optimizing a “black-box” objective function f : X ⊂ Rd → R,
where the function evaluations are noisy, expensive, and the gradients are not available. Bayesian
optimization (BO) addresses these challenges by employing a probabilistic surrogate model g,
typically using a Gaussian processes (GP) [36], to approximate f on the fly [17]. At each iteration
t, the calibration of the posterior distribution p(gt | Dt) given the previous observations Dt =
{(xi, yi)}t−1

i=1 informs where to explore and exploit in X . Then, based on p(gt | Dt), an acquisition
function α : X → R defines a policy to choose the next best point to evaluate. After each evaluation,
the surrogate model g is refined to reflect the updated belief about f . We refer the readers to Appendix
A.1 for a thorough treatment of BO with GPs.

Kernel grammar. The kernel grammar introduced by Duvenaud et al. [12] defines a comprehensive
and flexible space of kernels. Such space exploits the closure properties of kernel functions under
addition and multiplication, which ensures that: if k1(x,x′) and k2(x,x

′) are valid kernels, then
both k1(x,x

′) + k2(x,x
′) and k1(x,x

′)× k2(x,x
′) are also valid kernels [42]. Starting from a set

of base kernels, such as the squared exponential (SE), linear (LIN), and periodic (PER) kernels, one
can construct more expressive kernels by combining such base kernels via addition and multiplication
operators. For instance, LIN + PER kernel can capture periodic structure with a linear trend and
SE × PER kernel can capture locally periodic components. Let B denote a base kernel and S
denote a subexpression. For example, in the expression LIN + (PER × SE), the term PER × SE
is a subexpression. The entire kernel space is described by all kernels that can be constructed by
adding a base kernel to a subexpression S → S + B, multiplying a subexpression with a base kernel
S → S × B, and replacing a base kernel with another base kernel B → B.

3 Context-Aware Kernel Evolution

The main motivation behind our method is to refine the kernel choice at each iteration before
determining the next query point. To this end, we introduce Context-Aware Kernel Evolution
(CAKE), which leverages LLMs as genetic operators to adaptively construct kernels based on the
data obtained on the fly. We summarize the complete procedure of CAKE in Algorithm 1.

Conditioning the LLM. We begin by randomly sampling n points from the input spaceX to initialize
the observations D = {(xi, yi)}ni=1. These observations are then used as few-shot samples to prompt
the LLM. The prompt is designed based on the concept of conditioning on high performance, as
suggested by [60]. Specifically, we start the prompt with a statement, “You are an expert in machine
learning, specializing in Gaussian processes”, to simulate the reasoning of a human expert in the
field. It has also been shown that chain-of-thought reasoning, or generating intermediate reasoning
steps, can improve the performance of LLMs [53, 24]. Motivated by this, we instruct the LLM to
analyze the provided observations and identify patterns that can be represented by kernel functions,
before proposing the kernels at each iteration. The designed system prompt is shown in Figure 2.

Initializing the population. We draw some inspiration from the genetic algorithm [22], where we
maintain a population of candidates (kernels) throughout the optimization process. We define K as
our population, and for each kernel k ∈ K, we measure its fitness using the Bayesian Information
Criterion (BIC) [39]. The BIC is a widely used metric for model selection that measures the trade-off
between model fit and model complexity [46]. It can also be viewed as an approximation of the
Laplace method for estimating the marginal likelihood [35]. We provide more detailed discussions

3

System Prompt

You are an expert in machine learning, specializing in Gaussian processes. Here are the observations
we have collected so far: {observations}. Please analyze these observations to identify patterns
in the data that can be captured by a kernel function. You can use any of the following base kernels:
{base_kernels}, and combine these kernels using the following operators: {operators}. Your goal
is to construct a kernel expression that best explains the observed data. The kernel will be evaluated
using a fitness score normalized between [0, 1], where higher values indicate better fit to the data.

Figure 2: The designed system prompt. {} indicate placeholders.

Crossover Prompt

You are given two parent kernels and their
fitness scores: {kernel1} ({fitness1}),
{kernel2} ({fitness2}). Please propose a
new kernel that has a potentially higher fitness
score. You may combine the parent kernels us-
ing any of the operators from: {operators}.
Briefly explain your reasoning behind the pro-
posed kernel.

(a) Crossover prompt.

Mutation Prompt

You are given a kernel and its fitness score:
{kernel} ({fitness}). Please propose a
new kernel that has a potentially higher fit-
ness score. You may replace a base kernel in
the current expression with another base ker-
nel from the set: {base_kernels}. Briefly
explain your reasoning behind the proposed
kernel.

(b) Mutation prompt.

Figure 3: Prompts for evolving the kernels via crossover and mutation.

on BIC and model selection for GPs in Appendix A.2. To ensure the fitness score is consistent across
different tasks, we normalize it to the range [0, 1].

Proposing the kernels. We consider a generalized notion of the kernel grammar [7], which involves
a set of base kernels {k1, . . . , kr} and a set of operators {T1, . . . , Tl}, where r, l ∈ N. Each operator
Tj : K ×K → K, for j = 1, . . . , l, is a closed operator (e.g., addition, multiplication, convolution,
composition, affine transformation) on the space of kernels K. Based on this, we can define the
kernel grammar space recursively as follows: K0 := {k1, . . . , kr} and Ki := {Tj(k1, k2) | k1, k2 ∈
Ki−1, j = 1, . . . , l} ∪Ki−1, for i ∈ N. By leveraging this kernel grammar space, we can leverage
the LLM as genetic operators to propose kernels using the following operations:

1. Crossover: We perform nc crossover operations. For each crossover, we sample two parent
kernels k1, k2 from K with probability proportional to their fitness. We then prompt the
LLM to propose a new kernel kc by applying an operator on the parent kernels.

2. Mutation: With probability pm, we perform a mutation operation. We select the fittest
kernel kf from K and prompt the LLM to suggest a new kernel km, by replacing one of the
base kernels in kf with another base kernel.

The sample prompts for the crossover and mutation operations are shown in Figure 3. In the prompts,
we also ask the LLM to report its reasoning behind the proposed kernels (see Appendix C.3 for a
sample response). This serves as a sanity check, enabling us to verify and interpret the choices made
by the LLM. The proposed kernels from the two operations are added to K, and their fitnesses are
measured. Then, we select the top np fittest kernels to form the next generation of K.

Choosing the next query point. In our experiments, we observed that some kernels may promise
a good fit, but the actual improvement from the query points they propose is not as substantial as
expected. For this reason, we propose the BIC-Acquisition Kernel Ranking (BAKER) to jointly rank
kernels based on both their model fit and their potential to yield high-utility query points. We first
assign weights to each kernel k ∈ K based on its BIC: wk = exp(−BICk)/

∑
k′∈K exp(−BICk′),

where BICk is the BIC value of the GP model associated with kernel k. We denote the acquisition

4

Algorithm 1 Context-Aware Kernel Evolution (CAKE)

Require: Budget T , number of crossovers nc, mutation probability pm, population size np

1: Randomly sample n points to form the initial observations D = {(xi, yi)}ni=1
2: Initialize the kernel population K with the set of base kernels
3: for t = 1 to T do
4: Update system prompt with D (see Fig. 2)
5: for c = 1 to nc do
6: Sample two parent kernels k1, k2 from K
7: Generate new kernel kc via crossover (see Fig. 3a)
8: end for
9: if rand() < pm then

10: Select the fittest kernel in K
11: Generate new kernel km via mutation (see Fig. 3b)
12: end if
13: Evaluate the fitnesses and keep the top-np kernels in K
14: Choose the most effective kernel k∗ via BAKER (see Eq. 1)
15: Obtain the next point xt = xt,k∗ and evaluate yt = f(xt)
16: Update the observations as D ← D ∪ {(xt, yt)}
17: end for

function2 as α(x;D, k), which quantifies the utility of evaluating a candidate point x under the model
that kernel k is being used, given the current observations D. Based on this, BAKER computes a
weighted acquisition value for each kernel and selects the kernel k∗ that maximizes this value, i.e.,

k∗ = argmax
k∈K

wkα(xt,k;D, k), (1)

where xt,k denotes the candidate query point proposed by kernel k at iteration t. BAKER allows
us to balance the kernel’s ability to fit the data (as indicated by wk) with the expected improvement
at the proposed query point (as measured by α). Once k∗ is selected, we use the corresponding
kernel to obtain the next query point xt = xt,k∗ , evaluate yt = f(xt), and update the observations as
D ← D ∪ {(xt, yt)}. This iterative process continues until a predefined budget T is exhausted.

4 Related Work

Expressive kernel design. Several methods have been developed to construct more expressive
kernels beyond manual composition of base kernels. One such method involved multiple kernel
learning techniques [4, 19], which aim to identify the optimal kernel configuration by optimizing a
linear or nonlinear combination of base kernels. However, these methods restrict the kernel space and
require prior specification of the kernel hyperparameters. Another approach involved searching for
the optimal kernel structure across a space of kernels [12], but since the space is infinite, efficiently
navigating this space demands modeling expertise. Other works focus on designing flexible kernel
families via spectral approximations [26, 54], or integrating GPs with deep neural networks [55].
While powerful, these approaches either assume stationarity or require complex inference techniques.
In contrast, our method is based on the kernel grammar and in-context learning via LLMs, which
offers a flexible yet computationally feasible approach.

Surrogate modeling in BO. When using GPs as the surrogate model in BO, the kernel is typically
selected a priori based on an expert’s knowledge concerning the problem at hand. Unfortunately, if
there is no prior knowledge available, most BO methods simply use default kernels such as the SE
kernel or the Matérn-5/2 kernel [43]. While this seems reasonable, it has been reported that with poor
or overly general choices of the kernel, BO may converge very slowly [16]. For this reason, deep
GPs have been proposed to help model non-stationary behaviors [21], but at the cost of increased
computational complexity. Other works explore adaptive kernel strategies, such as using discrete
mixtures of GPs [18], maintaining parallel GPs with different kernels [37], or using ensembles of
GP [31]. Recent works have also showed great potential in using LLMs for surrogate modeling in

2We use the expected improvement (EI) as our default acquisition function, normalized to [0, 1] to ensure
comparability across different kernels.

5

BO [29, 11, 59]. We extend this line of research by using LLMs to automatically generate and refine
kernels during the optimization process, enabling a new-fashioned adaptive kernel design.

LLMs as genetic operators. As the model size and amount of training data increase, LLMs exhibit
emergent abilities that significantly improve their performance across diverse tasks [52, 8]. Inspired
by these abilities, recent works have explored using LLMs as genetic operators for generating code
[34], assisting robot simulations [27], and designing neural network architectures [10]. To the best
of our knowledge, the current work is the first to use LLMs as genetic operators for constructing
adaptive and expressive GP kernel design for BO. Compared to the other transformer-based methods
[41], our method can be applied entirely in-context and does not require any fine-tuning.

5 Experiments

To evaluate the performance of our proposed method, we test it against several baselines across
a set of real-world optimization tasks with varying characteristics, including diverse optimization
landscapes, dynamic environments, and multi-objective settings.

Setup. Our experiments were conducted using the software package BoTorch [6] and we used the
expected improvement (EI) as our default acquisition function. For the LLM, we use OpenAI’s
gpt-4o-mini model as it offers an excellent balance between API cost affordability, fast inference
speed, and intelligence for our implementation. We define {SE,PER,LIN,RQ,M3,M5} as our
base kernels and {+,×} as our operators. Moreover, we set the number of crossovers nc = 5,
mutation probability pm = 0.7, and population size np = 10. To facilitate reproducibility, our code
is available online at https://github.com/richardcsuwandi/cake. The shaded regions in all
figures represent the standard error over independent trials. In the interest of space, more experimental
details can be found in Appendix B, and additional results are provided in Appendix C.

Baselines. We compare our proposed method against the following established baselines:

• Fixed: Default method in BO, where we fix the kernel throughout the optimization process.
• Adaptive: An adaptive kernel selection method proposed in [37]. We employ three different

selection criteria to adaptively change the kernel: Random, Utility, and BIC.
• Deep GP: Uses a deep GP (DGP) as the surrogate model, implemented through a functional

composition of stationary GPs [21].
• Ensemble GP: Uses an ensemble of GPs (EGP) to adaptively select the surrogate model

[31]. The kernel dictionary consists of the same six kernels used in CAKE.
• Compositional Kernel Search (CKS): Uses greedy search to discover kernel structures

that best explains the observed data [12].
• Automated BO (ABO): Treats the kernel selection as a “black-box” optimization problem

and uses BO to solve it [32].

5.1 Hyperparameter Optimization

Setup. We consider the hyperparameter optimization tasks available in the HPOBench package
[14]. We included a total of 60 tasks, comprising 12 OpenML datasets and 5 machine learning (ML)
models: logistic regression (LR), support vector machine (SVM), random forest (RF), XGBoost
(XGB), and multi-layer perceptron (MLP). Each model-dataset pair exhibits a unique optimization
landscape, making these tasks an ideal testbed for evaluating the generalization performance of BO
methods across diverse scenarios. Further details regarding the hyperparameter search spaces and
dataset characteristics are provided in Appendix B.3.1. Here, our goal for each task is to maximize
the accuracy of the ML model on the unseen test data. Each experiment was executed for T = 100
trials and repeated using 20 different random seeds.

Results. Figure 4 shows the average test accuracy for different ML models on all datasets. The results
demonstrate that CAKE consistently achieves the highest accuracy compared to the other methods
across all tasks. It is also worth noting that CAKE excels in the earlier stages of the optimization
process, when fewer observations are available. This suggests that CAKE is able to effectively
leverage fewer data samples to quickly converge to high-performing configurations. We provide
a quantitative analysis to support this finding in Appendix C.7. Our results also reveal significant

6

https://github.com/richardcsuwandi/cake

0 40 80

0.68

0.72

0.76

0.80
A

cc
u

ra
cy

(↑
)

LR

0 40 80
0.72

0.76

0.80

0.84

0.88
SVM

0 40 80

0.78

0.81

0.84

0.87

0.90

RF

0 40 80

Trials

0.80

0.84

0.88

0.92

A
cc

u
ra

cy
(↑

)

XGB

0 40 80

Trials

0.78

0.81

0.84

0.87

MLP

SE

M5

Random

Utility

BIC

DGP

EGP

CKS

ABO

CAKE

Figure 4: Average test accuracy over 20 random seeds for different ML models.

variations in performance among fixed and adaptive kernel methods. For instance, M5 and Utility
perform reasonably well in tuning SVM and RF models, but struggle with tuning LR and XGB.
EGP and DGP exhibit moderate performance, often outperforming fixed kernels but falling short
compared to more flexible approaches such as CKS and ABO. Overall, CAKE demonstrates superior
performance consistently across all tasks. Another key advantage of CAKE is that the learned kernel
expressions are also interpretable. In Appendix C.4, we analyze one such expression and show how
CAKE automatically translates it into a natural language description.

5.2 Controller Tuning

Setup. We consider two real-world controller tuning tasks that simulate dynamic environments,
where small changes in the environment condition may result in significantly different outcomes.
For the first task, we consider the robot pushing problem [51], which involves tuning a controller
for two robotic hands to push two objects towards some specified target positions. The controller is
parameterized by d = 14 parameters that determine the position and orientation of the hands, the
pushing speed, direction of movement, and duration of the push. The second task involves tuning
a controller for the lunar lander environment [48], which is defined by d = 12 parameters that
determine how to map the 8-dimensional state vector comprising of position, angle, velocity, and
ground contact indicators, to one of four actions: firing the main engine, left or right orientation
engines, or doing nothing. The goal is to achieve a cumulative reward of at least 200 points, which
corresponds to a successful landing while minimizing penalties from crashes or excessive engine use.
For both tasks, we evaluate the performance using T = 1000 iterations, averaging the results over 10
different initial conditions (e.g., positions, terrains, velocities). We provide more details regarding the
reward functions and environment implementations in Section B.3.2.

Results. The results shown in Figure 5 demonstrate that the controllers optimized by CAKE achieved
the highest average rewards in both tasks. In robot pushing task, CAKE converges to a high-
performing solution much faster than the other methods, highlighting its ability to quickly learn
effective control policies from limited data. On the other hand, we found that fixed kernels like SE
and M5 tend to plateau earlier, while adaptive methods such as Utility and BIC show only moderate

7

0 200 400 600 800 1000

Iteration

0

1

2

3

4

R
ew

ar
d

(↑
)

Robot Pushing

0 200 400 600 800 1000

Iteration

0

60

120

180

240
Target: 200

Lunar Lander

SE

M5

Random

Utility

BIC

DGP

EGP

CKS

ABO

CAKE

Figure 5: Average reward for the controller tuning tasks over 10 different initial conditions.

improvements over the fixed kernels and still lag behind compositional approaches. Notably, ABO is
the only method besides CAKE that is able to reach the target score of 200 points in the lunar landing
task. Despite this, we observed that ABO exhibits greater performance fluctuations compared to
CAKE, especially in more challenging environments. Meanwhile, the remaining methods struggle to
maintain high scores and often incur greater penalties due to crashes or inefficient landings. Overall,
these results show that CAKE’s adaptive nature enables it to effectively respond to changes in
the underlying objective (e.g., environmental shifts), offering greater robustness than fixed-kernel
methods that may fail under such conditions.

5.3 Photonic Chip Design

Setup. We apply our method to the design of photonic chips, which is a challenging problem in
physics and engineering [28]. Due to the high cost of fabrication, it is infeasible to try all, or even a
few, of the design parameters. As a result, one has to rely on extensive computer simulations to assess
the chip’s performance. This makes the task a “black-box” inverse design problem, where the goal
is to optimize the chip parameters to meet some desired performance indicators. We consider five
key indicators for assessing the chip’s performance: Q-factor (f1), wavelength (f2), lasing area (f3),
power (f4), and divergence angle (f5). Based on these performance indicators, we can calculate the
overall score for a given set of parameters: αf1 + βf2 + γf3 + δf4 + ϵf5, where we set α = β = 1,
γ = δ = 100, and ϵ = 20 to unify the scale between different objectives. Our goal is to find a
Pareto-optimal solution that balances the trade-offs among the five competing objectives, thereby
achieving the best overall chip performance. We provide detailed descriptions of each objective and
their physical interpretations in Appendix B.3.3.

Baselines. We consider two widely-used multi-objective BO methods: Single-Task GP, where each
objective is modeled separately using a GP with an M5 kernel, and Additive GP, which models the
overall objective as a sum of independent GPs, each using an SE kernel. We also include CKS and
ABO as compositional kernel baselines to provide a direct comparison against our proposed CAKE
method. For all methods, we set T = 250 with 10 different random initializations and employed the
expected hypervolume improvement (EHVI) [58] as the acquisition function.

Results. Figure 6 shows the score and hypervolume of the chip designed by CAKE and the competing
baselines. Compared to the baselines, CAKE achieved the highest values in both metrics, indicating
superior optimization performance and better exploration of the Pareto front. This likely stems
from its ability to utilize different kernels tailored to individual objectives, unlike the other baselines
that rely on a single or additive kernel shared across all objectives. CAKE also outperforms CKS
and ABO, demonstrating its advantage in handling multi-objective settings. Notably, CAKE found
a solution with a significantly higher score in less than 40 trials, which is equivalent to a tenfold
speedup in the design cycle compared to the baselines. From a practical point-of-view, this level of
acceleration translates to significant reductions in both the time and cost needed to design the chips.

8

0 50 100 150 200 250

Trials

0

80

160

240

320

S
co

re
(↑

)

0 50 100 150 200 250

Trials

0.00

0.25

0.50

0.75

1.00

H
yp

er
vo

lu
m

e
(↑

)

Single-Task GP Additive GP CKS ABO CAKE

Figure 6: Average score and hypervolume of the designed chip over 250 trials.

Table 1: Average rank (↓) ± standard error on HPOBench over 20 random seeds.
Method LR SVM RF XGB MLP Average

Random Sampling 6.8± 0.1 6.9± 0.1 6.7± 0.1 6.8± 0.1 6.8± 0.1 6.80
Genetic Algorithm 2.6± 0.1 2.5± 0.1 2.7± 0.1 2.8± 0.1 2.9± 0.1 2.70
CAKE + BIC 3.0± 0.1 3.1± 0.1 2.9± 0.1 3.0± 0.1 3.1± 0.1 3.02
CAKE + Utility 2.3± 0.1 2.2± 0.1 2.4± 0.1 2.5± 0.1 2.6± 0.1 2.40
Adaptive + BAKER 4.5± 0.1 4.4± 0.1 4.6± 0.1 4.8± 0.1 4.7± 0.1 4.60
CKS + BAKER 3.1± 0.1 3.2± 0.1 3.0± 0.1 3.1± 0.1 3.2± 0.1 3.12
CAKE + BAKER 1.1± 0.1 1.0± 0.1 1.0± 0.1 1.1± 0.1 1.1± 0.1 1.04

5.4 Ablation Study

Setup. To evaluate the influence of each component of our method, we conduct an ablation study with
the following configurations: (1) Random Sampling: randomly combines base kernels using addition
and multiplication, (2) Genetic Algorithm: applies genetic operators on a population of kernels
guided by fitness, (3) CAKE + BIC / CAKE + Utility: CAKE selects kernels based on the fitness
or acquisition value only, (4) Adaptive + BAKER / CKS + BAKER: adaptive or compositional
baselines with BAKER, and (5) CAKE + BAKER: full method with LLM and BAKER. We evaluate
all ablation setups on the full set of 60 tasks in HPOBench.

Results. Table 1 shows that CAKE + BAKER achieves the best overall performance, indicating that
both the LLM and BAKER contribute to the effectiveness of our method. We found that removing
either component leads to performance degradation. For instance, CAKE + BIC and CAKE +
Utility, which only use one selection criterion, perform reasonably well but underperform compared
to CAKE + BAKER. This suggests that while the fitness-based or utility-based kernel selection is
individually effective, combining them with BAKER improves the performance across diverse tasks.
As expected, random sampling performs the worst, suggesting that the LLM generates meaningful
kernel expressions rather than just random combinations. We further support this by analyzing
the evolution of the kernel population’s fitness (see Section 5.5), where we observe a distribution
shift toward higher fitness values after each successive round of LLM edits. Although CKS +
BAKER outperforms Adaptive + BAKER, it still underperforms compared to CAKE + BAKER.
This indicates that while compositional kernels can capture more complex patterns than standard
kernels, they still lack the contextual understanding provided by the LLM.

5.5 Evolution of Population Fitness

To demonstrate the benefits of using LLM for kernel generation, we conduct an experiment analyzing
how the fitness of the kernel population evolves through successive edits by the LLM3. Starting with

3In this context, an LLM edit refers to performing both crossover and mutation operations.

9

L
L

M
R

an
d

om

0.0 0.2 0.4 0.6 0.8 1.0

Fitness

G
A

Initial After 1 edit After 5 edits After 10 edits

Figure 7: Evolution of the kernel population’s fitness over successive edits by LLM, random recombi-
nation, and genetic algorithm (GA).

an initial population of base kernels, we evaluate their fitness scores and then iteratively apply LLM
edits to evolve the population over time. We further compare it with two baselines which replaces
the edit step with random recombination and genetic algorithm (GA) operators. Figure 7 illustrates
the progression of the fitness distributions after 1, 5, and 10 successive edits. The initial population
exhibits a wide distribution of fitness values with a concentration on lower scores, reflecting the
variability in the fitness scores among the base kernels. After just one LLM edit, the distribution
immediately shifts toward higher fitness values, indicating that the LLM effectively enhances the
population through both crossover and mutation. As more LLM edits are applied, the mean fitness
continues to increase, and the variance narrows, indicating consistent improvement and convergence
toward high-performing kernels. In contrast, Random and GA show slower convergence, with their
fitness distributions remaining broader and less sharply peaked over the same number of edits. in
driving population fitness upward. Overall, these results demonstrate that not only LLMs can serve
as effective genetic operators, but also outperform those produced by random recombination and
traditional GA operators.

6 Conclusion

We introduced CAKE, a novel kernel design method that leverages LLMs as crossover and mu-
tation operators to enable adaptive surrogate modeling in BO. To complement CAKE, we further
propose BAKER to address the issue where kernels with good model fit may not lead to substan-
tial improvement towards the optimization progress. Experimental results have shown that CAKE
achieved superior accuracy across all of the hyperparameter optimization tasks, particularly excelling
in the early stages when the observations are scarce. In the dynamic controller tuning tasks, CAKE
consistently obtained the highest average rewards and showed strong adaptability under varying
environmental conditions. In the photonic chip design problem, CAKE demonstrated its ability to
effectively balance multiple conflicting objectives while achieving significant speedup over baseline
methods. While the current work focuses on BO, our broader goal is to develop a universal adaptive
kernel method that is applicable to various ML tasks. We refer the readers to Appendix D for further
discussions on the limitations and directions for future work.

10

Acknowledgements

This work was supported in part by the NSFC under Grant 62271433, in part by Shenzhen Science
and Technology Program under Grant RCJC20210609104448114 and ZDSYS20230626091302006,
and in part by the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese
University of Hong Kong, Shenzhen.

References
[1] Aglietti, V., Ktena, I., Schrouff, J., Sgouritsa, E., Ruiz, F. J. R., Malek, A., Bellot, A., and Chi-

appa, S. FunBO: Discovering acquisition functions for Bayesian optimization with FunSearch.
arXiv preprint arXiv:2406.04824, 2024.

[2] Ament, S., Daulton, S., Eriksson, D., Balandat, M., and Bakshy, E. Unexpected improvements to
expected improvement for Bayesian optimization. Advances in Neural Information Processing
Systems, 36, 2023.

[3] Arango, S. P., Jomaa, H. S., Wistuba, M., and Grabocka, J. HPO-B: A large-scale reproducible
benchmark for black-box HPO based on OpenML. In Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

[4] Bach, F. Exploring large feature spaces with hierarchical multiple kernel learning. arXiv
preprint arXiv:0809.1493, 2008.

[5] Bach, F. Learning theory from first principles. MIT Press, 2024.

[6] Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E.
BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. Advances in Neural
Information Processing Systems, 33, 2020.

[7] Bitzer, M., Meister, M., and Zimmer, C. Structural kernel search via Bayesian optimization
and symbolical optimal transport. Advances in Neural Information Processing Systems, 35:
39047–39058, 2022.

[8] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in
Neural Information Processing Systems, 33, 2020.

[9] Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P. Bayesian optimization for learning
gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):5–23, 2016.
ISSN 1573-7470.

[10] Chen, A., Dohan, D., and So, D. EvoPrompting: Language models for code-level neural
architecture search. Advances in Neural Information Processing Systems, 36, 2024.

[11] Chen, G., Zhu, K., Kim, S., Zhu, H., Lai, Y., Yu, B., and Pan, D. Z. LLM-enhanced Bayesian
optimization for efficient analog layout constraint generation. arXiv preprint arXiv:2406.05250,
2024.

[12] Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. Structure discovery in
nonparametric regression through compositional kernel search. In International Conference on
Machine Learning, pp. 1166–1174. PMLR, 2013.

[13] Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.,
et al. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters.
In NIPS Workshop on Bayesian Optimization in Theory and Practice, volume 10, pp. 1–5, 2013.

[14] Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer,
M., and Hutter, F. HPOBench: A collection of reproducible multi-fidelity benchmark problems
for HPO. In Neural Information Processing Systems Datasets and Benchmarks Track, 2021.

[15] Frazier, P. I. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

11

[16] Gardner, J., Guo, C., Weinberger, K., Garnett, R., and Grosse, R. Discovering and exploiting
additive structure for Bayesian optimization. In Artificial Intelligence and Statistics, pp. 1311–
1319. PMLR, 2017.

[17] Garnett, R. Bayesian optimization. Cambridge University Press, 2023.

[18] Ginsbourger, D., Helbert, C., and Carraro, L. Discrete mixtures of kernels for kriging-based
optimization. Quality and Reliability Engineering International, 24(6):681–691, 2008.

[19] Gönen, M. and Alpaydin, E. Multiple kernel learning algorithms. Journal of Machine Learning
Research, 12(64):2211–2268, 2011.

[20] Han, C., Wang, Z., Zhao, H., and Ji, H. Explaining emergent in-context learning as kernel
regression. arXiv preprint arXiv:2305.12766, 2023.

[21] Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. Bayesian optimization
using deep Gaussian processes with applications to aerospace system design. Optimization and
Engineering, 22:321–361, 2021.

[22] Holland, J. H. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992.

[23] Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[24] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are
zero-shot reasoners. Advances in Neural Information Processing Systems, 35, 2022.

[25] Korovina, K., Xu, S., Kandasamy, K., Neiswanger, W., Poczos, B., Schneider, J., and Xing, E. P.
ChemBO: Bayesian optimization of small organic molecules with synthesizable recommenda-
tions. arXiv preprint arXiv:1908.01425, 2019.

[26] Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen, C. E., and Figueiras-Vidal, A. R.
Sparse spectrum Gaussian process regression. The Journal of Machine Learning Research, 11:
1865–1881, 2010.

[27] Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., and Stanley, K. O. Evolution through
large models. In Handbook of Evolutionary Machine Learning, pp. 331–366. Springer, 2023.

[28] Li, R., Zhang, C., Xie, W., Gong, Y., Ding, F., Dai, H., Chen, Z., Yin, F., and Zhang, Z.
Deep reinforcement learning empowers automated inverse design and optimization of photonic
crystals for nanoscale laser cavities. Nanophotonics, 12(2):319–334, 2023.

[29] Liu, T., Astorga, N., Seedat, N., and van der Schaar, M. Large language models to enhance
Bayesian optimization. In International Conference on Learning Representations, 2024.

[30] Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B., and Ghahramani, Z. Automatic
construction and natural-language description of nonparametric regression models. arXiv
preprint arXiv:1402.4304, 2014.

[31] Lu, Q., Polyzos, K. D., Li, B., and Giannakis, G. B. Surrogate modeling for Bayesian optimiza-
tion beyond a single Gaussian process. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(9):11283–11296, 2023.

[32] Malkomes, G. and Garnett, R. Automating Bayesian optimization with Bayesian optimization.
Advances in Neural Information Processing Systems, 31, 2018.

[33] Martinez-Cantin, R. Bayesian optimization with adaptive kernels for robot control. In IEEE
International Conference on Robotics and Automation, pp. 3350–3356, 2017.

[34] Meyerson, E., Nelson, M. J., Bradley, H., Gaier, A., Moradi, A., Hoover, A. K., and
Lehman, J. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2024.

[35] Murphy, K. P. Probabilistic machine learning: An introduction. MIT Press, 2022.

12

[36] Rasmussen, C. E. and Williams, C. K. I. Gaussian processes for machine learning. MIT Press,
Cambridge, Mass, 2006.

[37] Roman, I., Santana, R., Mendiburu, A., and Lozano, J. A. An experimental study in adaptive
kernel selection for Bayesian optimization. IEEE Access, 7:184294–184302, 2019. doi:
10.1109/ACCESS.2019.2960498.

[38] Salimbeni, H. and Deisenroth, M. Doubly stochastic variational inference for deep Gaussian
processes. Advances in Neural Information Processing Systems, 30, 2017.

[39] Schwarz, G. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

[40] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. Taking the human out of
the loop: A review of Bayesian optimization. IEEE, 104(1):148–175, 2016.

[41] Simpson, F., Davies, I., Lalchand, V., Vullo, A., Durrande, N., and Rasmussen, C. E. Kernel
identification through transformers. Advances in Neural Information Processing Systems, 34:
10483–10495, 2021.

[42] Smola, A. J. and Schölkopf, B. Learning with kernels, volume 4. Citeseer, 1998.

[43] Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian optimization of machine learning
algorithms. arXiv preprint arXiv:1206.2944, 2012.

[44] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W. Information-theoretic regret bounds
for Gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, 2012.

[45] Surjanovic, S. and Bingham, D. Virtual library of simulation experiments: Test functions and
datasets. URL http://www.sfu.ca/~ssurjano, 2013.

[46] Theodoridis, S. Machine learning: From the classics to deep networks, transformers, and
diffusion models. Elsevier, 2024.

[47] Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[48] Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulao, M.,
Kallinteris, A., Krimmel, M., KG, A., et al. Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032, 2024.

[49] Tripp, A. and Hernández-Lobato, J. M. Diagnosing and fixing common problems in Bayesian
optimization for molecule design. arXiv preprint arXiv:2406.07709, 2024.

[50] Wang, X., Jin, Y., Schmitt, S., and Olhofer, M. Recent advances in Bayesian optimization. ACM
Computing Surveys, 55(13s), 2023.

[51] Wang, Z., Gehring, C., Kohli, P., and Jegelka, S. Batched large-scale Bayesian optimization in
high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics,
pp. 745–754. PMLR, 2018.

[52] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma,
M., Zhou, D., Metzler, D., et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022.

[53] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837, 2022.

[54] Wilson, A. G. and Adams, R. P. Gaussian process kernels for pattern discovery and extrapolation.
In International Conference on Machine Learning, pp. 1067–1075, 2013.

[55] Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. Deep kernel learning. In International
Conference on Artificial Intelligence and Statistics, volume 51, pp. 370–378, 2016.

13

http://www.sfu.ca/~ssurjano

[56] Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An explanation of in-context learning as
implicit Bayesian inference. arXiv preprint arXiv:2111.02080, 2022.

[57] Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. Large language models
as optimizers. In International Conference on Learning Representations, 2024.

[58] Yang, K., Emmerich, M., Deutz, A., and Bäck, T. Multi-objective Bayesian global optimization
using expected hypervolume improvement gradient. Swarm and Evolutionary Computation, 44:
945–956, 2019.

[59] Yang, Z., Ge, L., Han, D., Fu, T., and Li, Y. Reasoning BO: Enhancing Bayesian optimization
with long-context reasoning power of LLMs. arXiv preprint arXiv:2505.12833, 2025.

[60] Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. Large lan-
guage models are human-level prompt engineers. In International Conference on Learning
Representations, 2023.

14

A Mathematical Details

A.1 Bayesian Optimization with Gaussian Processes

A Gaussian process (GP) describes a collection of random variables, any finite number of which have a
joint Gaussian distribution [36]. Mathematically, a GP can be expressed as, GP (m(x), kθ(x,x

′;θ)),
where m(x) is the mean function and kθ(x,x

′;θ) is the covariance (kernel) function parameterized
by some hyperparameters θ. Given any finite collection of inputs X = x1:t, the outputs are jointly
Gaussian,

f(X) ∼ N (mX,K(X,X;θ)) , (2)
where mX = m(X) ∈ Rt is the mean function vector evaluated at X, often assumed to be 0 in
practice, and K(X,X;θ) ∈ Rt×t is the covariance matrix with entries [K(X,X;θ)]i,j = kθ(xi,xj).
We assume that the evaluations of f at any point xt are corrupted by a σ-sub-Gaussian noise [5],

yt = f(xt) + ϵt, (3)

where ϵt ∼ N (0, σ2
ϵ). Given the observed data Dt = {X,y}, where y = y1:t, the joint Gaussian

distribution of the observed data and an arbitrary query point x is:[
y

f(x)

]
∼ N

(
0,

[
Kt;θ + σ2

ϵ I kt;θ(x)
k⊤
t;θ(x) kθ(x,x)

])
, (4)

where Kt;θ = K(X,X;θ) and kt;θ(x) = kθ(X,x). It follows that, the posterior distribution of any
query point x is marginally Gaussian,

f(x)|Dt;θ ∼ N (µt(x;θ), σ
2
t (x;θ)), (5)

where
µt(x;θ) = E[f(x)|Dt] = k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1y, (6a)

σ2
t (x;θ) = E[f(x)f(x)|Dt] = kθ(x,x)− k⊤

t,θ(x)(Kt;θ + σ2
ϵ I)

−1kt,θ(x). (6b)

Based on the above posterior distribution, the acquisition function the use its statistics to trade-off
exploitation (where µt(x;θ) is high) and exploration (where σ2

t (x;θ) is high) effectively. Among the
various acquisition functions proposed, expected improvement (EI) [23] remains the default choice in
many BO applications [43]. Let us define µ+

θ = maxx∈X µt(x;θ) as the best mean value. The EI
acquisition function can then be expressed in closed form as:

α(x;Dt) = E[max{0, f(x)− µ+
θ }] = σt(x;θ)[uΦ(u) + ϕ(u)], (7)

where u = (µt(x;θ) − µ+
θ)/σt(x;θ), and ϕ(·) and Φ(·) are the standard normal density and

cumulative distribution functions, respectively.

A.2 Model Selection

We conduct model selection over a discrete, infinite space of kernelsK = {k1, k2, . . .}. As each kernel
comes with its own hyperparameters, we are actually dealing with a space of kernel families. Thus,
when referring to a kernel k, we consider the whole family over its hyperparameters {kθ |θ ∈ Θ}.
Given some model selection criteria h : K → R, our goal is to identify the optimal kernel,

k∗ = argmax
k∈K

h(k | D). (8)

A commonly-used criterion for probabilistic models, such as GPs, is the marginal log-likelihood [46],

h(k | D) = log p(y |X, k) = log

∫
p(y |X,θ, k)p(θ)dθ. (9)

Unfortunately, the above likelihood is generally intractable for GPs [36], so we resort to the Laplace
approximation [35],

log p(y |X, k) ≈ log p(y |X, θ̂, k) + log p(θ̂)− 1

2
log detΣ−1 +

dθ
2

log 2π (10)

where θ̂ denotes the maximum a posteriori (MAP) estimate of the hyperparameters with dθ being
its dimension. The term Σ−1 = −∇2 log p(θ | D, k)|θ=θ̂ represents the Hessian matrix evaluated
at the MAP estimate. Note that Eq. (10) can be interpreted as rewarding model fit while penalizing
model complexity. In this work, we use the Bayesian Information Criterion (BIC) [39], which was
also previously employed in [12] and can be seen as an approximation of the Laplace method.

15

1 5 10 15 20 25 30

Generation

0.0

0.2

0.4

0.6

0.8

1.0

F
it

n
es

s
(↑

)

nc = 1

nc = 3

nc = 5

nc = 7

nc = 10

(a) Number of crossovers.

1 5 10 15 20 25 30

Generation

0.0

0.2

0.4

0.6

0.8

1.0

F
it

n
es

s
(↑

)

pm = 0.1

pm = 0.3

pm = 0.5

pm = 0.7

pm = 0.9

(b) Mutation probability.

1 5 10 15 20 25 30

Generation

0.0

0.2

0.4

0.6

0.8

1.0

F
it

n
es

s
(↑

)

np = 5

np = 8

np = 10

np = 15

np = 20

(c) Population size.

Figure 8: Average fitness (↑) with respect to different CAKE setup. The error bars indicate the
standard errors.

B Experimental Details

In this section, we provide additional details on the implementation, baselines, and benchmarks
employed in our experiments.

B.1 Implementation

As described in Algorithm 1, CAKE depends on three key parameters: the number of crossovers nc,
the mutation probability pm, and the population size np. To evaluate the impact of these parameters,
we conduct a sensitivity analysis in Fig. 8, which shows the average fitness of the population over
generations under different settings. Below, we provide some intuition for setting these parameters.

Number of crossovers. The number of crossovers determines how many new candidate kernels
are generated via crossover in each iteration. A higher value of nc can accelerate the exploration
of diverse kernel combinations but increases the number of API calls to the LLM, which may be
costly. In our experiments, we found that setting nc = 5 offers a good balance between exploration
and efficiency.

Mutation probability. Each mutation operation introduces local variations to existing kernels in the
population, which may help to refine solutions and escape local optima. The mutation probability
controls the likelihood of applying a mutation operation during each iteration. A higher pm promotes
greater diversity and prevents premature convergence, especially when the top-performing kernels
become similar. However, excessively high mutation rates risk disrupting promising kernel structures
before they can be fully explored. Based on our experiments, we set pm = 0.7 to maintain a balance
between sufficient exploration and stable evolution.

Population size. The population size dictates how many candidate kernels evolve simultaneously. A
larger np enhances diversity in the search space and supports more thorough exploration, but also
increases computational cost due to repeated GP model fitting for each kernel. Conversely, a smaller
np may lead to premature convergence or insufficient sampling of the kernel space. Empirically, we
found that setting np = 10 maintains a diverse yet computationally manageable population.

B.2 Baselines

To test our proposed method, we consider three categories of baseline methods: fixed, adaptive, and
compositional approaches.

B.2.1 Fixed

For the fixed kernel-based baselines, we consider the following widely-used kernels in BO, along
with their respective hyperpriors:

16

1. Squared Exponential (SE):

k(x, x′) = σ2 exp

(
− (x− x′)2

2l2

)
, (11)

where l is the lengthscale parameter and σ is the amplitude parameter. The hyperpriors are:

l ∼ Gamma(2.0, 2.0), (12a)

σ2 ∼ Gamma(2.0, 3.0). (12b)

2. Periodic (PER):

k(x, x′) = σ2 exp

(
− sin2 (π|x− x′|/p)

l2

)
, (13)

where l is the lengthscale parameter, p is the period length, and σ is the amplitude parameter.
The hyperpriors are:

l ∼ Gamma(2.0, 2.0), (14a)

σ2 ∼ Gamma(2.0, 3.0), (14b)
p ∼ Gamma(2.0, 2.0). (14c)

3. Linear (LIN):
k(x, x′) = σ2xx′ + σ2

c , (15)

where σ2 is the variance parameter, σ2
c is the noise variance. The hyperpriors are:

σ2 ∼ Gamma(2.0, 3.0), (16a)

σ2
c ∼ Gamma(2.0, 3.0). (16b)

4. Rational Quadratic (RQ):

k(x, x′) = σ2

(
1 +

(x− x′)2

2αl2

)−α

, (17)

where l is the lengthscale parameter, α is the relative weighting parameter, and σ is the
amplitude parameter. The hyperpriors are:

l ∼ Gamma(2.0, 2.0), (18a)

σ2 ∼ Gamma(2.0, 3.0), (18b)
α ∼ Gamma(2.0, 2.0). (18c)

5. Matérn:

k(x, x′) = σ2 2
1−ν

Γ(ν)

(√
2νD

)ν

Kν

(√
2νD

)
, (19)

where

D =
(x− x′)2

l2
(20)

is the distance between x and x′ scaled by the lengthscale parameter, Kν is the modified
Bessel function, and σ is the amplitude parameter. In our experiments, the smoothness
parameter ν is set to 1/2, 3/2, or 5/2, corresponding to Matérn-1/2 (M1), Matérn-3/2
(M3), or Matérn-5/2 (M5) respectively. The hyperpriors are:

l ∼ Gamma(2.0, 2.0), (21a)

σ2 ∼ Gamma(2.0, 3.0). (21b)

Note that all the above kernels are defined on R and are applied to input dimension i when indicated
by the base kernel symbol, e.g., SEi denotes SE kernel is applied to the i-th dimension.

17

Table 2: Details of the OpenML datasets used in the experiments. More information can be found at
https://www.openml.org.

Dataset Task ID Number of Instances Number of Features

credit_g 31 1000 21
vehicle 53 846 19
kc1 2109 2109 22
phoneme 9952 5404 6
blood_transfusion 10101 748 5
australian 146818 690 15
car 146821 1728 7
segment 146822 2310 20
heart_h 50 294 14
tic_tac_toe 145804 958 10
kr_vs_kp 3 3196 37
qsar 9957 1055 42

B.2.2 Adaptive

For the adaptive kernel-based baselines, we adopt the implementation from Roman et al. [37] and
apply the following selection criteria:

1. Random: This criterion selects a kernel randomly from the set of available kernels.
2. Utility: Based on the proposed query points from each kernel, this criterion selects the

kernel with the highest utility (acquisition) value:

k∗ = argmax
k∈K

α(xt,k;D, k). (22)

3. BIC: This criterion selects the kernel with the lowest BIC value:

k∗ = argmin
k∈K

BIC(k;D). (23)

B.2.3 Compositional

For the compositional kernel-based baselines, we consider the following methods:

1. Deep GP. For the deep GP baseline, we use the DeepGP implementation from GPyTorch,
where training and inference are conducted using the doubly stochastic variational inference
method [38].

2. Ensemble GP. For the ensemble GP baseline, we follow the implementation suggested by
Lu et al. [31], using the six base kernels used in CAKE to form the kernel dictionary.

3. Compositional Kernel Search (CKS). For the CKS baseline, we start from the same base
kernels used in CAKE and apply greedy search to search for the kernel structures [12].

4. Automated BO (ABO) For the ABO baseline, we use the code provided by the authors at
https://github.com/gustavomalkomes/abo and follow the setup suggested in [32].

B.3 Benchmarks

All experiments on the benchmarks were conducted locally on a consumer-grade laptop4, except
for the photonic chip design experiment in Section 5.3, which was executed on a high-performance
computing (HPC) cluster due to the computational demands of the physics-based simulation.

B.3.1 Hyperparameter Optimization

Datasets. We include 12 OpenML datasets available in the HPOBench package [14]. The details of
the selected datasets are given in Table 2.

4MacBook Air M2 (2022) with an 8-core CPU, 8-core GPU, 8 GB unified memory, and 256 GB SSD storage.

18

https://www.openml.org
https://github.com/gustavomalkomes/abo

Search space. We follow the search space designated in HPOBench, where we discretize the
search space to facilitate efficient tabular lookup operations for various configurations [13]. Each
hyperparameter is defined by its type (linear or log scale), along with lower and upper bounds. For
example, [log, 0.001, 1.0] indicates that the hyperparameter values are sampled on a logarithmic
scale between 0.001 and 1.0. In contrast, [linear, 0.0, 1.0] implies uniform sampling over the
interval [0.0, 1.0]. The search space for each ML model is summarized as follows:

• Logistic Regression (d = 2)
– alpha: Regularization strength, [log, 0.001, 1.0]
– eta0: Initial learning rate, [log, 0.001, 1.0]

• Support Vector Machine (SVM) (d = 2)
– C: Inverse of regularization strength, [log, 0.01, 10.0]
– gamma: RBF kernel coefficient, [log, 0.001, 1.0]

• Random Forest (d = 4)
– max_depth: Maximum depth of each tree, [log, 1, 50]
– max_features: Number of features to consider when looking for the best split,
[linear, 0.0, 1.0]

– min_samples_leaf: Minimum number of samples required to be at a leaf node,
[linear, 1, 2]

– min_samples_split: Minimum number of samples required to split an internal node,
[log, 2, 128]

• XGBoost (d = 4)
– colsample_bytree: Fraction of features to use per tree, [linear, 0.1, 1.0]
– eta: Learning rate that controls the contribution of each tree to the final prediction,
[log, 0.001, 1.0]

– max_depth: Maximum depth of a tree, [log, 1, 50]
– reg_lambda: L2 regularization term on weights, [log, 0.1, 10.0]

• Multi-Layer Perceptron (MLP) (d = 5)
– alpha: L2 penalty (regularization term) coefficient, [log, 0.001, 1.0]
– batch_size: Number of training examples used in one forward/backward pass, [log,
16, 128]

– depth: Number of hidden layers in the neural network, [linear, 1, 3]
– learning_rate_init: Initial learning rate for weight updates, [log, 0.001, 1.0]
– width: Number of neurons in each hidden layer, [log, 16, 128]

B.3.2 Controller Tuning

Robot pushing. The reward function is defined as: f(x) = −∑2
i=1 |xgi − xsi| − |xgi − xfi|,

where xsi represents the starting positions of the objects, xfi denotes their final positions, and
xgi indicates the goal. The objective is to minimize the total distance from the initial and final
positions of the objects to their respective goals, thereby maximizing the reward. We use the original
code provided by Wang et al. [51], which is available online at https://github.com/zi-w/
Ensemble-Bayesian-Optimization.

Lunar lander. The reward system includes +100 points for a successful landing, -100 points for a
crash, +10 points per frame for each leg in contact with the ground, -0.3 points per frame for firing
the main engine, and -0.03 points per frame for firing side engines. We implement the lunar lander
environment using the code from https://github.com/Farama-Foundation/Gymnasium.

B.3.3 Photonic Chip Design

Objective. The design parameters and indicators for optimizing the photonic chip are detailed in
Figure 9. We established target values based on our experiments and a literature review to identify
optimal standards for a high-quality chip [28]. For instance, a wavelength of 1310 nm is crucial for
telecommunications and satellite applications, while high output power is essential for fields such as

19

https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://github.com/Farama-Foundation/Gymnasium

Figure 9: Illustration of a photonic chip and its design parameters. The inverse design problem
focuses on optimizing these parameters to satisfy certain performance indicators.

Table 3: Details of the test functions used in the experiments.
Function Domain d

Ackley-d [−5, 5]d 2, 5
Beale [−1, 1]2 2
Branin [−5, 10]2 2
Dropwave [−5.12, 5.12]2 2
Eggholder [−512, 512]2 2
Griewank-d [−600, 600]d 2, 5
Hartmann [0, 1]3 3
Levy [−10, 10]d 2, 3
Rastringin-d [−5.12, 5.12]d 2, 4
Rosenbrock [−5, 10]2 2
Six-Hump Camel [−3, 3]× [−2, 2] 2

autonomous driving and medicine. Additionally, a small divergence angle is vital for ensuring high
beam quality and effective long-distance light propagation. Based on these performance indicators,
we can define the objectives as follows,

f1 = 1− Q∗ −Q

Q∗ , (24a)

f2 = 1− |λ
∗ − λ|
λ∗ , (24b)

f3 = 1− A∗ −A

A∗ , (24c)

f4 = 1− P ∗ − P

P ∗ , (24d)

f5 = 1 +
ω∗ − ω

ω∗ . (24e)

Q-factor (f1) is related to the loss and threshold of the laser, wavelength (f2) is the operation
wavelength of the laser, lasing area (f3) is the area of the laser beam at the laser’s top surface, power
(f4) is the lasing power of the laser in watts, and divergence angle (f5) is the angle between outer
boundary and centerline of the laser beam.

B.4 Prompt Design

Our prompts are designed based on three core components:

• Problem Context: The optimization history, including the observed input-output pairs and
corresponding fitness scores, provided as in-context examples to guide kernel evolution.

20

(a) Ackley-2 (b) Beale (c) Branin (d) Dropwave

(e) Eggholder (f) Griewank-2 (g) Levy-2 (h) Rosenbrock

(i) Rastrigin-2 (j) Six-Hump Camel

Figure 10: Visualization of the optimization landscapes of two-dimensional test functions.

Full No Reasoning No Context No Instruct
0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy
(↑

)

Figure 11: Ablation of prompt components on HPOBench averaged over 20 different random seeds.

• Task Instruction: The role assignment and explicit guidelines on how to generate valid
kernels using the kernel grammar during crossover and mutation operations.

• Reasoning: A phrase asking the LLM to provide a brief natural language explanation for
each proposed kernel.

To evaluate the contribution of each component, we conduct an ablation study with the following
configurations:

• Full: This is the vanilla CAKE setup employed in our experiments, incorporating all three
components.

• No Context: This variant evaluates the importance of problem context by removing the
optimization history (i.e., the observations and fitness values), while keeping the other
components.

21

Table 4: Average normalized regret (↓) over 20 random seeds for different test functions and methods.
The values in parentheses indicate the standard errors. The best value is highlighted in bold and the
second best value is underlined.

Function Fixed Adaptive Compositional

SE M5 Random Utility BIC DGP EGP CKS ABO CAKE

Ackley-2 0.1773
(0.0232)

0.1220
(0.0262)

0.1358
(0.0210)

0.1062
(0.0165)

0.1863
(0.0187)

0.2510
(0.0357)

0.1878
(0.0196)

0.1012
(0.0177)

0.1020
(0.0195)

0.0783
(0.0203)

Ackley-5 0.3185
(0.0117)

0.2369
(0.0184)

0.1722
(0.0145)

0.2278
(0.0171)

0.3590
(0.0338)

0.3110
(0.0215)

0.2285
(0.0139)

0.1812
(0.0856)

0.1910
(0.0188)

0.1732
(0.0250)

Beale 0.3554
(0.0845)

0.3522
(0.1006)

0.3855
(0.0775)

0.4410
(0.0989)

0.3571
(0.0806)

0.4775
(0.0958)

0.3088
(0.0898)

0.4040
(0.0712)

0.3118
(0.0733)

0.2565
(0.0786)

Branin 0.0183
(0.0080)

0.0155
(0.0037)

0.0227
(0.0106)

0.0372
(0.0107)

0.0371
(0.0152)

0.4810
(0.1017)

0.2045
(0.0725)

0.0301
(0.0122)

0.0101
(0.0478)

0.0070
(0.0534)

Dropwave 0.5110
(0.0568)

0.5411
(0.0523)

0.5460
(0.0698)

0.5265
(0.0622)

0.5461
(0.0750)

0.5560
(0.0531)

0.6290
(0.0651)

0.5788
(0.0669)

0.5529
(0.0611)

0.4690
(0.0538)

Eggholder 0.4941
(0.0602)

0.3545
(0.0452)

0.4015
(0.0416)

0.4855
(0.0527)

0.5485
(0.0749)

0.4535
(0.0615)

0.4345
(0.0497)

0.4536
(0.0533)

0.4210
(0.0516)

0.1241
(0.0541)

Griewank-2 0.1196
(0.0692)

0.1282
(0.0687)

0.1295
(0.0686)

0.1310
(0.0685)

0.1272
(0.0686)

0.1156
(0.0297)

0.0935
(0.0248)

0.0589
(0.0686)

0.0357
(0.0244)

0.0267
(0.0256)

Griewank-5 0.0204
(0.0032)

0.0223
(0.0059)

0.0232
(0.0051)

0.0178
(0.0033)

0.0281
(0.0096)

0.0815
(0.0171)

0.0478
(0.0110)

0.0258
(0.0076)

0.0320
(0.0125)

0.0185
(0.0133)

Hartmann 0.0007
(0.0001)

0.0019
(0.0011)

0.0021
(0.0009)

0.0358
(0.0159)

0.6800
(0.0734)

0.1305
(0.0441)

0.1780
(0.0402)

0.0001
(0.0611)

0.0001
(0.0544)

0.0001
(0.0529)

Levy-2 0.1562
(0.0684)

0.0418
(0.0227)

0.0835
(0.0460)

0.0555
(0.0060)

0.1145
(0.0666)

0.1965
(0.0326)

0.0765
(0.0198)

0.0668
(0.0431)

0.0519
(0.0187)

0.0353
(0.0197)

Levy-3 0.1141
(0.0209)

0.1422
(0.0403)

0.1495
(0.0290)

0.0880
(0.0159)

0.1125
(0.0230)

0.2265
(0.0511)

0.0805
(0.0173)

0.0580
(0.0194)

0.0590
(0.0181)

0.0505
(0.0190)

Rastringin-2 0.4325
(0.0571)

0.4251
(0.0765)

0.5310
(0.0613)

0.3455
(0.0442)

0.4490
(0.0632)

0.5405
(0.0751)

0.3869
(0.0338)

0.3722
(0.0588)

0.3420
(0.0397)

0.3341
(0.0468)

Rastringin-4 0.5765
(0.0482)

0.5461
(0.0671)

0.4815
(0.0400)

0.5905
(0.0509)

0.5200
(0.0529)

0.5340
(0.0475)

0.3270
(0.0329)

0.3285
(0.0511)

0.3179
(0.0375)

0.3128
(0.0499)

Rosenbrock 0.1025
(0.0476)

0.0898
(0.0510)

0.1015
(0.0573)

0.1405
(0.0695)

0.1475
(0.0688)

0.5340
(0.1101)

0.6040
(0.0971)

0.0907
(0.0686)

0.0901
(0.0907)

0.0483
(0.0531)

Six-Hump Camel 0.2840
(0.0856)

0.1507
(0.0459)

0.3455
(0.1014)

0.3310
(0.0760)

0.3265
(0.0786)

0.4940
(0.0854)

0.5345
(0.0528)

0.1071
(0.0771)

0.1002
(0.0563)

0.1015
(0.0669)

Mean regret 0.2454 0.2111 0.2341 0.2373 0.3026 0.3589 0.2881 0.1905 0.1745 0.1357
Median regret 0.1773 0.1422 0.1495 0.1405 0.3265 0.4535 0.2285 0.1012 0.1002 0.0783

• No Instruct: This variant excludes task instructions and omits the explicit kernel generation
guidelines (i.e., how to perform the crossover and mutation operators), while keeping the
other components.

• No Reasoning: Thus variant removes the requirement for the LLM to explain its reasoning,
producing only the kernel expression.

We evaluate all variants on the HPOBench benchmark, as detailed in Section 5.1. The results,
summarized in Figure 11, demonstrate that the full CAKE setup consistently outperforms all ablated
variants, underscoring the importance of each prompt component in achieving superior optimization
performance. The No Reasoning experience a slight degradation in performance, which suggests that
the reasoning prompt not only serves to enhance interpretability, but also as a form of self-reflection
that helps the LLM evaluate and refine its own proposals. In contrast, the No Context variant performs
significantly worse, demonstrating that access to optimization history (i.e., observed data points
and kernel fitness values) is crucial and that the LLM effectively leverages this information. The
No Instruct variant performed the worst compared to the other variants. To understand this drop,
we examined the percentage of valid kernels, defined as the proportion of kernels that satisfy the
kernel properties. We found that the No Instruct variant generated valid kernels only 68% of the
time, while the other variants consistently produced valid kernels. This is due to the absence of
the generation guidelines from the kernel grammar, which underscores its importance in the kernel
generation process. Overall, these results strongly support the design choice of our prompts.

C Additional Results

In this section, we provide additional results and empirical analysis on our proposed method.

22

Table 5: Average computational time (↓) in seconds per iteration for different methods.
Method Time (s) Main Bottleneck

Fixed 0.6 Single GP fitting
Adaptive 3.7 Multiple GP fitting & kernel selection
EGP 3.9 Multiple GP fitting & weight update
Deep GP 4.8 Variational inference
CKS 5.6 Multiple GP fitting & greedy search
ABO 7.4 Multiple GP fitting & nested BO loop
CAKE 8.3 Multiple GP fitting & LLM inference

C.1 Benchmark Function Optimization

Setup. We consider optimizing a set of test functions commonly used as benchmark for optimization
[45]. We provide additional details on the selected test functions5, including the input domain and
dimensionality, in Table 3. We visualize the optimization landscapes of the two-dimensional test
functions in Figure 10. From the figure, one can see the challenging nature of these functions,
characterized by non-convexity, many local minima, and steep ridges. The goal is to find the global
minimum of each test function, where the maximum number of function evaluations is limited to 10
times the dimensionality of the function input, i.e., T = 10× d. To evaluate the performance of each
method, we consider the normalized regret [3]:

f(xopt)− f(xbest)

f(xopt)− f(xinit)
, (25)

where f(xinit) is the best function value among the initial points, f(xbest) is the best value found
by the method, and f(xopt)is the ground truth optimum. This metric is favorable as it provides a
normalized and task-agnostic measure to compare the optimization performance across different
tasks.

Results. Table 4 shows the normalized regret averaged over 20 seeds for different functions and
methods. Our results demonstrate that CAKE outperforms the baselines, achieving roughly a 22.2%
improvement in the mean regret and a 21.9% improvement in the median regret compared to the
second-best method. Notably, CAKE ranks among the top two for all functions and achieves the best
performance 12 times out of 15. Our results also reveal that fixed kernels such as SE and M5, which
are the default in BO, are not universally effective and actually perform poorly in many test functions.
We also found that adaptive methods exhibit inconsistent performance and generally underperform
compared to the compositional approaches like ABO.

C.2 Computational Time

Table 5 shows the average clock time per iteration for different BO methods. Note that we only
measure the time spent on surrogate model computation, not including the black-box function
evaluations. In CAKE, we use OpenAI’s gpt-4o-mini as the LLM. Based on our measurements,
it processes about 104.5 tokens per second. Each LLM call, including both the input prompt
and output response, uses around 180 tokens. This results in an inference time of approximately
180/104.5 = 1.72 seconds per call. Each iteration of CAKE also involves fitting GP models for all
kernels in the current population. Our experiments show that fitting one GP takes about 0.5 seconds.
Therefore, fitting multiple GPs per iteration adds about 3–5 seconds to the total runtime. Other
adaptive and compositional kernel methods that maintain multiple GP models also experience similar
computational costs. However, methods like CKS and ABO involve additional steps, such as greedy
search or nested BO loops, for constructing the kernels, which further increases their runtime. DGP
requires performing doubly stochastic variational inference across deep layers, which adds even
more computational overhead. In contrast, fixed and simple adaptive kernel methods, which either
use a single GP or choose from a small set of kernels, are much faster per iteration. While CAKE
has a higher average runtime per iteration than the baselines, this increase is largely due to external

5The analytic expression as well as the global optimum of these functions can be found at https://www.
sfu.ca/~ssurjano/optimization.html.

23

https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html

Crossover Response

Prompt:
You are given two parent kernels and their fitness scores: LIN (0.53), SE (0.67). Please propose a new
kernel that has a potentially higher fitness score. You may combine the parent kernels using any of the
operators from {+,×}. Briefly explain your reasoning behind the proposed kernel.

Response:
Kernel: LIN + SE
Analysis: The LIN kernel captures linear trends in the data, which may be present given the varying
function values across different inputs. The SE kernel, on the other hand, is effective in modeling
smooth variations in the data, which could account for the fluctuations observed in the function values
despite the overall linear trend. By combining these two kernels with the addition operator (+), we can
leverage the linear trend from the LIN kernel while also allowing for smooth deviations from this trend
through the SE kernel.

Figure 12: Sample response for the crossover step.

Mutation Response

Prompt:
You are given a kernel and its fitness score: LIN + SE (0.72). Please propose a new kernel that has a
potentially higher fitness score. You may replace a base kernel in the current expression with another
base kernel from the set {SE, PER,LIN,RQ,M3,M5}. Briefly explain your reasoning behind the
proposed kernel.

Response:
Kernel: LIN + RQ
Analysis: The LIN + SE kernel captures a linear trend with smooth variations. However, the SE kernel
assumes a constant level of smoothness, which may not be appropriate for all data patterns. By replacing
the SE kernel with the RQ kernel, we can introduce varying smoothness, allowing the model to adapt to
different levels of noise in the data.

Figure 13: Sample response for the mutation step.

factors such as internet connectivity and API latency. Importantly, in most BO tasks, evaluating the
black-box function is far more time-consuming than the BO process itself. Thus, reducing the number
of function evaluations (i.e., improving sample efficiency) is often more important than minimizing
the wall-clock time per iteration.

C.3 Case Study

We conducted a case study to examine the LLM’s outputs and assess whether it provides useful
responses. Specifically, we analyzed sample responses from the LLM during the crossover and
mutation steps, which are shown in Figure 12 and Figure 13, respectively. In Figure 12, the LLM is
given two parent kernels, LIN and SE, along with their fitness scores. It suggests combining them
using the addition operator (+) to improve the fitness. The explanation states that the LIN kernel
captures linear trends, while the SE kernel models smoothness. Thus, combining them as LIN +
SE allows the new kernel to represent both linear and smooth patterns in the data. In Figure 13, the
LLM is given the kernel LIN + SE and its fitness score. It proposes replacing the SE kernel with the
RQ kernel to further improve fitness. The reasoning is that while the SE kernel assumes constant
smoothness, the RQ kernel allows for varying levels of smoothness. This makes the model more
flexible, especially when dealing with data that has changing noise patterns. These examples show
that the LLM posesses a solid understanding about the kernel properties and how they affect modeling
(i.e., how different kernels can be combined or modified to better fit specific data characteristics),
enabling it to make meaningful proposals during the kernel generation process.

24

C.4 Interpretability of CAKE

By design, the kernel grammar used in CAKE enables us to automatically generate interpretable
descriptions of the data based on the proposed hypothesis (kernel expression). In this section, we
analyze the kernel expression discovered by CAKE for one of the hyperparameter optimization tasks
from HPOBench, which involves tuning an SVM model on the credit_g dataset. Recall that, for
the SVM model, we have two hyperparameters to tune: the regularization parameter C and the RBF
kernel coefficient gamma. The kernel expression proposed by CAKE for this specific task is,

(SE× PER) + (LIN× RQ) + (M5× SE). (26)

Existing kernel grammar-based methods, such as Automatic Bayesian Covariance Discovery (ABCD)
[30], typically interpret such expressions by first simplifying them into a canonical sum-of-products
form to enable modular interpretation. The natural language descriptions are then generated by
applying predefined template rules that map each kernel component and its parameters to descriptive
phrases. In contrast, in our CAKE framework, the LLM itself acts as the interpreter of the kernel
structures, producing natural language descriptions directly and automatically “for free” without the
need for explicit simplification or handcrafted template rules (see Fig. 14. This level of interpretability
highlights a key advantage of our CAKE framework. The LLM’s contextual understanding and
access to broad domain knowledge enable it not only to evolve expressive kernels, but also to explain
them through meaningful natural language descriptions. Unlike traditional methods that treat kernel
learning as a purely numerical optimization task, CAKE generates interpretable hypotheses that
reveal insights into the structure of the underlying “black-box” objective function.

CAKE’s Interpretation

Response:
Kernel: (SE × PER) + (LIN × RQ) + (SE × M5)
Analysis: The observations can be described using a combination of three distinct patterns. The first
term, SE × PER, captures recurring fluctuations in the performance across the (C, gamma) space. High
gamma values lead to overfitting, but increasing C mitigates this effect, resulting in a overfitting-recovery
cycle. The second term, LIN × RQ, models a general increase in performance as C increases, as
stronger regularization improves generalization. However, the RQ component allows the model to adapt
to varying levels of smoothness which is useful near extreme gamma values. The third term, M5 ×
SE, combines the M5’s robustness to non-smooth changes with SE’s smoothness to capture complex,
localized variations in performance that are not easily explained by global trends or periodicity alone,
such as sharp drops in accuracy when both C and gamma are too large.

Figure 14: Intepretation for the SVM hyperparameter optimization task on the credit_g dataset.

C.5 Choice of LLM

In this section, we analyze the impact of the LLM choice on the performance of our
method. We evaluated three open-source models—Qwen’s qwen-2.5-7b, DeepSeek’s
deepseek-r1-distill-qwen-7b, and Meta’s llama-3.1-8b—alongside three closed-source
models: Google’s gemini-2.0-flash, Anthropic’s claude-3.5-haiku, and OpenAI’s
gpt-4o-mini, on the HPOBench functions described in Section 5.1. The results in Table 6 show
that, despite some variations in performance across different HPOBench functions, there is a clear
trend: our method performs better when using more recent and capable LLMs. We also observe a
performance boost with deepseek-r1-distill-qwen-7b, suggesting that reasoning-based models
can further improve results. However, this gain comes at the cost of longer inference time, a trade-off
we plan to explore in future work. Overall, these results indicate that as LLMs become more advanced,
our method naturally benefits from their improved capabilities.

C.6 Choice of Acquisition Function

We test the robustness of CAKE under different choice of acquisition functions, including EI [23],
upper confidence bound (UCB) [44], and Thompson sampling (TS) [47]. While each acquisition
function embodies a different exploration-exploitation trade-off (i.e., TS exhibits slightly higher stan-
dard errors due to its stochastic nature while CAKE-UCB occasionally underperforms or outperforms

25

Table 6: Average accuracy (↑) on HPOBench over 20 random seeds for different LLMs. The values
in parentheses indicate the standard errors.

LLM LR SVM RF XGB MLP

qwen-2.5-7b 0.7720
(0.0310)

0.8520
(0.0180)

0.8810
(0.0260)

0.9030
(0.0380)

0.8610
(0.0330)

deepseek-r1-distill-qwen-7b 0.8122
(0.0210)

0.8630
(0.0141)

0.8964
(0.0234)

0.9211
(0.0320)

0.8692
(0.0292)

llama-3.1-8b 0.7815
(0.0290)

0.8581
(0.0177)

0.8873
(0.0252)

0.9110
(0.0355)

0.8652
(0.0312)

claude-3.5-haiku 0.8177
(0.0231)

0.8655
(0.0130)

0.8982
(0.0242)

0.9240
(0.0331)

0.8712
(0.0301)

gemini-2.0-flash 0.8253
(0.0204)

0.8720
(0.0121)

0.9056
(0.0223)

0.9310
(0.0303)

0.8780
(0.0281)

gpt-4o-mini 0.8188
(0.0220)

0.8663
(0.0130)

0.8991
(0.0250)

0.9257
(0.0340)

0.8722
(0.0310)

Table 7: Average normalized regret (↓) ± standard error over 20 random seeds for CAKE with
different acquisition functions. Value that are not significantly different from the lowest average
regret for each function are bolded.

Function CAKE-EI CAKE-UCB CAKE-TS

Ackley-2 0.0783 ± 0.0203 0.0812 ± 0.0215 0.0921 ± 0.0287
Ackley-5 0.1732 ± 0.0250 0.1654 ± 0.0262 0.1789 ± 0.0310
Beale 0.2565 ± 0.0786 0.2488 ± 0.0810 0.2720 ± 0.0920
Branin 0.0070 ± 0.0534 0.0065 ± 0.0510 0.0082 ± 0.0601
Dropwave 0.4690 ± 0.0538 0.4820 ± 0.0560 0.5010 ± 0.0650
Egg holder 0.1241 ± 0.0541 0.1350 ± 0.0570 0.1298 ± 0.0620
Griewank-2 0.0267 ± 0.0256 0.0275 ± 0.0260 0.0310 ± 0.0305
Griewank-5 0.0185 ± 0.0133 0.0190 ± 0.0140 0.0195 ± 0.0180
Hartmann 0.0001 ± 0.0529 0.0003 ± 0.0515 0.0005 ± 0.0580
Levy-2 0.0353 ± 0.0197 0.0360 ± 0.0205 0.0402 ± 0.0240
Levy-3 0.0505 ± 0.0190 0.0580 ± 0.0200 0.0520 ± 0.0235
Rastrigin-2 0.3341 ± 0.0468 0.3520 ± 0.0490 0.3650 ± 0.0580
Rastrigin-4 0.3128 ± 0.0499 0.3150 ± 0.0510 0.3300 ± 0.0570
Rosenbrock 0.0483 ± 0.0531 0.0490 ± 0.0540 0.0510 ± 0.0600
Six-Hump Camel 0.1015 ± 0.0669 0.0920 ± 0.0680 0.1030 ± 0.0750

EI due to its optimism bias), CAKE consistently achieves comparable performance across all variants.
As shown in table below, the performance of CAKE-UCB and CAKE-TS remains close to that of
CAKE-EI across a diverse set of benchmark functions. To rigorously assess statistical equivalence,
we conducted a one-sided paired Wilcoxon signed-rank test (at the 5% significance level) comparing
CAKE-EI against CAKE-UCB and CAKE-TS across multiple random seeds. The results indicate
that, on the majority of functions, differences are not statistically significant. Overall, these results
confirm that CAKE’s effectiveness is not sensitive to the specific choice of acquisition function.

C.7 Quantitative Analysis

To rigorously support our claim in Section 5.1 that CAKE excels in the early stages of optimization,
we conducted a quantitative analysis based on normalized improvement, defined as:

Normalized improvement at trial t =
ft − f0
f∗ − f0

, (27)

where f0 is the initial performance, ft is the best performance at trial t, and f∗ is the final performance
at 100% budget. This measures how much of the total progress CAKE achieves up to the t-th iteration.
As shown in Table 8, CAKE achieves 67.5% of its total improvement within just 25% of the budget,
on average. By 50%, it reaches over 83% of its final improvement, and by 75%, it is nearly converged.

26

Table 8: Normalized improvement on HPOBench at different budget level.
Budget 25% 50% 75%

LR 0.6183 0.8065 0.8401
SVM 0.7007 0.8244 0.9481
RF 0.6244 0.7685 0.8646
XGB 0.6914 0.8643 0.9767
MLP 0.7394 0.9155 0.9742

Average 0.6749 0.8358 0.9207

This demonstrates that CAKE rapidly identifies effective kernels and drives fast early progress,
making it particularly effective in data-scarce regimes.

D Limitations and Future Work

Computational cost. While CAKE can be applied entirely in-context and does not require any
fine-tuning, using LLMs for inference may result in a larger computational footprint compared to
traditional BO methods (see Appendix C.2). Despite this, our findings indicate that CAKE trades
this off with improved sample efficiency, which is a particularly desirable property for black-box
optimization tasks. This suggests the potential for integrating CAKE with more computationally
efficient approaches, such as deploying it in the earlier stage of the optimization process.

Data Contamination. We acknowledge the possibility that LLMs may have been exposed to scientific
literature or code related to common optimization benchmarks during pre-training. However, we argue
that data contamination is unlikely to meaningfully affect our results. While the LLM may possess
general knowledge about kernels or synthetic functions, our approach to adaptive kernel evolution in
BO is novel and there is no evidence that the specific kernel expressions or the optimization trajectory,
exist in any public dataset or text. Thus, we believe that the observed performance stems from
in-context adaptation, not memorization. This is further supported by our ablation study in Section
B.4 which shows that removing the observed data from the prompt leads to significant performance
degradation, confirming that the LLM relies on in-context learning rather than prior knowledge alone.

Generalized kernel grammar. While we focus on addition and multiplication as initial proof-of-
concept operators, these operators are in fact good enough to form a rich and expressive space of
kernels. For example, by only using these operations, we can construct polynomial kernels to capture
non-linear patterns as well as multi-dimensional kernels to model interactions among input features
[12]. However, we would like that to note that the kernel grammar can be extended using other
operators that preserve the closure properties of kernel functions, such as convolution, composition,
and affine transformations [42]. We aim to explore these possibilities further in a future work.

Extension to broader ML tasks. Our long-term goal is to develop a universal adaptive kernel
method that can be applied across a wide range of ML tasks. While the current work focuses on
BO, the underlying idea of using an LLM to guide kernel evolution is not task-specific. We believe
that CAKE can be easily adapted for other kernel-based methods such as SVM-based regression and
classification, kernel principal component analysis, and metric learning with kernels. By leveraging
task-specific performance signals, CAKE can automate and enhance kernel design across a variety of
kernel-based methods, demonstrating its broader potential to improve ML applications.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are discussed in the main text.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the proposed are clearly discussed in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

28

Justification: The current paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details are provided in the main text and in Appendix B. The code is also
available online.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

Answer: [Yes]
Justification: The code is available online at https://github.com/richardcsuwandi/
cake.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are provided in the text and in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The figures in Section 5 include error bars based on the standard error across
multiple independent runs with different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

30

https://github.com/richardcsuwandi/cake
https://github.com/richardcsuwandi/cake
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides details regarding the computing resources in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research was conducted in compliance with the NeurIPS Code of Ethics.
Additionally, no deprecated datasets were used, and all external assets (e.g., OpenML
datasets) were appropriately cited and used under permissible licenses.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The proposed method does not directly lead to societal impacts that we feel
must be highlighted beyond algorithmic improvements.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed method does not lend itself to this type of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses publicly available datasets (e.g., OpenML) and benchmarks,
all of which are properly cited with references to their original sources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is well-documented and available at the anonymized repository
https://github.com/richardcsuwandi/cake.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Therefore, no IRB approval or equivalent was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

https://github.com/richardcsuwandi/cake

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The use of LLMs is detailed in Section 3 and Appendix B.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

34

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Context-Aware Kernel Evolution
	Related Work
	Experiments
	Hyperparameter Optimization
	Controller Tuning
	Photonic Chip Design
	Ablation Study
	Evolution of Population Fitness

	Conclusion
	Mathematical Details
	Bayesian Optimization with Gaussian Processes
	Model Selection

	Experimental Details
	Implementation
	Baselines
	Fixed
	Adaptive
	Compositional

	Benchmarks
	Hyperparameter Optimization
	Controller Tuning
	Photonic Chip Design

	Prompt Design

	Additional Results
	Benchmark Function Optimization
	Computational Time
	Case Study
	Interpretability of CAKE
	Choice of LLM
	Choice of Acquisition Function
	Quantitative Analysis

	Limitations and Future Work

