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What product is the protagonist looking for in the <video>?

<think> The protagonist is searching for a product, 
likely a specific item, as indicated by the repeated 
mention of \"looking for\" and succeed at the end of 
the scene.<\think>\n<answer>{\"start_time\": 
\"637.0\", \"end_time\": \"662.0\" }</answer>

What product is the protagonist 
looking for in the <video>?

<think> Given the context of the video, 
the protagonist is searching for a product 
that matches the color blue. The options 
provided are all related to yogurt, and the 
color blue is the common theme.</
think>\n<answer>Yogurt</answer>

<637> <662>

Video in the Loop

Video Reasoning

Answer

Answer

Video Understanding Event A

User

Event B
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Event D

Entity 1 Entity 2
Entity 3
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When does this event happen in the 
video: What product is the protagonist 
looking for in the <video>?
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Figure 1: Overview of ViTL (Video-in-the-Loop) and VGrounding-QA. ViTL (right-down): Given
a long video V and a question q, Stage 1 (Ground) takes a grounding query distilled from q
(“locate the moments needed to answer q”) and predicts one or multiple relevant temporal spans
S = {[t(i)s , t

(i)
e ]}. Supervision comes from event-graph gold spans. Stage 2 (Answer) re-encodes

only frames within S at higher fidelity (e.g., higher frame rate/resolution) and answers the original
MCQA. Training follows an R1-style loop that jointly optimizes grounding (IoU-based) and QA
(cross-entropy or reward) objectives, encouraging spans that improve answering. VGrounding-QA
(right-top): The spanning aware training set is achieved from Event Knowledge Graph.

ABSTRACT

We present Video-in-the-Loop (ViTL), a two-stage long-video QA framework that
preserves a fixed token budget by first localizing question-relevant interval(s) with
a low-fps skim and then answering via span-aware reallocation of visual tokens at
higher effective frame rate, emitting an interleaved output with both spans and the
final option for direct attribution. We also introduce VGrounding-QA, which con-
verts description based event graphs into span-grounded multiple-choice QA by
pairing each question with ground-truth time span(s) and related reasoning. ViTL
is trained end-to-end with an interleaved group-relative objective that couples tem-
poral IoU for localization with answer correctness, allowing credit to flow from
answers back to spans without increasing compute. Under fixed token budgets,
ViTL attains up to 8.6% with 50% less frame input on long-video QA and tempo-
ral grounding (e.g., Charades-STA, ActivityNet-Captions) and ablations show that
span-aware token reallocation consistently surpasses uniform sampling. Together,
VGrounding-QA and ViTL provide an interpretable, compute-efficient recipe for
scalable long-video QA.
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1 INTRODUCTION

Multimodal large language models (MLLMs) have advanced rapidly (Hurst et al., 2024; Li et al.,
2024a; OpenGVLab Team, 2024), showing strong performance in instruction following, open-
vocabulary perception, and multi-step reasoning across images and videos. Recent systems extend
temporal context windows, add memory modules, and leverage stronger backbones (e.g., 3B–70B+
vision language models), making long-form understanding an increasingly realistic goal.

Despite rapid progress, long-video QA remains brittle. Under fixed token and frame budgets, models
typically adopt uniform or heuristic sampling (Team, 2025; Lin et al., 2023), spending most capacity
on background and overlooking the brief moments that carry the answer. Public training sets (Gao
et al., 2017; Fu et al.; Wu et al.) rarely bind each question to ground-truth temporal spans, so systems
learn to produce answers without reliably learning where to look—hindering attribution and limiting
evaluation beyond accuracy. Moreover, localization and answering are often optimized in isolation;
even when span prediction improves (e.g., higher tIoU), those gains do not consistently translate
into better QA because the learning signal does not reward spans that actually improve answers.

Recent efforts extend context windows and adopt adaptive or key-frame selection to reduce back-
ground dilution, yet many tokens still land off-target and attribution remains limited. Temporal
Video Grounding (TVG) methods (Liu et al., b; Qu et al., 2024) strengthen localization, but their
benefits rarely carry over to QA without span-aware training signals. R1–based post-training (Feng
et al.; DeepSeek-AI et al.) improves step-by-step reasoning, but in the absence of span supervision
and reward coupling it cannot teach where to search. These observations motivates us to explore a
pipeline that reallocates visual tokens to evidence at fixed cost (zoom-in the video), a dataset that
jointly supervises spans and answers, and a learning objective that couples localization quality with
answer utility.

We present Video-in-the-Loop (ViTL), a two-stage procedure that allocates computation where it
matters while preserving a fixed token budget. The model first performs a low–frame-rate skim over
the entire video to localize one or more evidence intervals, then zooms into the predicted spans and
reasons at a higher effective frame rate to produce the multiple-choice answer. Both the localized
spans and the final option are emitted in a single, interleaved response, yielding direct attribution
and a uniform format for evaluation. By design, ViTL turns long-video QA into a skim→zoom
workflow that concentrates tokens on evidence rather than background (see Fig. 1).

We train ViTL end-to-end on the interleaved output using a group-relative policy objective (GRPO)
that couples a temporal-IoU signal for span quality with an answer-correctness signal for utility.
This composite reward assigns credit from the answering step back to the localization step, so spans
are optimized not merely to match annotations but to improve downstream answers under the same
compute. A brief supervised warm-up stabilizes decoding, after which interleaved GRPO refines
both stages jointly and encourages the model to produce well-formed spans and faithful answers in
one pass.

However, in long-video understanding tasks, accurately identifying the time segments relevant to a
given question is highly challenging, since many questions are complex, may span multiple tem-
poral segments, and often involve intricate temporal and object relationships. To address this, we
innovatively apply event knowledge graph techniques: powerful MLLMs such as GPT-4o are first
employed to perform fine-grained structured analysis of the entire video, extracting objects, events,
and their relationships to construct an event knowledge graph. From this graph, we then select valu-
able nodes and edges to formulate QA questions. In this way, we can design multi-hop reasoning
questions that span multiple temporal segments, which enables us to train models to simultaneously
improve both temporal localization of question-relevant segments and the ability to handle complex
long-video understanding problems. (see Fig. 2 )

Our contributions can be summarized as follows:

(1) We introduce a Video-in-the-Loop procedure that reallocates tokens to predicted evidence under
a fixed budget, producing interpretable span grounding and answers.

(2) We develop a span-grounded training set construction approach and a training set called
VGrounding-QA that ties each QA item to ground-truth temporal spans, supplying the missing su-
pervision for span-aware QA.
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30:58 32:19

{“question": "In the clip, how is the person on the path marked 
\"General Sherman\" moving?", 
"options": { 
"A": "Walking away from the camera", 
"B": "Jogging toward the camera", 
"C": "Standing still and facing the camera", 
"D": "Riding a bicycle past the camera" }, 
"correct_answer": "A", 
“grounding_reason": "The 1917\u20131929 s segment shows the path labeled 
\"General Sherman\" with a person in a pink shirt; this is the only 
visible action in that span, making it the correct grounding for the 
question.", “qa_reason": "During this span, the person is clearly seen 
walking away from the camera down the path, matching option A; the other 
actions are not observed.”}

Segments (3s) description and 
fusion based on text similarity

Event_idxxxx:  The camera pans slowly, 
showcasing the serene and expansive forest 
environment, before shifting back to a path 

labeled \"General Sherman,\" where a person, 
wearing a pink shirt, is seen walking away from 

the camera…

Event_idxxx1:  The video begins 
with a serene scene of a sunset, 

where the sun is partially obscured 
by clouds, casting a warm, orange 

glow across the sky. The sky 
appears to have a slightly hazy 
texture, with a mix of light and 
dark clouds. A tree, silhouetted 
against the sky, is visible on the 

right side of the frame…

   …

xx:xx xx:xx2:22 4:17

Tree Forest Camera Sea
Event Knowledge Graph

Figure 2: Training–set construction from event graphs via semantic chunking. A long video is
first buffered into short uniform chunks (e.g., 3s) and produces per–chunk descriptions. Neighboring
chunks with high textual similarity are merged into semantic segments; their absolute start/end times
become the ground-truth span(s) (example: 30:58→32:19 ). Each segment is summarized into an
event description and converted into a span-grounded MCQA instance whose question is answerable
using only this span; distractors are mined from other events in the same video.

(3) We perform end-to-end training that links temporal IoU and answer reward, providing direct
credit assignment from answers back to spans.

(4) We evaluate on long-video QA and temporal grounding, and conduct ablations to demonstrate
the effectiveness of the proposed paradigm.

2 RELATED WORK

2.1 MLLMS FOR LONG-VIDEO UNDERSTANDING

Recent multimodal LLMs extend language reasoning to video by enlarging temporal context, com-
pressing visual tokens, and adding spatio–temporal adapters. LLaMA-VID reduces per-frame to-
kens to support hour-scale inputs (Li et al., 2024b); VideoLLaMA2 introduces specialized temporal
connectors and an audio branch for richer dynamics (Cheng et al., 2024); and LongVA pushes se-
quence length into the hundred-thousand–token regime for untrimmed videos (Zhang et al., 2024b).
Concurrently, video-tuned backbones (e.g., Qwen2.5-VL; Video-LLaVA) demonstrate strong zero-
/few-shot results on captioning and QA (Team, 2025; Lin et al., 2023). Reasoning-centric post-
training has also been explored: rule-based RL improves step-by-step solutions in text (Guo et al.,
2025) and has been adapted to video settings (Feng et al., 2025). On the localization front, tem-
poral video grounding integrates language with segment prediction and is commonly evaluated on
Charades-STA and ActivityNet-Captions (Gao et al., 2017; Krishna et al., 2017); recent LLM-based
approaches (Ren et al., 2023; Huang et al., 2024; Qian et al., 2024; Zhao et al., 2024) report stronger
tIoU/Recall. While effective at broad coverage and zero-shot generalization, many systems still
operate over globally sampled frames and rely on training protocols that optimize grounding and
answering separately, which can leave attribution and span-to-answer transfer underexploited.

2.2 MULTI-STAGE AND ADAPTIVE VIDEO PROCESSING

A complementary line reduces redundancy by selecting key frames or segments before reasoning.
Baselines rely on uniform or heuristic sampling, while recent methods use semantics-aware selection
with VLMs such as CLIP (Radford et al., 2021)—e.g., BOLT (Liu et al., a) and AKS (Tang et al.,
2025) retrieve frames most aligned with a text query and then feed them to a larger model. This
improves efficiency and can outperform uniform/top-k picks on long videos.

While effective, CLIP-based selection inherits a query–embedding mismatch: interrogative ques-
tions are not the distribution CLIP was trained on, so retrieved frames maximize caption-style
alignment rather than evidential sufficiency for the posed question. Moreover, top-k retrieval over
individual frames tends to break temporal continuity—dropping onsets/offsets and interstitial mo-
tion—thereby introducing “negative” frames and missing multi-span evidence crucial for actions
and causality. Because the selector is optimized with proxy salience objectives and sits upstream
of answering, utility cannot flow back to refine selection, which makes performance sensitive to
thresholds and limits temporal attribution.
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3 VGrounding-QA: TRAINING SET CREATION FROM EVENT GRAPHS

Overview. We construct a span-grounded training set that couples verifiable temporal supervision
with answer supervision as exemplified in Figure 2. Our pipeline proceeds in three stages: (i) se-
lecting source annotations with broad coverage, (ii) converting each annotated event into a single
MCQA instance that is answerable from its ground-truth temporal span(s), and (iii) performing lay-
ered quality review to ensure temporal locality and item difficulty. Table 2 shows a breif comparison
with existing long video understanding datasets.

Event Knowledge Graph construction. We adopt event graphs built by a semantic chunking
pipeline from prior work (Yan et al., 2025). Instead of uniform, fixed-window segmentation alone,
a long video is first buffered into short, uniform chunks (e.g., ∼3s). A lightweight VLM (e.g., a
7B variant) then produces a brief description for each chunk. Neighboring chunks are compared via
a text-similarity signal (BERTScore over the per–chunk descriptions); adjacent chunks with high
similarity are merged into a single, temporally contiguous semantic chunk, while boundaries are
enforced where similarity drops below a threshold. This yields event-level segments that better
match the variable temporal granularity of real videos and remain efficient to construct under tight
compute. Each semantic chunk is further summarized to obtain a concise event description, and its
absolute start/end times define the event’s ground-truth span(s). Edges between events are derived
from interval relations on these spans (e.g., Before, Overlaps). Entities are retrieved and linked from
each events with semantic de-duplication through embedding based clustering. Entities within the
same cluster are then linked.

Conversion to span-grounded QA. For every event node, we first inherit and normalize its span
set: timestamps are converted to seconds, spans are sorted and minimally merged when slightly
overlapping, invalid ranges are removed, and disjoint occurrences are retained as multi-span. We
then distill a short, entity/attribute-aware grounding query from the node description using GPT-
o3 API (Hurst et al., 2024); deictic phrasing (“this clip/moment”) is avoided so the text remains
globally localizable on the timeline. Finally, we synthesize exactly one multiple-choice question
(four options) conditioned on the event and its span(s). The question must be answerable using only
the annotated evidence (the union when multi-span), and the three distractor options are drawn from
other events in the same video to provide realistic, in-domain confounds. Brief rationales for span
sufficiency (Stage 1) and option correctness (Stage 2) may be retained for supervised learning input.

Quality review. We apply a compact but strict review stack. First, schema validity ensures a single
correct option and parsable fields. Second, temporal-locality checks reject items whose resolution
requires frames outside the annotated span set or relies on purely holistic summaries; for multi-
span events, items must genuinely require the annotated union when the narrative spans multiple
segments. Third, language screening removes deictics and vague stems, keeping questions specific
yet video-dependent. Fourth, a text-only screening step is applied to filter items that can be reliably
answered without the video; such items are revised or discarded. Finally, near-duplicates within a
video are removed, and option labels are balanced to avoid positional bias.

Record schema. Each instance minimally contains the fields in Table 1. Stage 1 uses the ground-
ing query and ground-truth spans for temporal localization; Stage 2 uses the clipped segment(s)
together with question, options, and correct answer for answer supervision.

Splits and reporting. Data are split by video to prevent leakage from shared footage. We keep
domain and duration distributions comparable across splits and preserve the prevalence of multi-
span items. Aggregate counts, span-length statistics (mean/median and percentiles), the propor-
tion of multi-span instances, per-video instance counts, and option-label balance are reported in the
Appendix.The resulting training set pairs verifiable spans for temporal grounding with multiple-
choice supervision for answering. Same-video distractors make localization consequential under a
fixed token budget, aligning the data directly with the two-stage protocol in Sec. 4.

4
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Table 1: Minimal schema for each training instance. GT = ground truth.

Field Role

video_id, event_id Link to the source video and event node

time_spans (GT) Supervision for Stage 1 grounding (tIoU/Recall); single or
multi-span

event_description Human-readable summary of the event node
grounding_query Span-seeking reformulation for Stage 1 localization
question Prompt for Stage 2 reasoning on the clipped segment(s)
options (A–D), correct_answer Supervision for Stage 2 answer selection
stage1_reason, stage2_reason Optional signals (span sufficiency; option justification)

Table 2: Comparison of long-video resources. “MCQA” = multiple-choice QA; “Multi-span” =
multiple disjoint spans; “Reason” = per-sample reasoning fields.

Dataset GT spans MCQA Multi-span Event-graph Reason

Charades-STA ✓
ActivityNet-Captions (VTG splits) ✓ (rare)
LongVideoBench / LVBench / MLVU ✓
VGrounding-QA (ours) ✓ ✓ ✓ ✓ ✓

4 ViTL: INTERLEAVED TWO-STAGE GRPO WITH GROUNDED SPANS

4.1 TWO-STAGE VIDEO-IN-THE-LOOP WITH FRAME-LEVEL TIMESTAMP INJECTION

Formulation. Given a long video V of duration |V | and a question Q, the model predicts (i) a
set of temporal segments T = {[t(m)

s , t
(m)
e ]}Mm=1 that contain the necessary evidence, and (ii) a

multiple-choice answer A ∈ {A,B,C,D}. Training/evaluation uses ground-truth spans I∗ inherited
from the event graph (Sec. 3); we allow M≥1 (multi-span).

Stage 1: Global temporal localization. We sample a global sequence of ng frames uniformly
over [0, |V |] to obtain Vg = {(xf , tf )}

ng

f=1, where tf is the absolute time (in seconds) and xf is the
image token. Conditioned on Q and a short grounding query, the model outputs a structured set of
segments

T = {[t(m)
s , t(m)

e ]}Mm=1, 0 ≤ t(m)
s < t(m)

e ≤ |V |,
together with a brief rationale. We permit M to vary up to Mmax; disjoint segments are encouraged
when the evidence is non-contiguous.

Stage 2: Span-conditioned answering. Let U(T ) denote the (ordered) union of predicted seg-
ments. We clip V to U(T ) and sample a local sequence of nℓ frames at higher effective fps, yield-
ing Vℓ = {(xf , tf )}nℓ

f=1 with the same absolute timestamps tf (no re-zeroing). Conditioned on
(Q,T, Vℓ) the model outputs the final option A and a short justification. This reallocates visual
tokens from background to evidence while keeping the total budget ng + nℓ fixed.

Frame-level timestamp injection (textual). To stabilize temporal reference and enable auditable
spans, each frame is serialized as an image token followed by a human-readable absolute time:〈

<image> @ t1s, <image> @ t2s, . . . , <image> @ tFs
〉
,

We require Stage 1 to emit spans as <span>[t̂s, t̂e]</span> and Stage 2 to answer using only
frames whose timestamps lie within U(T ). Ablations in Sec. 5.4 show that this textual timestamping
improves tIoU/Recall and reduces off-by-segment errors under the same token budget.

Budgets and sampling policy. Unless otherwise specified, we use ng uniformly spaced frames
for Stage 1 over [0, |V |] and nℓ frames for Stage 2 drawn from U(T ) (with per-span caps to prevent
degenerate allocation). Segments in T are sorted and minimally merged prior to clipping; multi-span
inputs are concatenated in temporal order.

5
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Validity constraints. Outputs are lightly constrained at the prompt level: Stage 1 must place sec-
onds inside <span>...</span> with numeric values (two decimals), and Stage 2 must emit ex-
actly one option inside <answer>...</answer>. During training, malformed or out-of-range
spans are rejected by format checks; at evaluation they are treated as invalid.

4.2 LEARNING WITH INTERLEAVED GROUP-RELATIVE POLICY OPTIMIZATION

GRPO on interleaved sequences. We optimize πθ with Group-Relative Policy Optimization
(GRPO) on interleaved outputs. For each (Q,V ) we sample k responses {Si}ki=1, each Si =

[Ti;Ai], and compute group-relative advantages Ai = Ri − 1
k

∑k
j=1 Rj . The objective maximizes

the likelihood of higher-reward sequences:

LGRPO = −E(Q,V )

k∑
i=1

Ai log πθ

(
Si | Vunified, Q

)
. (1)

Coupling both stages within S provides direct credit assignment from answer utility back to local-
ization.

Composite reward with span utility. Each response S = [T ;A] is scored by

R(S) = (1− γ)Rloc(T ) + γ Rans(A), γ ∈ [0, 1]. (2)

Localization uses a multi-span temporal IoU against ground truth plus a small format component:

Rloc(T ) = (1− α) tIoU
(
T, I∗

)
+ αFmttime(T ),

where tIoU is the ratio of total intersection to total union length over time; Fmttime rewards in-range,
ordered, well-formed timestamps. The answer term rewards exact match and stable formatting:

Rans(A) = (1− β)⊮[A = A∗] + β Fmtans(A).

Small α, β stabilize learning without outweighing task reward. Invalid or unparsable spans receive
near-zero Fmttime.

Initialization, schedule, and controls. We initialize from a base VLM (e.g., Qwen2.5-VL-
3B/7B). A short supervised warm-up on MCQA clipped to ground-truth spans stabilizes decoding.
We then run interleaved GRPO with group size k (e.g., k=3), per-batch reward normalization, and
KL control to the base policy. A light curriculum gradually increases γ from localization-heavy to
answer-balanced over early epochs. Full hyperparameters appear in Sec. 5.1.

5 EXPERIMENTS

5.1 SETUP

Long-video QA benchmarks. We evaluate on three public QA suites with multi-choice format and
long, open-domain videos: LongVideoBench (Val split), LVBench (Val), and MLVU (Dev), where
we report accuracy (%). For MLVU we additionally report the Needle QA subset (temporal retrieval
stress test) and the macro average M-Avg across tasks.

Temporal Video Grounding (TVG) benchmarks. We use Charades-STA (indoor activities;
trimmed queries on untrimmed videos) and ActivityNet-Captions (open-domain activities). Fol-
lowing standard practice, we report Recall@IoU={0.3, 0.5, 0.7} and mIoU (%).

Role of our event-graph dataset. Our event-graph grounded dataset (Sec. 3) provides training
and diagnostic supervision: each question is paired with gold time span(s) derived from an event
graph, enabling learnable temporal grounding and auditable evaluation. Unless otherwise specified,
this dataset is not used as a held-out test set; all reported results use the official public splits of the
benchmarks above.

Evaluation protocol and fairness. To ensure comparability, all systems run under matched com-
pute budgets. We report (when applicable) frames per question and keep the total token/FLOPs

6
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budget fixed across baselines. Unless stated, we do not use external subtitles/ASR. Inference for
ViTL is two-stage: a low-fps global sweep for localization (Stage 1), followed by span-aware high-
fidelity answering (Stage 2). Results are reported on 4×A100 80G; hyper-parameters are provided
in the Appendix for reproducibility.

Backbones. We instantiate ViTL with Qwen2.5-VL 3B and Qwen2.5-VL 7B. Unless otherwise
noted, Stage 1 and Stage 2 share the same backbone. In a compute-efficient setting, we also study a
light selector (3B) with a stronger answerer (7B) in Sec. A.

Training protocol. We adopt a simple three-step schedule that closes the loop between localization
and answering while keeping budgets explicit. (T1) Supervised warm-up. Grounding SFT: train
Stage 1 with IoU-based span supervision on our event-graph dataset (gold span(s) per question);
we minimize a boundary/IoU loss. QA SFT: train Stage 2 on the paired MCQA (cross-entropy over
options), using only frames within the gold spans. For TVG benchmarks, we do not fine-tune on their
train splits unless explicitly marked as FT. (T2) Two-stage coupling (teacher forcing). We connect
the stages by feeding Stage 1 predictions into Stage 2. To stabilize learning, we sample a fixed ratio
of teacher-forced spans (gold) and model spans (predicted) during training, and restrict Stage 2’s
visual budget to the union of selected span(s). (T3) R1-style post-training. We optimize a weighted
reward that encourages spans which improve answering: TVG reward = IoU with gold span(s)
(shape with thresholds), QA reward = 1 for correct option and 0 otherwise (plus mild format/length
penalties). We apply PPO with a KL penalty to the SFT reference; gradients update both stages.
The overall objective is a weighted sum of TVG and QA terms; ablations over these weights are in
Sec. 5.4.

Inputs and budgets. Stage 1 consumes a fixed number of frames (e.g., 64 frames) and takes the
global view of the full video and a grounding query distilled from the question (“locate the moments
needed to answer q”). Stage 2 re-encodes only the predicted span(s) at higher fidelity (e.g., 4–8
fps and/or higher resolution), up to K spans (default K=5), keeping the total token/frame budget
matched to baselines. Unless noted, Stage 2 answers the original MCQA (no extra hints) on the
clipped segment(s).

5.2 LONG-VIDEO QA PERFORMANCE

We evaluate the full ViTL pipeline on LongVideoBench (Val), LVBench (Val), and MLVU (Dev).
Unless noted, comparisons follow the no-subtitles, matched-preprocessing setting (global low-fps
sweep; fixed resolution) for fairness. Our improvements stem from two ingredients: (i) an event-
graph dataset that pairs reasoning-centric questions with ground-truth time spans (Sec. 3), enabling
learnable and auditable temporal grounding; and (ii) a two-stage, R1-style training protocol (Sec. 4)
that couples IoU-based grounding signals with QA objectives, encouraging spans that actually im-
prove answering under fixed token/frame budgets.

Discussion. The largest gains appear on LVBench, where relevant moments are sparse and uni-
form sampling wastes budget. By learning spans from event-graph supervision and coupling
them to answering with a two-stage R1-style objective, ViTL reallocates visual tokens toward evi-
dence—achieving higher accuracy at comparable (or lower) frame budgets. An oracle-span analysis
in Sec. 5.4 further quantifies the remaining headroom from localization fidelity, supporting both the
dataset design and the training protocol.

5.3 TEMPORAL GROUNDING PERFORMANCE

We then assess ViTL’s ability to localize question-relevant moments. All results are zero-shot unless
noted. The gains are primarily driven by two factors: (i) our event-graph dataset that pairs reasoning-
centric questions with groundtruth time spans (Sec. 3), providing auditable supervision for temporal
grounding; and (ii) our two-stage, R1-style training that jointly optimizes an IoU-based grounding
signal and a QA objective, encouraging spans that improve answering (Sec . 4.2.

Charades-STA (Gao et al., 2017). This benchmark focuses on indoor activities with natural lan-
guage queries. As shown in Table 4, ViTL (Ours 7B) surpasses specialized VTG systems across

7
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Table 3: Long-video QA benchmarks. Accuracy (%) on LongVideoBench (Val), LVBench (Val),
and MLVU (M-Avg). “Frames” is the per-question frame budget when available. † official num-
bers; ‡ our re-test under the matched preprocessing (global low-fps sweep; uniform sampling; 448
resolution). “—” indicates not reported under the same setting.

Models Size Frames LongVideoBench LVBench MLVU M-Avg

Closed Video MLLMs
GLM-4V-Plus† – 256 70.8 58.7 –
GPT-4o† – 384 66.7 27.0 64.6
Gemini-1.5-Pro† – 0.5 fps 64.0 33.1 –

Small Video MLLMs
VITA-1.5 7B 16 56.1 – –
LLaVA-Video 7B 64 58.2 – –
LongVA 7B 128 52.1 39.4 52.0
NVILA 8B 256 57.7 – –
ByteVideoLLM 14B 256 – – –
VideoLLaMA3 17B 180 59.8 45.3 –
InternVL3 8B 16–64 62.5 – –
Qwen2.5-VL† 7B 256 56.0 (224 res) 45.3 54.5
Qwen2.5-VL‡ 7B 256 61.8 (448 res) 43.7 –
ViTL (Qwen2.5-VL) 7B 128 63.3 47.4 62.3

Table 4: Zero-shot temporal grounding on Charades-STA (Gao et al., 2017). Bold marks our scores.

Method Size R@0.3 (%) R@0.5 (%) R@0.7 (%) mIoU (%)

VTimeLLM (Huang et al., 2024) 13B 55.3 34.3 14.7 34.6
TimeChat (Ren et al., 2023) 7B 51.5 32.2 13.4 –
Momentor (Qian et al., 2024) 7B 42.6 26.6 11.6 28.5
HawkEye (Zhao et al., 2024) 7B 50.6 31.4 14.5 33.7
ChatVTG (Qu et al., 2024) 7B 52.7 33.0 15.9 34.9
VideoChat-TPO (Yan et al., 2024) 7B 58.3 40.2 18.4 38.1
E.T. Chat (Liu et al., 2024b) 4B 65.7 45.9 20.0 42.3
ViTL (Ours 7B) 7B 77.7 63.5 36.3 54.0

recall thresholds and mIoU. ActivityNet-Captions (Krishna et al., 2017). Results on open-domain,
untrimmed videos are shown in Table 5. ViTL (Ours 7B) maintains strong localization across
R@IoU levels.

5.4 ABLATION STUDIES ON LONG-VIDEO QA

We quantify which ingredients drive gains under matched token/frame budgets and a fixed backbone
(Qwen2.5-VL 3B/7B). We report accuracy (%) on LongVideoBench and LVBench . All single-
stage variants consume ng+nℓ frames uniformly over the full timeline; the two-stage system uses
ng (global skim) + nℓ (zoomed evidence).

Settings. A) SFT — single-stage supervised fine-tuning on our MCQA (no timestamps). B) SFT
+ TI — single-stage with frame-level textual timestamp injection. C) SFT + Stage-2-only + TI
(full video) — no Stage 1; apply the Stage-2 answering prompt with timestamps to the entire video
(no cropping); total frames ng+nℓ sampled uniformly. D) ViTL(full) — two-stage with interleaved
GRPO (coupled QA+TVG rewards) and timestamp injection in both stages.

Findings. Timestamping improves global reasoning. A→B isolates frame-level time tokens in a
single-stage setup and yields consistent gains on both benchmarks, indicating reduced temporal
ambiguity when evidence is dispersed. Answer-centric training helps without localization. B→C
shows that the Stage-2 answering prompt with timestamps—applied to the full video at the same
budget—further boosts accuracy, suggesting better temporal utilization despite no cropping. Full
ViTLis best at fixed compute. C→D adds learned localization and coupled QA+TVG rewards via in-
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Table 5: Zero-shot temporal grounding on ActivityNet-Captions (Krishna et al., 2017). FT indicates
fine-tuning on the downstream training split. Bold marks our scores.

Method Size FT R@0.3
(%)

R@0.5
(%)

R@0.7
(%)

mIoU
(%)

2D-TAN (Zhang et al., 2020) – ✓ 60.4 43.4 25.0 42.5
MMN (Zhang et al., 2021) – ✓ 64.5 48.2 29.4 46.6
VDI (Luo et al., 2023a) – ✓ – 48.1 28.8 –
VideoChat (Li et al., 2023) 7B × 8.8 3.7 1.5 7.2
Video-LLaMA (Zhang et al., 2023) 7B × 6.9 2.1 0.8 6.5
Video-ChatGPT (Maaz et al., 2023) 7B × 26.4 13.6 6.1 18.9
Valley (Luo et al., 2023b) 7B × 30.6 13.7 8.1 21.9
ChatVTG (Qu et al., 2024) 7B × 40.7 22.5 9.4 27.2
Momentor (Qian et al., 2024) 7B × 42.9 23.0 12.4 29.3
E.T. Chat (Liu et al., 2024b) 4B × 24.1 12.8 6.1 18.9
ViTL (Ours 7B) 7B × 55.1 46.3 30.0 24.1

Table 6: Ablations on long-video QA (fixed token budget). Accuracy (%). Higher is better.

Config LongVideoBench ↑ LVBench ↑
A) SFT (single, no TI) 61.3 40.2
B) SFT + Timestamp Injection (single) 62.1 44.3
C) SFT + Stage-2-only + TI (full video; no crop) 62.5 45.4
D) ViTL(full): two-stage + GRPO (QA+TVG) + TI 63.5 47.9

terleaved GRPO. Accuracy improves on both datasets, confirming that allocating tokens to predicted
evidence (while keeping totals fixed) yields better answers than any single-stage alternative.

5.5 EFFECTIVENESS OF LEARNED GROUNDING

To validate the necessity of a learned grounding module, we compare ViTL against heuristic base-
lines and establish performance bounds.

Parametric vs. Non-Parametric Frame Selection. We compare ViTL against a strong CLIP-
based baseline (ViT-L/14), which computes the cosine similarity between the question and every
frame, selecting the top-128 frames. As shown in Table 7, ViTL consistently yields higher accu-
racy (e.g., 63.3% vs. 58.1% on LongVideoBench), demonstrating that query-conditioned parametric
selection provides essential evidence that zero-shot semantic similarity misses.

Performance Bounds: Random vs. Oracle Zooming. To quantify the headroom for Stage 1
localization, we establish lower bounds (random sampling) and upper bounds (oracle spans). Table 8
shows that ViTL significantly outperforms random zooming and closes a large portion of the gap
toward the oracle upper bound (e.g., capturing over half the headroom on LongVideoBench). This
confirms gains are attributable to accurate temporal localization.

Table 7: Parametric (ViTL) vs. Non-parametric
(CLIP) selection.

Method Strategy LVideoB LVBench

CLIP Top-k Non-param. 58.1 40.3
ViTL Parametric 63.3 47.4

Table 8: Performance bounds analysis: Random
vs. Oracle.

Config Input LVideoB LVBench

Lower Bound Random 55.2 39.5
ViTL Pred. Spans 63.3 47.4
Upper Bound GT Spans 70.5 51.4

5.6 MECHANISM ANALYSIS: ZOOMING AND MULTI-SPAN RETRIEVAL

We further disentangle the architectural decisions that drive ViTL’s performance.
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Impact of Visual Zooming vs. Iterative Reasoning. To verify that gains stem from accessing
high-fidelity visual details rather than simply "thinking twice," we introduce a Refine-only baseline
(Stage 2 reuses Stage 1’s low-fps frames). As summarized in Table 9, Refine-only provides only
marginal gains (56.2% vs. 56.0%), whereas ViTL with true Zoom achieves substantial improvements
(63.3%). This proves that reallocating the visual token budget to high-resolution evidence is the
primary driver of performance.

Table 9: Mechanism ablation (Zoom vs. Refine). Iterative reasoning alone (Refine-only) yields
negligible gains; improvements stem from high-fidelity visual zooming.

Method Mechanism LVideoBench LVBench

Single Stage Direct answer 56.0 45.3
Refine-only Think twice (low FPS) 56.2 45.7
ViTL Think twice (Zoom) 63.3 47.4

Single vs. Multi-Span Retrieval. Allowing the retrieval of multiple disjoint spans yields a +2.3%
absolute accuracy gain on LVBench (47.4% vs. 45.1% with a single-span constraint). This indicates
that relevant evidence in long-form videos is frequently scattered, validating our multi-span design.

5.7 QUALITATIVE ANALYSIS

To provide further insight into the behavior and capabilities of ViTL, Figure 1 illustrates represen-
tative an example of our model’s two-stage reasoning process, showcasing its ability to generate
coherent thought processes, accurately ground temporal segments, and provide correct answers.
Additional qualitative examples, including comparisons with baselines and failure case analyzes,
are provided in the appendix A.

6 CONCLUSION AND DISCUSSION

We cast long-video QA as allocating a fixed token budget to verifiable evidence and introduced
Video-in-the-Loop (ViTL), a skim→zoom pipeline that first localizes evidence spans and then an-
swers within them. ViTL trains an interleaved span+answer output end-to-end with a group-relative
objective coupling temporal IoU and answer correctness, enabling credit to flow from answers back
to localization. To supply supervision, we develop event knowledge graphs based approach to turn
video into span-grounded MCQA that ties each question to ground-truth time span(s) with same-
video distractors. Together, the data and method move tokens off background, make “where” ex-
plicit, and improve QA and grounding under matched compute. Limitations include noise in up-
stream graphs, the simplicity of MCQA versus open-ended reasoning, and RL variance; many real
scenarios also require richer audiovisual cues. Promising directions include streaming ViTL (online
skim→zoom), multi-hop reasoning across events/videos, space–time grounding with entity tracks,
preference/rationale supervision for faithful attribution, and joint metrics scoring answer quality,
span faithfulness, and compute.
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A MORE EVALUATION RESULTS 7B MODELS

We further enhance Qwen2.5-VL-7B model with our two-stage RL training pipeline ViTL and com-
pare the results on temporal grounding task and QA answering task on Charade-STA (Gao et al.,
2017) and CG-Bench (Chen et al., 2024a).

Charades-STA (Gao et al., 2017). As presented in Table 10, ViTL (Ours 7B) achieves strong per-
formance, outperforming several specialized methods in mIoU and recall at various IoU thresholds.
The ViTL (Ours 3B) variant also shows competitive results.

Table 10: Zero-shot Video Temporal Grounding on Charades-STA (Gao et al., 2017). Bold indicates
our model’s results and its scores.

Method Size R@0.3 (%) ↑ R@0.5 (%) ↑ R@0.7 (%) ↑ mIoU (%) ↑
VTimeLLM (Huang et al., 2024) 13B 55.3 34.3 14.7 34.6
TimeChat (Ren et al., 2023) 7B 51.5 32.2 13.4 –
Momentor (Qian et al., 2024) 7B 42.6 26.6 11.6 28.5
HawkEye (Zhao et al., 2024) 7B 50.6 31.4 14.5 33.7
ChatVTG (Qu et al., 2024) 7B 52.7 33.0 15.9 34.9
VideoChat-TPO (Yan et al., 2024) 7B 58.3 40.2 18.4 38.1
E.T. Chat (Liu et al., 2024b) 4B 65.7 45.9 20.0 42.3
ViTL (Ours 3B) 3B 77.7 63.5 36.3 54.0
ViTL (Ours 7B) 7B 80.1 66.0 40.2 59.0

CG-Bench (Chen et al., 2024a). Table 11 shows that ViTL (Ours 3B) and ViTL (Ours 7B)
achieves competitive mIoU for grounding compared to other models of similar and larger sizes,
while also providing a strong long-form accuracy.
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Table 11: Grounded VideoQA performance on CG-Bench. Closed-source APIs (top) and open-
source models (bottom) are grouped separately and sorted by parameter size. Bold indicates our
model’s results and its scores. ViTL (3B/7B) consistently outperforms open-source baselines of
similar and larger sizes in grounding quality (mIoU).

Method Size Type long-acc. (%) ↑ mIoU (%) ↑
Closed-source (API)

Gemini-1.5-Flash (Team et al., 2024) – API 32.3 3.67
GPT-4o-mini (OpenAI, 2024) – API 33.4 3.75
Gemini-1.5-Pro (Team et al., 2024) – API 37.2 3.95
Claude-3.5-Sonnet (Anthropic, 2024) – API 40.5 3.99
GPT-4o (OpenAI, 2024) – API 45.2 5.62

Open-source models

Qwen2.5VL-instruct (Team, 2025) 3B Open 18.4 0.86
ViTL (Ours 3B) 3B Open 23.5 2.90
Video-LLaVA (Lin et al., 2023) 7B Open 16.2 1.13
VideoLLaMA 2 (Zhang et al., 2023) 7B Open 18.4 1.21
Videochat2 (Li et al., 2023) 7B Open 19.3 1.28
Qwen-VL-Chat (Bai et al., 2023) 7B Open 21.6 0.89
ST-LLM (Liu et al., 2023) 7B Open 23.8 2.23
LongVA (Zhang et al., 2024a) 7B Open 28.7 2.94
LLaVA-OV (Li et al., 2024a) 7B Open 31.1 1.63
ViTL (Ours 7B) 7B Open 34.4 3.32
MiniCPM-v2.6 (Yao et al., 2024) 8B Open 30.1 2.35
Kangaroo (Liu et al., 2024a) 8B Open 30.2 2.56
Chat-UniVi-v1.5 (Jin et al., 2023) 13B Open 25.9 2.07
Video-CCAM (Fei et al., 2024) 14B Open 29.7 2.63
ShareGPT4Video (Chen et al., 2024b) 16B Open 26.7 1.85
VITA (Fu et al., 2024) 8×7B Open 33.3 3.06
Qwen2-VL (Wang et al., 2024) 72B Open 41.3 3.58
InternVL2 (OpenGVLab Team, 2024) 78B Open 42.2 3.91

B ADDITIONAL ANALYSES AND DISCUSSIONS

B.1 ROBUSTNESS TO TEMPORAL GROUNDING BIAS AND QVHIGHLIGHTS TRANSFER

A recent line of work shows that temporal grounding models often exploit dataset-specific priors
(e.g., typical moment location and duration) instead of learning true cross-modal reasoning. To ver-
ify that ViTL does not rely on such priors, we evaluate it on ActivityNet-CD, an out-of-distribution
(OOD) split of ActivityNet-Captions specifically constructed to break these biases, and further per-
form zero-shot moment retrieval on QVHighlights.

As shown in Table 12, ViTL (7B) maintains strong performance under distribution shift: its mIoU
drops only slightly from 24.1 to 23.3 when moving from the in-domain ActivityNet-Captions split to
ActivityNet-CD, while still clearly outperforming the Qwen2.5-VL-7B baseline in both settings. On
QVHighlights zero-shot transfer, ViTL also improves mAP@5 by +1.3 absolute (14.2 vs. 12.9), sup-
porting that our “Skim–Zoom” pipeline learns query-conditioned grounding rather than memorizing
temporal priors.

Table 12: In-domain vs. distribution-shift generalization and zero-shot transfer. ViTL main-
tains strong performance on ActivityNet-CD (OOD) and improves zero-shot moment retrieval on
QVHighlights.

Dataset Setting Metric Qwen2.5-VL-7B ViTL (7B)

ActivityNet-Captions In-domain (Train = Test dist.) mIoU 22.5 24.1
ActivityNet-CD OOD (distribution-shift) mIoU 20.2 23.3
QVHighlights Zero-shot moment retrieval mAP@5 12.9 14.2
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B.2 OPEN-ENDED QA CAPABILITIES

While our main experiments adopt multiple-choice QA for standardized evaluation, ViTL is built on
top of generalist MLLMs (Qwen2.5-VL) and naturally supports open-ended generation. To assess
these generative capabilities, we evaluate ViTL on EgoTempo, an open-ended QA benchmark.

Table 13 shows that ViTL improves open-ended QA accuracy from 26.1% (Qwen2.5-VL-7B) to
31.0%, demonstrating that our “Skim–Zoom” temporal grounding also benefits free-form reasoning
and not only multiple-choice formats.

Table 13: Open-ended QA performance on EgoTempo. ViTL improves open-ended QA accuracy
over the Qwen2.5-VL-7B backbone.

Model Task Accuracy (%)

Qwen2.5-VL-7B Open-ended QA 26.1
ViTL (Ours) Open-ended QA 31.0

C MORE QUALITATIVE RESULTS

We provide additional qualitative examples of our video-in-the-loop approach in Figure 3, Figure 4,
Figure 5 and Figure 6

D DECLARATION OF LLM USAGE

We used large language models (LLMs) solely for light editing of prose—including wording refine-
ment, grammar correction, and minor clarity improvements—in limited portions of this paper. All
LLM-edited text was subsequently reviewed and revised by the authors.
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Figure 3: Qualitative demonstration of our two-stage reasoning and grounding pipeline on a sample
video from Charade-STA.
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Figure 4: Qualitative demonstration of our two-stage reasoning and grounding pipeline on a sample
video from Charade-STA.
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Figure 5: Qualitative demonstration of our two-stage reasoning and grounding pipeline on a sample
video from CG-Bench.
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Figure 6: Qualitative demonstration of our two-stage reasoning and grounding pipeline on a sample
video from CG-Bench.

21


	Introduction
	Related Work
	MLLMs for Long-Video Understanding
	Multi-Stage and Adaptive Video Processing

	VGrounding-QA: Training Set Creation from Event Graphs
	ViTL: Interleaved Two-Stage GRPO with Grounded Spans
	Two-Stage Video-in-the-Loop with Frame-Level Timestamp Injection
	Learning with Interleaved Group-Relative Policy Optimization

	Experiments
	Setup
	Long-Video QA Performance
	Temporal Grounding Performance
	Ablation Studies on Long-Video QA
	Effectiveness of Learned Grounding
	Mechanism Analysis: Zooming and Multi-Span Retrieval
	Qualitative Analysis

	Conclusion and Discussion
	More Evaluation results 7B models
	Additional Analyses and Discussions
	Robustness to Temporal Grounding Bias and QVHighlights Transfer
	Open-Ended QA Capabilities

	More Qualitative Results
	Declaration of LLM Usage

