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Abstract

Given only observational data X = g(Z), where both the latent variables Z and1

the generating process g are unknown, recovering Z is ill-posed without addi-2

tional assumptions. Existing methods often assume linearity or rely on auxiliary3

supervision and functional constraints. However, such assumptions are rarely ver-4

ifiable in practice, and most theoretical guarantees break down under even mild5

violations, leaving uncertainty about how to reliably understand the hidden world.6

To make identifiability actionable in the real-world scenarios, we take a comple-7

mentary view: in the general settings where full identifiability is unattainable,8

what can still be recovered with guarantees, and what biases could be universally9

adopted? We introduce the problem of diverse dictionary learning to formalize10

this view. Specifically, we show that intersections, complements, and symmet-11

ric differences of latent variables linked to arbitrary observations, along with the12

latent-to-observed dependency structure, are still identifiable up to appropriate in-13

determinacies even without strong assumptions. These set-theoretic results can14

be composed using set algebra to construct structured and essential views of the15

hidden world, such as genus-differentia definitions. When sufficient structural16

diversity is present, they further imply full identifiability of all latent variables.17

Notably, all identifiability benefits follow from a simple inductive bias during es-18

timation that can be readily integrated into most models. We validate the theory19

and demonstrate the benefits of the bias on both synthetic and real-world data.20

1 Introduction21

Dictionary learning, in its most general form, assumes that observations X are generated by latent22

variables Z through an unknown function f , i.e., X = f(Z). The goal is to recover the latent23

generative process from observational data, a fundamental task in both science and machine learning.24

The nonparametric formulation X = f(Z) unifies a wide range of latent variable models, including25

independent component analysis, factor analysis, and causal representation learning.26

Identifiability, the ability to recover the true generative model from data, is crucial for understanding27

the hidden world. Yet in general dictionary learning, the problem is fundamentally ill-posed without28

additional assumptions, akin to finding a needle in a haystack. To reduce this ambiguity, most prior29

work imposes strong parametric constraints to limit the potential solution space. This practice is so30

widespread that, although dictionary learning is fundamentally nonparametric, it is almost always31

instantiated as a linear model, where observations are sparse linear combinations of latent variables32

(Olshausen & Field, 1997; Aharon et al., 2006; Geadah et al., 2024). However, this linearity could33

be overly restrictive and fails to capture the complexity of many real-world generative processes.34

A relevant example is sparse autoencoders (SAEs), commonly used in mechanistic interpretability,35

especially for foundation models. Although effective in some settings, SAEs are rooted in sparse36

linear dictionary learning, raising concerns about their ability to represent the inherently nonlinear37

structure of large-scale neural representations.38
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Many efforts have been made to relax the linearity assumption. In nonlinear ICA, one line of work39

leverages auxiliary variables as weak supervision to achieve identifiability under statistical indepen-40

dence (Hyvärinen & Morioka, 2016; Hyvärinen et al., 2019; Yao et al., 2021; Hälvä et al., 2021;41

Lachapelle et al., 2022), while another constrains the mixing function itself (Taleb & Jutten, 1999;42

Moran et al., 2021; Kivva et al., 2022; Zheng et al., 2022; Buchholz et al., 2022). In causal rep-43

resentation learning, identifiability often depends on access to interventional data (von Kügelgen44

et al., 2023; Jiang & Aragam, 2023; Jin & Syrgkanis, 2023; Zhang et al., 2024) or counterfactual45

views (Von Kügelgen et al., 2021; Brehmer et al., 2022), which assume some control over the data-46

generating process to enable meaningful manipulation.47

However, a gap remains between theoretical guarantees and practical utility. Theoretically, while48

additional assumptions can yield recovery guarantees, it is rarely possible to verify whether such49

assumptions hold in practice. Understanding what guarantees remain valid under assumption viola-50

tions is therefore essential for reliably uncovering the truth in general settings. Practically, we are51

less concerned with identifiability under ideal conditions and more interested in which inductive bi-52

ases promote recovery, especially when the ground truth is unknown. Yet most existing approaches53

fail to offer any guarantees under even mild violations of their assumptions, making their associated54

biases, such as contrastive objectives or weak supervision, difficult to generalize across settings.55

Therefore, in the general scenarios, two questions remain:56

• What aspects of the latent process can still be recovered?57

• What inductive biases should be introduced to guide recovery?58

To answer these questions and thus achieve actionable identifiability, we focus on a new problem59

aiming to offer meaningful guarantees across a wide range of scenarios: diverse dictionary learn-60

ing. Rather than seeking to recover all latent variables in the system, we consider a complementary61

question: what aspects of the latent process remain identifiable even in the general settings with62

only basic assumptions? We show that, even without specific parametric constraints or auxiliary63

supervision, structured subsets of latent variables can still be identified through their set-theoretic64

relationships with observed variables. In particular, for any set of observed variables, the intersec-65

tion, complement, and symmetric difference of their associated latent supports are identifiable (Thm.66

1). Moreover, the dependency structure between latent and observed variables is also identifiable67

up to standard indeterminacy of relabeling (Thm. 2). These flexible results naturally uncover many68

informative perspectives of the hidden world through the lens of diversity: the intersection captures69

the common latent factors (genus) underlying multiple objects, while the complement and symmet-70

ric difference allow us to isolate the parts that are unique or non-overlapping (differentia), providing71

a principled way to understand the hidden world from the classical genus-differentia definitions72

(Granger, 1984) (Prop. 1) or the atomic regions in the Venn diagram (Sec. 3.2).73

Since this form of identifiability is defined entirely through basic set-theoretic operations, it is highly74

flexible and applies to arbitrary subsets of observed variables based on set algebra. When the full set75

of observed variables is considered and the dependency structure between latent and observed vari-76

ables is sufficiently diverse, it becomes possible to recover all latent variables, yielding a generalized77

structural criterion for full identifiability (Thm. 3). Notably, for estimation, these identifiability ben-78

efits require only a simple sparsity regularization on the dependency structure, which can be readily79

implemented in most models that admit a Jacobian. Our theory also makes it rather universal, sup-80

porting meaningful recovery across a wide range of settings, from partial to full identifiability, and81

thus serves as a robust and broadly applicable regularization principle. We incorporate this universal82

bias into different types of generative models and observe immediate benefits from the correspond-83

ing identifiability guarantee in both synthetic and real-world datasets.84

2 Background and Problem Setup85

We adopt the standard perspective of latent variable models, where the observed world is generated86

from latent variables through a hidden process:87

X = g(Z), (1)

where X = (X1, · · · , Xdx) ∈ Rdx denotes the observed variables, and Z = (Z1, · · · , Zdz ) ∈ Rdz88

denotes the latent variables. Let X and Z denote the supports of X and Z, respectively.89
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Connection to linear dictionary learning. Our task can be viewed as a nonlinear version of clas-90

sical dictionary learning. Both classical approaches (Olshausen & Field, 1997; Aharon et al., 2006)91

and more recent ones (Hu & Huang, 2023; Sun & Huang, 2025) model observations as linear com-92

binations of dictionary atoms D, i.e., X = DZ. Differently, we consider the nonlinear setting93

X = g(Z), where g is a nonlinear function. Although arising in different contexts, linear dictionary94

learning provides a useful analogy for some necessary conditions to avoid ill-posed settings. In the95

linear case, conditions like Restricted Isometry Property had to be introduced, which ensure that96

different latent codes map to distinguishable outputs, making the linear operator injective and thus97

no information is lost (Foucart & Rauhut, 2013; Jung et al., 2016). By analogy, the nonlinear setting98

also requires restrictions on g to ensure injectivity. Following the literature on nonlinear identifia-99

bility, g is assumed to be a C2 diffeomorphism onto its image (smooth and injective) (Hyvärinen &100

Pajunen, 1999; Lachapelle et al., 2022; Hyvärinen et al., 2024; Moran & Aragam, 2025).101

Connection to nonlinear identifiability results. However, simply avoiding information loss is102

insufficient for full latent recovery with guarantees in the nonlinear regime. Prior work (see the103

survey (Hyvärinen et al., 2024)) addresses this by constraining the form of g (e.g., post-nonlinear104

models) or by introducing auxiliary information, such as domain or time indices, or interven-105

tional/counterfactual data. In contrast, we focus on general real-world settings and deliberately106

avoid such assumptions, aiming to understand what can be recovered from this minimal setup. Nat-107

urally, some basic conditions, such as invertibility and differentiability, are necessary to rule out108

pathological cases, but our goal is to keep these as general as possible, even with the trade-off that109

recovering every latent variable becomes infeasible.110

Remark 1 (Extension to noisy processes). Equation (1) considers a deterministic function, but it111

can be naturally extended to settings with additive noise using standard deconvolution (Kivva et al.,112

2022), or to more general noise models under additional assumptions (Hu & Schennach, 2008).113

Figure 1: Example.

Structure. The dependency structure between latent and observed variables,114

though hidden, captures the fundamental relationships underlying the data115

and is inherently nonparametric. To explore theoretical guarantees in general116

settings, this structure provides a natural starting point (Moran et al., 2021;117

Zheng et al., 2022; Kivva et al., 2022). Before diving deep into the hidden118

relations, we need to formalize them from the nonparametric functions. We119

first define the nonzero pattern of a matrix-valued function as:120

Definition 1. The support of a matrix-valued function M : Θ → Rm×n is121

the set of index pairs (i, j) such that the (i, j)-th entry of M(θ) is nonzero for122

some input θ ∈ Θ:123

supp(M; Θ) := {(i, j) ∈ [m]× [n] | ∃θ ∈ Θ,M(θ)i,j ̸= 0} .

For a constant matrix, its support is a special case of Defn. 1, which is the set of indices of non-zero124

elements. Then, we define the dependency structure as the support of the Jacobian of g:125

Definition 2. The dependency structure between latent variables Z and observed variables X =126

g(Z) is defined as the support of the Jacobian matrix of g. Formally,127

S := supp(Dzg;Z) =

{
(i, j) ∈ [dx]× [dz] | ∃z ∈ Z,

∂gi(z)

∂zj
̸= 0

}
.

This structure S captures which latent variables functionally influence which observed variables128

through the generative map g. It might be noteworthy that, since it is defined via the Jacobian, it129

reflects functional rather than statistical dependencies. In particular, it does not require statistical130

independence of Z and is therefore not limited to the mixing structures typically considered in ICA.131

Example 1. Figure 1 illustrates the dependency structure of a generative process. The top panel132

shows the ground-truth mapping from latent variables Z = (Z1, Z2, Z3) to observed variables133

X = (X1, X2, X3). The bottom panel shows the support of the Jacobian DZg(Z), where non-zero134

entries are marked with “∗”. Notably, the Jacobian structure also captures dependencies between135

latent variables, such as the interaction between Z1 and Z2.136

3 Theory137

In this section, we develop the identifiability theory of diverse dictionary learning. Our theory begins138

with a generalized notion of identifiability based on set-theoretic indeterminacy (Sec. 3.1), capturing139

3



what remains recoverable under minimal assumptions. We then illustrate its practical implications,140

such as disentanglement and atomic region recovery, through concrete examples (Sec. 3.2). These141

insights motivate the formal guarantees in Thms. 1 and 2 (Sec. 3.3). Finally, we show how the same142

framework extends naturally to element-wise identifiability under a generalized structural condition143

(Thm. 3, Sec. 3.4). All proofs are provided in Appx. A.144

3.1 Characterization of generalized identifiability145

As previously discussed, identifying all latent variables is fundamentally ill-posed without additional146

information, such as restricted functional classes or multiple distributions. In general scenarios147

where such constraints are absent, a natural question arises: what aspects of the latent process148

remain recoverable? Before presenting our identifiability results, we first formalize this goal, which149

has not been addressed in the existing literature.150

We begin by defining when two models are observationally indistinguishable from the perspective151

of the observed data, which is the goal of estimation based on observation.152

Definition 3 (Observational equivalence). we say there is an observational equivalence between153

two models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼obs θ̂, if and only if,154

p(x; θ) = p(x; θ̂), ∀x ∈ X .

Given that estimation yields an observationally equivalent model, our goal is to determine whether155

the latent variables recovered by this model correspond meaningfully to those in the ground-truth156

model. Since we avoid placing restrictive assumptions on the entire system, we adopt a localized157

perspective: instead of analyzing global correspondence, we examine the relationship between latent158

components at the level of specific observed variables. Inspired by set theory, we introduce a new159

notion of indeterminacy that formalizes ambiguity through basic set-theoretic operations.160

Definition 4 (Latent index set). For any set of observed variables XS , its latent index set IS ⊆ [dz]161

is defined as162

IS := { i ∈ [dz] | ∂XS

∂Zi
̸= 0 },

i.e., the set of indices of latent variables ZIS that influence XS .163

Definition 5 (Set-theoretic indeterminacy). There is a set-theoretic indeterminacy between two164

models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼set θ̂, if and only if, for any two sets of observed165

variables XK and XV , and their latent index sets IK and IV , there exists a permutation π over [dz]166

such that Zi is not a function of Ẑπ(j)
1 for all (i, j) satisfying at least one of the following:167

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;168

(ii) (Symmetric difference2) i ∈ IK∆IV , j ∈ IK ∩ IV ;169

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .170

Figure 2: Example of Defn. 5.

Intuitively, set-theoretic indeterminacy guarantees that certain com-171

ponents of the latent variables defined by basic set-theoretic opera-172

tions are disentangled from the rest, with an example as:173

Example 2. Figure 2 illustrates latent variables indexed by IK and174

IV , which influence the observed variable sets XK and XV . The175

intersection IK ∩ IV contains shared latent factors, while the sym-176

metric difference IK∆IV consists of those unique to one set but not177

the other. According to set-theoretic indeterminacy, latent variables178

in the intersection IK∩IV cannot be expressed as functions of those179

in the symmetric difference IK∆IV , ensuring that shared compo-180

nents remain disentangled from exclusive ones. Similarly, variables in the symmetric difference181

IK∆IV cannot be entangled with IK ∩ IV , preserving directional separability. Finally, the com-182

plement condition prohibits mutual entanglement between the exclusive parts IK \ IV and IV \ IK ,183

guaranteeing that what is unique to one observed group cannot explain what is unique to another.184

1Given the standard invertibility assumption, the reverse also holds because of the block-diagonal Jacobian,
which applies similarly in related definitions.

2The symmetric difference IK∆IV denotes elements in IK or IV but not in both, i.e., (IK \IV )∪(IV \IK).
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Because these operations form the foundation of set algebra, they can be flexibly composed to derive185

a variety of meaningful perspectives on the hidden variables, which we will detail later. We are now186

ready to define what it means for a model to have generalized identifiability.187

Definition 6 (Generalized identifiability). For a model θ = (g, pZ), we have generalized identifi-188

ability, if and only if, for any other model θ̂ = (ĝ, pẐ),189

θ ∼obs θ̂ =⇒ θ ∼set θ̂.

3.2 Implications of generalization190

In the previous section, we introduced a new characterization of identifiability suited to general,191

unconstrained settings. Built from basic set-theoretic operations, this formulation appears flexible192

and composable. Yet it remains unclear how general it truly is, and more importantly, why that193

generality matters. To answer this, we examine its implications through a concrete example in194

Fig. 3, highlighting both its expressive power and practical utility. We begin with several interesting195

implications of the generalization:196

Proposition 1 (Implications of generalized identifiability). For any two models θ = (g, pZ) and197

θ̂ = (ĝ, pẐ), if θ ∼set θ̂, then for any two sets of observed variables XK and XV , and their198

corresponding latent index sets IK and IV , Zi is not a function of Ẑπ(j) for all (i, j) satisfying at199

least one of the following, where π is a permutation:200

(i) (Object-centric) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;201

(ii) (Individual-centric) i ∈ (IK \ IV ), j ∈ IV , or i ∈ (IV \ IK), j ∈ IK;202

(iii) (Shared-centric) i ∈ IK ∩ IV , j ∈ IK∆IV .203

Example 3. In Fig. 3, Prop. 1 implies that, if we consider two groups of observed variables, such as204

X1 and {X2, X3}, regions like I1\(I2∪I3) illustrate individual-centric disentanglement, where la-205

tents unique to one group must be disentangled from the rest. Regions such as I1, I2, or I3 represent206

object-centric disentanglement, where latents relevant to a single object must remain disentangled207

from the rest. The shared part can also be disentangled in a similar manner.208

Figure 3: Running example.

Why does it matter in the real world? These impli-209

cation types correspond to meaningful structures in real-210

world tasks. Object-centric disentanglement aligns with211

modularity in object-centric learning, where each object212

should have its own latent representation. Individual-213

centric disentanglement supports domain adaptation by214

isolating domain-specific factors. Shared-centric disen-215

tanglement captures common factors across domains or216

entities, which is essential for transferability and gen-217

eralization. These patterns emerge naturally from set-218

theoretic indeterminacy and offer a principled way to de-219

sign models that reflect the genus-differentia structure.220

Atomic regions in the Venn diagram. If the union of the221

latent index sets covers the full latent space, the general-222

ized identifiability guarantees in Defn. 5 extend to every223

atomic region in the corresponding Venn diagram.3224

Example 4 (Identifying atomic regions). Let I1, I2, and I3 be the latent index sets associated with225

three observed variables in Fig. 3. Consider the atomic region (I1∩I2)\I3. To disentangle it from the226

rest, we first take XK = X1, XV = X2, so IK = I1, IV = I2. Then i ∈ (I1 ∩ I2) \ I3 ⊆ IK ∩ IV ,227

and j ∈ IK∆IV = (I1 \ I2) ∪ (I2 \ I1), ensuring Zi is not a function of Zj in the symmetric228

difference. Second, take XK = X1 ∪ X2, XV = X3, so IK = I1 ∪ I2 and IV = I3. Then229

i ∈ (I1 ∩ I2) \ I3 ⊆ IK \ IV and j ∈ I3 = IV , ensuring Zi is also disentangled from latents of X3.230

Together, these guarantee that the atomic region (I1 ∩ I2) \ I3 is disentangled from the rest. Other231

3An atomic region in the Venn diagram is a non-empty set of the form
⋂n

i=1 Bi, where each Bi ∈ {Ii, [dz]\
Ii} for a finite collection of sets {I1, . . . , In}. In the example, these correspond to all 7 distinct regions.
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cases follow similarly and are in Appx. B. Therefore, each atomic region is disentangled from all232

other variables, and thus is region-wise (block-wise) identifiable4 under the invertibility condition.233

Remark 2 (Connection to block-identifiability). By leveraging basic set-theoretic operations, we234

can construct a Venn diagram over the latent supports and identify all atomic regions, each de-235

fined as a minimal, non-overlapping region closed under finite intersections and complements.236

This perspective is conceptually related to block-wise identifiability (Von Kügelgen et al., 2021;237

Li et al., 2023; Yao et al., 2024), but differs fundamentally in its assumptions and goals. Prior work238

achieves block identifiability by exploiting additional information such as multiple views or domains239

(Von Kügelgen et al., 2021; Yao et al., 2024; Li et al., 2023). In contrast, our approach requires no240

such weak supervision. Notably, Yao et al. (2024) also proposes an identifiability algebra, but in the241

opposite direction: they show that the intersection of latent groups can be identified after the groups242

themselves are recovered using multi-view signals. Our formulation instead starts from basic as-243

sumptions without any additional information, and directly targets the identifiability of intersections244

and complements without relying on external (weak) supervision. Of course, since the goals and245

setups are fundamentally different, our results do not supersede existing block-identifiability results,246

but rather offer a complementary perspective on recovering local structures.247

3.3 Generalized identifiability248

Having established the characterization and implications of generalized identifiability, we now turn249

to its formal proof. Let H denote a matrix sharing the support of the matrix-valued function h in250

the identity DZg(z)h(z, ẑ) = DẐ ĝ(ẑ). We begin by introducing the following assumption, which251

ensures sufficient nonlinearity in the system. Some arguments are omitted for brevity.252

Assumption 1 (Sufficient nonlinearity). For each i ∈ [dx], there exists a set Si of ∥(DZg)i,·∥0253

points such that the corresponding vectors for a model (g, pZ):254 (
∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
z=z(k)

, k ∈ Si,

are linearly independent, where z(k) denotes a sample with index k and supp((DZg(z
(k))H)i,·) ⊆255

supp((DẐ ĝ)i,·).256

Interpretation. The assumption ensures the connection between the structure and the nonlinear257

function. In the asymptotic cases, we can usually find several samples in which the corresponding258

Jacobian vectors are linearly independent, i.e., span the support space. The assumption of non-259

exceeding support at these points is also typically mild since (DẐ ĝ(ẑ))i,· = (DZg(z))i,·h(z, ẑ).260

Connection to the literature. The sufficient nonlinearity assumption is a standard one, making it261

feasible to draw the connection between the Jacobian and the structure. It has been widely used in the262

literature (Lachapelle et al., 2022; Zheng et al., 2022; Kong et al., 2023; Yan et al., 2023), and aligns263

with the sufficient variability assumption (Hyvärinen & Morioka, 2016; Khemakhem et al., 2020;264

Sorrenson et al., 2020; Lachapelle et al., 2022; Zhang et al., 2024; Lachapelle et al., 2024). While265

most prior works often focus on variability across environments, sufficient nonlinearity imposes266

variability in the Jacobians across multiple samples to span the support space, following the spirit in267

(Lachapelle et al., 2022; Zheng et al., 2022; Lachapelle et al., 2024).268

Then we are ready to present our main theorem for the generalized identifiability:269

Theorem 1 (Generalized identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)270

following the process in Sec. 2. Suppose Assum. 1 holds and:271

i. The probability density of Z is positive in Rdz ;272

ii. (Sparsity regularization5) ∥DẐ ĝ∥0 ≤ ∥DZg∥0.273

Then if θ ∼obs θ̂, we have generalized identifiability (Defn. 6), i.e., θ ∼set θ̂.274

We further show that the dependency structure is identifiable up to a standard relabeling indetermi-275

nacy, providing structural insight when the underlying connections are of interest.276

4A model is block-wise identifiable (Von Kügelgen et al., 2021) if the mapping between the estimated and
ground-truth latent variables is a composition of block-wise invertible functions and permutations. Intuitively,
variables can be entangled within the same block (set) but not across different blocks (sets).

5Notably, this is a regularization during estimation, instead of an assumption restricting the data.
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Theorem 2 (Structure identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ) follow-277

ing the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If θ ∼obs θ̂, the support of the278

Jacobian matrix Dẑ ĝ is identical to that of Dzg, up to a permutation of column indices.279

Universal inductive bias. The first additional condition of positive density is standard and appears280

in nearly all previous identifiability results. We therefore focus on the sparsity regularization. Note281

that this is not an assumption on the data-generating process itself, but a practical inductive bias282

applied only during estimation. Thus, the ground-truth process does not need to be sparse at all.283

This dependency sparsity reflects an inductive bias toward the simplicity of the hidden world.284

Among the many interpretations of Occam’s razor, our approach aligns with the connectionist view,285

which prefers to always shave away unnecessary relations. This principle is fundamental and has286

been extensively studied in several fields. For example, in structural causal models, fully connected287

graphs are always Markovian to the observed distribution, but principles such as faithfulness, fru-288

gality, and minimality are used to eliminate spurious or redundant edges, revealing the true causal289

structure (Zhang, 2013). These simplicity criteria have been validated both theoretically and empir-290

ically over decades, supporting the use of sparsity as a reasonable inductive bias during regulariza-291

tion. Moreover, this regularization is highly practical: it can be integrated into most differentiable292

models, as long as gradients of the mappings with respect to latent variables are accessible.293

3.4 From sets to elements294

Having established generalized identifiability through set-theoretic indeterminacy, which provides295

meaningful guarantees when full recovery is out of reach, a natural question arises: can stronger296

results, such as element identifiability for all latent variables, as targeted by most prior work, be297

obtained by imposing additional constraints?298

Definition 7 (Element-wise indeterminacy). We say there is an element-wise indeterminacy be-299

tween two models θ = (g, pZ) and θ̂ = (ĝ, pẐ), denoted θ ∼elem θ̂, if and only if300

Ẑ = Pπφ(Z),

where φ(Z) = (φ1(Z1), . . . , φdz (Zdz )), φ : Z =⇒ Ẑ is a element-wise diffeomorphism and Pπ301

is a permutation matrix corresponding to a dz-permutation π.302

Definition 8 (Element identifiability (Hyvärinen & Pajunen, 1999)). For a model θ = (g, pZ), we303

have element identifiability, if and only if, for any other model θ̂ = (ĝ, pẐ),304

θ ∼obs θ̂ =⇒ θ ∼elem θ̂.

Connection to generalized identifiability. Generalized identifiability (Defn. 6) focuses on recover-305

ing partial information from subsets of observed variables, while permutation identifiability seeks to306

recover all latent variables up to element-wise indeterminacy, which is strictly stronger. As a result,307

achieving permutation identifiability naturally requires stronger assumptions.308

Interestingly, this can be a natural consequence of set-theoretic indeterminacy. As discussed in309

Sec. 3.2, generalized identifiability guarantees the recovery of atomic regions in the Venn diagram.310

Therefore, if the Venn diagram is sufficiently rich, meaning that each latent variable corresponds to311

its own atomic region, we obtain element-wise identifiability directly. Since the Venn diagram is312

simply a representation of the dependency structure, we now formalize the corresponding structural313

condition as follows. For each Xj ∈ A, let Ij be the index set of latent variables connected to Xj .314

Assumption 2 (Sufficient diversity). For each latent variable Zi (i ∈ [dz]), there exists a set of315

observed variables A such that at least one of the following three conditions holds:316

1. There exists Xk ∈ A such that
⋃

Xj∈A Ij = [dz], Ik \
⋃

Xj∈A\{Xk} Ij = i.317

2. There exists Xk ∈ A such that
⋃

Xj∈A Ij = [dz],
(⋂

Xj∈A\{Xk} Ij

)
\ Ik = i.318

3. (Zheng et al., 2022) The intersection of supports satisfies
⋂

Xj∈A Ij = i.319

Theorem 3 (Element identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ) follow-320

ing the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have321

identifiability up to element-wise indeterminacy, i.e., θ ∼obs θ̂ =⇒ θ ∼elem θ̂.322
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Generalized structural condition. The sufficient diversity serves as a generalized condition for323

element identifiability in fully unsupervised settings. The most closely related work is Zheng et al.324

(2022), which also derives nonparametric identifiability results based purely on structural assump-325

tions, without relying on auxiliary variables, interventions, or restrictive functional forms. However,326

their structural sparsity condition aligns exactly with the third clause of sufficient diversity, making327

it strictly stronger. In contrast, our formulation introduces two additional conditions as alterna-328

tives, expanding the class of admissible structures and offering greater flexibility. We conjecture329

that sufficient diversity may even be necessary when no distributional or functional form constraints330

are imposed, as it arises naturally from the structure of atomic regions in the Venn diagram. Since331

any dependency structure admits such a representation, and atomic regions serve as its minimal332

elements, our condition may capture the essential structural requirement for element-level recovery.333

Diversity is not sparsity. It is worth emphasizing that our diversity condition is fundamentally334

different from sparsity assumptions. Diversity does not require the structure to be sparse: it remains335

valid even in nearly fully connected settings, as long as there is some variation (e.g., even a single336

differing edge) in the connectivity patterns across variables. By contrast, sparsity-based assumptions337

strictly enforce sparse structures. For example, the well-known anchor feature assumption (Arora338

et al., 2012; Moran et al., 2021) requires each latent variable to have at least two observed variables339

that are unique to it, thereby excluding dense structures.340

4 Experiment341

In this section, we provide empirical support for our results in both synthetic and real-world settings.342

Due to page limits, additional experimental results are deferred to Appendix C, including (1)343

comparisons of more Jacobian/Hessian penalties (e.g., (Wei et al., 2021; Peebles et al., 2020)), (2)344

analyses of regularization weights, and (3) further visual results on synthetic and real data.345

4.1 Synthetic experiments346

Figure 4: R2 in simulation.

Setup. We follow the data generation process in Sec. 2.347

We employ the variational autoencoder as our backbone348

model with a dependency sparsity regularization in the349

objective function as:350

L = Eq(Z|X)[ln p(X|Z)]− βDKL(q(Z|X)||p(Z))︸ ︷︷ ︸
Evidence Lower Bound

+α∥Dẑĝ∥0,

where DKL is the Kullback–Leibler divergence, q(Z|X)351

the variational posterior, p(Z) the prior, p(X|Z) the like-352

lihood, and α, β regularization weights. We use 10, 000 samples and set α = β = 0.05 for all353

experiments, and all generation processes are nonlinear, implemented by MLPs with Leaky ReLU.354

Figure 5: MCC in simulation.

Generalized Identifiability. We begin by evaluating gen-355

eralized identifiability across groups of observed vari-356

ables. We generate datasets with dimensionality in357

{3, 4, 5} and split the observed variables into two groups,358

XK and XV . For each dataset, we compute the R2 score,359

lower means more disentangled, between: (1) Int, IK∩IV360

and IK∆IV ; (2) SymDiff, IK∆IV and IK ∩ IV ; and (3)361

Comp A and Comp B, both directions between IK \ IV362

and IV \ IK . We also include Ref, the R2 between Z and363

Ẑ, as a baseline indicating the expected level of R2 for364

entangled variables. As shown in Fig. 4, all disentanglement conditions implied by set-theoretic in-365

determinacy (Defn. 5) are satisfied: the R2 between structurally disjoint components is consistently366

much lower than Ref, supporting the validity of generalized identifiability.367

Element Identifiability. We evaluate whether comparing multiple variable pairs enables recovery368

of latent variables up to element-wise indeterminacy. We construct datasets with varying dimen-369

sions and structures that either satisfy Sufficient Diversity (Assum. 2) (Ours) or violate it through370

fully dense dependencies (Base). Following prior work (Hyvärinen et al., 2024), we use the mean371

correlation coefficient (MCC) between estimated and ground-truth latent variables as the evaluation372
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Method Shapes3D Cars3D MPI3D
FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑

VAE-based
FactorVAE (Kim & Mnih, 2018) 0.833 ± 0.025 0.484 ± 0.120 0.708 ± 0.026 0.135 ± 0.030 0.599 ± 0.064 0.345 ± 0.047
FactorVAE + Latent Sparsity 0.837 ± 0.069 0.477 ± 0.152 0.501 ± 0.434 0.113 ± 0.069 0.440 ± 0.065 0.325 ± 0.028
FactorVAE + Dependency Sparsity 0.871 ± 0.053 0.575 ± 0.032 0.752 ± 0.040 0.144 ± 0.053 0.639 ± 0.084 0.384 ± 0.031

Diffusion-based
EncDiff (Yang et al., 2024) 0.9999 ± 0.0001 0.901 ± 0.050 0.779 ± 0.060 0.250 ± 0.020 0.868 ± 0.033 0.676 ± 0.018
EncDiff + Latent Sparsity 0.967 ± 0.042 0.891 ± 0.057 0.729 ± 0.003 0.241 ± 0.016 0.879 ± 0.015 0.684 ± 0.020
EncDiff + Dependency Sparsity 1.0000 ± 0.0000 0.947 ± 0.005 0.756 ± 0.041 0.256 ± 0.011 0.881 ± 0.024 0.667 ± 0.047

GAN-based
DisCo (Ren et al., 2021) 0.852 ± 0.037 0.710 ± 0.020 0.727 ± 0.106 0.319 ± 0.031 0.396 ± 0.023 0.306 ± 0.079
DisCo + Latent Sparsity 0.864 ± 0.007 0.707 ± 0.024 0.761 ± 0.148 0.294 ± 0.023 0.308 ± 0.031 0.314 ± 0.050
DisCo + Dependency Sparsity 0.868 ± 0.017 0.712 ± 0.018 0.789 ± 0.029 0.320 ± 0.003 0.410 ± 0.122 0.324 ± 0.059

Table 1: Comparison of disentanglement on FactorVAE score and DCI (mean±std, higher is better).

metric. As shown in Fig. 5, only datasets satisfying the structural condition achieve high MCC,373

confirming that element-wise identifiability holds under our assumptions.374

4.2 Visual Experiments375

Setup. Following the literature, we evaluate identification in more complex settings by learning376

latent variables as generative factors. Specifically, we follow the setting of (Yang et al., 2024) and377

use three standard benchmark datasets of disentangled representation learning: Cars3D (Reed et al.,378

2015), Shapes3D (Kim & Mnih, 2018), and MPI3D (Gondal et al., 2019), which are benchmark379

datasets with known generative factors such as object color, shape, scale, orientation, and viewpoint,380

ranging from synthetic renderings to real-world images.381

To evaluate the effectiveness of the proposed sparsity loss, we incorporate it into three powerful382

disentangled representation learning methods based on mainstream generative models: Variational383

Autoencoders (VAE), Generative Adversarial Networks (GAN), and Diffusion Models. These meth-384

ods correspond to FactorVAE (Kim & Mnih, 2018), DisCo (Ren et al., 2021), and EncDiff (Yang385

et al., 2024), respectively. We consider two types of baselines: 1) the original methods, i.e., Factor-386

VAE, DisCo, and EncDiff, and 2) versions of these methods that incorporate L1 regularization on387

Z (latent sparsity). In contrast, our approach applies an L1 regularization on Jacobian (dependency388

sparsity). Following standard practice, we use FactorVAE score (Kim & Mnih, 2018) and the DCI389

Disentanglement score (Eastwood & Williams, 2018) as evaluation metrics. We repeat each method390

over three random seeds. Please refer to Appx. C for more details on setups.391

Dependency sparsity in the literature. Notably, dependency sparsity has been widely used as a392

simple and standard regularization across diverse settings, from disentanglement to LLMs (Rhodes393

& Lee, 2021; Zheng et al., 2022; Farnik et al., 2025), although a general identifiability theory is still394

lacking. Thus, its empirical effectiveness is already well established, and our experiments aim to395

provide further supporting evidence.396

Latent or dependency sparsity? Table 1 shows that across most datasets and backbone methods,397

introducing the proposed dependency sparsity consistently helps the understanding of the hidden398

world. Notably, these generative models often benefit more from dependency sparsity than from399

latent sparsity. This is particularly interesting given the widespread use of sparse latent regular-400

ization in mechanistic interpretability (e.g., sparse autoencoders (Cunningham et al., 2023)). Our401

results highlight not only the advantage of dependency sparsity, but also lend insight to recent con-402

cerns about the limitations of latent sparsity raised in the interpretability literature, such as feature403

absorption, linear constraints, and high dimensionality (Sharkey et al., 2025).404

5 Conclusion405

We introduce diverse dictionary learning to investigate which aspects of the hidden world can be406

recovered under basic conditions, and which inductive biases may be universally beneficial during407

estimation. Our guarantees, grounded in set algebra, offer a complementary local view to prior re-408

sults based on global assumptions, and also unify existing structural conditions for full identifiability.409

For future work, it is worth exploring generalized identifiability in foundation models. Current mod-410

els are largely driven by empirical insights, and inductive biases inspired by identifiability, which411

have been overlooked, may offer fresh directions for breakthroughs. With massive data and com-412

putation available, asymptotic guarantees are becoming increasingly relevant, making identifiability413

practically significant. A deeper investigation along this line remains an open limitation of our work.414
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Sébastien Lachapelle, Pau Rodrı́guez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre478

Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A479

new principle for nonlinear ICA. Conference on Causal Learning and Reasoning, 2022.480
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Symbol Description

X = (X1, . . . , Xdx) ∈ Rdx Observed variables (data space)
Z = (Z1, . . . , Zdz ) ∈ Rdz Latent variables (hidden space)
g : Rdz → Rdx Generative map, diffeomorphism onto its image
supp(M ; Θ) Support of a matrix-valued function M : Θ → Rm×n

S = supp(Dzg;Z) Dependency structure: support of Jacobian between Z and X

θ = (g, pZ) Model consisting of generative map and latent distribution
θ ∼obs θ̂ Observational equivalence (same induced distribution on X)
θ ∼set θ̂ Set-theoretic indeterminacy (intersection, symmetric difference, com-

plement disentangled)
IS ⊆ [dz] Latent index set associated with observed variable set XS

IK ∩ IV Intersection of latent supports (shared factors)
IK∆IV Symmetric difference of latent supports (unique factors)
IK \ IV , IV \ IK Complements (exclusive latent components)
Atomic region Minimal block in Venn diagram defined by intersections and comple-

ments of latent supports
θ ∼elem θ̂ Element-wise indeterminacy (permutation + invertible reparametriza-

tion)

Table 2: Notation used throughout the paper.

A Proofs562

A.1 Proof of Proposition 1563

Proposition 1 (Implications of generalized identifiability). For any two models θ = (g, pZ) and564

θ̂ = (ĝ, pẐ), if θ ∼set θ̂, then for any two sets of observed variables XK and XV , and their565

corresponding latent index sets IK and IV , Zi is not a function of Ẑπ(j) for all (i, j) satisfying at566

least one of the following, where π is a permutation:567

(i) (Object-centric) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;568

(ii) (Individual-centric) i ∈ (IK \ IV ), j ∈ IV , or i ∈ (IV \ IK), j ∈ IK;569

(iii) (Shared-centric) i ∈ IK ∩ IV , j ∈ IK∆IV .570

Proof. For θ = (g, pZ) and θ̂ = (ĝ, pẐ), since θ ∼set θ̂, for any two sets of observed variables571

XK and XV , and their corresponding latent index sets IK and IV , there exists a permutation π572

over {1, . . . , dz} such that Zi is not a function of Ẑπ(j) for any (i, j) satisfying at least one of the573

following conditions:574

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;575

(ii) (Symmetric difference) i ∈ IK∆IV , j ∈ IK ∩ IV ;576

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .577

Our goal is to prove that, the same holds for all (i, j) satisfying at least one of the following condi-578

tions:579

(i) (Object-centric disentanglement) i ∈ IK , j ∈ IV \ IK or i ∈ IV , j ∈ IK \ IV ;580

(ii) (Individual-centric disentanglement) i ∈ IK \ IV , j ∈ IV , or i ∈ IV \ IK , j ∈ IK ;581

(iii) (Shared-centric disentanglement) i ∈ IK ∩ IV , j ∈ IK∆IV .582
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Let us start with the first case. If i ∈ IK , it is either the case i ∈ IK ∩ IV or i ∈ IK \ IV . For583

i ∈ IK ∩ IV , according to the case of Intersection in set-theoretic indeterminacy, we have584

∂Zi

∂Ẑπ(j)

= 0, (2)

for any j ∈ IK∆IV . Similarly, for i ∈ IK \ IV , we also have Eq. (2) for j ∈ IV \ IK . Combining585

these together, Eq. (2) must holds for any i ∈ IK and j ∈ IV \ IK . The similar derivation holds for586

any i ∈ IV and j ∈ IK \ IV . Thus, the first case holds.587

Then we consider the second case. If i ∈ IK \IV , then according to the case of symmetric difference588

in set-theoretic indeterminacy, we have Eq. (2) holds for j ∈ IK ∩ IV .589

Moreover, according to the case of complement in set-theoretic indeterminacy, we have Eq. (2)590

holds for j ∈ IV \ IK . Note that there is591

(IV \ IK) ∪ (IK ∩ IV ) = IV . (3)

Thus, for any i ∈ IK \ IV , we have Eq. (2) holds for any j ∈ IV . The similar derivation holds for592

any i ∈ IV \ IK and j ∈ IK . Thus, the second case holds.593

The third case is identical to the case of intersection in set-theoretic indeterminacy. Thus, for θ =594

(g, pZ) and θ̂ = (ĝ, pẐ), θ ∼set θ̂ implies our goals.595

A.2 Proof of Theorem 1596

Theorem 1 (Generalized identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ)597

following the process in Sec. 2. Suppose Assum. 1 holds and:598

i. The probability density of Z is positive in Rdz ;599

ii. (Sparsity regularization6) ∥DẐ ĝ∥0 ≤ ∥DZg∥0.600

Then if θ ∼obs θ̂, we have generalized identifiability (Defn. 6), i.e., θ ∼set θ̂.601

Proof. Since θ ∼obs θ̂, by the change-of-variable formula there must be602

Ẑ = ĝ−1 ◦ g(Z) = ϕ(Z), (4)

where ϕ = ĝ−1 ◦ g is an invertible function and thus ϕ−1 exists. Therefore, according to the chain603

rule, we have604

DẐ ĝ = DZgDẐϕ
−1. (5)

For each i ∈ [dx], consider a set Si of ∥(DZg)i,·∥0 distinct points and the corresponding Jacobians605

as follows606 (
∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
(z)=(z(k))

, k ∈ Si. (6)

According to Assumption 1, all vectors in Eq. (6) are linearly independent.607

Let us construct a matrix Mϕ. Since all vectors in Eq. (6) are linearly independent, for any j ∈608

supp((DZg)i,·), we have609

Mϕj,· =
∑
k∈Si

βk(DZg(z
(k)))i,·Mϕ, (7)

where βk, ∀k ∈ Si denote coefficients, and Mϕ denotes a matrix.610

We wish to construct a constant matrix Mϕ satisfying611 ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (8)

for each i ∈ [dx], while ensuring that612

supp(Mϕ) = supp(DẐϕ
−1), (9)

6Notably, this is a regularization during estimation, instead of an assumption restricting the data.
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According to Assumption 1, we have613

supp(DZg(z
(k))Mϕ)i,· ⊆ supp(DẐ ĝ(ẑ

(k)))i,·, ∀k ∈ Si. (10)

Therefore, there must be614

DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (11)

which implies615 ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}. (12)

Equivalently, we have616

Mϕj,· ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)}, ∀j ∈ supp((DZg)i,·). (13)

Define a bipartite graph G = (R,C,E) where R = C = {1, 2, . . . , dz} and an edge exists between617

j ∈ R and k ∈ C if and only if DẐϕ
−1
j,k ̸= 0.618

Since DẐϕ
−1 is invertible, its rows are linearly independent, so for every subset S ⊆ R, the corre-619

sponding rows have a nonzero determinant, implying that620

|{k ∈ C | ∃ j ∈ S, DẐϕ
−1
j,k ̸= 0}| ≥ |S|. (14)

By Hall’s marriage theorem, there exists a perfect matching between R and C. This matching621

corresponds to a permutation π ∈ Sn such that622

(DẐϕ
−1)j,π(j) ̸= 0,∀j ∈ {1, 2, . . . , n}. (15)

In particular, for every j ∈ supp((DZg)i,·) ⊆ {1, 2, . . . , n}, we have623

(DẐϕ
−1)j,π(j) ̸= 0. (16)

Because supp(Mϕ) = supp(DẐϕ
−1), this implies624

Mϕj,π(j) ̸= 0,∀j ∈ supp((DZg)i,·). (17)

Further incorporating Eq. (13), it follows that625

π(j) ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)}, ∀j ∈ supp((DZg)i,·). (18)

Therefore, for any non-zero element in Dzg, there always exists a corresponding non-zero element626

in Dẑĝ , with the relations on their indices as follows627

(Dzg)i,j ̸= 0 =⇒ (Dẑ ĝ)i,π(j) ̸= 0. (19)

Furthermore, because of the assumption that628

∥DẐ ĝ∥0 ≤ ∥DZg∥0, (20)

Eq. (19) can be further restricted to an equivalence between the sparsity patterns, i.e.,629

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0 (21)

We then consider the following two cases for the set-theoretic indeterminacy. Specifically, for any630

two sets of observed variables XK and XV and the index sets of their latent variables, IK and IV ,631

K ̸= V , we consider the following cases:632

(i) (Intersection) i ∈ IK ∩ IV , j ∈ IK∆IV ;633

(ii) (Symmetric difference) i ∈ IK∆IV , j ∈ IK ∩ IV ;634

(iii) (Complement) i ∈ IK \ IV , j ∈ IV \ IK , or i ∈ IV \ IK , j ∈ IK \ IV .635
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Let us start from the first case, where t ∈ IK ∩ IV , r ∈ IK∆IV . Denote the index sets of XK and636

XV as JK and JV . Then, there exists k ∈ JK such that637

t ∈ supp(DZg)k,·. (22)

This further implies the following relation based on Eq. (13)638

Mϕt,· ∈ span{ek′ : k′ ∈ supp((DẐ ĝ)k,·)}. (23)

Similarly, there exists v ∈ JV such that639

t ∈ supp(DZg)v,·, (24)

which further implies640

Mϕt,· ∈ span{e′k : k′ ∈ supp((DẐ ĝ)v,·)}. (25)

For r ∈ IK∆IV , suppose641

Mϕt,π(r) ̸= 0. (26)

According to Eqs. (23) and (25), there must be642

π(r) ∈ supp(DẐ ĝ)k,·, (27)

π(r) ∈ supp(DẐ ĝ)v,·. (28)

Together with Eq. (21), these further imply643

r ∈ supp(DZg)k,·, (29)

r ∈ supp(DZg)v,·. (30)

This leads to644

r ∈ IK ∩ IV , (31)

which contradict r ∈ IK∆IV . Therefore, there must be645

Mϕt,π(r) = 0. (32)

Since Mϕ is the support of DẐϕ
−1, this implies that, for t ∈ IK ∩ IV and r ∈ IK∆IV , we have646

∂Zt

∂Ẑπ(r)

= 0. (33)

Then we consider the case where t ∈ IK ∩ IV and r ∈ I \ (IK ∪ IV ). Suppose647

Mϕt,π(r) ̸= 0. (34)

According to Eq. (23), there must be648

π(r) ∈ supp(DẐ ĝ)k,·. (35)

Together with Eq. (21), these further imply649

r ∈ supp(DZg)k,·. (36)

This leads to650

r ∈ IK , (37)

which contradict r ∈ I \ (IK ∪ IV ). Therefore, there must be651

Mϕt,π(r) = 0, (38)

where t ∈ IK ∩ IV and r ∈ I \ (IK ∪ IV ).652

Therefore, according to Eqs. (33) and (38) and the invertibility of ϕ, for t ∈ IK ∩ IV , Zt has to653

depend only on Ẑπ(t) and not other variables. Therefore, there exists an invertible function h s.t.654

Zt = h(Ẑπ(t)).655
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Further consider the setting where r ∈ IK∆IV . Since t ∈ IK ∩ IV and (IK∆IV )∩ (IK ∩ IV ) = ∅,656

Zr is independent of Zt = h(Ẑπ(t)). Therefore, Zr does not depend on Ẑπ(t) and thus657

∂Zr

∂Ẑπ(t)

= 0, (39)

which is the second case.658

Then we consider the third case where t ∈ IK \ IV and r ∈ IV \ IK . If t ∈ IK \ IV , there exists659

k ∈ JK such that660

t ∈ supp(DZg)k,·. (40)

Then there is661

Mϕt,· ∈ span{ek′ : k′ ∈ supp((DẐ ĝ)k,·)}. (41)

For r ∈ IV \ IK , suppose662

Mϕt,π(r) ̸= 0. (42)

Then we have663

π(r) ∈ supp(DẐ ĝ)k,·, (43)

which follows664

r ∈ supp(DZg)k,·. (44)

This is a contradiction since r ∈ IV \ IK . Thus, we can also prove that, for the third case, where665

t ∈ IV \ IK and r ∈ IK \ IV , there must be666

∂Zt

∂Ẑπ(r)

= 0. (45)

This concludes the proof.667

668

A.3 Proof of Theorem 2669

Theorem 2 (Structure identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ) follow-670

ing the process in Sec. 2. Suppose assumptions in Thm. 1 hold. If θ ∼obs θ̂, the support of the671

Jacobian matrix Dẑ ĝ is identical to that of Dzg, up to a permutation of column indices.672

Proof. Since θ ∼obs θ̂, by considering ϕ = ĝ−1 ◦ g and the change-of-variable formula, we have673

Ẑ = ϕ(Z), (46)

where ϕ is an invertible function and thus ϕ−1 exists. Therefore, according to the chain rule, we674

have675

DẐ ĝ = DZgDẐϕ
−1. (47)

For each i ∈ [dx], consider a set Si of ∥(DZg)i,·∥0 distinct points and the corresponding Jacobians676

as follows677 (
∂Xi

∂Z1
,
∂Xi

∂Z2
, . . . ,

∂Xi

∂Zdz

) ∣∣∣∣
(z)=(z(k))

, k ∈ Si. (48)

According to Assumption 1, all vectors in Eq. (48) are linearly independent.678

Let us construct a matrix Mϕ. Since all vectors in Eq. (48) are linearly independent, for any679

j ∈ supp((DZg)i,·), we have680

Mϕj,· =
∑
k∈Si

βk(DZg(z
(k)))i,·Mϕ, (49)

where βk, ∀k ∈ Si denote coefficients.681

We wish to construct a constant matrix Mϕ satisfying682 ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (50)
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for each i ∈ [dx], while ensuring that683

supp(Mϕ) = supp(DẐϕ
−1), (51)

According to Assumption 1, we have684

supp(DZg(z
(k))Mϕ)i,· ⊆ supp(DẐ ĝ(ẑ

(k)))i,·, ∀k ∈ Si. (52)

Therefore, there must be685

DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}, (53)

which implies686 ∑
k∈Si

βk (DZg(z
(k)))i,· Mϕ ∈ span{ej : j ∈ supp((DẐ ĝ)i,·)}. (54)

Equivalently, we have687

Mϕj,· ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)}, ∀j ∈ supp((DZg)i,·). (55)

Define a bipartite graph G = (R,C,E) where R = C = {1, 2, . . . , dz} and an edge exists between688

j ∈ R and k ∈ C if and only if DẐϕ
−1
j,k ̸= 0.689

Since DẐϕ
−1 is invertible, its rows are linearly independent, so for every subset S ⊆ R, the corre-690

sponding rows have a nonzero determinant, implying that691

|{k ∈ C | ∃ j ∈ S, DẐϕ
−1
j,k ̸= 0}| ≥ |S|. (56)

By Hall’s marriage theorem, there exists a perfect matching between R and C. This matching692

corresponds to a permutation π ∈ Sn such that693

(DẐϕ
−1)j,π(j) ̸= 0,∀j ∈ {1, 2, . . . , n}. (57)

In particular, for every j ∈ supp((DZg)i,·) ⊆ {1, 2, . . . , n}, we have694

(DẐϕ
−1)j,π(j) ̸= 0. (58)

Because supp(Mϕ) = supp(DẐϕ
−1), this implies695

Mϕj,π(j) ̸= 0,∀j ∈ supp((DZg)i,·). (59)

Further incorporating Eq. (55), it follows that696

π(j) ∈ span{ek : k ∈ supp((DẐ ĝ)i,·)}, ∀j ∈ supp((DZg)i,·). (60)

Therefore, for any non-zero element in Dzg, there always exists a corresponding non-zero element697

in Dẑĝ , with the relations on their indices as follows698

(Dzg)i,j ̸= 0 =⇒ (Dẑ ĝ)i,π(j) ̸= 0. (61)

Furthermore, because of the assumption that699

∥DẐ ĝ∥0 ≤ ∥DZg∥0, (62)

Eq. (61) can be further restricted to an equivalence between the sparsity patterns, i.e.,700

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0. (63)

Therefore, there must be701

supp(Dzg) = supp((Dẑ ĝ)P ), (64)

where P denotes a permutation matrix. Thus, the support of the Jacobian matrix Dẑ ĝ is identical to702

that of Dzg, up to a permutation of column indices.703

19



A.4 Proof of Theorem 3704

Theorem 3 (Element identifiability). Consider two models θ = (g, pZ) and θ̂ = (ĝ, pẐ) follow-705

ing the process in Sec. 2. Suppose assumptions in Thm. 1 and Assum. 2 hold. Then we have706

identifiability up to element-wise indeterminacy, i.e., θ ∼obs θ̂ =⇒ θ ∼elem θ̂.707

Proof. Since all assumptions in Thm. 1 are satisfied, for these two models θ = (g, pZ) and θ̂ =708

(ĝ, pẐ) following the process in Sec. 2, we can follow the same steps in Sec. A.2 to derive Eq. (21),709

i.e.,710

(Dzg)i,j ̸= 0 ⇐⇒ (Dẑ ĝ)i,π(j) ̸= 0. (65)
Then, for any latent varible Zi ∈ Z, let us consider all conditions in Assum. 2. We begin with the711

first condition: there exists a set of observed variables A and an element Xk ∈ A such that712 ⋃
Xj∈A

Ij = [dz], and Ik \
⋃

Xj∈A\{Xk}

Ij = {i}. (66)

Our want to show that, for any other r ̸= i, we have713

∂Zi

∂Ẑπ(r)

= 0. (67)

We consider two cases:714

• r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik;715

• r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik.716

Suppose r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. Let us denote JA\k as the index set of A \ {Xk}. Since717

Ik \
⋃

Xj∈A\{Xk} Ij = {i}, for any v ∈ JA\k, there must be718

i /∈ supp(Dzg)v,., (68)

We then suppose for contradiction that719

Mϕi,· ∈ span{el : l ∈ supp((DẐ ĝ)v,·)}. (69)

In the proof of Theorem 1, we have proved that720

Mϕi,π(i) ̸= 0. (70)

Then we have721

π(i) ∈ supp(DẐ ĝ)v,·. (71)

According to Eq. (65), this implies722

i ∈ supp(DZg)v,·. (72)

This contradicts723

i /∈ supp(DZg)v,·. (73)
Thus, there must be724

Mϕi,· /∈ span{el : l ∈ supp((DẐ ĝ)v,·)} (74)

We further suppose by contradiction that725

Mϕi,π(r) ̸= 0, (75)

for r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. Then, according to Eq. (74), there must be726

π(r) /∈ supp(DẐ ĝ)v,·, (76)

which implies727

r /∈ supp(DZg)v,·. (77)

This is, again, a contradiction to r ∈ (
⋃

Xj∈A\{Xk} Ij) \ Ik. As a result, there must be728

Mϕi,π(r) = 0. (78)
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We then consider the other case, where we assume r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik. Then there exists729

q ∈ JA\k s.t.730

i ∈ supp(DZg)q,·, (79)

which further implies731

Mϕi,· ∈ span{eq′ : q′ ∈ supp((DẐ ĝ)q,·)}. (80)

Since we also have732

i /∈ supp(DZg)q,·. (81)

We suppose for contradiction that733

Mϕi,· ∈ span{el : l ∈ supp((DẐ ĝ)q,·)}. (82)

Since there is734

Mϕi,π(i) ̸= 0. (83)

It follows that735

π(i) ∈ supp(DẐ ĝ)q,·. (84)

According to Eq. (65), it implies736

i ∈ supp(DZg)q,·. (85)

This contradicts the case that i /∈ supp(DZg)q,·, and thus there must be737

Mϕi,· /∈ span{el : l ∈ supp((DẐ ĝ)q,·)}. (86)

For r ∈ (
⋃

Xj∈A\{Xk} Ij) ∩ Ik, suppose738

Mϕi,π(r) ̸= 0. (87)

Given Eqs. (80) and (86), we have739

π(r) ∈ supp(DẐ ĝ)i,·, (88)

π(r) /∈ supp(DẐ ĝ)q,·. (89)

Because of Eq. (65), these further imply740

r ∈ supp(DZg)i,·, (90)

r /∈ supp(DZg)q,·. (91)

This leads to741

r ∈ Ik \
⋃

Xj∈A\{Xk}

Ij , (92)

which contradicts742

r ∈

 ⋃
Xj∈A\{Xk}

Ij

 ∩ Ik. (93)

Therefore, there must be743

Mϕi,π(r) = 0. (94)

Since Mϕ is the support of DẐϕ
−1, this implies that, for any other r ̸= i, we have744

∂Zi

∂Ẑπ(r)

= 0. (95)

Because ϕ is invertible, each row of DẐϕ
−1 must at least have one non-zero element. Therefore, it745

follows that746
∂Zi

∂Ẑπ(i)

= 0. (96)

Thus, with the first condition in Assum. 2, we have identifiability up to element-wise indeterminacy.747
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Next, we consider the second condition in Assum. 2. By applying the case of Intersection in Defn.748

5 for all pairs of observed variables in X , there is749

∂Z⋂
Xj∈A\{Xk} Ij

∂σ(Ẑ)∆Xj∈A\{Xk}Ij

= 0, (97)

where σ denotes the transformation for the permutation pi. Then for
⋃

Xj∈A\{Xk} Ij and Ik, by the750

individual-centric disentanglement in Prop. 1, there is751

∂Z(⋃
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)Ik
= 0. (98)

Note that752 (
Z⋂

Xj∈A\{Xk} Ij

)
∩
(
Z(⋃

Xj∈A\{Xk} Ij
)
\{Xk}

)
= Z(⋂

Xj∈A\{Xk} Ij
)
\Ik

(99)

Considering both Eqs. (97) and (99), we have753

∂Z(⋂
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)∆Xj∈A\{Xk}Ij

= 0. (100)

Considering both Eqs. (98) and (99), we have754

∂Z(⋂
Xj∈A\{Xk} Ij

)
\Ik

∂σ(Ẑ)Ik
= 0. (101)

Note that755

σ(Ẑ)∆Xj∈A\{Xk}Ij ∪ σ(Ẑ)Ik (102)

=[dz] \

 ⋂
Xj∈A\{Xk}

Ij

 \ Ik

 (103)

=[dz] \ i. (104)

Further given the invertibility of ϕ, each row of DẐϕ
−1 must at least have one non-zero element.756

Therefore, it follows that757

∂Zi

∂Ẑπ(i)

̸= 0. (105)

Lastly, we consider the third condition in Assum. 2. That part of proof directly follows from758

(Lachapelle et al., 2022; Zheng et al., 2022). Suppose for each row in Mϕ, there are more than one759

non-zero element. Then760

∃j1 ̸= j2,Mϕj1,· ∩Mϕj2,· ̸= ∅. (106)

Then consider j3 ∈ [dz] such that761

π(j3) ∈ Mϕj1,· ∩Mϕj2,·. (107)

Since j1 ̸= j3, it is either j3 ̸= j1 or j3 ̸= j2. Without loss of generality, we assume j3 ̸= j1.762

Since we have763 ⋂
Xj∈Aj1

Ij = j1, (108)

there must exists Xi3 ∈ Aj1 such that j3 ̸= Ii3 . Because j1 ∈ Ii3 , we have764

(i3, j1) ∈ supp(DZg), (109)

which further implies765

Mϕj1,· ∈ span{e′k : k′ ∈ supp((DẐ ĝ)i3,·)}. (110)
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Given Eq. (107), it implies766

π(j3) ∈ supp(DẐ ĝ)i3,·. (111)
This, again, implies767

j3 ∈ supp(DZg)i3,·, (112)
which contradicts j3 ̸= Ii3 . Therefore, for each row in Mϕ, there are no more than one non-zero768

element. Because Mϕ is invertible. each row must at least have one non-zero element. Thus, there769

must be exactly one non-zero element each row, which is770

∂Zi

∂Ẑπ(i)

̸= 0. (113)

Thus, we have proved our goal with all three conditions.771
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Figure 6: The Venn diagram example (Fig. 3).

B Additional Discussion772

Here we provide the full deriviation of the Venn diagram example.773

Example 5 (Identifying all atomic regions). Let I1, I2, and I3 be the latent index sets of X1, X2,774

and X3 in Fig. 3. For each atomic region A we pick two sets of observed variables (XK , XV ) so775

that every i ∈ A satisfies one of the three conditions in Defn. 5 with every j /∈ A. This guarantees776

that the latents in A are disentangled from all others, establishing block-wise identifiability.777

(i) I1 \ (I2 ∪ I3) Step 1: Take XK = X1, XV = X2. Then i ∈ IK \ IV and every j ∈ I2 lies778

in IV \ IK , so case (iii) applies. Step 2: Take XK = X1, XV = X3. Now i ∈ IK \ IV and every779

j ∈ I3 is in IV \ IK , again case (iii). All indices outside A belong to I2 or I3 (or both), so A is780

disentangled.781

(ii) I2 \ (I1 ∪ I3) Symmetric to (i) with the roles of (1, 2) and (2, 1) swapped: use (XK , XV ) =782

(X2, X1) and (X2, X3).783

(iii) I3 \ (I1 ∪ I2) Symmetric to (i): use (XK , XV ) = (X3, X1) and (X3, X2).784

(iv) (I1 ∩ I2) \ I3 This is the worked example already given; we recap for completeness. Step 1:785

(X1, X2) yields i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2: (X1 ∪X2, X3) yields i ∈ IK \ IV ,786

j ∈ IV (case (iii)).787

(v) (I1 ∩ I3) \ I2 Step 1: XK = X1, XV = X3: i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2:788

XK = X1 ∪X3, XV = X2: i ∈ IK \ IV , j ∈ IV (case (iii)).789

(vi) (I2 ∩ I3) \ I1 Step 1: XK = X2, XV = X3: i ∈ IK ∩ IV , j ∈ IK∆IV (case (ii)). Step 2:790

XK = X2 ∪X3, XV = X1: i ∈ IK \ IV , j ∈ IV (case (iii)).791

(vii) I1 ∩ I2 ∩ I3 Step 1: XK = X1, XV = X2: i ∈ IK ∩ IV , any j that differs only by presence792

in I1 or I2 lies in IK∆IV (case (ii)). Step 2: XK = X1 ∪X2, XV = X3: i ∈ IK ∩ IV , while every793

remaining j either (a) appears in exactly one of I1, I2, I3 and so is in IK∆IV (case (ii)), or (b) lies794

solely in I3 and is in IV \ IK (case (iii)).795

In every case the chosen pairs cover all j /∈ A, so each atomic region is disentangled from the rest796

and hence block-wise identifiable under the invertibility assumption.797
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Dim Ours OroJAR Hessian Penalty
3 0.8258 ± 0.0085 0.7288 ± 0.0280 0.8257 ± 0.0240
4 0.8449 ± 0.0043 0.6301 ± 0.0810 0.8352 ± 0.0396
5 0.8048 ± 0.0080 0.5119 ± 0.1482 0.7789 ± 0.0174

Table 3: MCC under different regularization penalties across dimensions (mean ± std, higher is
better).

Dim Ours w/o noise Ours w/ noise Base
3 0.8258 ± 0.0085 0.8210 ± 0.0088 0.3814 ± 0.0369
4 0.8449 ± 0.0043 0.8381 ± 0.0093 0.5467 ± 0.0326
5 0.8048 ± 0.0080 0.7944 ± 0.0134 0.4576 ± 0.1075

Table 4: MCC across dimensions with and without noise (mean±std, higher is better).

C Additional Experiments798

In this section, we present further experiments on both synthetic and real-world data.799

C.1 Additional synthetic experiments800

We begin with a series of additional experiments in the synthetic setting.801

Additional baselines. We first compare dependency sparsity to alternative regularizers. Table 3802

reports MCC for d ∈ {3, 4, 5} against two Jacobian/Hessian penalties: OroJAR (Wei et al., 2021)803

and the Hessian Penalty (Peebles et al., 2020). Neither provides identifiability guarantees in the non-804

parametric setting. Empirically, both underperform our method, with a widening gap as d increases.805

This indicates that penalizing the dependency map in a structural way improves recovery of the true806

latent factors.807

Noise robustness. Remark 1 states that our framework naturally extends to generative processes808

with additive noise. Table 4 confirms this: MCC remains essentially unchanged compared to the809

noiseless case, with only minor drops, while the base model degrades sharply. This supports the810

claim that dependency sparsity stabilizes latent recovery under noise. Extending identifiability to811

arbitrary noise remains more challenging in the nonparametric setting, since invertibility can break812

down and stronger assumptions are typically required.813

Regularization weight. To examine the effect of regularization strength, we vary the sparsity814

weight λ in Table 5. MCC increases steadily from λ = 0 and plateaus around λ ∈ [0.03, 0.05],815

showing that the method is stable and not overly sensitive once past the under-regularized regime.816

Importantly, sparsity here serves only as an inductive bias during estimation. Our theory does not817

assume the data-generating process itself is sparse. Instead, it relies on structural diversity, which818

can hold even in dense settings. Moreover, the set-theoretic framework is robust to partial violations819

of assumptions and still enables meaningful recovery when full identifiability is unattainable.820

λ
Dimensionality

3 4 5
0 0.6789 ± 0.0364 0.7317 ± 0.1092 0.6989 ± 0.0133

0.001 0.7313 ± 0.0242 0.7294 ± 0.0147 0.7513 ± 0.0007
0.005 0.7765 ± 0.0363 0.7826 ± 0.0244 0.7681 ± 0.0455
0.01 0.8145 ± 0.0221 0.8032 ± 0.0327 0.7979 ± 0.0421
0.03 0.8268 ± 0.0268 0.8232 ± 0.0187 0.8101 ± 0.0112
0.05 0.8256 ± 0.0088 0.8420 ± 0.0401 0.8099 ± 0.0296

Table 5: MCC across different λ values (sparsity regularization weight) and dimensionalities
(mean±std, higher is better).
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Method FactorVAE ↑ DCI ↑
FactorVAE 0.708 ± 0.026 0.135 ± 0.030
+ Latent Sparsity 0.501 ± 0.434 0.113 ± 0.069
+ Dependency Sparsity 0.752 ± 0.040 0.144 ± 0.053
+ Dependency Sparsity (128) 0.723 ± 0.023 0.141 ± 0.004

Table 6: Quantitative comparison on Cars3D dataset (mean±std, higher is better).

Method Cars3D MPI3D
FactorVAE ↑ DCI ↑ FactorVAE ↑ DCI ↑

FactorVAE 0.708 ± 0.026 0.135 ± 0.030 0.599 ± 0.064 0.345 ± 0.047
+ Latent Sparsity 0.501 ± 0.434 0.113 ± 0.069 0.440 ± 0.065 0.325 ± 0.028
+ OroJAR 0.165 ± 0.235 0.030 ± 0.007 0.499 ± 0.090 0.272 ± 0.054
+ Hessian Penalty 0.321 ± 0.455 0.082 ± 0.077 0.506 ± 0.056 0.254 ± 0.067
+ Dependency Sparsity 0.752 ± 0.040 0.144 ± 0.053 0.639 ± 0.084 0.384 ± 0.031

Table 7: Quantitative comparison on Cars3D and MPI3D datasets (mean±std, higher is better).

C.2 Additional visual experiments821

We next evaluate more on images, providing both quantitative comparisons and qualitative analyses.822

Scalability. To assess scalability, we upsampled Cars3D to 128× 128 and re-ran FactorVAE with823

dependency sparsity. As shown in Table 6 (last row), performance remains consistent with the824

64 × 64 setting. This suggests that the observed improvements stem from leveraging structural825

regularization rather than resolution, and that the method scales robustly with image size.826

Quantitative evaluation. Table 6 evaluates FactorVAE score and DCI on Cars3D. Adding de-827

pendency sparsity improves FactorVAE from 0.708 to 0.752 and DCI from 0.135 to 0.144. Latent828

sparsity often underperforms. Table 7 extends to MPI3D and includes OroJAR and the Hessian829

Penalty. Dependency sparsity gives the best results on both datasets, improving FactorVAE and DCI830

while maintaining backbone training stability.831

Qualitative evaluation. A key goal of these experiments is to test whether dependency sparsity832

leads to more interpretable and disentangled latent representations in visual domains. Figure 8 shows833

latent traversals on Fashion (Xiao et al., 2017) with Flow. Individual latent coordinates correspond834

cleanly to gender, heel height, and upper width, with minimal interference across factors. The835

Shapes3D traversals in Figure 8 (EncDiff) show similarly sharp control, disentangling wall angle,836

wall color, object shape, and object color. These traversals illustrate that dependency sparsity yields837

latent axes that align with semantic attributes and preserve orthogonality among factors.838

Figures 9, 10, and 11 further evaluate controllability via latent swapping. On Shapes3D, swapping839

a single factor cleanly transfers floor or wall color while leaving other factors intact. On Cars3D,840

EncDiff isolates azimuth and color. On MPI3D, rotation and background are controlled indepen-841

dently. These results highlight that dependency sparsity encourages localized and non-overlapping842

Figure 7: Latent variable visualization on Fashion with Flow + Dependency Sparsity. From top to
bottom, the latent variables correspond to gender, heel height, and upper width.
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Figure 8: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. From top
to bottom, the latent variables correspond to wall angle, wall color, object shape, and object color.
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Figure 9: Latent variable visualization on Shapes3D with EncDiff + Dependency Sparsity. Top row:
source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (floor color or wall color) from the target.
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Figure 10: Latent variable visualization on Cars3D with EncDiff + Dependency Sparsity. Top row:
source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (azimuth and color) from the target.
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mpi3d Figure 11: Latent variable visualization on MPI3D with EncDiff + Dependency Sparsity. Top row:

source. Second row: target. Each subsequent row modifies the source by swapping a single latent
factor (rotation and background) from the target.

influences, enabling intuitive editing operations without unintended side effects. At the same time,843

the generative quality of the backbone (diffusion in this case) is preserved, with realistic outputs.844

Together, these traversals and swaps reinforce the quantitative results: dependency sparsity not only845

improves disentanglement scores but also enhances interpretability and practical usability of the846

learned latents. By aligning latent dimensions with distinct semantic factors, it enables robust single-847

attribute manipulation and semantically meaningful latent arithmetic. These benefits are precisely848

what identifiability is meant to guarantee, providing further empirical validation of our theory.849

D Disclosure Statement850

Grammar checks were performed using LLMs; no significant edits were made.851
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