
Exploring Deductive and Inductive Reasoning Capabilities of Large
Language Models in Procedural Planning

Anonymous ACL submission

Abstract

Deductive and inductive reasoning are funda-001
mental components of human cognition, and in002
daily life, people often apply these types of rea-003
soning unconsciously. While previous studies004
have extensively examined the deductive and005
inductive reasoning abilities of Large Language006
Models (LLMs) in rule-based and math-related007
tasks, little attention has been given to their role008
in procedural planning——an area that holds009
considerable relevance for real-world applica-010
tions. To fill this gap, we present DIRPP (De-011
ductive and Inductive Reasoning in Procedural012
Planning) in this paper, a benchmark designed013
to assess the deductive and inductive reasoning014
abilities of various LLMs within the context of015
procedural planning. Based on the benchmark,016
we initially observe that LLMs demonstrate017
excellent deductive reasoning capabilities in018
procedural planning but show suboptimal per-019
formance in inductive reasoning. To enhance020
their inductive reasoning abilities, we further021
propose a novel and effective method called022
IMSE (Induction through Multiple Similar Ex-023
amples), which enables LLMs to generate mul-024
tiple similar procedural plans and then perform025
inductive reasoning based on these examples.026
Through various experiments, we find that the027
proposed method can significantly improve the028
inductive reasoning capabilities of LLMs.029

1 Introduction030

In recent years, advances in Large Language Mod-031

els (LLMs), such as GPT-4 (OpenAI, 2024) and032

DeepSeek (DeepSeek-AI et al., 2024), have com-033

pletely revolutionized the field of natural language034

processing. LLMs perform well on a wide variety035

of reasoning tasks (Lanham et al., 2023; Yao et al.,036

2023), including logical reasoning tasks (Pan et al.,037

2023; Lam et al., 2024).038

Deductive reasoning and inductive reasoning are039

the basic components of logical reasoning. People040

in daily life always use these two types of reasoning041
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Figure 1: An example of inductive and deductive rea-
soning in procedural planning.

unconsciously. Deductive reasoning involves draw- 042

ing specific conclusions from general principles un- 043

der certain conditions. Inductive reasoning is the in- 044

verse process of deductive reasoning, which refers 045

to the derivation of general principles from spe- 046

cific facts, observations, or experiences. Deductive 047

reasoning and inductive reasoning are considered 048

crucial for achieving artificial intelligence (Lake 049

et al., 2017; Chollet, 2019). Some research (Xu 050

et al., 2024; Shao et al., 2024; Cheng et al., 2024;) 051

has suggested that mixing deductive and inductive 052

reasoning is not conducive to effective analysis. As 053

a result, they have studied these two types of rea- 054

soning separately. For example, Xu et al. (2024) 055

synthesizes 15 typical reasoning datasets and eval- 056

uates a wide variety of LLMs across inductive, de- 057

ductive, abductive, and mixed-form reasoning set- 058

tings. Shao et al. (2024) examines the inductive and 059

deductive capabilities of LLMs in the context of 060

programming. Cheng et al. (2024) separates induc- 061

tive and deductive reasoning to investigate which 062
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one is more important for the reasoning ability of063

LLMs.064

It is worth noting that much of the recent work065

(Seals and Shalin, 2024; Sun et al., 2024; Mitchell066

et al., 2023; Mirchandani et al., 2023) on induc-067

tive and deductive reasoning abilities of LLMs is068

confined to rule-based or mathematically oriented069

tasks, as these tasks facilitate the separation of in-070

ductive and deductive reasoning, enabling more071

focused studies. However, exploring and prob-072

ing the inductive and deductive reasoning abil-073

ities of LLMs in procedural planning—a field074

closely tied to real-life applications (Lu et al., 2022;075

Huang et al., 2022; Ahn et al., 2022; Zhao et al.,076

2023)—has received relatively little attention.077

Procedural planning (Schank and Abelson, 1975;078

Pearson and Laird, 2005) entails breaking down a079

high-level goal into a series of coherent, logical,080

and goal-directed steps (e.g., “Taking a shower”081

→ “1. Prepare the bathroom; 2. Set the water082

temperature; 3. Undress; ...”). It represents a form083

of structured general knowledge commonly used084

in daily life, with significant implications for both085

smarter AI systems and executable robotic systems086

(Kovalchuk et al., 2021; Huang et al., 2022). It is087

important to note that both inductive and deductive088

reasoning play a crucial role in enhancing the ef-089

fectiveness of procedural planning. Specifically, in-090

ductive reasoning enables the system to generalize091

from observed patterns and past experiences (Heit,092

2000; Hayes et al., 2010), allowing it to predict the093

most likely sequence of actions for new, unseen094

goals. This capability is vital for adapting to di-095

verse tasks and improving planning efficiency. In096

contrast, deductive reasoning ensures the logical097

consistency and correctness of the planning process098

by enabling the system to deduce necessary steps099

based on predefined rules or knowledge (Johnson-100

Laird, 1999, 2008). This guarantees that the gener-101

ated plans will achieve the specific goals without102

unnecessary steps or contradictions. Figure 1 illus-103

trates an example that demonstrates both deductive104

and inductive reasoning in procedural planning.105

In this paper, we explore the deductive and induc-106

tive capabilities of LLMs in procedural planning.107

To achieve this, we firstly propose a benchmark108

called DIRPP. Specifically, each example in DIRPP109

includes an abstract goal and an abstract procedural110

plan to achieve it, along with a specific goal and its111

corresponding specific procedural plan. Based on112

goals from CoScript (Yuan et al., 2023), we lever-113

age GPT-4o-mini to complete the construction of114

our dataset. Next, we further introduce two met- 115

rics (the achievement rate and preference index) 116

for DIRPP to quantitatively assess the performance 117

of LLMs. Through pilot experimental results, we 118

find that all LLMs demonstrate strong deductive 119

abilities, while their inductive capabilities are com- 120

paratively weaker. To address this, we then propose 121

a novel approach aimed at enhancing the inductive 122

abilities of LLMs. Specifically, we first ask GPT- 123

4o-mini to generate several related goals similar 124

to the specific goal. Then, we instruct the evalua- 125

tion model to generate procedural plans for these 126

related goals. Finally, we enable the model to gener- 127

alize from these multiple similar procedural plans, 128

rather than relying on a single plan. Via various 129

experiment, we find that our proposed method is 130

effective. 131

To sum up, our contributions are as follows: 132

• To the best of our knowledge, this is the first 133

study to investigate the deductive and induc- 134

tive capabilities of LLMs in procedural plan- 135

ning. 136

• We propose a benchmark for evaluating the 137

inductive and deductive reasoning abilities of 138

LLMs. 139

• We introduce an effective method to enhance 140

the inductive reasoning capabilities of LLMs 141

in procedural planning. 142

2 Related Work 143

Deductive and Inductive Reasoning. Cognitive 144

science holds that deductive and inductive rea- 145

soning are fundamental concepts for understand- 146

ing human thought processes (Cai et al., 2024). 147

In common cognitive models, these two types of 148

reasoning are considered complementary: induc- 149

tive reasoning generates hypotheses from observa- 150

tions, while deductive reasoning tests them (Wason, 151

1960). With LLMs making significant progress in 152

a wide range of reasoning tasks (Bang et al., 2023; 153

Bian et al., 2024; Imani et al., 2023), there has 154

been growing interest in their underlying reason- 155

ing capabilities. Extensive research has focused 156

on the logical reasoning abilities of LLMs. For 157

example, Cai et al. (2024) simulate human thought 158

processes by enabling LLMs to first summarize 159

and then deduce, enhancing their reasoning abili- 160

ties. Gendron et al. (2024) highlight that guiding 161

models to follow causal reasoning paths improves 162

their inductive reasoning capabilities. Yang et al. 163
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(2024) introduce a new task where natural language164

rules are hidden within facts, rather than explicitly165

provided to the models, to explore their inductive166

reasoning abilities. However, all the tasks explored167

in the above studies are rule-based or mathemati-168

cally oriented, creating a gap between these studies169

and real-world applications. Therefore, we shift170

our focus to procedural planning tasks, which are171

more closely related to practical life.172

Procedural Planning. Procedural planning is a173

goal-oriented type of script. A script is a structured174

knowledge that achieves a goal through a series175

of steps (Schank and Abelson, 1975). Procedu-176

ral planning generation is a standard problem in177

nature language process (Chambers, 2017; Oster-178

mann, 2020). Recent research has focused on lever-179

aging LLMs for procedural planning generation180

(Sakaguchi et al., 2021; Sancheti and Rudinger,181

2022), or on solving restricted procedural plan-182

ning problems (Yuan et al., 2023; Brahman et al.,183

2024). Some studies also explore applying procedu-184

ral planning to robots in real-world environments,185

with the goal of enabling them to perform specific186

actions (Huang et al., 2022; Wu et al., 2022; Guan187

et al., 2023). Unlike existing studies, this paper188

evaluates the deductive and inductive reasoning189

abilities of LLMs from the perspective of procedu-190

ral planning, aiming to explore whether LLMs can191

replicate human cognitive abilities in real-world192

applications.193

3 Task Definitions194

In this section, we formalize the tasks of deductive195

and inductive reasoning in procedural planning to196

help clarify the subsequent content.197

Procedural Planning. A procedural plan is a se-198

quence of steps (S = {s1, s2, . . . , s|S|}, e.g., “{199

Gather ingredients, Preheat oven, ...}”) designed200

to achieve a goal (G) (Schank and Abelson, 1975;201

Yuan et al., 2023), e.g.,“Make a cake”. The pro-202

cedural planning generation task is defined as203

M : G → S, where M represents a language204

model.205

Deductive Reasoning in Procedural Planning.206

A deductive reasoning task involves applying gen-207

eral principles to derive results under specific con-208

ditions. In this paper, we refer to an abstract209

goal (Ga) (e.g., “Make a sundae”) and an ab-210

stract procedural plan (S = {s1, s2, . . . , s|S|}) to211

achieve the abstract goal (Ga) as a general princi-212

ple (i.e., P = {Ga; s1, s2, . . . , s|S|}). A specific213

condition is represented by a more specific goal 214

(Gs) (e.g., “Make a sundae with fruit”). Suppose 215

S ′
= {s′

1, s
′
2, . . . , s

′

|S′ |} is a specific procedural 216

plan to achieve the specific goal. Thus, the deduc- 217

tive reasoning task in procedural planning can be 218

defined as M : {P;Gs} → S ′
. We evaluate the 219

generated result based on whether it achieves the 220

specific goal. If S ′
successfully achieves Gs, the 221

result is considered acceptable, and vice versa. 222

Inductive Reasoning in Procedural Planning. 223

Inductive reasoning is the inverse process of de- 224

ductive reasoning. Therefore, the inductive reason- 225

ing task is essentially the opposite of the deductive 226

reasoning task. Inductive reasoning involves gen- 227

eralizing conclusions about a class of objects after 228

observing examples. In this paper, we use a specific 229

goal (Gs, e.g., “Make a sundae with fruit”) and a 230

specific procedural plan (S ′
= {s

′
1, s

′
2, . . . , s

′

|S′ |}) 231

to achieve the specific goal (Gs) as an example 232

observed (i.e., E = {Gs; s
′
1, s

′
2, . . . , s

′

|S′ |}). An ab- 233

stract goal (Ga, e.g., “Make a sundae with fruit”) 234

is the object about which conclusions are drawn. 235

Suppose S = {s1, s2, . . . , s|S|} is an abstract pro- 236

cedural plan to achieve the abstract goal. So 237

the inductive reasoning task can be defined as 238

M : {E ;Ga} → S. Similarly, we can evaluate 239

the generated result based on whether it achieves 240

the abstract goal. However, this criterion has sig- 241

nificant flaws. Even if the LLM does nothing but 242

copy the specific procedural plan to achieve the 243

specific goal, the result may still meet the abstract 244

goal (e.g., “A procedural plan for making a fruit 245

sundae is also a procedural plan for making a sun- 246

dae”). Therefore, we further propose using the 247

achievement of the specific goal as the evaluation 248

criterion to determine whether the model is merely 249

copying the example, since the abstract procedural 250

plan that achieves the abstract goal often fails to 251

achieve the specific goal. 252

4 Deductive and Inductive Reasoning in 253

Procedural Planning 254

In this section, we present our complete benchmark. 255

We begin by outlining the construction process of 256

our dataset, followed by a detailed explanation of 257

the metrics used for evaluating deductive and induc- 258

tive reasoning tasks. Finally, we assess a range of 259

LLMs, leveraging their few-shot in-context learn- 260

ing ability. 261

3



4.1 DIRPP Dataset262

Each example in the dataset includes an abstract263

goal and an abstract procedural plan to achieve it,264

along with a specific goal and a specific procedural265

plan to achieve that goal. A representative example266

is shown in Appendix Table 14.267

Dataset Construction. The dataset construc-268

tion process consists of two main parts: defining269

the goals and generating the procedural plans to270

achieve them. For goal construction, we use the271

goals from CoScript (Yuan et al., 2023). Each ex-272

ample in CoScript includes an abstract goal and a273

specific goal, where abstract goals are sourced from274

wikiHow (Koupaee and Wang, 2018) and specific275

goals are generated by carefully crafting prompts276

and using InstructGPT (Ouyang et al., 2022) to277

obtain results. Once the goals (both abstract and278

specific) are established, we leverage the few-shot279

in-context learning ability of GPT-4o-mini to gen-280

erate procedural plans for both abstract and specific281

goals. The prompt used in this process is shown in282

Appendix Table 7. After that, to ensure the quality283

of the generated dataset, we further conduct a man-284

ual evaluation of the generated procedural plans by285

randomly selecting 100 samples. Three volunteers286

are tasked with determining whether each gener-287

ated procedural plan can successfully achieve its288

goal. The inter-rater agreement reaches Fleiss’s289

κ = 0.86. Besides, the achievement rate for the290

abstract goal is 96%, while for the specific goal, it291

is 92%. These results demonstrate the reliability292

of the procedural planning generated by GPT-4o-293

mini.294

Dataset Filtering. To perform the inductive reason-295

ing task, we need to filter the dataset. As mentioned296

earlier, evaluating the achievement rate of abstract297

goals alone is insufficient, as the procedural plan298

that achieves the specific goal may also achieve the299

abstract goal. Therefore, if the abstract and specific300

goals are too similar (e.g., “Making a sundea” and301

“Making a sundea with ice cream”), the accuracy of302

evaluation is affected. To address this, we utilize303

GPT-4o-mini to determine whether abstract pro-304

cedural plans in the dataset can achieve specific305

goals. If an abstract plan achieves a specific goal,306

it indicates that the abstract and specific goals are307

too close, and we discard the sample. The prompt308

used to instruct GPT-4o-mini for these judgments309

is shown in Appendix A.1.310

Dataset Statistics We use the first 15,000 sam-311

ples in CoScript as data sources to build our bench-312

mark. After filtering out samples with abstract 313

goals that overlapped with specific goals, we ob- 314

tained a final dataset including 11,580 entries, with 315

their goals covering a variety of categories, includ- 316

ing hobbies, food, education, sports, and more. 317

4.2 Evaluation Metrics 318

For inductive and deductive reasoning tasks, we 319

evaluate performance using automated metrics, in- 320

cluding BLEU, ROUGE, and BERTScore, as set 321

out in Brahman et al. (2024). 322

In addition, for the deductive reasoning task, we 323

define the achievement rate of specific goals (ARs) 324

as a metric to evaluate the model’s deductive rea- 325

soning capability. It is calculated as follows: 326

ARs =
ANs

N
(1) 327

where ANs denotes the number of generated proce- 328

dural plans that successfully achieve specific goals, 329

and N is the total number of tested examples. 330

Similarly, for the inductive reasoning task, we 331

can use the achievement rate of abstract goals 332

(ARa) defined analogously to ARs as a perfor- 333

mance measure. However, this metric alone is in- 334

sufficient because, in inductive reasoning, specific 335

procedural plans can often achieve abstract goals 336

without modification, leading to ARa values close 337

to 1 and thus rendering the metric less meaningful. 338

To address this limitation, we additionally mea- 339

sure the achievement rate of specific goals (ARs) 340

for the generated procedural plans in the inductive 341

reasoning task. We can assess the model’s plagia- 342

rism using ARs to determine whether the model is 343

performing inductive reasoning or simply plagiariz- 344

ing examples. Furthermore, to better evaluate the 345

model’s inductive reasoning ability, we introduce a 346

preference index, which provides a more nuanced 347

assessment of performance. 348

PIa =
PNa

N
(2) 349

where PNa represents the preferred number of in- 350

ductively generated procedural plans compared to 351

the abstracted procedural plans in the dataset, and 352

N is the total number of tested samples. This indi- 353

cator is specifically discussed in the context of in- 354

ductive reasoning tasks and serves as a complement 355

to the achievement rate of specific goals. The impli- 356

cation of this metric is to measure how much better 357

the generated procedural plan is in the inductive 358

reasoning task, relative to the data in the dataset. 359

If the generated procedural plan is more inductive, 360
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Model ARs ↑
Llama-3-8B 87.61
OLMo-7B 86.51
Qwen2.5-7B 88.84
Qwen2.5-32B 90.55
GPT-3.5-turbo 90.19

Model ARs ↑
Mistral 86.83
OLMo-13B 88.98
Qwen2.5-14B 90.47
Claude-3 89.66
GPT-4o-mini 91.08

Table 1: The achievement rate of specific goals of each
model in deductive reasoning (evaluated by GPT-4o-
mini). Note that the data in the table are all percentages.

logically consistent, applicable, and concise com-361

pared to the dataset sample, it can be inferred that362

the generated plan is preferred.363

4.3 Pilot Experiments364

In this section, we use the DIRPP dataset to eval-365

uate the inductive and deductive reasoning ca-366

pabilities of a variety of LLMs. These LLMs367

include both open-source models and closed-368

source models. Closed-source models include369

Claude-3 (claude-3-haiku-20240307), GPT-3.5-370

turbo (Brown et al., 2020), and GPT-4o-mini.371

Open-source models range in size from 7B to 32B372

parameters and include Llama-3-8B (Llama-3.1-373

8B-Instruct), Mistral (Mistral-7B-Instruct-v0.3),374

OLMo family (OLMo-2-1124-7B-Instruct, OLMo-375

2-1124-13B-Instruct), and Qwen family (Qwen2.5-376

7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-32B-377

Instruct). We report results in terms of both auto-378

mated evaluation and human evaluation.379

4.3.1 Automated Evaluation380

Implementation Details. We leverage GPT-4o-381

mini’s few-shot ability to train it to assess whether382

a generated procedural plan can achieve its goal.383

Additionally, through carefully designed prompts,384

GPT-4o-mini is tasked with making a preference385

decision between the generated procedural plan386

and the sample in the dataset. In this manner, we387

obtain the evaluation results provided by GPT-4o-388

mini. The prompt used is included in the Appendix389

A.2. The results are as follows.390

Deductive Reasoning. Table 1 presents the391

achievement rate of specific goals across various392

models in the deductive reasoning task. Results393

for other metrics, such as ROUGE, BLEU, and394

BERTScore, are provided in the Appendix Table395

15. It is not difficult to find that, among all mod-396

els, GPT-4o-mini has the best performance, with397

an RAs of 91.08%, and OLMO-7B has the worst398

performance, with an RAs of 86.51%. Addition-399

ally, within models of the same family (OLMo 400

family and Qwen family), performance improves 401

as the number of parameters increases. In gen- 402

eral, closed-source models outperform open-source 403

models. Notably, the Qwen family models perform 404

among the best for models with comparable pa- 405

rameter sizes, with Qwen2.5-32B’s performance 406

even approaching that of closed-source models. 407

In conclusion, these results suggest that the per- 408

formance of tested LLMs is sufficiently strong in 409

the deductive reasoning task, indicating that the de- 410

ductive reasoning abilities of LLMs in procedural 411

planning are acceptable. 412

Inductive Reasoning. The achievement rate of 413

abstract goals, the achievement rate of specific 414

goals, and the preference index of inductive rea- 415

soning are presented in Table 2. ROUGE, BLEU 416

and BERTScore automatic metrics are reported in 417

the Appendix Table 16. First, as expected, for 418

all models, their ARa values are close to 100%. 419

This suggests that, for the inductive reasoning task, 420

a LLM’s reasoning ability cannot be solely eval- 421

uated by the achievement rate of abstract goals, 422

which contrasts with the evaluation approach used 423

in the deductive reasoning task. Second, for the 424

ARs evaluation metric, GPT-3.5-turbo performs 425

the best, with an ARs value of 16.62%, while 426

Qwen2.5-7B performs the worst, with an ARs 427

value of 45.34%. Other models exhibit ARs val- 428

ues in between, with the smaller model Mistral 429

attaining a relatively good ARs value of 22.92%. 430

Third, when examining the PIa index, we find 431

that Qwen2.5-32B achieves the highest PIa value 432

of 74.81%, while Mistral records the lowest PIa 433

value of 43.95%. The performance of other models 434

lies between these two values. Finally, considering 435

both ARs and PIa together, the model with the 436

strongest inductive reasoning ability is Qwen2.5- 437

32B, which boasts both the highest PIa value and 438

a strong ARs. This is followed by several closed- 439

source models, including Claude-3, GPT-3.5-turbo, 440

and GPT-4o-mini. Conversely, models with fewer 441

parameters, such as Llama-3-8B, Mistral, OLMo- 442

7B, and Qwen2.5-7B, exhibit the weakest induc- 443

tive reasoning abilities. These models either have 444

the lowest ARs or the lowest PIa, with the other 445

metric being slightly better. Overall, their induc- 446

tive reasoning abilities are the weakest among the 447

models compared. It is noteworthy that, despite 448

the increase in parameters, the PIa of OLMo-13B 449

is lower than that of OLMo-7B, suggesting that 450
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Model ARa ↑ ARs ↓ PIa ↑
Llama-3-8B 97.36 38.92 44.33
Mistral 97.32 22.92 43.95
OLMo-7B 96.73 45.21 59.82
OLMo-13B 97.73 27.20 46.73
Qwen2.5-7B 96.85 45.34 53.78
Qwen2.5-14B 97.61 29.09 67.25
Qwen2.5-32B 97.98 19.14 74.81
Claude-3 97.48 25.44 70.15
GPT-3.5-turbo 98.11 16.62 65.37
GPT-4o-mini 97.48 24.18 70.28

Table 2: The achievement rate of abstract goals, the
achievement rate of specific goals and the preference
index of each model in inductive reasoning (evaluated
by GPT-4o-mini).

OLMo-13B’s inductive reasoning ability is also at451

a lower level. Nevertheless, even when consider-452

ing the best ARs and PIa (16.62% and 74.81%,453

respectively) values across all models, the result454

indicates that the model’s inductive reasoning abil-455

ity remains a gap to the oracle. In conclusion, the456

results suggest that the inductive reasoning abilities457

of LLMs in procedural planning are suboptimal458

and still have room for improvement.459

4.3.2 Human Evaluation460

Implementation Details We randomly select461

100 samples from the results generated by each462

model and recruit five additional volunteers to per-463

form the labeling task. The labeling criteria are464

consistent with those used in the previous experi-465

ment. Specifically, the volunteers are provided with466

the same prompt and instructed to complete the an-467

notations accordingly. The results of the manual468

evaluation are presented as follows.469

Deductive Reasoning. Table 3 presents the470

achievement rate of specific goals as evaluated by471

human assessors. The results of human evaluations472

show some differences from those of GPT-4o-mini,473

though the overall discrepancy is minimal. This474

may be due to the small sample size. Moreover,475

even the lowest-performing model, Qwen2.5-7B,476

achieved an ARs of 87.00%, while most models477

exceeded an ARs of 90.00%. This further supports478

our previous argument that LLMs exhibit excellent479

deductive reasoning abilities in procedural plan-480

ning.481

Inductive Reasoning. Table 4 presents the results482

of human evaluation. The ARa and PIa of each483

Model ARs ↑
Llama-3-8B 90.00
OLMo-7B 88.00
Qwen2.5-7B 87.00
Qwen2.5-32B 93.00
GPT-3.5-turbo 93.00

Model ARs ↑
Mistral 93.00
OLMo-13B 91.00
Qwen2.5-14B 90.00
Claude-3 94.00
GPT-4o-mini 94.00

Table 3: The achievement rate of specific goals of each
model in deductive reasoning (evaluated by humans).

Model ARa ↑ ARs ↓ PIa ↑
Llama-3-8B 91.00 58.00 56.00
Mistral 92.00 47.00 57.00
OLMo-7B 92.00 73.00 63.00
OLMo-13B 94.00 54.00 58.00
Qwen2.5-7B 95.00 69.00 60.00
Qwen2.5-14B 96.00 51.00 67.00
Qwen2.5-32B 98.00 45.00 72.00
Claude-3 96.00 53.00 76.00
GPT-3.5-turbo 96.00 41.00 78.00
GPT-4o-mini 96.00 56.00 73.00

Table 4: The achievement rate of abstract goals, the
achievement rate of specific goals and the preference
index of each model in inductive reasoning (evaluated
by humans).

model show some variation, though the changes are 484

relatively minor. Specifically, the ARa of the mod- 485

els decreased slightly, while their PIa increased. 486

Overall, the trends in these two metrics are align 487

with those observed in GPT-4o-mini’s evaluation. 488

However, there is a significant change in the ARs, 489

with each model’s ARs improving considerably. 490

This may be due to humans being more sensitive to 491

the finer details compared to GPT-4o-mini, allow- 492

ing them to better assess whether a procedural plan 493

can achieve a specific goal, resulting in a large in- 494

crease in ARs. Nevertheless, the human evaluation 495

results also suggest that there is still substantial 496

room for improvement in the model’s inductive 497

reasoning ability. 498

5 Induction through Multiple Similar 499

Examples 500

Results in the pilot experiment show that LLMs’ 501

deductive reasoning abilities in procedural plan- 502

ning have reached an excellent level, while their 503

inductive reasoning abilities remain sub-optimal. 504

In this section, we introduce a novel and effective 505

approach to enhance the inductive reasoning capa- 506

bilities of LLMs. 507
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 planning
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procedural plan
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generates an improved
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Input: an abstract
goal and an
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 GPT-4 generates specific

goals based on an
abstract goal.

Figure 2: Illustration of our proposed method, IMSE.

5.1 Methodology508

Inductive reasoning involves examining various509

examples and drawing general conclusions from510

them. In our inductive reasoning task setup, the511

model is asked to observe a single example (the512

specific goal and corresponding procedural plan)513

and use its internal knowledge to derive a general514

principle (the abstract procedural plan for achieving515

the abstract goal). This mirrors human learning,516

where individuals are taught to achieve a specific517

goal and then use their experience to formulate a518

procedural plan for an abstract goal. For example,519

after learning how to make a sundae with fruit, a520

person can easily summarize the general steps for521

making a sundae. OLMo et al. (2025) enhance522

model performance by generating multiple outputs523

and selecting the best ones. An immediate idea is to524

apply this method directly to enhance the model’s525

inductive reasoning capability. However, due to526

the nature of the inductive reasoning task, we do527

not directly ask the model to generate multiple528

outputs. Instead, we could first ask the model to529

generate a variety of similar examples, and then530

have it summarize based on these examples.531

Figure 2 illustrates the entire flow of our ap-532

proach. To generate a variety of similar examples,533

we first need to obtain multiple other specific goals534

similar to the specific goal. Here, we use GPT-4o-535

mini’s few-shot in-context learning ability to gen-536

erate K1 similar specific goals. Next, the model537

1In the experiment, the value of K is set to 2.

generates specific procedural plans for these goals, 538

providing us with multiple similar examples. Fi- 539

nally, we follow the same process as in the induc- 540

tive reasoning task, with the only difference being 541

that the model observes multiple examples instead 542

of just one. By doing so, the model can identify the 543

common elements across examples and eliminate 544

overly detailed aspects of each, resulting in a more 545

refined abstract procedural plan for the abstract 546

goal. The prompts used in each step are provided 547

in the Appendix A.3. 548

5.2 Results 549

Our experimental setup follows the same procedure 550

as described in Section 4.3. Meanwhile, we apply 551

the ISME method and report the results from both 552

automated and manual evaluations. 553

5.2.1 Automated Evaluation 554

Table 5 presents the improved results (ARa, ARs, 555

and PIa). Results for other automatic metrics 556

(ROUGE, BLEU, and BERTScore) are provided in 557

the Appendix Table 17. First, for each improved 558

model, the ARa value, already close to 100% be- 559

fore the improvement, is further enhanced, with 560

the proposed method resulting in an average in- 561

crease of 1.15%. This demonstrates that observing 562

multiple similar examples and generalizing their 563

common features to produce abstract procedural 564

plans helps better achieve the abstract goals. Sec- 565

ond, after applying the proposed method, the ARs 566

value of each model is reduced to different de- 567

grees. The OLMo-7B model shows the largest 568

7



Model ARa ↑ ARs ↓ PIa ↑
Llama-3-8B 98.99 13.85 89.80
Mistral 98.11 13.22 89.04
OLMo-7B 97.86 12.59 94.58
OLMo-13B 98.74 11.59 88.91
Qwen2.5-7B 98.87 13.48 94.58
Qwen2.5-14B 99.24 11.71 95.47
Qwen2.5-32B 99.11 9.44 96.22
Claude-3 97.86 12.34 95.97
GPT-3.5-turbo 98.87 10.45 92.95
GPT-4o-mini 98.49 9.57 96.98

Table 5: The achievement rate of abstract goal, the
achievement rate of specific goal and the preference
degree of each improved model in inductive reasoning
(evaluated by GPT-4o-mini).

decrease, from 45.21% to 12.59% (a reduction of569

32.62%), followed by Qwen2.5-7B, which drops570

31.86%, from 45.34% to 13.48%. The smallest571

decrease is observed in GPT-3.5-turbo, with a re-572

duction of 6.17%, from 16.62% to 10.45%. After573

the improvement, Qwen2.5-32B achieves the best574

ARs value of 9.44%, while Llama-3-8B records575

the largest ARs value of 13.85%. Other models576

exhibit ARs values between these two extremes.577

Notably, even Llama-3-8B, which has the largest578

ARs value (13.85%), outperforms GPT-3.5-turbo,579

the best model before the improvement, which has580

an ARs value of 16.62%. This demonstrates the581

effectiveness of our method. By inducting from582

multiple examples rather than relying on a single583

one, we effectively reduce the models’ dependency584

on any specific example during induction, leading585

to a significant reduction in the ARs value. Simi-586

lar to the ARs value, the PIa value is also greatly587

improved, with varying degrees of improvement588

across models. After the improvement, all mod-589

els, except Llama-3-8B, Mistral, and OLMo-13B,590

achieve PIa values greater than 90.00%. GPT-4o-591

mini achieves the highest PIa value of 96.98%,592

while OLMo-13B has the lowest, at 88.91%. How-593

ever, before the improvement, the best PIa value594

is only 74.81%. This indicates that the improved595

models generate more inductive, logically consis-596

tent, applicable, and concise abstract procedural597

plans in the inductive reasoning task.598

5.2.2 Human Evaluation599

The results of the human evaluation are summa-600

rized in Table 6. Overall, the results from manual601

Model ARa ↑ ARs ↓ PIa ↑
Llama-3-8B 95.00 15.00 86.00
Mistral 96.00 17.00 90.00
OLMo-7B 96.00 14.00 92.00
OLMo-13B 97.00 12.00 86.00
Qwen2.5-7B 96.00 14.00 92.00
Qwen2.5-14B 96.00 13.00 95.00
Qwen2.5-32B 97.00 10.00 97.00
Claude-3 99.00 12.00 98.00
GPT-3.5-turbo 98.00 10.00 97.00
GPT-4o-mini 99.00 9.00 98.00

Table 6: The achievement rate of abstract goal, the
achievement rate of specific goal and the preference
degree of each improved model in inductive reasoning
(evaluated by humans).

evaluation are similar to those obtained from GPT- 602

4o-mini evaluation. While the improved models 603

show only minimal changes in ARa values, with 604

slight increases, both ARs and PIa values exhibit 605

significant improvements. Specifically, Mistral 606

achieves the highest ARs value of 17.00%, while 607

GPT-4o-mini shows the lowest at 9.00%. Prior 608

to the improvement, GPT-3.5-turbo is the top per- 609

former, with an ARs value of 41.00%. The pro- 610

posed method effectively reduced the ARs values. 611

Regarding PIa values, Llama-3-8B and OLMo- 612

13B have the lowest scores, at 86.00%, while 613

Claude-3 and GPT-4o-mini achieve the highest, 614

with values of 98.00%. Before the improvement, 615

even the best model, GPT-3.5-turbo, has a PIa 616

value of only 78.00%. These results further demon- 617

strate the effectiveness and reliability of the pro- 618

posed method. 619

6 Conclusion 620

In this work, we introduce a benchmark, DIRPP, 621

designed to explore deductive and inductive rea- 622

soning in procedural planning for LLMs. Our find- 623

ings indicate that while LLMs demonstrate strong 624

deductive reasoning capabilities, their inductive 625

reasoning abilities requires improvement. To ad- 626

dress this, we propose a novel and effective method, 627

IMSE, which enables the model to generate multi- 628

ple similar examples and generalize based on these 629

examples, thereby enhancing its inductive reason- 630

ing capability. We hope that our work will inspire 631

future research into reasoning within the context of 632

procedural planning. 633
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Limitations634

Our research is generally logical and well-founded,635

but it is not without limitations. The main issues636

are as follows:637

• Although we evaluate a variety of LLMs, due638

to constraints in computational resources, the639

largest open-source model included in our ex-640

ploration is limited to 32B parameters. Mod-641

els with larger parameter sizes are not consid-642

ered in the evaluation, which limits the gener-643

alizability of our conclusions.644

• While our proposed method, IMSE, effec-645

tively enhances the inductive reasoning ca-646

pabilities of LLMs in procedural planning, it647

necessitates the generation of multiple similar648

examples. This results in a significant increase649

in the number of outputs and a correspond-650

ing rise in computational costs. Future work651

should focus on exploring more cost-effective652

strategies for improvement.653

• In our experiments, we rely on GPT-4o-mini654

as the evaluator. However, since GPT-4o-655

mini’s judgment may differ from that of hu-656

man evaluators, this introduces the potential657

for biases, leading to discrepancies between658

our findings and those that might arise from659

human judgment. Moving forward, it will be660

important to either identify more reliable eval-661

uators or improve the evaluation metrics to662

mitigate this issue.663
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A Implementation Details914

A.1 Filtering Similar Examples915

For the inductive reasoning task, the dataset is fil-916

tered to ensure the reliability of the evaluation re-917

sults. The primary objective is to remove samples918

where the abstract goal and the specific goal are919

too similar. Specifically, we designed prompts to920

enable GPT-4o-mini to determine whether the ab-921

stract procedural plan achieves the specific goal. If922

the abstract procedural plan successfully achieves923

the specific goal, it indicates that the abstract and924

specific goals are too similar, and such samples925

are discarded. Table 9 shows an example of the926

prompt that we use to filter similar examples with927

GPT-4o-mini.928

A.2 Evaluation with GPT-4o-mini929

Deductive Reasoning In evaluating the deduc-930

tive reasoning abilities of each model, we require931

GPT-4o-mini to assess whether the generated pro-932

cedural plan can achieve its corresponding specific933

goal. We enable this capability in GPT-4o-mini934

through contextual learning. Table 10 provides a935

concrete example.936

Inductive Reasoning For the inductive reason-937

ing task, we need to compute ARs, ARa, and PIa938

for each model. Similarly, we enable GPT-4o-939

mini to acquire the ability to perform evaluations940

through its few-shot learning capability. Specifi-941

cally, GPT-4o-mini needs to accomplish the follow-942

ing three tasks. First, GPT-4o-mini is required to943

assess whether the generated procedural plan can944

achieve the abstract goal. Second, GPT-4o-mini is945

used to determine whether the generated procedural946

plan can achieve the specific goal. Third, the gener-947

ated procedural plan is compared with the abstract948

procedural plan in the dataset, and GPT-4o-mini949

is utilized to make a preference decision. Tables950

11, 9, and 12 present the prompts used (the same951

prompt employed for data filtering is used when952

determining whether the generated procedural plan953

achieves the specific goal).954

A.3 Model Improvement955

Initially, we train GPT-4o-mini to generate specific956

goals by leveraging its few-shot learning capability.957

To achieve this, we carefully design prompts, with958

an example provided in Table 13. Subsequently,959

we train the model to generate corresponding pro-960

cedural plans based on these specific goals. At this961

stage, the prompt used is identical to that employed962

Procedural Planning Generation
/*Task prompt*/
Please follow the example below to generate the
output for me. Generate only output, do not re-
peat the question.
/*Examples*/
Goal 1: List the steps of baking a cake.
Steps:
{Specific Procedural Planning}
Goal 2: List the steps of borrowing a book from
the library.
Steps:
{Specific Procedural Planning}
Goal 3: List the steps of taking a shower
Steps:
{Specific Procedural Planning}
/*Completion*/
Goal: List the steps of {Goal}
Steps: Generated Procedural Planning

Table 7: An example of prompt for GPT-4o-mini for
procedural planning generation via in-context learning.
Generated texts are highlighted. {Specific Procedural
Planning} represents a procedural plan to achieve the
corresponding goal. {Goal} will be replaced with spe-
cific content.

/*Task Description*/
Please synthesize a unified and flexible script
based on the following three scripts.
Abstract Goal: {Abstract Goal}
Script A: {Specific Script 1}
Script B: {Specific Script 2}
Script C: {Specific Script 3}
/*Requirements*/:
1.Create a clear, concise, and easy-to-follow
script.
2.Retain the necessary steps and key points.
3.Ensure the script is flexible and applicable to
various situations.
/*Completion*/
Please consolidate and optimize the scripts acc-
ording to the above requirements, ensuring clar-
ity, efficiency, and practicality. Output only the
integrated script.
Generated Abstract Procedural Planning

Table 8: An example of prompt for improving the model.
Generated texts are highlighted. {Abstract Goal}, {Spe-
cific Script 1}, {Specific Script 2}, and {Specific Script
3} will be replaced with specific content.
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during the dataset construction phase, as shown in963

Table 14. Through this process, we obtain multiple964

similar examples. We then proceed similarly to965

inductive reasoning, with the key distinction being966

that the model is tasked with observing multiple967

examples, rather than a single one. Table 8 illus-968

trates the prompt used, which enables the model to969

generate improved procedural plans.970

B Results971

Brahman et al. (2024) indicate that the correla-972

tion between the automated metric scores and hu-973

man scores is weak. Therefore, we only present974

the experimental results of ROUGE, BLEU, and975

BERTScore for each task, without further detailed976

analysis. Table 15 presents the BLEU, ROUGE,977

and BERTScore for each model in the deductive978

reasoning task. Table 16 provides the correspond-979

ing results for each model in the inductive reason-980

ing task. Table 17 reports the performance of the981

improved models in the inductive reasoning task.982
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/*Task prompt*/
Please follow the example below to generate the output for me. Output only yes or no.
/*Examples*/
Procedural Planning:
1. Set a financial goal for how much you want to save.
2. Review your income and expenses to understand your current financial situation.
3. Create a budget that allocates a portion of your income for savings.
...
Question: This is the procedural plan of saving money, but is this the procedural plan of
saving money as a kid?
Answer: no ||
Procedural Planning:
1. Set a small savings goal, like saving for a toy or video game.
2. Ask your parents for a piggy bank or a special jar to keep your money safe.
3. Collect your allowance or any money you receive from chores, gifts, or special occasions.
...
Question: This is the procedural plan of saving money, but is this the procedural plan of
saving money as a kid?
Answer: yes ||
Procedural Planning:
1. Decide on the date and time for the party.
2. Choose a theme or type of party (optional).
3. Create a guest list.
...
Question: This is the procedural plan of organizing a party, but is this the procedural plan
of organizing a birthday party?
Answer: no ||
Procedural Planning:
1. Decide on a date and time for the birthday party.
2. Choose a theme (optional).
3. Create a guest list.
...
Question: This is the procedural plan of organizing a party, but is this the procedural plan
of organizing a birthday party?
Answer: yes ||
/*Completion*/
Procedural Planning:
{Abstract Procedural Planning}
Question: This is the procedural plan of {Abstract Goal}, but is this the procedural plan
of {Specific Goal}?
Answer: answer

Table 9: An example of prompt for GPT-4o-mini to determine whether an abstract procedural plan in the dataset can
achieve a specific goal. {Abstract Procedural Planning}, {Abstract Goal}, and {Specific Goal} will be replaced
with specific content from the dataset. Generated texts are highlighted. The result is either yes or no.
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/*Task prompt*/
Please follow the example below to generate the output for me. Output only yes or no.
/*Examples*/
Procedural Planning:
1. Set a financial goal for how much you want to save.
2. Review your income and expenses to understand your current financial situation.
3. Create a budget that allocates a portion of your income for savings.
4. Open a savings account, if you don’t already have one.
...
Question: Can this procedural plan achieve the goal of saving money as a kid?
Answer: no ||
Procedural Planning:
1. Read the recipe.
2. Get the ingredients and materials you need.
3. Measure each ingredient according to the recipe.
4. Preheat the oven.
...
Question: Can this procedural planning achieve the goal of baking a cake?
Answer: yes ||
Procedural Planning:
1. Decide on the date and time for the party.
2. Choose a theme or type of party (optional).
3. Create a guest list.
4. Send out invitations to your guests.
...
Question: Can this procedural plan achieve the goal of organizing a birthday party?
Answer: no ||
Procedural Planning:
1. Walk into library.
2. Find book on shelf.
3. Walk to check out desk.
4. Hand book to librarian.
...
Question: Can this procedural plan achieve the goal of borrowing a book from the library?
Answer: yes ||
/*Completion*/
Procedural Planning:
{Specific Procedural Planning}
Question: Can this procedural plan achieve the goal of {Specific Goal}?
Answer: answer

Table 10: An example of prompt for GPT-4o-mini to determine whether a generated procedural plan can achieve a
specific goal. {Specific Procedural Planning}, {Abstract Goal}, and {Specific Goal} will be replaced with specific
content. Generated texts are highlighted. The result is either yes or no.
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/*Task prompt*/
Please follow the example below to generate the output for me. Output only yes or no.
/*Examples*/
Procedural Planning:
1. Walk into library.
2. Find book on shelf.
3. Walk to check out desk.
4. Hand book to librarian.
...
Question: Can this procedural planning achieve the goal of saving money?
Answer: no ||
Procedural Planning:
1. Read the recipe.
2. Get the ingredients and materials you need.
3. Measure each ingredient according to the recipe.
4. Preheat the oven.
...
Question: Can this procedural planning achieve the goal of baking a cake?
Answer: yes ||
Procedural Planning:
1. Go to the bathroom.
2. Get undressed.
3. Start the shower.
4. Use any soap, shampoo etc.
...
Question: Can this procedural planning achieve the goal of organizing a party?
Answer: no ||
Procedural Planning:
1. Walk into library.
2. Find book on shelf.
3. Walk to check out desk.
4. Hand book to librarian.
...
Question: Can this procedural plan achieve the goal of borrowing a book from the library?
Answer: yes ||
/*Completion*/
Procedural Planning:
{Abstract Procedural Planning}
Question: Can this procedural plan achieve the goal of {Abstract Goal}?
Answer: answer

Table 11: An example of prompt for GPT-4o-mini to determine whether a generated procedural plan can achieve an
abstract goal. {Abstract Procedural Planning}, {Abstract Goal}, and {Specific Goal} will be replaced with specific
content. Generated texts are highlighted. The result is either yes or no.
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/*Task Description*/
You are tasked with comparing two abstract procedural plans (**Abstract Procedural Planning A
** and **Abstract Procedural Planning B**) based on their ability to generalize from the specific
procedural plan. Specifically, you need to determine which abstract procedural plan captures the
essential steps, logic, and general principles of the **specific procedural planning**, while main-
taining the ability to be applied to similar tasks or scenarios. Your evaluation should focus on how
well each abstract plan can extrapolate the process described in the **specific procedural plann-
ing** and apply it to a broader range of contexts. Please evaluate both abstract procedural plans
based on the following criteria:
/*Evaluation Criteria*/
1. **Generality and Inductive Ability**:

- Which abstract procedural plan (**A** or **B**) is better at capturing the core logic and
generalizable steps of the **specific procedural planning**?

- Which one can be applied to more diverse tasks, scenarios, or variations while preserving the
overall logical structure from the original procedure?

- Does **Abstract Procedural Planning A** or **B** demonstrate a stronger ability to extend
to new or unforeseen situations beyond the given task?
2. **Logical Consistency and Coherence**:

- Which abstract procedural plan maintains a more consistent, logical sequence of steps?
- Which one organizes the steps in a way that is clear and easy to follow, while still being appl-

icable to other similar tasks or variations?
- Which script better preserves the integrity of the original **specific procedural planning**

logic and stepwise structure?
3. **Adaptability**:

- Which abstract procedural plan can more easily accommodate variations, such as different in-
gredients, methods, or tools, without needing significant modifications to the structure?

- Consider how each abstract plan allows for flexibility. For example, can **Abstract Procedu-
ral Planning A** be applied to different types of tasks, such as recipes with other ingredients or
different procedures, without major adjustments?

- Does **Abstract Procedural Planning B** offer more adaptability for future variations of the
task?
4. **Simplicity and Clarity**:

- Which abstract procedural plan is simpler, clearer, and easier to follow?
- Does one of the abstract plans break down the steps into more understandable or actionable

components?
- Is one of the abstract plans more intuitive and user-friendly for someone unfamiliar with the

**{Abstract Goal}**?
/*Procedural Planning to Compare*/
**Specific Procedural Planning:** {Specific Procedural Planning}
**Abstract Procedural Planning A:** {Procedural Planning in the dataset}
**Abstract Procedural Planning B:** {Generated Procedural Planning}
/*Questions*/
Based on the above evaluation criteria, determine which abstract procedural plan (**A** or **B
**) better generalizes from the **specific procedural planning** and captures the essential steps of
**{Abstract Goal}** in a way that can be more broadly applied to a variety of tasks, scenarios, or
modifications. Output only **Abstract Procedural Planning A** or **Abstract Procedural Plann-
ing B**.
Answer: answer

Table 12: An example of prompt for GPT-4o-mini to determine whether a generated procedural plan is better than
an abstract procedural plan in the dataset. {Abstract Goal}, {Procedural Planning in the dataset}, and {Generated
Procedural Planning} will be replaced with specific content. Generated texts are highlighted. The result is either
**Abstract Procedural Planning A** or **Abstract Procedural Planning B**.
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/*Task Description*/
Given an abstract goal, generate two specific and concise goals related to it. Each goal
should be as brief and straightforward as possible while adding relevant restrictions.
Ensure that the specific goals differ from the example goal provided (i.e., {Specific
Goal}) and focus on different aspects of the goal.
/*Examples*/
Abstract goal: making a memory board
Specific goal 1: making a memory board with notes
Specific goal 2: make a memory board with photos

Abstract goal: making photo blocks
Specific goal 1: making photo blocks with friends
Specific goal 2: making photo blocks with family

Abstract goal: eating dragon fruit
Specific goal 1: eating dragon fruit with a spoon
Specific goal 2: eating dragon fruit topped with yogurt

/*Completion*/
Abstract Goal: {Abstract Goal}
Generated Specific Goals

Table 13: An example of prompt for GPT-4o-mini for specific goals generation via in-context learning. Generated
texts are highlighted. {Specific Goal} and {Abstract Goal} will be replaced with specific content.

Abstract Goal : Making a Sundae
1. Gather all the ingredients: ice cream, toppings, and a bowl.
2. Choose your favorite flavor of ice cream.
3. Scoop the ice cream into the bowl.
4. Add your desired toppings, such as chocolate syrup, sprinkles, or nuts.
5. Optionally, add whipped cream on top.
6. Place a cherry on top if desired.
7. Grab a spoon and enjoy your sundae.

Specific Goal : Making a Sundae with fruit
1. Gather all the ingredients: ice cream, fruit (such as bananas, strawberries,
or cherries), whipped cream, and any toppings (like nuts or chocolate syrup).
2. Choose a bowl or glass to serve the sundae.
3. Scoop the desired amount of ice cream into the bowl.
4. Slice the fruit into bite-sized pieces.
5. Arrange the sliced fruit on top of the ice cream.
6. Add whipped cream on top of the fruit.
7. Drizzle chocolate syrup or any other topping over the whipped cream.
8. Sprinkle nuts or other toppings if desired.
9. Serve immediately with a spoon.

Table 14: Dataset Example: Abstract and Specific Goals with Corresponding Procedural Plans.
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Model BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore
Llama-3-8B 27.46 59.94 30.20 41.24 77.62
Mistral 30.15 61.98 32.17 43.61 78.90
OLMo-7B 19.58 53.22 24.64 34.98 73.57
OLMo-13B 24.59 59.05 26.84 39.62 77.56
Qwen2.5-7B 30.45 62.37 32.47 43.97 78.77
Qwen2.5-14B 26.32 60.28 29.00 41.00 77.77
Qwen2.5-32B 23.36 58.52 26.93 39.15 76.79
Claude-3 28.81 61.92 31.81 43.22 78.32
GPT-3.5-turbo 39.57 64.64 40.61 52.55 80.89
GPT-4o-mini 32.78 65.07 36.12 47.04 80.13

Table 15: The BLEU, ROUGE, and BERTScore of each model in the deductive reasoning task.

Model BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore
Llama-3-8B 29.02 59.92 30.36 42.12 77.93
Mistral 28.90 60.61 30.49 43.30 78.85
OLMo-7B 19.41 52.97 23.05 34.75 74.43
OLMo-13B 20.12 55.22 22.66 37.06 76.96
Qwen2.5-7B 25.45 58.31 26.43 40.12 77.27
Qwen2.5-14B 20.95 56.44 22.45 37.23 76.75
Qwen2.5-32B 21.27 57.43 23.64 37.93 76.70
Claude-3 29.23 61.09 30.87 43.12 78.42
GPT-3.5-turbo 32.73 62.41 34.76 48.54 79.77
GPT-4o-mini 27.32 60.77 28.44 42.10 78.58

Table 16: The BLEU, ROUGE, and BERTScore of each model in the inductive reasoning task.

Model BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore
Llama-3-8B 15.94 42.77 27.22 33.36 70.58
Mistral 29.73 58.34 36.75 45.14 77.45
OLMo-7B 8.19 39.35 18.20 25.87 64.62
OLMo-13B 11.37 47.47 20.40 30.34 67.33
Qwen2.5-7B 12.96 46.28 25.73 34.65 68.45
Qwen2.5-14B 9.93 43.46 20.38 30.12 67.63
Qwen2.5-32B 11.72 45.83 21.16 31.25 68.88
Claude-3 21.32 49.89 28.78 37.24 73.06
GPT-3.5-turbo 21.16 52.45 26.16 36.71 74.03
GPT-4o-mini 16.78 52.51 28.66 38.81 70.88

Table 17: The BLEU, ROUGE, and BERTScore of each improved model in the inductive reasoning task.
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