
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS BRIDGING GENERALIZATION AND EXPRES-
SIVITY OF GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Expressivity and generalization are two critical aspects of graph neural networks
(GNNs). While significant progress has been made in studying the expressivity
of GNNs, much less is known about their generalization capabilities, particularly
when dealing with the inherent complexity of graph-structured data. In this work,
we address the intricate relationship between expressivity and generalization in
GNNs. Theoretical studies conjecture a trade-off between the two: highly expres-
sive models risk overfitting, while those focused on generalization may sacrifice
expressivity. However, empirical evidence often contradicts this assumption, with
expressive GNNs frequently demonstrating strong generalization. We explore this
contradiction by introducing a novel framework that connects GNN generalization
to the variance in graph structures they can capture. This leads us to propose a
k-variance margin-based generalization bound that characterizes the structural
properties of graph embeddings in terms of their upper-bounded expressive power.
Our analysis does not rely on specific GNN architectures, making it broadly ap-
plicable across GNN models. We further uncover a trade-off between intra-class
concentration and inter-class separation, both of which are crucial for effective
generalization. Through case studies and experiments on real-world datasets, we
demonstrate that our theoretical findings align with empirical results, offering a
deeper understanding of how expressivity can enhance GNN generalization.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008) have become pivotal in modern machine
learning, anchored in two main pillars: expressivity and generalization. Expressivity refers to a
GNN’s capacity to distinguish between diverse graph structures, thereby determining the scope of
problems it can address (Xu et al., 2019; Morris et al., 2019). Highly expressive GNNs can capture
intricate dependencies, essential for tasks like molecular property prediction (Gilmer et al., 2017),
drug discovery (Gaudelet et al., 2021), and protein-protein interaction prediction (Zitnik et al., 2018),
where minor structural variations have significant implications. Generalization, on the other hand,
reflects a GNN’s ability to transfer learned knowledge to unseen graphs. Given the diversity in graph
structures, sizes, and complexities, GNNs that generalize well maintain consistent performance across
varying datasets. Together, these properties enable GNNs to model complex graph structures while
remaining effective across new, unseen data, making them invaluable for graph-based analysis.

Theoretically, a trade-off is expected between expressivity and generalization: highly expressive
models can capture complex graph structures but may overfit and generalize poorly without proper
regularization. Conversely, models focused on generalization often sacrifice some expressivity to
perform better across diverse, unseen graph structures. Recent work indeed shows a strong correlation
between a GNN’s VC dimension and its ability to distinguish non-isomorphic graphs (Morris et al.,
2023). A more nuanced theoretical analysis is needed, however. Indeed, empirical evidence frequently
contradicts the above view. Highly expressive models often exhibit strong generalization performance
in practice (Bouritsas et al., 2023; Wang et al., 2023). In the restricted context of linear separability,
margin-based bounds offer partial alignment between theory and practice (Franks et al., 2024), yet
our broader understanding of how expressivity influences generalization remains incomplete. This
raises two key questions: (i) How does the structured nature of graphs affect GNN generalization?
(ii) How does a GNN’s expressivity influence its ability to generalize across tasks and unseen data?
Addressing these questions is vital for advancing GNN applications in real-world scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Present work. Building on the foundational work of Chuang et al. (2021), we explore how the con-
centration and separation of learned features, key factors in multiclass classification generalization,
translate to graph-based models. Their bound, derived from k-variance (Solomon et al., 2022) and the
expected optimal transport cost between two random subsets of the training distribution, motivates
our adaptation to graph embeddings. Leveraging these insights, we extend their framework to capture
the structural properties of graph embedding distributions and contribute the following:

• For arbitrary graph encoders, including GNNs, we show that their generalization can be
bounded in terms of the generalization bound of any more expressive graph encoder. This
allows capturing structural properties of graph embedding distributions with respect to their
bounding encoders.

• Under certain margin conditions, we demonstrate that the downstream classifier generalizes
well if (1) embeddings within a class are well-clustered and (2) classes are separable in
the embedding space in the Wasserstein sense, extending Chuang et al. (2021)’s results to
graphs.

• On the real-world PROTEINS dataset (Morris et al., 2020a), we empirically show how a
more expressive model influences generalization by measuring variance in graph embedding
distributions.

• We apply the empirical sample-based bound of Chuang et al. (2021) to graph classification
tasks, verifying that empirical findings align with our theoretical insights, thus demonstrating
the applicability of our approach to predict generalization.

Our results offer a flexible framework for analyzing generalization properties of complex graph
encoders via simpler encoders, such as those based on 1-WL, its higher-order variants k-WL (Cai
et al., 1992; Grohe, 2017), homomorphism counts (Zhang et al., 2024), or F-WL (Barceló et al.,
2021), provided they upper-bound the encoders under consideration. Overall, we present a versatile
tool for evaluating whether increased expressiveness improves or worsens generalization.

2 RELATED WORK

Regarding generalisation of GNNs, Scarselli et al. (2018) utilize VC dimension to study the gener-
alization of an older GNN architecture, distinct from modern MPNNs (Gilmer et al., 2017). Garg
et al. (2020) show that the Rademacher complexity of simple GNNs depends on maximum degree,
layer count, and parameter norms, while Liao et al. (2021) develop PAC-Bayesian bounds relying
on node degree and spectral norms; see Karczewski et al. (2024) for extensions. Improved bounds
using the largest singular value of the diffusion matrix are proposed by Ju et al. (2023). Transductive
PAC-Bayesian bounds for knowledge graphs are discussed by Lee et al. (2024). Random graph
models are leveraged by Maskey et al. (2022), who show GNN generalization improves with larger
graphs. Connections between VC-dimension and the 1-WL algorithm are made by Morris et al.
(2023), who bound it by the number of 1-WL colors. Levie (2023) provide bounds based on covering
numbers and specialized graph metrics.

For GCNs, Verma and Zhang (2019) derive generalization bounds using algorithmic stability, with
Zhang et al. (2020) focusing on single-layer GCNs and accelerated gradient descent. Zhou and
Wang (2021) extend this to multi-layer GCNs, showing that generalization gaps increase with depth.
Similarly, Cong et al. (2021) highlight this trend in deeper GNNs and propose detaching weight
matrices to improve generalization. Further analyses of transductive Rademacher complexity using
stochastic block models are offered by Oono and Suzuki (2020); Esser et al. (2021). Tang and Liu
(2023) establish bounds involving node degree, training iterations, and Lipschitz constants, while Li
et al. (2022) study topology sampling and its impact on generalization. Lastly, Franks et al. (2024)
explore margin-based bounds.

Moving to the expressivity of GNNs, MPNNs’ expressivity is bounded by 1-WL (Xu et al., 2019;
Morris et al., 2019), showing the need for more expressive methods. Many such models have been put
forward. For example, the F -MPNNs (Barceló et al., 2021) enhance expressivity via homomorphism
counts, similar to Bouritsas et al. (2023). Homomorphism counts have become a popular mechanism
in graph learning (Nguyen and Maehara, 2020; Welke et al., 2023; Zhang et al., 2024; Jin et al., 2024;
Lanzinger and Barcelo, 2024), and will be central to our analysis. Additional discussion on related
work can be found in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

Graphs and homomorphisms. We begin by considering undirected graphs G = (VG, EG), where
VG represents the set of vertices and EG ⊆ VG × VG forms the edge set, a symmetric relation.
For any vertex v ∈ VG, its set of neighbors is given by NG(v) := {u ∈ VG | (v, u) ∈ EG}. A
homomorphism from a graph G to another graph H is a mapping h : VG → VH such that each
edge (v, w) ∈ EG is mapped to an edge

(
h(v), h(w)

)
∈ EH . An isomorphism, on the other

hand, is a bijective function f : VG → VH that preserves adjacency: (v, w) ∈ EG if and only if(
f(v), f(w)

)
∈ EH . The notation Hom(G,H) refers to the number of homomorphisms fromG toH ,

and the function HomG(·) maps any graph H to Hom(G,H). Given a sequence F = (F1, F2, . . .)
of graphs, we define HomF (·) as

(
HomF1

(·),HomF2
(·), . . .

)
, a tuple of homomorphism counts. A

graph invariant is any function ξ on graphs that is unchanged under isomorphisms, i.e., ξ(G) = ξ(H)
when G and H are isomorphic. For instance, HomF (·) serves as a graph invariant for any graph
sequence F . Moreover, we introduce the concept of rooted graphs, where each graph Gr has a
distinguished root vertex r ∈ VG. For two rooted graphsGr andHs, a homomorphism must also map
the root r of G to the root s of H . The notation HomF r (·) captures the number of homomorphisms
Hom(F r, Gv) from a rooted graph F r to any rooted pair (G, v), where v is treated as the root of G.
Similarly, HomFr (·) is defined, capturing important vertex invariants for pairs (G, v). We illustrate
some of the above concepts by examples in Appendix B.

Graph neural networks and WL. We extend these notions to featured graphs G = (VG, EG, ζG),
where each vertex is endowed with a feature vector ζG : VG → Rd0 of some fixed dimension
d0 ∈ N. We focus on Message-Passing Neural Networks (MPNNs) (Gilmer et al., 2017), enhanced
with homomorphism counts from F (Barceló et al., 2021). For a sequence of rooted graphs F =
(F r1 , F

r
2 , . . .), the initial vertex representation for a vertex v ∈ VG in an F-MPNN is:1

ϕ
(0)
F (G, v) := (ζG(v),Hom(F r1 , G

v),Hom(F r2 , G
v), . . .) .

At each iteration (layer) 0 ≤ ℓ ≤ L, this representation is updated as follows:

ϕ
(ℓ+1)
F (G, v) := upd(ℓ)

(
ϕ
(ℓ)
F (G, v), agg(ℓ)

(
{{ϕ(ℓ)F (G, u) | u ∈ NG(v)}}

))
,

where {{·}} denotes a multiset, and upd(ℓ) and agg(ℓ) are differentiable update and aggregation
functions, respectively. After L iterations, a final pooling operation produces the graph-level represen-
tation: ϕLF (G) := readout

(
{{ϕ(L)F (G, v) | v ∈ VG}}

)
, with readout being a differentiable function.

This construction defines a graph invariant. We also consider the F-WL algorithm, as introduced
by Barceló et al. (2021) as an extension of the one-dimensional Weisfeiler-Leman algorithm. The
F-WL algorithm iteratively updates vertex colors. Initially, each vertex is assigned a color:

wl
(0)
F (G, v) :=

(
ζG(v),Hom(F1, G

v),Hom(F2, G
v), . . .

)
.

At each iteration 0 ≤ ℓ ≤ L, new colors are assigned as follows:

wl
(ℓ+1)
F (G, v) :=

(
wl

(ℓ)
F (G, v), {{wl(ℓ)F (G, u) | u ∈ NG(v)}}

)
.

The final graph invariant is wl(L)F (G) := {{wl(L)F (G, v) | v ∈ VG}}. This invariant can be viewed as a
color histogram in Nc, where c is the number of distinct colors, assuming a canonical ordering on
colors. When the list F is empty we recover the 1-WL algorithm (Weisfeiler and Leman, 1968).

Graph encoders. Graph encoders are mappings ϕ from the set G of graphs to some embedding
space Z , typically residing in Rk, for k ∈ N. The space Z is assumed to be a metric space for a
metric dZ . Examples of graph encoders are HomF , F-MPNNs and F-WL, for any sequence F of
graphs and number L ∈ N of iterations. We will develop bounds for general graph encoders.

Wasserstein distance. Let ∥·∥ denote the Euclidean norm in Rd, for some d ∈ N. Given two
distributions µ and ν on Rd, the p-Wasserstein distance between µ and ν is defined as:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(
E(x,y)∼π∥x− y∥p

)1/p
,

where Π(µ, ν) denotes the set of all couplings of µ and ν, i.e., distributions π on Rd × Rd with µ
and ν as marginals. In what follows, we restrict our attention to the 1-Wasserstein distance.

1We ignore vertex features when considering homomorphisms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 GRAPH ENCODERS: KEY PROPERTIES

Before presenting our generalization gap bounds, we first establish crucial properties of (classes of)
graph encoders that play a significant role in our analysis. In particular, we revisit the relationship
between classes of graph encoders in terms of their distinguishing power, i.e., their ability to map
distinct graphs in G to distinct embeddings in their embedding spaces.
Definition 4.1. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders. We say that ϕ bounds ϕ′
in distinguishing power, denoted by ϕ ⊑ ϕ′, if for any two graphs G and H in G,

ϕ′(G) ̸= ϕ′(H)⇒ ϕ(G) ̸= ϕ(H).

In other words, ϕ′ cannot distinguish more graphs than ϕ.

Similarly, for classes Φ and Φ′ of graph encoders, we say that Φ bounds Φ′ in distinguishing power,
denoted by Φ ⊑ Φ′, if no encoder in Φ′ can distinguish more graphs than any of the encoders in Φ.
That is, for all ϕ′ ∈ Φ′, there exists a ϕ ∈ Φ such that ϕ ⊑ ϕ′. If both Φ ⊑ Φ′ and Φ′ ⊑ Φ hold, then
we write Φ ≡ Φ′ and say that both classes have the same distinguishing power.

From the seminal papers by Morris et al. (2019) and Xu et al. (2019), we know that MPNN(L) ≡
1-WL(L), where the argument L refers to the number of layers/iterations. Similarly, F -MPNN(L) ≡
F-WL(L) (Barceló et al., 2021). It is also known that HomT ⊑ MPNN where T consists of all
trees (Dell et al., 2018), and HomT ◦F ⊑ F-MPNN(L) where T ◦ F consists of trees joined with
copies of graphs in F (Barceló et al., 2021). Recent work by Neuen (2024) provides valuable insights
comparing HomF for various F (see also (Lanzinger and Barcelo, 2024)).

When graph encoders are comparable in terms of distinguishing power, one can recover the least
expressive encoder from the most expressive one. This is formalized in the following lemma. Proofs
in this section can be found in Appendix C.
Lemma 4.2. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ ⊑ ϕ′ holds.
Then there exists a function f : Zϕ → Zϕ′ such that ϕ′ = f ◦ ϕ.

As an illustration, consider an L-layer MPNN M; we know that 1-WL(L) ⊑ M. It now suffices to
define f such that it maps a color histogram h to M(G), the embedding ofG by M, whereG is a graph
satisfying wl(L)(G) = h. This is well-defined due to the earlier observation that 1-WL(L) ⊑ M.

For some classes of graph encoders, the function f satisfies additional desirable properties, as we
explain next. We say that a graph encoder ϕ : G → Zϕ is B-bounded if dZϕ(ϕ(G), ϕ(H)) ≤ B for
any G,H ∈ G. Furthermore, a graph encoder ϕ : G → Zϕ is S-separating if dZϕ(ϕ(G), ϕ(H)) ≥ S
for any G,H ∈ G such that ϕ(G) ̸= ϕ(H). We recall that a function f between metric spaces Z and
Z ′ is Lipschitz with constant Lip(f) if for any z1, z2 ∈ Z , dZ′(f(z1), f(z2)) ≤ Lip(f)dZ(z1, z2).
For simplicity, we set Lip(f) =∞ when f is not Lipschitz for a finite constant.
Proposition 4.3. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ be a
B-bounded graph encoder such that ϕ ⊑ ϕ′. Then ϕ′ = f ◦ ϕ for a function f : Zϕ → Zϕ′ which is
Lipschitz with constant Lip(f) = B/S.

There are plenty of bounded graph encoders; indeed, just consider any GNN employing bounded-
range activation functions such as sigmoid, tanh, truncated ReLU (Hamilton et al., 2017). Other
examples include normalized homomorphism count vectors or color histograms (Lovász and Szegedy,
2006). Similarly, any graph encoder mapping graphs into a discrete subset of Rd is S-separating. For
example, any HomF is 1-separating since whenever HomF (G) ̸= HomF (H), there exists an F ∈ F
such that Hom(F,G) ̸= Hom(F,H). Since the latter are natural numbers, and assuming a discrete
metric d, d

(
Hom(F,G),Hom(F,H)

)
≥ 1. A similar argument applies to graph encoders based on

1-WL or its higher-order variant k-WL.

Our generalization bounds use the 1-Wasserstein distance between distributions, as we will see shortly.
Using Proposition 4.3, and in particular the Lipschitz property, we can relate the Wasserstein distance
between the pushforward distributions of distributions µ and ν on G for the embedding spaces of the
graph encoders. Formally, let ϕ : G → Zϕ be a graph encoder and let µ be a distribution on G. Then
the pushforward distribution of µ under ϕ is the distribution on Zϕ given by

ϕ♯(µ)(z) := µ
(
{G ∈ G | ϕ(G) = z}

)
,

where z is an element in the embedding space Zϕ. We can now state the proposition.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 4.4. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ′ = f ◦ ϕ.
Then for any distributions ν and ν′ over G, we have that the inequality W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤

Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)

holds.

We remark that the inequality above becomes vacuous when f is not Lipschitz and hence Lip(f) =∞.

Corollary 4.5. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ a B-bounded
graph encoder such that ϕ ⊑ ϕ′ holds. Then for any distributions ν and ν′ over G, we have

W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤ (B/S) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
.

Indeed, Proposition 4.3 implies Lip(f) = B/S. Combined with Proposition 4.4, this gives
W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤ Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
= (B/S) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
.

As an example, consider a B-bounded graph encoder ϕ : G → Zϕ which is bounded in distinguishing
power by the 1-separating encoder HomF , for some sequence F of graphs. Then for any distributions
ν and ν′ on G, we have

W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
≤ (B/1) · W1

(
(HomF)♯(ν), (HomF)♯(ν

′)
)
.

More broadly, these results suggest that the variance of embedding distributions in Zϕ, produced by
a complex graph encoder, can be effectively upper bounded by the variance of simpler, combinatorial
graph invariants—such as homomorphism counts, Weisfeiler-Leman tests, and other structural
descriptors, provided that the latter bound the former in terms of distinguishing power.

5 GENERALIZATION ANALYSIS

We use the setup from Chuang et al. (2021) but translated to the graph setting. More precisely,
let G represent the input space of graphs, Z the embedding space in Rd for some d ∈ N, and
Y = {1, . . . ,K} the output space consisting of K classes. We define a set of graph encoders
Φ = {ϕ : G → Z} and a set of predictors Ψ = {ψ = (ψ1, . . . , ψK) : Z → RK}. A score-based
graph classifier ψ ◦ ϕ simply returns argmaxy∈Y ψy(ϕ(G)) on input G. The graph encoders in Φ
are assumed to be graph invariants, such as, e.g., F-MPNNs, F-WL, or HomF .

We define the margin of a graph classifier ψ ◦ ϕ for a graph sample (G, y) ∈ G × Y as

ρψ(ϕ(G), y) := ψy(ϕ(G))−max
y′ ̸=y

ψy′(ϕ(G)).

The graph classifier ψ ◦ ϕ misclassifies G if ρψ(ϕ(G), y) < 0. Let µ be a distribution over G × Y ,
and S = {(Gi, yi)}mi=1 be a set of m graph samples drawn i.i.d. from µ, i.e., S ∼ µm. The empirical
distribution µS is defined as µS := 1

m

∑m
i=1 δ(Gi,yi), where δ(Gi,yi) denotes the Dirac delta measure

centered at (Gi, yi). The expected zero-one loss Rµ(ψ ◦ ϕ) and the γ-margin empirical zero-one loss
R̂γ,S(ψ ◦ ϕ) are defined as

Rµ(ψ ◦ ϕ) := E(G,y)∼µ
[
1ρψ(ϕ(G),y)≤0

]
and R̂γ,S(ψ ◦ ϕ) := E(G,y)∼µS

[
1ρψ(ϕ(G),y)≤γ

]
.

We aim to bound the generalisation gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) for the graph classifier ψ ◦ ϕ.

5.1 GENERALIZATION BOUND

We are now ready to present the generalization bounds. Our results build on the margin bounds of
Chuang et al. (2021), which are themselves based on a generalized notion of variance that involves
the Wasserstein distance (Solomon et al., 2022). This notion more effectively captures the structural
properties of the feature distribution. Crucially, we fully exploit the properties of graph encoders and,
in particular, use Proposition 4.4 to derive an upper bound on the generalization gap of any graph
encoder ϕ : G → Zϕ in terms of any graph encoder bounding ϕ in distinguishing power!

In order to formally state our results, some additional definitions are needed. Recall that we consider
graph classifiers (ψ1, . . . , ψK) ◦ ϕ where ϕ : G → Zϕ is a graph encoder and the predictor ψ =
(ψ1, . . . , ψK) is such that each ψi : Zϕ → R. Recall also that the output space Y = {1, . . . ,K}

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and that µ is a distribution over G × Y . We denote by µx the marginal distribution on G, i.e.,
µx(G) :=

∫
µ(G, y)dy and by µy the marginal distribution on Y , i.e, µy(c) :=

∫
µ(x, c)dx. Then,

for each c ∈ Y , µc(G) is the conditional distribution on G defined by µ(G, c)/µy(c).
Theorem 5.1. Fix γ > 0 and a graph encoder ϕ : G → Zϕ. Let λ : G → Zλ be a graph encoder
that bounds ϕ in distinguishing power, i.e., λ ⊑ ϕ. Then, for every distribution µ on G × Y , for
every predictor ψ = (ψy)i∈Y and every δ ∈ (0, 1), with probability at least 1− δ over all choices of
S ∼ µm, we have that the generalization gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper bounded by

Ec∼µy
[
Lip (ρψ(·, c)) Lip(f)

γ
ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
+

√
log(1/δ)

2m
, (†)

where ϕ = f ◦ λ and for each c ∈ Y , mc denotes the number of pairs (G, c) in S. Also, recall that
for T ∼ µmcc , µc,T is the empirical distribution µc,T :=

∑
G∈T δG; similarly for µc,T̃ .

The proof is a consequence of Theorem 2 in Chuang et al. (2021) and Proposition 4.4. As also
observed by those authors, the expectation term over T, T̃ ∼ µmcc is intractable in general. To
address this drawback, Chuang et al. (2021) show how to estimate the expectation by means of
sampling, provided that encoders areB-bounded. A similar approach works in our case as well. More
specifically, we show in Appendix D how an efficient, sample-based bound can be used instead of the
theoretical bound presented in Theorem 5.1. Notably, this practical bound is used in our experiments.

Theorem 5.1 highlights several key factors that influence the generalization of graph classifiers: (i)
the learning behavior of the predictors ψ, captured by Lip (ρψ(·, c)); (ii) the learning behavior of
graph encoder ϕ, relative to λ, described by Lip(f); and (iii) the variance of graph structures, in the
Wasserstein distanceW1

(
λ♯(µc,T), λ♯(µc,T̃)

)
for graph samples T, T̃ ∼ µmcc .

5.2 CONCENTRATION AND SEPARATION

In terms of concentration, since ET,T̃∼µmcc [W1(λ♯(µc,T), λ♯(µc,T̃))] ≤ O(m−1/d) (Chuang et al.,
2021), a large sample size m and a small dimension d of the embedding space Zλ lead to a smaller
generalization bound. For instance, when µ is concentrated on graphs in G with low color complexity
(Morris et al., 2023)—i.e., the 1-WL test requires only a small number of colors for the graph’s
vertices—combinatorial graph encoders like HomF and F-WL(L) can operate in low-dimensional
spaces. This observation is consistent with earlier findings (Kiefer and McKay, 2020; Garg et al.,
2020; Liao et al., 2021; Ju et al., 2023; Cong et al., 2021; Esser et al., 2021; Morris et al., 2023) about
the effect of graph size, degree, and maximum degree on generalization performance.

Of particular interest is the case when the bounding graph classifier λ is assumed to have a large
margin. A larger margin is generally associated with better generalization (Elsayed et al., 2018;
Chuang et al., 2021). If we assume the margin γ is satisfied for ψ ◦ λ, for all graph samples, and for
each c ∈ Y , the predictor ψc ∈ ψ is Lipschitz, then (see Lemma 10 in Chuang et al. (2021)) we have

γ ≤
(
max
c,c′∈Y
c ̸=c′

W1(λ♯(µc), λ♯(µc′))
)(
max
c∈Y

Lip(ψc)
)
.

By replacing 1/γ in Equation (†) by this bound, we obtain Proposition 5.2, see Appendix D for
details. We hereby revealing a trade-off between concentration and separation.
Proposition 5.2. Under the same assumptions as in Theorem 5.1, but with the additional requirement
that the predictors ψc in ψ are Lipschitz, and that the bounding graph classifier λ has a large margin,
i.e., ρψ(λ(G), y) ≥ γ for all (G, y) ∼ µ, then for any δ ∈ (0, 1), with probability at least 1− δ over
all choices S ∼ µm, we have that the generalization bound given in Theorem 5.1 is lower bound by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
.

The above proposition highlights that, to achieve a low generalization bound, it is crucial to ensure
good concentration between embeddings of the same class, i.e., W1(λ♯(µc,T), λ♯(µc,T̃)), while
maintaining a large separation between embeddings of different classes, i.e.,W1(λ♯(µc), λ♯(µc′)),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Initial Vertex Colors After One Iteration Graph Embeddings Wasserstein
G G′ G G′ (Difference) Distance

(a)
1-WL

WL

F-WL 4-cycle

F-WL 4-clique

Initial node colours 1st it

Initial node colours 1st ite

Initial node colours 1st ite

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

2

3

2

2

2

1

1

2

1

1

2

2

1

2

1

6

7

6

8

4

5

6

7

6

8

4

5

17

15

1

14

16

12

13

17

15

1

14

16

12

13

5

6

5

7

3

4

5

6

5

7

3

4

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

2

3

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

2

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

 (1, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0)

teration

eration

eration

(, {{ , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , }})

(, {{ , }})

(, {{ , , }})

(, {{ , , , , }})

1st iteration mapping

 (1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

 (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

 (0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1)6

13

10

9

13

12

9

14

11

6

13

10

9

13

12

9

14

11

6

7

6

6

8

4

5

13

10

9

13

12

9

14

11

14

23

19

20

10

22

18

24

21

14

23

19

20

10

22

18

24

21

17

15

14

14

16

12

13

23

19

20

10

22

18

24

21

5

11

9

8

11

7

8

12

10

5

11

9

8

11

7

8

12

10

5

6

5

5

7

3

4

11

9

8

11

7

8

12

10
1 1

3

1
0

2
1 1

2
1

0

1

2

3

G
G'

4.796

(b)
C4-WL

WL

F-WL 4-cycle

F-WL 4-clique

Initial node colours 1st it

Initial node colours 1st ite

Initial node colours 1st ite

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

2

3

2

2

2

1

1

2

1

1

2

2

1

2

1

6

7

6

8

4

5

6

7

6

8

4

5

17

15

1

14

16

12

13

17

15

1

14

16

12

13

5

6

5

7

3

4

5

6

5

7

3

4

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

2

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

 (1, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0)

teration

eration

eration

(, {{ , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , }})

(, {{ , }})

(, {{ , , }})

(, {{ , , , , }})

1st iteration mapping

 (1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

 (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

 (0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1)6

13

10

9

13

12

9

14

11

6

13

10

9

13

12

9

14

11

6

7

6

6

8

4

5

13

10

9

13

12

9

14

11

14

23

19

20

10

22

18

24

21

14

23

19

20

10

22

18

24

21

17

15

14

14

16

12

13

23

19

20

10

22

18

24

21

5

11

9

8

11

7

8

12

10

5

11

9

8

11

7

8

12

10

5

6

5

5

7

3

4

11

9

8

11

7

8

12

10

11
2
1111111111

0

1

2

3

G
G'

4.123

(c)
K4-WL

WL

F-WL 4-cycle

F-WL 4-clique

Initial node colours 1st it

Initial node colours 1st ite

Initial node colours 1st ite

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

3

4

3

3

5

1

2

10

7

8

10

9

6

11

6

2

3

2

2

2

1

1

2

1

1

2

2

1

2

1

6

7

6

8

4

5

6

7

6

8

4

5

17

15

1

14

16

12

13

17

15

1

14

16

12

13

5

6

5

7

3

4

5

6

5

7

3

4

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

2

2

2

2

2

1

2

2

1

1

2

2

1

2

1

2

2

2

2

2

1

1

2

1

1

2

2

1

2

1

 (1, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0)

teration

eration

eration

(, {{ , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , , }})

(, {{ , , , }})

(, {{ , , }})

(, {{ , , , , }})

(, {{ , }})

(, {{ , , }})

(, {{ , , , , }})

1st iteration mapping

 (1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

 (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)

 (0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1)6

13

10

9

13

12

9

14

11

6

13

10

9

13

12

9

14

11

6

7

6

6

8

4

5

13

10

9

13

12

9

14

11

14

23

19

20

10

22

18

24

21

14

23

19

20

10

22

18

24

21

17

15

14

14

16

12

13

23

19

20

10

22

18

24

21

5

11

9

8

11

7

8

12

10

5

11

9

8

11

7

8

12

10

5

6

5

5

7

3

4

11

9

8

11

7

8

12

10

1 1

3

1 1
2
1 1 1

2
1

0

1

2

3

G
G'

5.000

Table 1: Two graphs G and G′ with the initial vertex colors (including input vertex features and
homomorphism counts) and the vertex colors after one iteration, and the dimension-wise difference
|λ♯(G)− λ♯(G′)| and Wasserstein distanceW1

(
λ♯(G), λ♯(G

′)
)

between their graph embeddings for
three models: (a) 1-WL, (b) C4-WL, and (c) K4-WL.

where c ̸= c′. This can be achieved when λ learn embeddings in the “right” directions, where
embeddings of different classes are “more separated” than those of the same class, or when the
distribution µ is concentrated on graphs for which this separation happens for λ.

Remarks. In our bounds, we identify three Lipschitz constants: Lip(ρψ(·, c)), Lip(ψc), and Lip(f).
First, note that ρψ(·, c) depends on ψc, and therefore it is Lipschitz in its first argument if ψc is
Lipschitz. For simplicity, we assume that the predictor ψ = (ψc)c∈Y is a softmax function with
Lipschitz constant 1. For general ψc, Lip(ρψ(·, c)) can be approximated empirically using the
Jacobian, as suggested by (Chuang et al., 2021).

Furthermore, Corollary 4.5 states that the connecting function f between the graph encoders λ ⊑ ϕ
is Lipschitz with constant B/S, provided that ϕ is B-bounded and λ is separating. Therefore, when
ϕ is B-bounded, Lip(f) decreases as S increases. We also note that S can increase with added
expressivity in λ, which enhances its separation ability. In practice, both B and S can be computed
empirically. We discuss the effect of added expressivity in λ in more detail in the next section.

6 CASE STUDIES

In this section, we present case studies to illustrate how our generalization bound captures complex
scenarios in the generalization of graph encoders, influenced by their model expressivity and driven
by two key factors: intra-class concentration and inter-class separation. Recall, as discussed in
Theorem 5.1 and Proposition 5.2: (i) intra-class concentration, which quantifies the variance of graph
structures within a class, measured by the Wasserstein distanceW1(λ♯(µc,T), λ♯(µc,T̃)) for graph
samples T, T̃ ∼ µmcc , and (ii) inter-class separation, which measures the distinction between classes,
represented by the Wasserstein distance maxc,c′∈Y,c̸=c′W1(λ♯(µc), λ♯(µc′)).

For simplicity, we consider the following graphs {G,G′, H,H ′} from the PROTEINS dataset (Morris
et al., 2020a), uniformly selected by the distribution µ,

G = 31

24

5

6

7

G′ = 31

24

5
6

7
8

H = 31

24

5

6

7

H ′ =
31

24

5 6

7

Here, G and G′ belong to the class c, while H and H ′ belong to the class c′, where c ̸= c′.
Assuming the margin condition is satisfied for all classes, including c and c′, and that embeddings
of graphs within each class cluster around the embeddings of G, G′, and H , H ′, we estimate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

W1

(
λ♯(µc,T), λ♯(µc,T̃)

)
usingW1

(
λ♯(G), λ♯(G

′)
)
. Since there are only two classes in this dataset,

we estimate maxc,c′∈Y,c ̸=c′W1

(
λ♯(µc), λ♯(µc′)

)
byW1

(
λ♯
(
{G,G′}), λ♯({H,H ′}

))
.

For the bounding graph encoders λ, we use 1-WL as the base model. Then, following the approach
by Barceló et al. (2021) we consider two simple rooted graphs

31

24

and
31

24

and append their homo-
morphism counts Hom(

31

24

, ·) and Hom(
31

24

, ·) to the vertex feature of each rooted pair (·, v) in the
graphs G, G′, H and H ′, respectively. This leads to slight increase in model expressivity, compared
with 1-WL, allowing us to analyze how these differences impact key factors in generalization. We
refer to these two graph encoders as C4-WL, where homomorphism counts of

31

24

are added, and
K4-WL, where homomorphism counts of

31

24

are added, respectively. Table 1 presents graphs G and
G′ with their initial vertex colors and the updated colors after one iteration, where the Wasserstein
distanceW1

(
λ♯(G), λ♯(G

′)
)

estimates the intra-class concentration of class c. As model expressivity
increases from 1-WL toC4-WL andK4-WL, two distinct scenarios for intra-class concentration arise:

(1) More expressivity leads to better generalization: Compared to the graph embeddings from
1-WL, incorporating C4 improves intra-class concentration. The homomorphism counts
of C4 reduce the variance between graph embeddings as shown in Table 1, resulting in a
distance of 4.123, smaller than 4.796 for 1-WL.

(2) More expressivity leads to worse generalization: When K4 is used, the graph embeddings
of G and G′ yield a distance of 5.000, which is larger than its 1-WL counterpart 4.796.
Compared to C4-WL, each dimension of the K4-WL embeddings has the same or larger
magnitude, reflecting higher variance in the graph embeddings.

When measuring inter-class separation usingW1(λ♯(µc), λ♯(µc′)), the models 1-WL, C4-WL, and
K4-WL achieve distances of 4.582, 4.511, and 4.840, respectively. These results suggest a narrowing
in the gaps of these models, compared to intra-class concentration alone. The trends in inter-
class separation may change depending on the graph structure. For instance, if graphs of class c′
cluster around the embedding of H ′, i.e., estimatingW1

(
λ♯(µc), λ♯(µc′)

)
with µc = {G,G′} and

µc′ = {H ′}, the reverse trend may occur, with 1-WL achieving a distance of 4.796 and K4-WL
achieving 4.583. This highlights the importance of inter-class separation in balancing a model’s
generalization performance alongside intra-class concentration.

7 EXPERIMENTS

Tasks and Datasets We conduct graph classification experiments on six widely used benchmark
datasets: ENZYMES, PROTEINS, and MUTAG from the TU dataset collection (Morris et al., 2020a),
as well as SIDER and BACE from the molecular dataset collection (Wu et al., 2017). For SIDER,
which comprises 27 classification tasks, we focus specifically on the 21st task. Each dataset is
randomly divided into training and test sets following a 90%/10% split.

Setup and Configuration Each classification task is trained for 400 epochs, with five independent
runs to report the mean and standard deviation of the results. Consistent with the setup in Tang and
Liu (2023); Morris et al. (2023); Cong et al. (2021), we eliminate the use of regularization techniques
such as dropout and weight decay. A batch size of 128 is utilized, with a learning rate set to 10−3, and
the hidden layer dimension fixed at 64. The margin loss function is employed with a margin parameter
γ = 1. To compute the generalization gap, we utilize the sample-based variant of the bound as
outlined in Theorem 5.1, as given in Theorem D.2 of the appendix. For the graph encoder ϕ, we adopt
both MPNNs and F -MPNNs, with expressivity constraints defined by 1-WL and F-WL, respectively,
as described in Section 4. The predictor ψ(·) is modeled using the softmax function, which has a
Lipschitz constant of 1 (Gao and Pavel, 2017), ensuring that Lip(ρψ(·, c)) is also 1. We estimate Lip(f)

as: Lip(f) = maxG,H∈Gtrain

(
dZϕ (ϕ(G),ϕ(H))

dZλ (λ(G),λ(H))

)
, where G and H are sampled from the training set

Gtrain. For all experiments, we set the confidence level δ to 0.1, yielding bounds with high probability.

7.1 RESULTS AND DISCUSSION

How well can the proposed bound predict the generalization ability of MPNNs? To answer
this, we compare the proposed bound with empirical generalization gaps, measured by loss, while

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Left: Graph classification gaps and bounds with different numbers of MPNN layers. Right:
Correlation matrices of empirical gaps and bounds.

Dataset

Layers ENZYMES PROTEINS MUTAG SIDER BACE

Loss gap 0.248±0.040 0.029±0.015 -0.070±0.017 0.037±0.003 0.018±0.017

Our Bound 7.926±1.279 2.193±0.702 1.216±0.169 0.511±0.286 1.479±0.301

VC dimension 586 929 51 960 621
VC bound 1.302±0.000 1.292±0.001 1.100±0.004 1.302±0.000 1.301±0.000

PAC bound 3.48 5.04 3.06 52.39 21.525

Loss gap 0.242±0.026 0.032±0.010 -0.074±0.007 0.038±0.003 0.037±0.019

Our bound 7.425±0.982 1.404±0.144 1.247±0.155 0.620±0.463 1.729±0.251

VC dimension 595 996 121 1300 1060
VC bound 1.302±0.000 1.292±0.000 1.281±0.003 1.302±0.000 1.302±0.000

PAC bound 12.75 31.94 8.17 132.79±8.12 51.573

Loss gap 0.237±0.035 0.025±0.009 -0.058±0.012 0.038±0.002 0.032±0.011

Our Bound 6.513±0.951 1.421±0.220 1.649±0.158 0.409±0.253 1.789±0.226

VC dimension 595 996 135 1309 1089
VC bound 1.302±0.000 1.293±0.000 1.286±0.002 1.302±0.000 1.302±0.000

PAC bound 56.98 276.78 21.96±0.00 341.04 124.605

Loss gap 0.235±0.038 0.027±0.005 -0.073±0.009 0.036±0.001 0.022±0.030

Our Bound 6.825±0.796 1.434±0.297 1.535±0.115 0.298±0.080 1.686±0.377

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

PAC bound 308.43 2331.63 57.69 845.62 310.732

Loss gap 0.256±0.037 0.020±0.007 -0.071±0.021 0.035±0.001 0.020±0.020

Our Bound 6.384±0.813 1.308±0.165 1.773±0.194 0.369±0.172 1.662±0.120

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.292±0.002 1.302±0.000 1.302±0.000

PAC bound 1615.10 17992.81 155.74 2179.21 744.08

Loss gap 0.264±0.025 0.030±0.008 -0.078±0.019 0.034±0.002 0.022±0.016

Our Bound 6.151±0.798 1.340±0.316 1.627±0.038 0.353±0.156 1.785±0.237

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±5.870

PAC bound 8931.00 135762.52 410.31 5254.88 1860.94

GapOurs VC PAC

G
ap

O
ur

s
V

C
PA

C

ENZYMES

0.5

0.0

0.5

1.0

GapOurs VC PAC

G
ap

O
ur

s
V

C
PA

C

PROTEINS

0.5

0.0

0.5

1.0

Gap Ours VC PAC

G
ap

O
ur

s
V

C
PA

C

MUTAG

0.0

0.5

1.0

GapOurs VC PAC

G
ap

O
ur

s
V

C
PA

C

SIDER

0.5

0.0

0.5

1.0

Gap Ours VC PAC

G
ap

O
ur

s
V

C
PA

C

BACE

0.0

0.5

1.0

controlling MPNN expressivity by varying the number of layers. Table 2 presents the proposed bound
and the empirical generalization gaps for different numbers of MPNN layers across five datasets. For
comparison, we also include the VC bound from Morris et al. (2023) that is based on the number of
unique color histograms (VC dimension) produced by 1-WL, as well as the PAC-Bayesian bound from
Ju et al. (2023). Changes in loss gaps between layers are plotted in Figure 2 of Appendix F. Our results
show that the proposed bounds strongly correlates to the empirical generalization gaps across datasets
and layer depths, effectively predicting generalization errors. This consistency highlights the bound’s
ability to reflect changes in generalization performance as model depth increases. In contrast, the VC
dimension stabilizes after three layers and is very close to sample sizes, rendering constant VC bounds
regardless of layers. As a result, the VC bound fails to capture changes in empirical generalization
gaps. Furthermore, our bound surpasses the PAC-Bayesian bound in both tightness and correlation
to empirical gaps, notably on deeper MPNNs, since the PAC-Bayesian bound grows exponentially
with the number of layers. Similarly, our bound is less vacuous compared to other bounds, such as
those proposed by Garg et al. (2020); Liao et al. (2021), which tend to be on the order of 104.

To evaluate how well the proposed bound predicts the generalization gap of F-MPNNs across
different homomorphism pattern selections, we present the empirical loss gap and generalization
bound for three distinct pattern sets, alongside MPNN, as shown in Figure 1. We designate Pn, Kn,
and Cn as n-path, n-clique, and n-cycle graphs, respectively, and refer to the MPNN without any
specific pattern as “no pattern". It can be seen that the generalization bound closely aligns with the
empirical gap across different pattern choices, with some exceptions in ENZYMES. Notably, the
choice of pattern influences the generalization gap in different ways. In ENZYMES, cycle patterns
lead to a larger gap compared to cliques and paths. In PROTEINS, using paths or cliques increases
the generalization gap, while cycles reduce it. These changes in the empirical generalization gap are
largely captured by the corresponding bounds.

Why does more expressive power sometimes lead to better generalization? In Figure 1, we
observe two contrasting cases where increased expressivity worsens generalization (ENZYMES) and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 1: Top: Loss gaps and bounds of different patterns. Bottom: Loss gaps, bounds, Wasserstein
distance and Lip(f) of different layers.

improves it (PROTEINS). To explore this further, we plot the changes of two major factors from the
proposed bound in Theorem D.2: the 1-Wasserstein distance and Lip(f), both shown in Figure 1. The
1-Wasserstein distance (W1) is computed as: 1

n

∑n
j=1W1

(
λ♯(µc,T j), λ♯(µc,T̃ j)

)
averaged over all

graph classes. We plot these factors over four layers for both MPNN and {C3, C4, C5, C6}-MPNN.
We observe that the inclusion of homomorphism counts worsens generalization in ENZYMES but
improves it in PROTEINS. This can be attributed to the joint influence of the Wasserstein distance
and Lip(f). In ENZYMES, both the 1-Wasserstein distance and Lip(f) increase slightly when
homomorphism counts are added. While this additional expressivity leads to better separation between
graphs, in ENZYMES, this increased separation hinders the ability to achieve good concentration
within each graph class, ultimately worsening generalization. In contrast, for PROTEINS, although
the inclusion of homomorphism counts leads to greater graph separation, it also slightly reduces the
1-Wasserstein distance within each class, allowing for better concentration. This improved separation
significantly reduces Lip(f), resulting in enhanced generalization.

Can generalization be improved by controlling the Lipschitz constants? Last but not least, since
Lip(f) plays a crucial role in the proposed bound, we aim to investigate whether controlling Lip(f)
can serve as an effective strategy to enhance generalization. A straightforward approach to control
Lip(f) is through normalization techniques. As demonstrated earlier, normalization effectively
bounds the diameter of ϕ♯(µ), which, in turn, constrains the encoder’s boundedness and subsequently
Lip(f). To test this, we apply l1-normalisation in the last layer of the MPNN. See Table 3 for results.
It is evident that normalization reduces the generalization gap across all datasets. This improvement
is also reflected in the computed bounds. Interestingly, the least improvement is observed in the
SIDER dataset, where Lip(f) is already relatively small, and the embeddings are well-concentrated
even before normalization. This suggests that the impact of normalization is more pronounced when
Lip(f) is large or when the embeddings are not already well-concentrated.

8 CONCLUSION AND LIMITATIONS

In this work, we examine the generalization of GNNs from a margin-based perspective, based on
the work by Chuang et al. (2021). The bounds use 1-variance and optimal transport to analyze
graph embeddings. We establish a relationship between generalization and the expressive capacity
of GNNs, deriving a generalization bound that demonstrates how well-clustered embeddings and
separable classes lead to improved generalization. Through case studies on a real-world dataset, we
empirically validate these theoretical findings. We also apply empirical sample-based bounds to
graph classification tasks, confirming that our theoretical results align with empirical evidence. Our
work enables analyzing the generalization of graph encoders through their bounded expressive power.

Nonetheless, our work has some limitations. While we validate the framework on real-world datasets,
further large-scale studies across a wider range of datasets and applications are needed to fully
establish the proposed approach’s general applicability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. In Advances in Neural Information Processing Systems, volume 34, pages
25280–25293, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach.
Intell., 45(1):657–668, 2023.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Ching-Yao Chuang, Youssef Mroueh, Kristjan H. Greenewald, Antonio Torralba, and Stefanie Jegelka.
Measuring generalization with optimal transport. In Advances in Neural Information Processing
Systems, pages 8294–8306, 2021.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. In Advances in Neural Information Processing Systems, pages
9936–9949, 2021.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In
International Conference on Machine Learning, pages 255–262, 2010.

Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In International
Colloquium on Automata, Languages, and Programming, pages 40:1–40:14, 2018.

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. In Advances in neural information processing systems,
volume 31, pages 850–860, 2018.

Pascal Mattia Esser, Leena C. Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. In Advances in Neural Information
Processing Systems, pages 27043–27056, 2021.

Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-Leman at
the margin: When more expressivity matters. In International Conference on Machine Learning,
2024.

Bolin Gao and Lacra Pavel. On the properties of the softmax function with application in game theory
and reinforcement learning. CoRR, abs/1704.00805, 2017.

Vikas K. Garg, Stefanie Jegelka, and Tommi S. Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, volume 119, pages
3419–3430, 2020.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu,
Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, et al. Utilizing graph ma-
chine learning within drug discovery and development. Briefings in bioinformatics, 22(6):bbab159,
2021.

Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
volume 70, pages 1263–1272, 2017.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, volume 30, pages 1024–1034,
2017.

Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predictive graph
mining. In International Conference on Knowledge Discovery and Data Mining, pages 158–167,
2004.

Emily Jin, Michael M. Bronstein, İsmail İlkan Ceylan, and Matthias Lanzinger. Homomorphism
counts for graph neural networks: All about that basis. In International Conference on Machine
Learning, 2024.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R. Zhang. Generalization in graph neural
networks: Improved PAC-bayesian bounds on graph diffusion. In International Conference on
Artificial Intelligence and Statistics, volume 206, pages 6314–6341, 2023.

Rafal Karczewski, Amauri H Souza, and Vikas Garg. On the generalization of equivariant graph
neural networks. In International Conference on Machine Learning, 2024.

Sandra Kiefer and Brendan D. McKay. The iteration number of colour refinement. In International
Colloquium on Automata, Languages, and Programming, volume 168, pages 73:1–73:19, 2020.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Matthias Lanzinger and Pablo Barcelo. On the power of the Weisfeiler-Leman test for graph motif
parameters. In International Conference on Learning Representations, 2024.

Jaejun Lee, Minsung Hwang, and Joyce Jiyoung Whang. PAC-Bayesian generalization bounds for
knowledge graph representation learning. In International Conference on Machine Learning, 2024.

Ron Levie. A graphon-signal analysis of graph neural networks. In Conference on Neural Information
Processing Systems, 2023.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee of
training graph convolutional networks with graph topology sampling. In International Conference
on Machine Learning, volume 162, pages 13014–13051, 2022.

Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A PAC-bayesian approach to generalization
bounds for graph neural networks. In International Conference on Learning Representations,
2021.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory Series B, 96(6):933–957, 2006.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, volume 32, 2019.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. In Advances in Neural Information Processing
Systems, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020a.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems,
volume 33, 2020b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In International
Conference on Machine Learning, volume 202, pages 25275–25302, 2023.

Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-width. In
International Symposium on Theoretical Aspects of Computer Science, 2024.

Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International Confer-
ence on Machine Learning, volume 119, pages 7306–7316, 2020.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The Vapnik-Chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Justin Solomon, Kristjan H. Greenewald, and Haikady N. Nagaraja. k-variance: A clustered notion
of variance. SIAM J. Math. Data Sci., 4(3):957–978, 2022.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. In
International Conference on Machine Learning, 2023.

Erik H. Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
In Annual Conference on Neural Information Processing Systems, pages 29922–29934, 2021.

V. N. Vapnik and A. Chervonenkis. A note on one class of perceptrons. Avtomatika i Telemekhanika,
24(6):937–945, 1964.

Vladimir Vapnik. Statistical learning theory. Wiley, 1998.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In International Conference on Knowledge Discovery & Data Mining, pages 1539–1548, 2019.

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan. N-WL: A new
hierarchy of expressivity for graph neural networks. In International Conference on Learning
Representations, 2023.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 2:12–16, 1968.

Pascal Welke, Maximilian Thiessen, Fabian Jogl, and Thomas Gärtner. Expectation-complete graph
representations with homomorphisms. In International Conference on Machine Learning, 2023.

Asiri Wijesinghe and Qing Wang. A new perspective on "how graph neural networks go beyond
Weisfeiler-Lehman?". In International Conference on Learning Representations, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine
learning. CoRR, abs/1703.00564, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for GNN expressiveness. In International Conference on
Learning Representations, 2024.

Muhan Zhang and Pan Li. Nested graph neural networks. In Advances in Neural Information
Processing Systems, pages 15734–15747, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Fast learning of graph neural
networks with guaranteed generalizability: one-hidden-layer case. In International Conference on
Machine Learning, 2020.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In International Conference on Learning Representations, 2022.

Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks may
enlarge with more layers. Neurocomputing, 424:97–106, 2021.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

A ADDITIONAL RELATED WORK

We provide additional references related to the expressiveness of Graph Neural Networks (GNNs).
The connection with the Weisfeiler-Leman (1-WL) test has led to the development of high-order
GNNs that surpass 1-WL and are bounded by the k-dimensional Weisfeiler-Leman test (k-WL) (Mor-
ris et al., 2019; Maron et al., 2019; Morris et al., 2020b; Geerts and Reutter, 2022). The method
by Morris et al. (2019; 2020b) is strictly weaker than k-WL, whereas the method by Maron et al.
(2019) can match the expressiveness of k-WL. However, these higher-order GNNs incur significant
computational costs, rendering them impractical for large-scale datasets.

Incorporating substructure counts has been shown to be an effective strategy for enhancing GNN
expressivity beyond 1-WL (Bouritsas et al., 2023; Barceló et al., 2021). Bouritsas et al. (2023)
integrate isomorphism counts of small subgraph patterns into the node and edge features of graphs,
while Barceló et al. (2021) employ a similar approach using homomorphism counts. Building on
this concept, Thiede et al. (2021) implemented convolutions on automorphism groups of subgraph
patterns. Rather than directly using subgraph counts, Wijesinghe and Wang (2022); Wang et al. (2023)
propose integrating local structural information into neighbor aggregation. This approach suggests
that the expressivity of the model increases with the subgraph pattern size and aggregation radius.

Taking a different approach, Nguyen and Maehara (2020) explore the use of graph homomorphism
counts directly in convolutions without message passing, demonstrating their universality in approxi-
mating invariant functions. Welke et al. (2023) propose combining homomorphism counts with GNN
outputs in the final layer to improve expressivity. Additionally, Bevilacqua et al. (2022) represent
graphs as collections of subgraphs derived from a predetermined policy. Zhao et al. (2022) and Zhang
and Li (2021) extend this idea by representing graphs with a set of induced subgraphs. These methods
are closely related to graph kernel techniques that utilize subgraph patterns (Shervashidze et al., 2011;
Horváth et al., 2004; Costa and Grave, 2010).

Since the WL-based GNN expressivity hierarchy is inherently coarse and qualitative, Zhang et al.
(2024) propose a homomorphism-based expressivity framework, which enables direct comparisons
of expressivity between common GNN models. As 1-WL and k-WL have equivalent translations
in homomorphism embeddings (Dell et al., 2018), both MPNNs and higher-order GNNs can be
expressed using homomorphism representations within this framework. Given that homomorphism
embeddings are theoretically isomorphism-complete, this framework offers not only a unified but
also a complete description of GNN expressivity.

B ADDITIONAL DETAILS OF SECTION 3

We provide some examples illustrating the key concepts introduced in Section 3.
Example B.1 (Homomorphism counts and graph invariants). Consider the following three graphs
F1, F2 and G:

F1 =
31

24

F2 =
31

24

G = 31

24

5

6

7

Suppose that we want to extract graph features from G based on the graph patterns F1 and F2.
One way of doing so is by means of counting how many homomorphisms from the patterns to G

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

exist. We recall that a homomorphism is just an edge-preserving mapping between the vertex sets.
For example, here, one can verify that the number of homomorphisms from F1 to G is 120, i.e.,
Hom(F1, G) = 120, and the number of homomorphisms from F2 to G is 8, i.e., Hom(F2, G) = 8.
These homomorphism counts can be used as features to enrich the data representation of G. The
process maps G to a set of numerical features derived from the counts. Importantly, this mapping is a
graph invariant, meaning that if G is replaced by an isomorphic graph (one structurally identical to
G), the homomorphism counts remain the same. Using homomorphism counts as features allows us
to capture structural information, making them valuable for tasks like classification or regression in
graph-based machine learning.
Example B.2 (Rooted homomorphism counts and vertex invariants). Now consider the following
three rooted graphs F r1 , F

r
2 , G

v:

F r1 =
31

24

F r2 =
31

24

Gv = 31

24

5

6

7

The roots in the graph allow to connect homomorphism counts locally around each vertex. Indeed,
for rooted graphs, the homomorphisms also have to preserve the roots. In this example one can verify
that the number of homomorphisms from F r1 to Gv is 78, i.e., Hom(F r1 , G

v) = 78, and the number
of homomorphisms from F r2 to Gv is 4, i.e., Hom(F r2 , G

v) = 4. We can enrich the local graph
structure around v in this way. The mapping that associates with graphs and vertices such rooted
homomorphism counts is an example of an vertex invariant.
Example B.3 (Wasserstein distance). Finally we illustrate the notion of Wasserstein distance. Con-
sider the four graphs presented in Section 6:

G = 31

24

5

6

7

G′ = 31

24

5
6

7
8

H = 31

24

5

6

7

H ′ =
31

24

5 6

7

The vector representations of the four graphs after one iteration of 1-WL are

λ(G) = (1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1),

λ(G′) = (0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 0),

λ(H) = (1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1),

λ(H ′) = (0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 0).

These lead to

||λ(G)− λ(H)|| = 5.0990,

||λ(G′)− λ(H ′)|| = 4.7958,

||λ(G)− λ(H ′)|| = 5.2915,

||λ(G′)− λ(H)|| = 3.8730.

Let µ = {G,G′} and ν = {H,H ′}. Then Π(µ, ν) =
{
{(G,H), (G′, H ′)}, {(G,H ′), (G′, H)}

}
.

Thus, we have

E(x,y)∼{(G,H),(G′,H′)}||x− y|| =
1

2

(
||λ(G)− λ(H)||+ ||λ(G′)− λ(H ′)||

)
= 4.9474;

E(x,y)∼{(G,H′),(G′,H)}||x− y|| =
1

2

(
||λ(G)− λ(H ′)||+ ||λ(G)− λ(H ′)||

)
= 4.5823.

Since 4.5823 < 4.9474, we obtain

W(µ, ν) = E(x,y)∼{(G,H′),(G′,H)}||x− y||

=
1

2

(
||λ(G)− λ(H ′)||+ ||λ(G)− λ(H ′)||

)
= 4.5823.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOFS OF SECTION 4

Lemma 4.2. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ ⊑ ϕ′ holds.
Then there exists a function f : Zϕ → Zϕ′ such that ϕ′ = f ◦ ϕ.

Proof. We define the function f : Zϕ → Zϕ′ , as follows. Let z ∈ Zϕ andG ∈ G such that ϕ(G) = z.
Then, define f(z) := ϕ′(G) ∈ Zϕ′ . Observe first that f is well-defined. Indeed, if we take another
G′ ∈ G such that ϕ(G′) = z, then ϕ(G) = ϕ(G′) and hence also ϕ′(G) = ϕ′(G′) = f(z) since
ϕ ⊑ ϕ′ by assumption. Clearly, f ◦ ϕ = ϕ′, by definition

Proposition 4.3. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ be a
B-bounded graph encoder such that ϕ ⊑ ϕ′. Then ϕ′ = f ◦ ϕ for a function f : Zϕ → Zϕ′ which is
Lipschitz with constant Lip(f) = B/S.

Proof. We need to show that for any z, z′ ∈ Zϕ, dZϕ′ (f(z), f(z
′)) ≤ (B/S) · dZϕ(z, z′) holds.

Clearly, if z = z′ then also f(z) = f(z′) and hence dZϕ′ (f(z), f(z
′)) = 0, for which the desired

inequality trivially holds. For z ̸= z′ and using that z = ϕ(G) and z′ = ϕ(H) for some graphs
G and H in G, we know that S ≤ dZϕ(z, z

′) and hence 1 ≤ (1/S) · dZϕ(z, z′). It now suffices
to observe that dZϕ′ (f(z), f(z

′)) = dZϕ′ (f(ϕ(G)), f(ϕ(H))) = dZϕ′ (ϕ
′(G), ϕ′(H)) ≤ B, from

which dZϕ′ (f(z), f(z
′)) ≤ (B/S) · dZϕ(z, z′) follows.

Proposition 4.4. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ′ = f ◦ ϕ.
Then for any distributions ν and ν′ over G, we have that the inequality W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤

Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)

holds.

Proof. We first show that f ◦ ϕ = ϕ′ implies the f♯
(
ϕ♯(µ)

)
= ϕ′♯(µ) of the corresponding pushfor-

ward distribution of any distribution µ om G. Indeed, this simply follows from the definitions. One
the one hand, for I ⊆ Zϕ′

ϕ′♯(µ)(I) := µ
(
{G ∈ G | ϕ′(G) ∈ I}

)
.

On the other hand,

f♯
(
ϕ♯(µ)

)
(I) = ϕ♯(µ)

(
{z ∈ Zϕ | f(z) ∈ I}

)
= µ

(
G ∈ G | f(ϕ(G)) ∈ I

)
.

The equality then follows from f ◦ ϕ = ϕ′. We assume that f is Lipschitz-continuous with Lip(f) <
∞ (otherwise the inequality is satisfied by default and there is nothing to prove). We show that

W1

(
ϕ′♯(µ), ϕ

′
♯(ν)

)
≤ Lip(f) · W1

(
ϕ♯(µ), ϕ♯(ν)

)
.

Let L1(Zϕ) be the set of 1-Lipschitz functions on Zϕ. We use the Kantorovich-Rubinstein dual form
ofW1, as follows:

W1

(
ϕ♯(µ), ϕ♯(ν)

)
= sup
g∈L1(Zϕ)

Ez∼ϕ♯(µ)[g(z)]− Ez∼ϕ♯(ν)[g(z)]

= sup
g∈L1(Zϕ)

∫
Zϕ
g(z) d(ϕ♯(µ)− ϕ♯(ν))(z).

Note that if g ∈ L1(Z) then 1
Lip(f)f ◦ g ∈ L1(Z) as well. Then, using our earlier observation about

pushforward distributions,

W1

(
ϕ′♯(µ), ϕ

′
♯(ν)

)
=W1

(
f♯
(
ϕ♯(µ)

)
, f♯

(
ϕ♯(ν)

))
= sup
g∈L1(Zϕ′)

∫
Zϕ′

g(z) d
(
f♯
(
λ♯(µ)

)
− f♯

(
λ♯(ν)

))
(z)

= sup
g∈L1(Zϕ′)

∫
Zϕ′

g(z) df♯(ϕ♯(µ)− ϕ♯(ν))(z)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= sup
g∈L1(Zϕ′)

∫
Zϕ′

g ◦ f(z) d(ϕ♯(µ)− ϕ♯(ν))(z)

= Lip(f) sup
g∈L1(Zϕ′)

∫
Zϕ′

g ◦ f(z)
Lip(f)

d(µ− ν)(z)

≤ Lip(f) sup
h∈L1(Zϕ)

∫
Zϕ
h(x) d(µ− ν)(z)

= Lip(f) · W1

(
ϕ♯(µ), ϕ♯(ν)

)
,

as desired.

D PROOFS AND DETAILS OF SECTION 5

We start by restating Theorem 2 from Chuang et al. (2021) using encoders ϕ from some general set
X to Z .
Theorem D.1 (Theorem 2 in Chuang et al. (2021)). Fix γ > 0 and an encoder ϕ : X → Z .
Then, for every distribution µ on X × Y , for every predictor ψ = (ψy)i∈Y and every δ ∈ (0, 1),
with probability at least 1 − δ over all choices of S ∼ µm, we have that the generalization gap
Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper bounded by

Ec∼µy
[
Lip (ρψ(·, c))

γ
ET,T̃∼µmcc

[
W1

(
ϕ♯(µc,T), ϕ♯(µc,T̃)

)]]
+

√
log(1/δ)

2m
,

where for each c ∈ Y , mc denotes the number of pairs (X, c) in S. Also, recall that for T ∼ µmcc ,
µc,T is the empirical distribution µc,T :=

∑
X∈T δX ; similarly for µc,T̃ .

To obtain Theorem 5.1 we replace X by G and consider graph encoders ϕ : G → Zϕ and λ : G → Zλ
such that λ upper bounds ϕ in expressive power. Then, Lemma 4.2 ensures the existence of f
such that ϕ = f ◦ λ and Proposition 4.4 consequently impliesW1

(
ϕ′♯(µc,T), ϕ

′
♯(µc,T̃)

)
≤ Lip(f) ·

W1

(
ϕ♯(µc,T), ϕ♯(µc,T̃)

)
for any T, T̃ ∼ µmcc . Plugging this into the bound above results in the

bound given in Theorem 5.1.

While the bound in Theorem 5.1 is theoretically useful, the expectation term over T, T̃ ∼ µmcc is
intractable in general. To address this drawback, we derive another bound in Theorem D.2, which
can be computed via sampling in practice and is the one used in our experiments.

Theorem D.2. Let {T j , T̃ j}nj=1 be n pairs of graph samples where each T j , T̃ j ∼ µ
⌊mc/2n⌋
c ,

m =
∑K
c=1⌊mc/2n⌋, and ∆(·) be the diameter of a space. For any Lipschitz continuous function

f : Zϕ → Zλ such that ϕ = f ◦ λ, with probability at least 1− δ for samples S ∼ µm, we have

Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) ≤
√

log(2/δ)

2m
+

Ec∼µy

Lip (ρψ(·, c)) Lip(f)
γ

 1

n

n∑
j=1

W1

(
λ♯(µc,T j), λ♯(µc,T̃ j)

)
+ 2∆(λ♯(µc))

√
log(2K/δ)

n⌊mc/2n⌋

 .
The proof is again a consequence of Lemma 4.2 and Proposition 4.4, but this time relying on Corollary
6 in Chuang et al. (2021). We note that the diameter will be bounded whenB-bounded graph encoders
are considered.

We conclude with the proof of Proposition 5.2.
Proposition 5.2. Under the same assumptions as in Theorem 5.1, but with the additional requirement
that the predictors ψc in ψ are Lipschitz, and that the bounding graph classifier λ has a large margin,
i.e., ρψ(λ(G), y) ≥ γ for all (G, y) ∼ µ, then for any δ ∈ (0, 1), with probability at least 1− δ over
all choices S ∼ µm, we have that the generalization bound given in Theorem 5.1 is lower bound by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Since we assume the margin γ is satisfied for ψ ◦λ, for all graph samples, and for each c ∈ Y ,
the predictor ψc ∈ ψ is Lipschitz, then (see Lemma 10 in Chuang et al. (2021)) we have

γ ≤
(
max
c,c′∈Y
c ̸=c′

W1(λ♯(µc), λ♯(µc′))
)(
max
c∈Y

Lip(ψc)
)
.

In other words,

1(
maxc,c′∈Y

c̸=c′
W1(λ♯(µc), λ♯(µc′))

)(
maxc∈Y Lip(ψc)

) ≤ 1

γ
. (∗)

Furthermore, we know from Theorem 5.1 that for every δ ∈ (0, 1), with probability at least 1 − δ
over all choices of S ∼ µm, we have that the generalization gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper
bounded by

Ec∼µy
[
Lip (ρψ(·, c)) Lip(f)

γ
ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
+

√
log(1/δ)

2m
.

Since Lip(f) and
(
maxc,c′∈Y

c̸=c′
W1(λ♯(µc), λ♯(µc′))

)(
maxc∈Y Lip(ψc)

)
are independent of c ∼ µy,

we can take them out of the expectation, that is we rewrite the upper bound as

Lip(f)

γ
Ec∼µy

[
Lip (ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
+

√
log(1/δ)

2m
.

Finally, by replacing 1
γ with the lower bound (∗) we get that the generalization upper bound is lower

bounded by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T), λ♯(µc,T̃)

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
,

as desired.

E COMPUTATION OF GENERALIZATION BOUNDS

VC based bound (Morris et al., 2023): We use the classical bounds on the generalisation gap based
on the VC-dimension Vapnik and Chervonenkis (1964); Vapnik (1998). That is, with
probability 1− δ, the generalisation gap is bounded by√

1

|S|

(
D
(
log(2N/D) + 1

)
− log(δ/4)

)
where |S| is the sample size and D is the VC dimension. We note that |S| ≥ D

e for
the logarithm to make sense. In our setting, results by Morris et al. (2023) implies that
D is bounded by the number of graphs, distinguishable by the hypothesis class. In our
experiments, we computed the latter the number of graphs in S distinguishable by 1-WL at
each iteration.

PAC-Bayesian bound (Ju et al., 2023) We follow Ju et al. (2023) to compute the bound, that is,
with probability 1− δ, the generalisation gap is bounded by

L∑
ℓ=l

√
CBlossdℓ(maxG∼µ ||XG||2||AG||2(l−1)(r2ℓ

∏L
j=1 s

2
j)

|S|
+O(

log(δ−1)

|S|3/4
),

where L is the number of MPNN layers, Bloss is a cap on the value of the loss function, C is
a fixed Lipschitz constant depending on the activation and loss functions, and |S| is again
the sample size. Moreover, dℓ is the second dimension of the weight matrix W (ℓ) at layer ℓ,
XG is the vertex feature matrix of G and AG is the adjacency matrix of G. For MPNNs,
sj = 1, rℓ = ||W(ℓ)||F where ||W(ℓ)||F is the Frobenius norm of W(ℓ).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1: An algorithm to compute the bound in Theorem D.2
1 Input :δ, mc, n, γ, K, S, λ, ϕ and Lρ (Lipschitz constant of ρψ(,̇c))

Output :Bound
2 Lf ← 0;

// Estimate Lip(f)
3 for all G,H ∈ S and λ(G) ̸= λ(H) do
4 r ← ||ϕ(G)−ϕ(H)||

||λ(G)−λ(H)|| ;
5 Lf ← max(r, Lf);
6 end
7 b← 0;
8 for c← 1, . . . ,K do
9 wc ← 0;

10 for j ← 1, . . . , n do
11 Randomly sample {Gi}2mci=1 from graphs of the class c in S;

// Compute 1-Wasserstein using the Hungarian method
12 wc ← wc +W1

(
{λ(Gi)}mci=1, {λ(Gi)}

2mc
i=mc+1

)
;

13 end
14 wc ← wc/n;
15 ∆c ← 0;

// Estimate ∆(λ♯(µc))
16 for all G,H ∈ S and G,H belong to the class c do
17 ∆c = max(∆c, ||λ(G)− λ(H)||);
18 end

19 b = b+
LρLf
γ

(
wc + 2∆c

√
log(2K/δ)
n⌊mc/2n⌋

)
;

20 end
21 m = K⌊mc/2n⌋;

22 return b
K +

√
log(2/δ)

2m ;

1 2 3 4 5
Layer

0.03

0.04

0.05

0.06

Lo
ss

 g
ap

SIDER
Loss. gap
Our bound

0.0

0.8

1.6

1 2 3 4 5
Layer

0.00

0.04

0.08

PROTEINS

1

2

3

1 2 3 4 5
Layer

0.00

0.08

0.16
BACE

0

1

2

3

1 2 3 4 5
Layer

0.09

0.06

0.03

0.00 MUTAG

0

1

2

1 2 3 4 5
Layer

0.15

0.30

0.45

ENZYMES

0

5

10

Bo
un

d
va

lu
e

Figure 2: Loss gaps and bounds of MPNNs of different layers

Our bound In practice, we estimate Lip(f) and ∆(λ♯(µc)) in Theorem D.2 using data in the training
sets, thus both can be computed in O(|S|2). The 1-Wasserstein distance can be computed
in O((mc2n)

3) using the Hungarian method (Kuhn, 1955). Normally we have |S|2 ≪ (mc2n)
3

because |S| = K⌊mc/2n⌋ and mc
2n > 1. So the total time complexity to compute the bound

is O((mc2n)
3) which is tractable for most datasets. For very large datasets, practitioners can

choose to use a smaller mc and a larger n to reduce the computational cost. An algorithm to
compute the bound is sketched in Algorithm 1.

F ADDITIONAL EXPERIMENTAL RESULTS

The results of graph classification with embedding normalization is provided in Table 3. The empirical
loss gap are plotted with our bounds in Figure 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 3: Graph classification gaps with different numbers of MPNN layers. The MPNN embeddings
are normalized.

Dataset

Layers ENZYMES PROTEINS MUTAG SIDER BACE

Loss gap 0.105±0.010 -0.018±0.009 -0.091±0.017 0.013±0.013 -0.004±0.010

Our bound 0.800±0.095 2.203±0.134 1.101±0.063 1.137±0.552 1.147±0.143

VC dimension 586 929 51 960 621
VC bound 1.302±0.000 1.292±0.001 1.100±0.004 1.302±0.000 1.301±0.000

PAC bound 3.48±0.01 5.04±0.00 3.06±0.05 52.39±1.86 21.525±1.072

Loss gap 0.098±0.022 -0.023±0.011 -0.097±0.019 0.015±0.006 0.000±0.010

Our bound 0.586±0.036 1.016±0.035 1.208±0.046 1.017±0.644 1.089±0.135

VC dimension 595 996 121 1300 1060
VC bound 1.302±0.000 1.292±0.000 1.281±0.003 1.302±0.000 1.302±0.000

PAC bound 12.75±0.22 31.94±2.79 8.17±0.12 132.79±8.12 51.573±2.853

Loss gap 0.118±0.023 -0.027±0.011 -0.083±0.006 0.030±0.008 -0.006±0.015

Our bound 0.572±0.024 0.834±0.015 0.993±0.039 1.221±0.957 1.167±0.610

VC dimension 595 996 135 1309 1089
VC bound 1.302±0.000 1.293±0.000 1.286±0.002 1.302±0.000 1.302±0.000

PAC bound 56.98±1.06 276.78±0.00 21.96±0.00 341.04±19.89 124.605±7.506

Loss gap 0.129±0.007 -0.004±0.005 -0.087±0.011 0.026±0.015 0.001±0.024

Our bound 0.573±0.027 0.847±0.027 0.848±0.085 1.039±0.898 0.705±0.026

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

PAC bound 308.43±0.00 2331.63±0.00 57.69±1.83 845.62±73.11 310.732±12.520

Loss gap 0.169±0.014 0.003±0.035 -0.086±0.013 0.006±0.038 0.002±0.014

Our bound 0.575±0.039 0.713±0.246 0.799±0.051 0.923±0.438 0.703±0.012

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.292±0.002 1.302±0.000 1.302±0.000

PAC bound 1615.10±89.11 17992.81±4950.10 155.74±4.68 2179.21±190.74 744.08±31.12

Loss gap 0.169±0.023 -0.002±0.032 -0.104±0.008 0.029±0.009 -0.013±0.015

Our bound 0.603±0.032 0.793±0.136 0.778±0.049 1.192±0.561 0.679±0.018

VC dimension 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±5.870

PAC bound 8931.00±0.00 135762.52±59439.71 410.31±17.44 5254.88±655.89 1860.94±5.96

20

	Introduction
	Related work
	Preliminaries
	Graph Encoders: Key Properties
	Generalization Analysis
	Generalization bound
	Concentration and separation

	Case Studies
	Experiments
	Results and discussion

	Conclusion and limitations
	Additional related work
	Additional details of sec:prel
	Proofs of sec:graphenc
	Proofs and details of sec:genal
	Computation of generalization bounds
	Additional experimental results

