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ABSTRACT

Expressivity and generalization are two critical aspects of graph neural networks
(GNNs). While significant progress has been made in studying the expressivity
of GNNs, much less is known about their generalization capabilities, particularly
when dealing with the inherent complexity of graph-structured data. In this work,
we address the intricate relationship between expressivity and generalization in
GNNs. Theoretical studies conjecture a trade-off between the two: highly expres-
sive models risk overfitting, while those focused on generalization may sacrifice
expressivity. However, empirical evidence often contradicts this assumption, with
expressive GNNs frequently demonstrating strong generalization. We explore this
contradiction by introducing a novel framework that connects GNN generalization
to the variance in graph structures they can capture. This leads us to propose a
k-variance margin-based generalization bound that characterizes the structural
properties of graph embeddings in terms of their upper-bounded expressive power.
Our analysis does not rely on specific GNN architectures, making it broadly ap-
plicable across GNN models. We further uncover a trade-off between intra-class
concentration and inter-class separation, both of which are crucial for effective
generalization. Through case studies and experiments on real-world datasets, we
demonstrate that our theoretical findings align with empirical results, offering a
deeper understanding of how expressivity can enhance GNN generalization.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008) have become pivotal in modern machine
learning, anchored in two main pillars: expressivity and generalization. Expressivity refers to a
GNN’s capacity to distinguish between diverse graph structures, thereby determining the scope of
problems it can address (Xu et al., 2019; Morris et al., 2019). Highly expressive GNNs can capture
intricate dependencies, essential for tasks like molecular property prediction (Gilmer et al., 2017),
drug discovery (Gaudelet et al., 2021), and protein-protein interaction prediction (Zitnik et al., 2018),
where minor structural variations have significant implications. Generalization, on the other hand,
reflects a GNN’s ability to transfer learned knowledge to unseen graphs. Given the diversity in graph
structures, sizes, and complexities, GNNs that generalize well maintain consistent performance across
varying datasets. Together, these properties enable GNNs to model complex graph structures while
remaining effective across new, unseen data, making them invaluable for graph-based analysis.

Theoretically, a trade-off is expected between expressivity and generalization: highly expressive
models can capture complex graph structures but may overfit and generalize poorly without proper
regularization. Conversely, models focused on generalization often sacrifice some expressivity to
perform better across diverse, unseen graph structures. Recent work indeed shows a strong correlation
between a GNN’s VC dimension and its ability to distinguish non-isomorphic graphs (Morris et al.,
2023). A more nuanced theoretical analysis is needed, however. Indeed, empirical evidence frequently
contradicts the above view. Highly expressive models often exhibit strong generalization performance
in practice (Bouritsas et al., 2023; Wang et al., 2023). In the restricted context of linear separability,
margin-based bounds offer partial alignment between theory and practice (Franks et al., 2024), yet
our broader understanding of how expressivity influences generalization remains incomplete. This
raises two key questions: (i) How does the structured nature of graphs affect GNN generalization?
(ii) How does a GNN’s expressivity influence its ability to generalize across tasks and unseen data?
Addressing these questions is vital for advancing GNN applications in real-world scenarios.
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Present work. Building on the foundational work of Chuang et al. (2021), we explore how the con-
centration and separation of learned features, key factors in multiclass classification generalization,
translate to graph-based models. Their bound, derived from k-variance (Solomon et al., 2022) and the
expected optimal transport cost between two random subsets of the training distribution, motivates
our adaptation to graph embeddings. Leveraging these insights, we extend their framework to capture
the structural properties of graph embedding distributions and contribute the following:

• For arbitrary graph encoders, including GNNs, we show that their generalization can be
bounded in terms of the generalization bound of any more expressive graph encoder. This
allows capturing structural properties of graph embedding distributions with respect to their
bounding encoders.

• Under certain margin conditions, we demonstrate that the downstream classifier generalizes
well if (1) embeddings within a class are well-clustered and (2) classes are separable in
the embedding space in the Wasserstein sense, extending Chuang et al. (2021)’s results to
graphs.

• On the real-world PROTEINS dataset (Morris et al., 2020a), we empirically show how a
more expressive model influences generalization by measuring variance in graph embedding
distributions.

• We apply the empirical sample-based bound of Chuang et al. (2021) to graph classification
tasks, verifying that empirical findings align with our theoretical insights, thus demonstrating
the applicability of our approach to predict generalization.

Our results offer a flexible framework for analyzing generalization properties of complex graph
encoders via simpler encoders, such as those based on 1-WL, its higher-order variants k-WL (Cai
et al., 1992; Grohe, 2017), homomorphism counts (Zhang et al., 2024), or F-WL (Barceló et al.,
2021), provided they upper-bound the encoders under consideration. Overall, we present a versatile
tool for evaluating whether increased expressiveness improves or worsens generalization.

2 RELATED WORK

Regarding generalisation of GNNs, Scarselli et al. (2018) utilize VC dimension to study the gener-
alization of an older GNN architecture, distinct from modern MPNNs (Gilmer et al., 2017). Garg
et al. (2020) show that the Rademacher complexity of simple GNNs depends on maximum degree,
layer count, and parameter norms, while Liao et al. (2021) develop PAC-Bayesian bounds relying
on node degree and spectral norms; see Karczewski et al. (2024) for extensions. Improved bounds
using the largest singular value of the diffusion matrix are proposed by Ju et al. (2023). Transductive
PAC-Bayesian bounds for knowledge graphs are discussed by Lee et al. (2024). Random graph
models are leveraged by Maskey et al. (2022), who show GNN generalization improves with larger
graphs. Connections between VC-dimension and the 1-WL algorithm are made by Morris et al.
(2023), who bound it by the number of 1-WL colors. Levie (2023) provide bounds based on covering
numbers and specialized graph metrics.

For GCNs, Verma and Zhang (2019) derive generalization bounds using algorithmic stability, with
Zhang et al. (2020) focusing on single-layer GCNs and accelerated gradient descent. Zhou and
Wang (2021) extend this to multi-layer GCNs, showing that generalization gaps increase with depth.
Similarly, Cong et al. (2021) highlight this trend in deeper GNNs and propose detaching weight
matrices to improve generalization. Further analyses of transductive Rademacher complexity using
stochastic block models are offered by Oono and Suzuki (2020); Esser et al. (2021). Tang and Liu
(2023) establish bounds involving node degree, training iterations, and Lipschitz constants, while Li
et al. (2022) study topology sampling and its impact on generalization. Lastly, Franks et al. (2024)
explore margin-based bounds.

Moving to the expressivity of GNNs, MPNNs’ expressivity is bounded by 1-WL (Xu et al., 2019;
Morris et al., 2019), showing the need for more expressive methods. Many such models have been put
forward. For example, the F -MPNNs (Barceló et al., 2021) enhance expressivity via homomorphism
counts, similar to Bouritsas et al. (2023). Homomorphism counts have become a popular mechanism
in graph learning (Nguyen and Maehara, 2020; Welke et al., 2023; Zhang et al., 2024; Jin et al., 2024;
Lanzinger and Barcelo, 2024), and will be central to our analysis. Additional discussion on related
work can be found in Appendix A.
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3 PRELIMINARIES

Graphs and homomorphisms. We begin by considering undirected graphs G = (VG, EG), where
VG represents the set of vertices and EG ⊆ VG × VG forms the edge set, a symmetric relation.
For any vertex v ∈ VG, its set of neighbors is given by NG(v) := {u ∈ VG | (v, u) ∈ EG}. A
homomorphism from a graph G to another graph H is a mapping h : VG → VH such that each
edge (v, w) ∈ EG is mapped to an edge

(
h(v), h(w)

)
∈ EH . An isomorphism, on the other

hand, is a bijective function f : VG → VH that preserves adjacency: (v, w) ∈ EG if and only if(
f(v), f(w)

)
∈ EH . The notation Hom(G,H) refers to the number of homomorphisms fromG toH ,

and the function HomG(·) maps any graph H to Hom(G,H). Given a sequence F = (F1, F2, . . .)
of graphs, we define HomF (·) as

(
HomF1

(·),HomF2
(·), . . .

)
, a tuple of homomorphism counts. A

graph invariant is any function ξ on graphs that is unchanged under isomorphisms, i.e., ξ(G) = ξ(H)
when G and H are isomorphic. For instance, HomF (·) serves as a graph invariant for any graph
sequence F . Moreover, we introduce the concept of rooted graphs, where each graph Gr has a
distinguished root vertex r ∈ VG. For two rooted graphsGr andHs, a homomorphism must also map
the root r of G to the root s of H . The notation HomF r (·) captures the number of homomorphisms
Hom(F r, Gv) from a rooted graph F r to any rooted pair (G, v), where v is treated as the root of G.
Similarly, HomFr (·) is defined, capturing important vertex invariants for pairs (G, v). We illustrate
some of the above concepts by examples in Appendix B.

Graph neural networks and WL. We extend these notions to featured graphs G = (VG, EG, ζG),
where each vertex is endowed with a feature vector ζG : VG → Rd0 of some fixed dimension
d0 ∈ N. We focus on Message-Passing Neural Networks (MPNNs) (Gilmer et al., 2017), enhanced
with homomorphism counts from F (Barceló et al., 2021). For a sequence of rooted graphs F =
(F r1 , F

r
2 , . . .), the initial vertex representation for a vertex v ∈ VG in an F-MPNN is:1

ϕ
(0)
F (G, v) := (ζG(v),Hom(F r1 , G

v),Hom(F r2 , G
v), . . .) .

At each iteration (layer) 0 ≤ ℓ ≤ L, this representation is updated as follows:

ϕ
(ℓ+1)
F (G, v) := upd(ℓ)

(
ϕ
(ℓ)
F (G, v), agg(ℓ)

(
{{ϕ(ℓ)F (G, u) | u ∈ NG(v)}}

))
,

where {{·}} denotes a multiset, and upd(ℓ) and agg(ℓ) are differentiable update and aggregation
functions, respectively. After L iterations, a final pooling operation produces the graph-level represen-
tation: ϕLF (G) := readout

(
{{ϕ(L)F (G, v) | v ∈ VG}}

)
, with readout being a differentiable function.

This construction defines a graph invariant. We also consider the F-WL algorithm, as introduced
by Barceló et al. (2021) as an extension of the one-dimensional Weisfeiler-Leman algorithm. The
F-WL algorithm iteratively updates vertex colors. Initially, each vertex is assigned a color:

wl
(0)
F (G, v) :=

(
ζG(v),Hom(F1, G

v),Hom(F2, G
v), . . .

)
.

At each iteration 0 ≤ ℓ ≤ L, new colors are assigned as follows:

wl
(ℓ+1)
F (G, v) :=

(
wl

(ℓ)
F (G, v), {{wl(ℓ)F (G, u) | u ∈ NG(v)}}

)
.

The final graph invariant is wl(L)F (G) := {{wl(L)F (G, v) | v ∈ VG}}. This invariant can be viewed as a
color histogram in Nc, where c is the number of distinct colors, assuming a canonical ordering on
colors. When the list F is empty we recover the 1-WL algorithm (Weisfeiler and Leman, 1968).

Graph encoders. Graph encoders are mappings ϕ from the set G of graphs to some embedding
space Z , typically residing in Rk, for k ∈ N. The space Z is assumed to be a metric space for a
metric dZ . Examples of graph encoders are HomF , F-MPNNs and F-WL, for any sequence F of
graphs and number L ∈ N of iterations. We will develop bounds for general graph encoders.

Wasserstein distance. Let ∥·∥ denote the Euclidean norm in Rd, for some d ∈ N. Given two
distributions µ and ν on Rd, the p-Wasserstein distance between µ and ν is defined as:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(
E(x,y)∼π∥x− y∥p

)1/p
,

where Π(µ, ν) denotes the set of all couplings of µ and ν, i.e., distributions π on Rd × Rd with µ
and ν as marginals. In what follows, we restrict our attention to the 1-Wasserstein distance.

1We ignore vertex features when considering homomorphisms.
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4 GRAPH ENCODERS: KEY PROPERTIES

Before presenting our generalization gap bounds, we first establish crucial properties of (classes of)
graph encoders that play a significant role in our analysis. In particular, we revisit the relationship
between classes of graph encoders in terms of their distinguishing power, i.e., their ability to map
distinct graphs in G to distinct embeddings in their embedding spaces.
Definition 4.1. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders. We say that ϕ bounds ϕ′
in distinguishing power, denoted by ϕ ⊑ ϕ′, if for any two graphs G and H in G,

ϕ′(G) ̸= ϕ′(H)⇒ ϕ(G) ̸= ϕ(H).

In other words, ϕ′ cannot distinguish more graphs than ϕ.

Similarly, for classes Φ and Φ′ of graph encoders, we say that Φ bounds Φ′ in distinguishing power,
denoted by Φ ⊑ Φ′, if no encoder in Φ′ can distinguish more graphs than any of the encoders in Φ.
That is, for all ϕ′ ∈ Φ′, there exists a ϕ ∈ Φ such that ϕ ⊑ ϕ′. If both Φ ⊑ Φ′ and Φ′ ⊑ Φ hold, then
we write Φ ≡ Φ′ and say that both classes have the same distinguishing power.

From the seminal papers by Morris et al. (2019) and Xu et al. (2019), we know that MPNN(L) ≡
1-WL(L), where the argument L refers to the number of layers/iterations. Similarly, F -MPNN(L) ≡
F-WL(L) (Barceló et al., 2021). It is also known that HomT ⊑ MPNN where T consists of all
trees (Dell et al., 2018), and HomT ◦F ⊑ F-MPNN(L) where T ◦ F consists of trees joined with
copies of graphs in F (Barceló et al., 2021). Recent work by Neuen (2024) provides valuable insights
comparing HomF for various F (see also (Lanzinger and Barcelo, 2024)).

When graph encoders are comparable in terms of distinguishing power, one can recover the least
expressive encoder from the most expressive one. This is formalized in the following lemma. Proofs
in this section can be found in Appendix C.
Lemma 4.2. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ ⊑ ϕ′ holds.
Then there exists a function f : Zϕ → Zϕ′ such that ϕ′ = f ◦ ϕ.

As an illustration, consider an L-layer MPNN M; we know that 1-WL(L) ⊑ M. It now suffices to
define f such that it maps a color histogram h to M(G), the embedding ofG by M, whereG is a graph
satisfying wl(L)(G) = h. This is well-defined due to the earlier observation that 1-WL(L) ⊑ M.

For some classes of graph encoders, the function f satisfies additional desirable properties, as we
explain next. We say that a graph encoder ϕ : G → Zϕ is B-bounded if dZϕ(ϕ(G), ϕ(H)) ≤ B for
any G,H ∈ G. Furthermore, a graph encoder ϕ : G → Zϕ is S-separating if dZϕ(ϕ(G), ϕ(H)) ≥ S
for any G,H ∈ G such that ϕ(G) ̸= ϕ(H). We recall that a function f between metric spaces Z and
Z ′ is Lipschitz with constant Lip(f) if for any z1, z2 ∈ Z , dZ′(f(z1), f(z2)) ≤ Lip(f)dZ(z1, z2).
For simplicity, we set Lip(f) =∞ when f is not Lipschitz for a finite constant.
Proposition 4.3. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ be a
B-bounded graph encoder such that ϕ ⊑ ϕ′. Then ϕ′ = f ◦ ϕ for a function f : Zϕ → Zϕ′ which is
Lipschitz with constant Lip(f) = B/S.

There are plenty of bounded graph encoders; indeed, just consider any GNN employing bounded-
range activation functions such as sigmoid, tanh, truncated ReLU (Hamilton et al., 2017). Other
examples include normalized homomorphism count vectors or color histograms (Lovász and Szegedy,
2006). Similarly, any graph encoder mapping graphs into a discrete subset of Rd is S-separating. For
example, any HomF is 1-separating since whenever HomF (G) ̸= HomF (H), there exists an F ∈ F
such that Hom(F,G) ̸= Hom(F,H). Since the latter are natural numbers, and assuming a discrete
metric d, d

(
Hom(F,G),Hom(F,H)

)
≥ 1. A similar argument applies to graph encoders based on

1-WL or its higher-order variant k-WL.

Our generalization bounds use the 1-Wasserstein distance between distributions, as we will see shortly.
Using Proposition 4.3, and in particular the Lipschitz property, we can relate the Wasserstein distance
between the pushforward distributions of distributions µ and ν on G for the embedding spaces of the
graph encoders. Formally, let ϕ : G → Zϕ be a graph encoder and let µ be a distribution on G. Then
the pushforward distribution of µ under ϕ is the distribution on Zϕ given by

ϕ♯(µ)(z) := µ
(
{G ∈ G | ϕ(G) = z}

)
,

where z is an element in the embedding space Zϕ. We can now state the proposition.
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Proposition 4.4. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ′ = f ◦ ϕ.
Then for any distributions ν and ν′ over G, we have that the inequality W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤

Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)

holds.

We remark that the inequality above becomes vacuous when f is not Lipschitz and hence Lip(f) =∞.

Corollary 4.5. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ a B-bounded
graph encoder such that ϕ ⊑ ϕ′ holds. Then for any distributions ν and ν′ over G, we have

W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤ (B/S) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
.

Indeed, Proposition 4.3 implies Lip(f) = B/S. Combined with Proposition 4.4, this gives
W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤ Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
= (B/S) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
.

As an example, consider a B-bounded graph encoder ϕ : G → Zϕ which is bounded in distinguishing
power by the 1-separating encoder HomF , for some sequence F of graphs. Then for any distributions
ν and ν′ on G, we have

W1

(
ϕ♯(ν), ϕ♯(ν

′)
)
≤ (B/1) · W1

(
(HomF )♯(ν), (HomF )♯(ν

′)
)
.

More broadly, these results suggest that the variance of embedding distributions in Zϕ, produced by
a complex graph encoder, can be effectively upper bounded by the variance of simpler, combinatorial
graph invariants—such as homomorphism counts, Weisfeiler-Leman tests, and other structural
descriptors, provided that the latter bound the former in terms of distinguishing power.

5 GENERALIZATION ANALYSIS

We use the setup from Chuang et al. (2021) but translated to the graph setting. More precisely,
let G represent the input space of graphs, Z the embedding space in Rd for some d ∈ N, and
Y = {1, . . . ,K} the output space consisting of K classes. We define a set of graph encoders
Φ = {ϕ : G → Z} and a set of predictors Ψ = {ψ = (ψ1, . . . , ψK) : Z → RK}. A score-based
graph classifier ψ ◦ ϕ simply returns argmaxy∈Y ψy(ϕ(G)) on input G. The graph encoders in Φ
are assumed to be graph invariants, such as, e.g., F-MPNNs, F-WL, or HomF .

We define the margin of a graph classifier ψ ◦ ϕ for a graph sample (G, y) ∈ G × Y as

ρψ(ϕ(G), y) := ψy(ϕ(G))−max
y′ ̸=y

ψy′(ϕ(G)).

The graph classifier ψ ◦ ϕ misclassifies G if ρψ(ϕ(G), y) < 0. Let µ be a distribution over G × Y ,
and S = {(Gi, yi)}mi=1 be a set of m graph samples drawn i.i.d. from µ, i.e., S ∼ µm. The empirical
distribution µS is defined as µS := 1

m

∑m
i=1 δ(Gi,yi), where δ(Gi,yi) denotes the Dirac delta measure

centered at (Gi, yi). The expected zero-one loss Rµ(ψ ◦ ϕ) and the γ-margin empirical zero-one loss
R̂γ,S(ψ ◦ ϕ) are defined as

Rµ(ψ ◦ ϕ) := E(G,y)∼µ
[
1ρψ(ϕ(G),y)≤0

]
and R̂γ,S(ψ ◦ ϕ) := E(G,y)∼µS

[
1ρψ(ϕ(G),y)≤γ

]
.

We aim to bound the generalisation gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) for the graph classifier ψ ◦ ϕ.

5.1 GENERALIZATION BOUND

We are now ready to present the generalization bounds. Our results build on the margin bounds of
Chuang et al. (2021), which are themselves based on a generalized notion of variance that involves
the Wasserstein distance (Solomon et al., 2022). This notion more effectively captures the structural
properties of the feature distribution. Crucially, we fully exploit the properties of graph encoders and,
in particular, use Proposition 4.4 to derive an upper bound on the generalization gap of any graph
encoder ϕ : G → Zϕ in terms of any graph encoder bounding ϕ in distinguishing power!

In order to formally state our results, some additional definitions are needed. Recall that we consider
graph classifiers (ψ1, . . . , ψK) ◦ ϕ where ϕ : G → Zϕ is a graph encoder and the predictor ψ =
(ψ1, . . . , ψK) is such that each ψi : Zϕ → R. Recall also that the output space Y = {1, . . . ,K}

5
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and that µ is a distribution over G × Y . We denote by µx the marginal distribution on G, i.e.,
µx(G) :=

∫
µ(G, y)dy and by µy the marginal distribution on Y , i.e, µy(c) :=

∫
µ(x, c)dx. Then,

for each c ∈ Y , µc(G) is the conditional distribution on G defined by µ(G, c)/µy(c).
Theorem 5.1. Fix γ > 0 and a graph encoder ϕ : G → Zϕ. Let λ : G → Zλ be a graph encoder
that bounds ϕ in distinguishing power, i.e., λ ⊑ ϕ. Then, for every distribution µ on G × Y , for
every predictor ψ = (ψy)i∈Y and every δ ∈ (0, 1), with probability at least 1− δ over all choices of
S ∼ µm, we have that the generalization gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper bounded by

Ec∼µy
[
Lip (ρψ(·, c)) Lip(f)

γ
ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
+

√
log(1/δ)

2m
, (†)

where ϕ = f ◦ λ and for each c ∈ Y , mc denotes the number of pairs (G, c) in S. Also, recall that
for T ∼ µmcc , µc,T is the empirical distribution µc,T :=

∑
G∈T δG; similarly for µc,T̃ .

The proof is a consequence of Theorem 2 in Chuang et al. (2021) and Proposition 4.4. As also
observed by those authors, the expectation term over T, T̃ ∼ µmcc is intractable in general. To
address this drawback, Chuang et al. (2021) show how to estimate the expectation by means of
sampling, provided that encoders areB-bounded. A similar approach works in our case as well. More
specifically, we show in Appendix D how an efficient, sample-based bound can be used instead of the
theoretical bound presented in Theorem 5.1. Notably, this practical bound is used in our experiments.

Theorem 5.1 highlights several key factors that influence the generalization of graph classifiers: (i)
the learning behavior of the predictors ψ, captured by Lip (ρψ(·, c)); (ii) the learning behavior of
graph encoder ϕ, relative to λ, described by Lip(f); and (iii) the variance of graph structures, in the
Wasserstein distanceW1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)
for graph samples T, T̃ ∼ µmcc .

5.2 CONCENTRATION AND SEPARATION

In terms of concentration, since ET,T̃∼µmcc [W1(λ♯(µc,T ), λ♯(µc,T̃ ))] ≤ O(m−1/d) (Chuang et al.,
2021), a large sample size m and a small dimension d of the embedding space Zλ lead to a smaller
generalization bound. For instance, when µ is concentrated on graphs in G with low color complexity
(Morris et al., 2023)—i.e., the 1-WL test requires only a small number of colors for the graph’s
vertices—combinatorial graph encoders like HomF and F-WL(L) can operate in low-dimensional
spaces. This observation is consistent with earlier findings (Kiefer and McKay, 2020; Garg et al.,
2020; Liao et al., 2021; Ju et al., 2023; Cong et al., 2021; Esser et al., 2021; Morris et al., 2023) about
the effect of graph size, degree, and maximum degree on generalization performance.

Of particular interest is the case when the bounding graph classifier λ is assumed to have a large
margin. A larger margin is generally associated with better generalization (Elsayed et al., 2018;
Chuang et al., 2021). If we assume the margin γ is satisfied for ψ ◦ λ, for all graph samples, and for
each c ∈ Y , the predictor ψc ∈ ψ is Lipschitz, then (see Lemma 10 in Chuang et al. (2021)) we have

γ ≤
(
max
c,c′∈Y
c ̸=c′

W1(λ♯(µc), λ♯(µc′))
)(
max
c∈Y

Lip(ψc)
)
.

By replacing 1/γ in Equation (†) by this bound, we obtain Proposition 5.2, see Appendix D for
details. We hereby revealing a trade-off between concentration and separation.
Proposition 5.2. Under the same assumptions as in Theorem 5.1, but with the additional requirement
that the predictors ψc in ψ are Lipschitz, and that the bounding graph classifier λ has a large margin,
i.e., ρψ(λ(G), y) ≥ γ for all (G, y) ∼ µ, then for any δ ∈ (0, 1), with probability at least 1− δ over
all choices S ∼ µm, we have that the generalization bound given in Theorem 5.1 is lower bound by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
.

The above proposition highlights that, to achieve a low generalization bound, it is crucial to ensure
good concentration between embeddings of the same class, i.e., W1(λ♯(µc,T ), λ♯(µc,T̃ )), while
maintaining a large separation between embeddings of different classes, i.e.,W1(λ♯(µc), λ♯(µc′)),
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Initial Vertex Colors After One Iteration Graph Embeddings Wasserstein
G G′ G G′ (Difference) Distance
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Table 1: Two graphs G and G′ with the initial vertex colors (including input vertex features and
homomorphism counts) and the vertex colors after one iteration, and the dimension-wise difference
|λ♯(G)− λ♯(G′)| and Wasserstein distanceW1

(
λ♯(G), λ♯(G

′)
)

between their graph embeddings for
three models: (a) 1-WL, (b) C4-WL, and (c) K4-WL.

where c ̸= c′. This can be achieved when λ learn embeddings in the “right” directions, where
embeddings of different classes are “more separated” than those of the same class, or when the
distribution µ is concentrated on graphs for which this separation happens for λ.

Remarks. In our bounds, we identify three Lipschitz constants: Lip(ρψ(·, c)), Lip(ψc), and Lip(f).
First, note that ρψ(·, c) depends on ψc, and therefore it is Lipschitz in its first argument if ψc is
Lipschitz. For simplicity, we assume that the predictor ψ = (ψc)c∈Y is a softmax function with
Lipschitz constant 1. For general ψc, Lip(ρψ(·, c)) can be approximated empirically using the
Jacobian, as suggested by (Chuang et al., 2021).

Furthermore, Corollary 4.5 states that the connecting function f between the graph encoders λ ⊑ ϕ
is Lipschitz with constant B/S, provided that ϕ is B-bounded and λ is separating. Therefore, when
ϕ is B-bounded, Lip(f) decreases as S increases. We also note that S can increase with added
expressivity in λ, which enhances its separation ability. In practice, both B and S can be computed
empirically. We discuss the effect of added expressivity in λ in more detail in the next section.

6 CASE STUDIES

In this section, we present case studies to illustrate how our generalization bound captures complex
scenarios in the generalization of graph encoders, influenced by their model expressivity and driven
by two key factors: intra-class concentration and inter-class separation. Recall, as discussed in
Theorem 5.1 and Proposition 5.2: (i) intra-class concentration, which quantifies the variance of graph
structures within a class, measured by the Wasserstein distanceW1(λ♯(µc,T ), λ♯(µc,T̃ )) for graph
samples T, T̃ ∼ µmcc , and (ii) inter-class separation, which measures the distinction between classes,
represented by the Wasserstein distance maxc,c′∈Y,c̸=c′W1(λ♯(µc), λ♯(µc′)).

For simplicity, we consider the following graphs {G,G′, H,H ′} from the PROTEINS dataset (Morris
et al., 2020a), uniformly selected by the distribution µ,

G = 31

24

5

6

7

G′ = 31

24

5
6

7
8

H = 31

24

5

6

7

H ′ =
31

24

5 6

7

Here, G and G′ belong to the class c, while H and H ′ belong to the class c′, where c ̸= c′.
Assuming the margin condition is satisfied for all classes, including c and c′, and that embeddings
of graphs within each class cluster around the embeddings of G, G′, and H , H ′, we estimate

7
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W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)
usingW1

(
λ♯(G), λ♯(G

′)
)
. Since there are only two classes in this dataset,

we estimate maxc,c′∈Y,c ̸=c′W1

(
λ♯(µc), λ♯(µc′)

)
byW1

(
λ♯
(
{G,G′}), λ♯({H,H ′}

))
.

For the bounding graph encoders λ, we use 1-WL as the base model. Then, following the approach
by Barceló et al. (2021) we consider two simple rooted graphs

31

24

and
31

24

and append their homo-
morphism counts Hom(

31

24

, ·) and Hom(
31

24

, ·) to the vertex feature of each rooted pair (·, v) in the
graphs G, G′, H and H ′, respectively. This leads to slight increase in model expressivity, compared
with 1-WL, allowing us to analyze how these differences impact key factors in generalization. We
refer to these two graph encoders as C4-WL, where homomorphism counts of

31

24

are added, and
K4-WL, where homomorphism counts of

31

24

are added, respectively. Table 1 presents graphs G and
G′ with their initial vertex colors and the updated colors after one iteration, where the Wasserstein
distanceW1

(
λ♯(G), λ♯(G

′)
)

estimates the intra-class concentration of class c. As model expressivity
increases from 1-WL toC4-WL andK4-WL, two distinct scenarios for intra-class concentration arise:

(1) More expressivity leads to better generalization: Compared to the graph embeddings from
1-WL, incorporating C4 improves intra-class concentration. The homomorphism counts
of C4 reduce the variance between graph embeddings as shown in Table 1, resulting in a
distance of 4.123, smaller than 4.796 for 1-WL.

(2) More expressivity leads to worse generalization: When K4 is used, the graph embeddings
of G and G′ yield a distance of 5.000, which is larger than its 1-WL counterpart 4.796.
Compared to C4-WL, each dimension of the K4-WL embeddings has the same or larger
magnitude, reflecting higher variance in the graph embeddings.

When measuring inter-class separation usingW1(λ♯(µc), λ♯(µc′)), the models 1-WL, C4-WL, and
K4-WL achieve distances of 4.582, 4.511, and 4.840, respectively. These results suggest a narrowing
in the gaps of these models, compared to intra-class concentration alone. The trends in inter-
class separation may change depending on the graph structure. For instance, if graphs of class c′
cluster around the embedding of H ′, i.e., estimatingW1

(
λ♯(µc), λ♯(µc′)

)
with µc = {G,G′} and

µc′ = {H ′}, the reverse trend may occur, with 1-WL achieving a distance of 4.796 and K4-WL
achieving 4.583. This highlights the importance of inter-class separation in balancing a model’s
generalization performance alongside intra-class concentration.

7 EXPERIMENTS

Tasks and Datasets We conduct graph classification experiments on six widely used benchmark
datasets: ENZYMES, PROTEINS, and MUTAG from the TU dataset collection (Morris et al., 2020a),
as well as SIDER and BACE from the molecular dataset collection (Wu et al., 2017). For SIDER,
which comprises 27 classification tasks, we focus specifically on the 21st task. Each dataset is
randomly divided into training and test sets following a 90%/10% split.

Setup and Configuration Each classification task is trained for 400 epochs, with five independent
runs to report the mean and standard deviation of the results. Consistent with the setup in Tang and
Liu (2023); Morris et al. (2023); Cong et al. (2021), we eliminate the use of regularization techniques
such as dropout and weight decay. A batch size of 128 is utilized, with a learning rate set to 10−3, and
the hidden layer dimension fixed at 64. The margin loss function is employed with a margin parameter
γ = 1. To compute the generalization gap, we utilize the sample-based variant of the bound as
outlined in Theorem 5.1, as given in Theorem D.2 of the appendix. For the graph encoder ϕ, we adopt
both MPNNs and F -MPNNs, with expressivity constraints defined by 1-WL and F-WL, respectively,
as described in Section 4. The predictor ψ(·) is modeled using the softmax function, which has a
Lipschitz constant of 1 (Gao and Pavel, 2017), ensuring that Lip(ρψ(·, c)) is also 1. We estimate Lip(f)

as: Lip(f) = maxG,H∈Gtrain

(
dZϕ (ϕ(G),ϕ(H))

dZλ (λ(G),λ(H))

)
, where G and H are sampled from the training set

Gtrain. For all experiments, we set the confidence level δ to 0.1, yielding bounds with high probability.

7.1 RESULTS AND DISCUSSION

How well can the proposed bound predict the generalization ability of MPNNs? To answer
this, we compare the proposed bound with empirical generalization gaps, measured by loss, while

8
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Table 2: Left: Graph classification gaps and bounds with different numbers of MPNN layers. Right:
Correlation matrices of empirical gaps and bounds.

Dataset

# Layers ENZYMES PROTEINS MUTAG SIDER BACE

Loss gap 0.248±0.040 0.029±0.015 -0.070±0.017 0.037±0.003 0.018±0.017

Our Bound 7.926±1.279 2.193±0.702 1.216±0.169 0.511±0.286 1.479±0.301

VC dimension 586 929 51 960 621
VC bound 1.302±0.000 1.292±0.001 1.100±0.004 1.302±0.000 1.301±0.000

PAC bound 3.48 5.04 3.06 52.39 21.525

Loss gap 0.242±0.026 0.032±0.010 -0.074±0.007 0.038±0.003 0.037±0.019

Our bound 7.425±0.982 1.404±0.144 1.247±0.155 0.620±0.463 1.729±0.251

VC dimension 595 996 121 1300 1060
VC bound 1.302±0.000 1.292±0.000 1.281±0.003 1.302±0.000 1.302±0.000

PAC bound 12.75 31.94 8.17 132.79±8.12 51.573

Loss gap 0.237±0.035 0.025±0.009 -0.058±0.012 0.038±0.002 0.032±0.011

Our Bound 6.513±0.951 1.421±0.220 1.649±0.158 0.409±0.253 1.789±0.226

VC dimension 595 996 135 1309 1089
VC bound 1.302±0.000 1.293±0.000 1.286±0.002 1.302±0.000 1.302±0.000

PAC bound 56.98 276.78 21.96±0.00 341.04 124.605

Loss gap 0.235±0.038 0.027±0.005 -0.073±0.009 0.036±0.001 0.022±0.030

Our Bound 6.825±0.796 1.434±0.297 1.535±0.115 0.298±0.080 1.686±0.377

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

PAC bound 308.43 2331.63 57.69 845.62 310.732

Loss gap 0.256±0.037 0.020±0.007 -0.071±0.021 0.035±0.001 0.020±0.020

Our Bound 6.384±0.813 1.308±0.165 1.773±0.194 0.369±0.172 1.662±0.120

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.292±0.002 1.302±0.000 1.302±0.000

PAC bound 1615.10 17992.81 155.74 2179.21 744.08

Loss gap 0.264±0.025 0.030±0.008 -0.078±0.019 0.034±0.002 0.022±0.016

Our Bound 6.151±0.798 1.340±0.316 1.627±0.038 0.353±0.156 1.785±0.237

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±5.870

PAC bound 8931.00 135762.52 410.31 5254.88 1860.94
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controlling MPNN expressivity by varying the number of layers. Table 2 presents the proposed bound
and the empirical generalization gaps for different numbers of MPNN layers across five datasets. For
comparison, we also include the VC bound from Morris et al. (2023) that is based on the number of
unique color histograms (VC dimension) produced by 1-WL, as well as the PAC-Bayesian bound from
Ju et al. (2023). Changes in loss gaps between layers are plotted in Figure 2 of Appendix F. Our results
show that the proposed bounds strongly correlates to the empirical generalization gaps across datasets
and layer depths, effectively predicting generalization errors. This consistency highlights the bound’s
ability to reflect changes in generalization performance as model depth increases. In contrast, the VC
dimension stabilizes after three layers and is very close to sample sizes, rendering constant VC bounds
regardless of layers. As a result, the VC bound fails to capture changes in empirical generalization
gaps. Furthermore, our bound surpasses the PAC-Bayesian bound in both tightness and correlation
to empirical gaps, notably on deeper MPNNs, since the PAC-Bayesian bound grows exponentially
with the number of layers. Similarly, our bound is less vacuous compared to other bounds, such as
those proposed by Garg et al. (2020); Liao et al. (2021), which tend to be on the order of 104.

To evaluate how well the proposed bound predicts the generalization gap of F-MPNNs across
different homomorphism pattern selections, we present the empirical loss gap and generalization
bound for three distinct pattern sets, alongside MPNN, as shown in Figure 1. We designate Pn, Kn,
and Cn as n-path, n-clique, and n-cycle graphs, respectively, and refer to the MPNN without any
specific pattern as “no pattern". It can be seen that the generalization bound closely aligns with the
empirical gap across different pattern choices, with some exceptions in ENZYMES. Notably, the
choice of pattern influences the generalization gap in different ways. In ENZYMES, cycle patterns
lead to a larger gap compared to cliques and paths. In PROTEINS, using paths or cliques increases
the generalization gap, while cycles reduce it. These changes in the empirical generalization gap are
largely captured by the corresponding bounds.

Why does more expressive power sometimes lead to better generalization? In Figure 1, we
observe two contrasting cases where increased expressivity worsens generalization (ENZYMES) and

9
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Figure 1: Top: Loss gaps and bounds of different patterns. Bottom: Loss gaps, bounds, Wasserstein
distance and Lip(f) of different layers.

improves it (PROTEINS). To explore this further, we plot the changes of two major factors from the
proposed bound in Theorem D.2: the 1-Wasserstein distance and Lip(f), both shown in Figure 1. The
1-Wasserstein distance (W1) is computed as: 1

n

∑n
j=1W1

(
λ♯(µc,T j ), λ♯(µc,T̃ j )

)
averaged over all

graph classes. We plot these factors over four layers for both MPNN and {C3, C4, C5, C6}-MPNN.
We observe that the inclusion of homomorphism counts worsens generalization in ENZYMES but
improves it in PROTEINS. This can be attributed to the joint influence of the Wasserstein distance
and Lip(f). In ENZYMES, both the 1-Wasserstein distance and Lip(f) increase slightly when
homomorphism counts are added. While this additional expressivity leads to better separation between
graphs, in ENZYMES, this increased separation hinders the ability to achieve good concentration
within each graph class, ultimately worsening generalization. In contrast, for PROTEINS, although
the inclusion of homomorphism counts leads to greater graph separation, it also slightly reduces the
1-Wasserstein distance within each class, allowing for better concentration. This improved separation
significantly reduces Lip(f), resulting in enhanced generalization.

Can generalization be improved by controlling the Lipschitz constants? Last but not least, since
Lip(f) plays a crucial role in the proposed bound, we aim to investigate whether controlling Lip(f)
can serve as an effective strategy to enhance generalization. A straightforward approach to control
Lip(f) is through normalization techniques. As demonstrated earlier, normalization effectively
bounds the diameter of ϕ♯(µ), which, in turn, constrains the encoder’s boundedness and subsequently
Lip(f). To test this, we apply l1-normalisation in the last layer of the MPNN. See Table 3 for results.
It is evident that normalization reduces the generalization gap across all datasets. This improvement
is also reflected in the computed bounds. Interestingly, the least improvement is observed in the
SIDER dataset, where Lip(f) is already relatively small, and the embeddings are well-concentrated
even before normalization. This suggests that the impact of normalization is more pronounced when
Lip(f) is large or when the embeddings are not already well-concentrated.

8 CONCLUSION AND LIMITATIONS

In this work, we examine the generalization of GNNs from a margin-based perspective, based on
the work by Chuang et al. (2021). The bounds use 1-variance and optimal transport to analyze
graph embeddings. We establish a relationship between generalization and the expressive capacity
of GNNs, deriving a generalization bound that demonstrates how well-clustered embeddings and
separable classes lead to improved generalization. Through case studies on a real-world dataset, we
empirically validate these theoretical findings. We also apply empirical sample-based bounds to
graph classification tasks, confirming that our theoretical results align with empirical evidence. Our
work enables analyzing the generalization of graph encoders through their bounded expressive power.

Nonetheless, our work has some limitations. While we validate the framework on real-world datasets,
further large-scale studies across a wider range of datasets and applications are needed to fully
establish the proposed approach’s general applicability.

10
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A ADDITIONAL RELATED WORK

We provide additional references related to the expressiveness of Graph Neural Networks (GNNs).
The connection with the Weisfeiler-Leman (1-WL) test has led to the development of high-order
GNNs that surpass 1-WL and are bounded by the k-dimensional Weisfeiler-Leman test (k-WL) (Mor-
ris et al., 2019; Maron et al., 2019; Morris et al., 2020b; Geerts and Reutter, 2022). The method
by Morris et al. (2019; 2020b) is strictly weaker than k-WL, whereas the method by Maron et al.
(2019) can match the expressiveness of k-WL. However, these higher-order GNNs incur significant
computational costs, rendering them impractical for large-scale datasets.

Incorporating substructure counts has been shown to be an effective strategy for enhancing GNN
expressivity beyond 1-WL (Bouritsas et al., 2023; Barceló et al., 2021). Bouritsas et al. (2023)
integrate isomorphism counts of small subgraph patterns into the node and edge features of graphs,
while Barceló et al. (2021) employ a similar approach using homomorphism counts. Building on
this concept, Thiede et al. (2021) implemented convolutions on automorphism groups of subgraph
patterns. Rather than directly using subgraph counts, Wijesinghe and Wang (2022); Wang et al. (2023)
propose integrating local structural information into neighbor aggregation. This approach suggests
that the expressivity of the model increases with the subgraph pattern size and aggregation radius.

Taking a different approach, Nguyen and Maehara (2020) explore the use of graph homomorphism
counts directly in convolutions without message passing, demonstrating their universality in approxi-
mating invariant functions. Welke et al. (2023) propose combining homomorphism counts with GNN
outputs in the final layer to improve expressivity. Additionally, Bevilacqua et al. (2022) represent
graphs as collections of subgraphs derived from a predetermined policy. Zhao et al. (2022) and Zhang
and Li (2021) extend this idea by representing graphs with a set of induced subgraphs. These methods
are closely related to graph kernel techniques that utilize subgraph patterns (Shervashidze et al., 2011;
Horváth et al., 2004; Costa and Grave, 2010).

Since the WL-based GNN expressivity hierarchy is inherently coarse and qualitative, Zhang et al.
(2024) propose a homomorphism-based expressivity framework, which enables direct comparisons
of expressivity between common GNN models. As 1-WL and k-WL have equivalent translations
in homomorphism embeddings (Dell et al., 2018), both MPNNs and higher-order GNNs can be
expressed using homomorphism representations within this framework. Given that homomorphism
embeddings are theoretically isomorphism-complete, this framework offers not only a unified but
also a complete description of GNN expressivity.

B ADDITIONAL DETAILS OF SECTION 3

We provide some examples illustrating the key concepts introduced in Section 3.
Example B.1 (Homomorphism counts and graph invariants). Consider the following three graphs
F1, F2 and G:

F1 =
31

24

F2 =
31

24

G = 31

24

5

6

7

Suppose that we want to extract graph features from G based on the graph patterns F1 and F2.
One way of doing so is by means of counting how many homomorphisms from the patterns to G
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exist. We recall that a homomorphism is just an edge-preserving mapping between the vertex sets.
For example, here, one can verify that the number of homomorphisms from F1 to G is 120, i.e.,
Hom(F1, G) = 120, and the number of homomorphisms from F2 to G is 8, i.e., Hom(F2, G) = 8.
These homomorphism counts can be used as features to enrich the data representation of G. The
process maps G to a set of numerical features derived from the counts. Importantly, this mapping is a
graph invariant, meaning that if G is replaced by an isomorphic graph (one structurally identical to
G), the homomorphism counts remain the same. Using homomorphism counts as features allows us
to capture structural information, making them valuable for tasks like classification or regression in
graph-based machine learning.
Example B.2 (Rooted homomorphism counts and vertex invariants). Now consider the following
three rooted graphs F r1 , F

r
2 , G

v:

F r1 =
31

24

F r2 =
31

24

Gv = 31

24

5

6

7

The roots in the graph allow to connect homomorphism counts locally around each vertex. Indeed,
for rooted graphs, the homomorphisms also have to preserve the roots. In this example one can verify
that the number of homomorphisms from F r1 to Gv is 78, i.e., Hom(F r1 , G

v) = 78, and the number
of homomorphisms from F r2 to Gv is 4, i.e., Hom(F r2 , G

v) = 4. We can enrich the local graph
structure around v in this way. The mapping that associates with graphs and vertices such rooted
homomorphism counts is an example of an vertex invariant.
Example B.3 (Wasserstein distance). Finally we illustrate the notion of Wasserstein distance. Con-
sider the four graphs presented in Section 6:

G = 31

24

5

6

7

G′ = 31

24

5
6

7
8

H = 31

24

5

6

7

H ′ =
31

24

5 6

7

The vector representations of the four graphs after one iteration of 1-WL are

λ(G) = (1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1),

λ(G′) = (0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 0),

λ(H) = (1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1),

λ(H ′) = (0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 0).

These lead to

||λ(G)− λ(H)|| = 5.0990,

||λ(G′)− λ(H ′)|| = 4.7958,

||λ(G)− λ(H ′)|| = 5.2915,

||λ(G′)− λ(H)|| = 3.8730.

Let µ = {G,G′} and ν = {H,H ′}. Then Π(µ, ν) =
{
{(G,H), (G′, H ′)}, {(G,H ′), (G′, H)}

}
.

Thus, we have

E(x,y)∼{(G,H),(G′,H′)}||x− y|| =
1

2

(
||λ(G)− λ(H)||+ ||λ(G′)− λ(H ′)||

)
= 4.9474;

E(x,y)∼{(G,H′),(G′,H)}||x− y|| =
1

2

(
||λ(G)− λ(H ′)||+ ||λ(G)− λ(H ′)||

)
= 4.5823.

Since 4.5823 < 4.9474, we obtain

W(µ, ν) = E(x,y)∼{(G,H′),(G′,H)}||x− y||

=
1

2

(
||λ(G)− λ(H ′)||+ ||λ(G)− λ(H ′)||

)
= 4.5823.
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C PROOFS OF SECTION 4

Lemma 4.2. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ ⊑ ϕ′ holds.
Then there exists a function f : Zϕ → Zϕ′ such that ϕ′ = f ◦ ϕ.

Proof. We define the function f : Zϕ → Zϕ′ , as follows. Let z ∈ Zϕ andG ∈ G such that ϕ(G) = z.
Then, define f(z) := ϕ′(G) ∈ Zϕ′ . Observe first that f is well-defined. Indeed, if we take another
G′ ∈ G such that ϕ(G′) = z, then ϕ(G) = ϕ(G′) and hence also ϕ′(G) = ϕ′(G′) = f(z) since
ϕ ⊑ ϕ′ by assumption. Clearly, f ◦ ϕ = ϕ′, by definition

Proposition 4.3. Let ϕ : G → Zϕ be an S-separating graph encoder and ϕ′ : G → Zϕ′ be a
B-bounded graph encoder such that ϕ ⊑ ϕ′. Then ϕ′ = f ◦ ϕ for a function f : Zϕ → Zϕ′ which is
Lipschitz with constant Lip(f) = B/S.

Proof. We need to show that for any z, z′ ∈ Zϕ, dZϕ′ (f(z), f(z
′)) ≤ (B/S) · dZϕ(z, z′) holds.

Clearly, if z = z′ then also f(z) = f(z′) and hence dZϕ′ (f(z), f(z
′)) = 0, for which the desired

inequality trivially holds. For z ̸= z′ and using that z = ϕ(G) and z′ = ϕ(H) for some graphs
G and H in G, we know that S ≤ dZϕ(z, z

′) and hence 1 ≤ (1/S) · dZϕ(z, z′). It now suffices
to observe that dZϕ′ (f(z), f(z

′)) = dZϕ′ (f(ϕ(G)), f(ϕ(H))) = dZϕ′ (ϕ
′(G), ϕ′(H)) ≤ B, from

which dZϕ′ (f(z), f(z
′)) ≤ (B/S) · dZϕ(z, z′) follows.

Proposition 4.4. Let ϕ : G → Zϕ and ϕ′ : G → Zϕ′ be two graph encoders such that ϕ′ = f ◦ ϕ.
Then for any distributions ν and ν′ over G, we have that the inequality W1

(
ϕ′♯(ν), ϕ

′
♯(ν

′)
)
≤

Lip(f) · W1

(
ϕ♯(ν), ϕ♯(ν

′)
)

holds.

Proof. We first show that f ◦ ϕ = ϕ′ implies the f♯
(
ϕ♯(µ)

)
= ϕ′♯(µ) of the corresponding pushfor-

ward distribution of any distribution µ om G. Indeed, this simply follows from the definitions. One
the one hand, for I ⊆ Zϕ′

ϕ′♯(µ)(I) := µ
(
{G ∈ G | ϕ′(G) ∈ I}

)
.

On the other hand,

f♯
(
ϕ♯(µ)

)
(I) = ϕ♯(µ)

(
{z ∈ Zϕ | f(z) ∈ I}

)
= µ

(
G ∈ G | f(ϕ(G)) ∈ I

)
.

The equality then follows from f ◦ ϕ = ϕ′. We assume that f is Lipschitz-continuous with Lip(f) <
∞ (otherwise the inequality is satisfied by default and there is nothing to prove). We show that

W1

(
ϕ′♯(µ), ϕ

′
♯(ν)

)
≤ Lip(f) · W1

(
ϕ♯(µ), ϕ♯(ν)

)
.

Let L1(Zϕ) be the set of 1-Lipschitz functions on Zϕ. We use the Kantorovich-Rubinstein dual form
ofW1, as follows:

W1

(
ϕ♯(µ), ϕ♯(ν)

)
= sup
g∈L1(Zϕ)

Ez∼ϕ♯(µ)[g(z)]− Ez∼ϕ♯(ν)[g(z)]

= sup
g∈L1(Zϕ)

∫
Zϕ
g(z) d(ϕ♯(µ)− ϕ♯(ν))(z).

Note that if g ∈ L1(Z) then 1
Lip(f)f ◦ g ∈ L1(Z) as well. Then, using our earlier observation about

pushforward distributions,

W1

(
ϕ′♯(µ), ϕ

′
♯(ν)

)
=W1

(
f♯
(
ϕ♯(µ)

)
, f♯

(
ϕ♯(ν)

))
= sup
g∈L1(Zϕ′ )

∫
Zϕ′

g(z) d
(
f♯
(
λ♯(µ)

)
− f♯

(
λ♯(ν)

))
(z)

= sup
g∈L1(Zϕ′ )

∫
Zϕ′

g(z) df♯(ϕ♯(µ)− ϕ♯(ν))(z)
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= sup
g∈L1(Zϕ′ )

∫
Zϕ′

g ◦ f(z) d(ϕ♯(µ)− ϕ♯(ν))(z)

= Lip(f) sup
g∈L1(Zϕ′ )

∫
Zϕ′

g ◦ f(z)
Lip(f)

d(µ− ν)(z)

≤ Lip(f) sup
h∈L1(Zϕ)

∫
Zϕ
h(x) d(µ− ν)(z)

= Lip(f) · W1

(
ϕ♯(µ), ϕ♯(ν)

)
,

as desired.

D PROOFS AND DETAILS OF SECTION 5

We start by restating Theorem 2 from Chuang et al. (2021) using encoders ϕ from some general set
X to Z .
Theorem D.1 (Theorem 2 in Chuang et al. (2021)). Fix γ > 0 and an encoder ϕ : X → Z .
Then, for every distribution µ on X × Y , for every predictor ψ = (ψy)i∈Y and every δ ∈ (0, 1),
with probability at least 1 − δ over all choices of S ∼ µm, we have that the generalization gap
Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper bounded by

Ec∼µy
[
Lip (ρψ(·, c))

γ
ET,T̃∼µmcc

[
W1

(
ϕ♯(µc,T ), ϕ♯(µc,T̃ )

)]]
+

√
log(1/δ)

2m
,

where for each c ∈ Y , mc denotes the number of pairs (X, c) in S. Also, recall that for T ∼ µmcc ,
µc,T is the empirical distribution µc,T :=

∑
X∈T δX ; similarly for µc,T̃ .

To obtain Theorem 5.1 we replace X by G and consider graph encoders ϕ : G → Zϕ and λ : G → Zλ
such that λ upper bounds ϕ in expressive power. Then, Lemma 4.2 ensures the existence of f
such that ϕ = f ◦ λ and Proposition 4.4 consequently impliesW1

(
ϕ′♯(µc,T ), ϕ

′
♯(µc,T̃ )

)
≤ Lip(f) ·

W1

(
ϕ♯(µc,T ), ϕ♯(µc,T̃ )

)
for any T, T̃ ∼ µmcc . Plugging this into the bound above results in the

bound given in Theorem 5.1.

While the bound in Theorem 5.1 is theoretically useful, the expectation term over T, T̃ ∼ µmcc is
intractable in general. To address this drawback, we derive another bound in Theorem D.2, which
can be computed via sampling in practice and is the one used in our experiments.

Theorem D.2. Let {T j , T̃ j}nj=1 be n pairs of graph samples where each T j , T̃ j ∼ µ
⌊mc/2n⌋
c ,

m =
∑K
c=1⌊mc/2n⌋, and ∆(·) be the diameter of a space. For any Lipschitz continuous function

f : Zϕ → Zλ such that ϕ = f ◦ λ, with probability at least 1− δ for samples S ∼ µm, we have

Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) ≤
√

log(2/δ)

2m
+

Ec∼µy

Lip (ρψ(·, c)) Lip(f)
γ

 1

n

n∑
j=1

W1

(
λ♯(µc,T j ), λ♯(µc,T̃ j )

)
+ 2∆(λ♯(µc))

√
log(2K/δ)

n⌊mc/2n⌋

 .
The proof is again a consequence of Lemma 4.2 and Proposition 4.4, but this time relying on Corollary
6 in Chuang et al. (2021). We note that the diameter will be bounded whenB-bounded graph encoders
are considered.

We conclude with the proof of Proposition 5.2.
Proposition 5.2. Under the same assumptions as in Theorem 5.1, but with the additional requirement
that the predictors ψc in ψ are Lipschitz, and that the bounding graph classifier λ has a large margin,
i.e., ρψ(λ(G), y) ≥ γ for all (G, y) ∼ µ, then for any δ ∈ (0, 1), with probability at least 1− δ over
all choices S ∼ µm, we have that the generalization bound given in Theorem 5.1 is lower bound by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
.
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Proof. Since we assume the margin γ is satisfied for ψ ◦λ, for all graph samples, and for each c ∈ Y ,
the predictor ψc ∈ ψ is Lipschitz, then (see Lemma 10 in Chuang et al. (2021)) we have

γ ≤
(
max
c,c′∈Y
c ̸=c′

W1(λ♯(µc), λ♯(µc′))
)(
max
c∈Y

Lip(ψc)
)
.

In other words,

1(
maxc,c′∈Y

c̸=c′
W1(λ♯(µc), λ♯(µc′))

)(
maxc∈Y Lip(ψc)

) ≤ 1

γ
. (∗)

Furthermore, we know from Theorem 5.1 that for every δ ∈ (0, 1), with probability at least 1 − δ
over all choices of S ∼ µm, we have that the generalization gap Rµ(ψ ◦ ϕ)− R̂γ,S(ψ ◦ ϕ) is upper
bounded by

Ec∼µy
[
Lip (ρψ(·, c)) Lip(f)

γ
ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
+

√
log(1/δ)

2m
.

Since Lip(f) and
(
maxc,c′∈Y

c̸=c′
W1(λ♯(µc), λ♯(µc′))

)(
maxc∈Y Lip(ψc)

)
are independent of c ∼ µy,

we can take them out of the expectation, that is we rewrite the upper bound as

Lip(f)

γ
Ec∼µy

[
Lip (ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
+

√
log(1/δ)

2m
.

Finally, by replacing 1
γ with the lower bound (∗) we get that the generalization upper bound is lower

bounded by

Lip(f) · Ec∼µy
[
Lip(ρψ(·, c))ET,T̃∼µmcc

[
W1

(
λ♯(µc,T ), λ♯(µc,T̃ )

)]]
(maxc∈Y Lip(ψc)) (maxc,c′∈Y,c̸=c′W1 (λ♯(µc), λ♯(µc′)))

+

√
log(1/δ)

2m
,

as desired.

E COMPUTATION OF GENERALIZATION BOUNDS

VC based bound (Morris et al., 2023): We use the classical bounds on the generalisation gap based
on the VC-dimension Vapnik and Chervonenkis (1964); Vapnik (1998). That is, with
probability 1− δ, the generalisation gap is bounded by√

1

|S|

(
D
(
log(2N/D) + 1

)
− log(δ/4)

)
where |S| is the sample size and D is the VC dimension. We note that |S| ≥ D

e for
the logarithm to make sense. In our setting, results by Morris et al. (2023) implies that
D is bounded by the number of graphs, distinguishable by the hypothesis class. In our
experiments, we computed the latter the number of graphs in S distinguishable by 1-WL at
each iteration.

PAC-Bayesian bound (Ju et al., 2023) We follow Ju et al. (2023) to compute the bound, that is,
with probability 1− δ, the generalisation gap is bounded by

L∑
ℓ=l

√
CBlossdℓ(maxG∼µ ||XG||2||AG||2(l−1)(r2ℓ

∏L
j=1 s

2
j )

|S|
+O(

log(δ−1)

|S|3/4
),

where L is the number of MPNN layers, Bloss is a cap on the value of the loss function, C is
a fixed Lipschitz constant depending on the activation and loss functions, and |S| is again
the sample size. Moreover, dℓ is the second dimension of the weight matrix W (ℓ) at layer ℓ,
XG is the vertex feature matrix of G and AG is the adjacency matrix of G. For MPNNs,
sj = 1, rℓ = ||W(ℓ)||F where ||W(ℓ)||F is the Frobenius norm of W(ℓ).
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Algorithm 1: An algorithm to compute the bound in Theorem D.2
1 Input :δ, mc, n, γ, K, S, λ, ϕ and Lρ (Lipschitz constant of ρψ(,̇c))

Output :Bound
2 Lf ← 0;

// Estimate Lip(f)
3 for all G,H ∈ S and λ(G) ̸= λ(H) do
4 r ← ||ϕ(G)−ϕ(H)||

||λ(G)−λ(H)|| ;
5 Lf ← max(r, Lf );
6 end
7 b← 0;
8 for c← 1, . . . ,K do
9 wc ← 0;

10 for j ← 1, . . . , n do
11 Randomly sample {Gi}2mci=1 from graphs of the class c in S;

// Compute 1-Wasserstein using the Hungarian method
12 wc ← wc +W1

(
{λ(Gi)}mci=1, {λ(Gi)}

2mc
i=mc+1

)
;

13 end
14 wc ← wc/n;
15 ∆c ← 0;

// Estimate ∆(λ♯(µc))
16 for all G,H ∈ S and G,H belong to the class c do
17 ∆c = max(∆c, ||λ(G)− λ(H)||);
18 end

19 b = b+
LρLf
γ

(
wc + 2∆c

√
log(2K/δ)
n⌊mc/2n⌋

)
;

20 end
21 m = K⌊mc/2n⌋;

22 return b
K +

√
log(2/δ)

2m ;
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Figure 2: Loss gaps and bounds of MPNNs of different layers

Our bound In practice, we estimate Lip(f) and ∆(λ♯(µc)) in Theorem D.2 using data in the training
sets, thus both can be computed in O(|S|2). The 1-Wasserstein distance can be computed
in O((mc2n )

3) using the Hungarian method (Kuhn, 1955). Normally we have |S|2 ≪ (mc2n )
3

because |S| = K⌊mc/2n⌋ and mc
2n > 1. So the total time complexity to compute the bound

is O((mc2n )
3) which is tractable for most datasets. For very large datasets, practitioners can

choose to use a smaller mc and a larger n to reduce the computational cost. An algorithm to
compute the bound is sketched in Algorithm 1.

F ADDITIONAL EXPERIMENTAL RESULTS

The results of graph classification with embedding normalization is provided in Table 3. The empirical
loss gap are plotted with our bounds in Figure 2.
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Table 3: Graph classification gaps with different numbers of MPNN layers. The MPNN embeddings
are normalized.

Dataset

# Layers ENZYMES PROTEINS MUTAG SIDER BACE

Loss gap 0.105±0.010 -0.018±0.009 -0.091±0.017 0.013±0.013 -0.004±0.010

Our bound 0.800±0.095 2.203±0.134 1.101±0.063 1.137±0.552 1.147±0.143

VC dimension 586 929 51 960 621
VC bound 1.302±0.000 1.292±0.001 1.100±0.004 1.302±0.000 1.301±0.000

PAC bound 3.48±0.01 5.04±0.00 3.06±0.05 52.39±1.86 21.525±1.072

Loss gap 0.098±0.022 -0.023±0.011 -0.097±0.019 0.015±0.006 0.000±0.010

Our bound 0.586±0.036 1.016±0.035 1.208±0.046 1.017±0.644 1.089±0.135

VC dimension 595 996 121 1300 1060
VC bound 1.302±0.000 1.292±0.000 1.281±0.003 1.302±0.000 1.302±0.000

PAC bound 12.75±0.22 31.94±2.79 8.17±0.12 132.79±8.12 51.573±2.853

Loss gap 0.118±0.023 -0.027±0.011 -0.083±0.006 0.030±0.008 -0.006±0.015

Our bound 0.572±0.024 0.834±0.015 0.993±0.039 1.221±0.957 1.167±0.610

VC dimension 595 996 135 1309 1089
VC bound 1.302±0.000 1.293±0.000 1.286±0.002 1.302±0.000 1.302±0.000

PAC bound 56.98±1.06 276.78±0.00 21.96±0.00 341.04±19.89 124.605±7.506

Loss gap 0.129±0.007 -0.004±0.005 -0.087±0.011 0.026±0.015 0.001±0.024

Our bound 0.573±0.027 0.847±0.027 0.848±0.085 1.039±0.898 0.705±0.026

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

PAC bound 308.43±0.00 2331.63±0.00 57.69±1.83 845.62±73.11 310.732±12.520

Loss gap 0.169±0.014 0.003±0.035 -0.086±0.013 0.006±0.038 0.002±0.014

Our bound 0.575±0.039 0.713±0.246 0.799±0.051 0.923±0.438 0.703±0.012

VC dimension 595 996 139 1309 1093
VC bound 1.302±0.000 1.292±0.001 1.292±0.002 1.302±0.000 1.302±0.000

PAC bound 1615.10±89.11 17992.81±4950.10 155.74±4.68 2179.21±190.74 744.08±31.12

Loss gap 0.169±0.023 -0.002±0.032 -0.104±0.008 0.029±0.009 -0.013±0.015

Our bound 0.603±0.032 0.793±0.136 0.778±0.049 1.192±0.561 0.679±0.018

VC dimension 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±0.000

VC bound 1.302±0.000 1.292±0.001 1.291±0.002 1.302±0.000 1.302±5.870

PAC bound 8931.00±0.00 135762.52±59439.71 410.31±17.44 5254.88±655.89 1860.94±5.96
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