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Abstract
Semi-supervised learning that leverages syn-001
thetic training data has been widely adopted in002
the field of Automatic post-editing (APE) to003
overcome the lack of human-annotated train-004
ing data. In that context, data-synthesis meth-005
ods to create high-quality synthetic data have006
also received much attention. Considering that007
APE takes machine-translation outputs contain-008
ing translation errors as input, we propose a009
noising-based data-synthesis method that uses010
a mask language model to create noisy texts011
through substituting masked tokens with erro-012
neous tokens, yet following the error-quantity013
statistics appearing in genuine APE data. In ad-014
dition, we propose corpus interleaving, which015
is to combine two separate synthetic data by016
taking only advantageous samples, to further017
enhance the quality of the synthetic data cre-018
ated with our noising method. Experimental019
results reveal that using the synthetic data cre-020
ated with our approach results in significant021
improvements of APE performance upon us-022
ing other synthetic data created with different023
existing data-synthesis methods. Our research024
findings are available at (the link will be located025
here after anonymous period).026

1 Introduction027

Automatic post-editing (APE) (Chatterjee et al.,028

2015, 2020) is a field of study that seeks to correct029

errors in machine translation (MT) outputs to pro-030

vide high-quality translations. Generally, APE is031

regarded as a multi-source sequence-to-sequence032

problem (Figure 1) as it simultaneously takes a033

source text (src) and its MT output (mt) to produce034

a post-edited text (pe). Due to this nature of APE,035

supervised learning of APE models requires train-036

ing data that have the form ⟨src,mt, pe⟩, where pe037

is assumed to be a product of minimal correction038

on mt, which is an underlying assumption of APE039

(Bojar et al., 2015).040

However, the quantity of currently available041

human-made (gold-standard) APE triplets is heav-042

Automatic 
post-editing

Source (𝒔𝒓𝒄)
“Manipulates the 

shape of an item .”

Translation (𝒎𝒕)
“Bearbeitet die Form 
eines Elements an .”

Post edit (𝒑𝒆)
“Verändert die Form 

eines Elements .”

Figure 1: An overview the APE process. Erroneous
words and post-edited words are highlighted in bold.

ily insufficient to train a sequence-to-sequence 043

APE model robustly. Thus, ‘semi-supervised 044

learning’ leveraging synthetic data in addition to 045

gold-standard data for model training has been 046

adopted widely; accordingly, a fair number of stud- 047

ies (Junczys-Dowmunt and Grundkiewicz, 2016; 048

Negri et al., 2018; Lee et al., 2020, 2021) have 049

attempted to explore data-synthesis methods to ob- 050

tain high-quality synthetic training data. 051

In particular, there have been several studies (Ne- 052

gri et al., 2018; Lee et al., 2020, 2021) that utilize 053

parallel corpora, which comprise pairs of a source 054

text (src) and its reference text (ref ): ⟨src, ref⟩, 055

which is also called a ‘bitext’. Such methods have a 056

common feature that bitexts’ ref are used to server 057

as pe in synthetic APE triplets, yet each method 058

differs in its method to create mt data to construct 059

synthetic APE triplets. 060

One such method (Negri et al., 2018) is to create 061

mt by simply translating src with an MT system. 062

Although being plausible in that this method cre- 063

ates synthetic triplets in the same manner as gold- 064

standard triplets are created, this method has the 065

limitation that ref is not guaranteed to be a prod- 066

uct of minimal correction on mt. Thus, mt created 067

with this method is likely to contain a much larger 068

amount of error than gold-standard mt. 069

Another approach (Lee et al., 2020) is to cre- 070

ate mt by randomly injecting noise into ref with 071

regards to the actual quantity of errors appearing 072

in gold-standard mt. Even though this method 073

1



may successfully reflect the distribution of the error074

quantities in gold-standard mt, the resulting syn-075

thetic mt still could be significantly distant from an076

MT output qualitatively because the injected noise077

is not originated by an MT system.078

To amalgamate the advantages of those two ap-079

proaches, we propose a data-synthesis method us-080

ing parallel corpora to obtain synthetic mt that081

contain errors that are likely to appear in an MT082

output while controlling the quantity of errors in083

the synthetic mt by following the error-quantity084

distribution of gold-standard mt.085

Our approach, MLM noising, is inspired by086

the “masked language model” (MLM; Devlin et al.087

2019), which predicts a proper substitute for each088

masked token <MASK> in an input sequence. The089

basic idea of this approach is to let an MLM substi-090

tute each <MASK> with an ‘erroneous’ token that091

is likely to appear in an MT output while restrict-092

ing the number of <MASK> to the number of errors093

contained in gold-standard mt.094

Also, to further improve the quality of synthetic095

data created with our approach, we propose corpus096

interleaving, which is to incorporate our synthetic097

data into an existing synthetic data (both are made098

of the same bitexts) by adopting our new triplet if099

it is considered better than the original triplet.100

2 Background101

2.1 Problem Statement102

APE has been addressed in the frame of103

the multi-source sequence-to-sequence problem104

(src,mt) → pe, which has two inputs: src, which105

provides contextual information that helps identify-106

ing translation errors, and mt, which is the object107

of correction. Formally, let D = {⟨x, ỹ,y⟩ni=1}108

denotes a set of n APE triplets (whether they109

are gold-standard or synthetic triplets), where110

x = (x1 . . . xTx), ỹ = (ỹ1 . . . ỹTỹ
), and y =111

(y1 . . . xTy) indicate src, mt, and pe, respectively;112

An APE model learns to predict pe by following113

the conditional probability,114

P (y) =

Ty∏
i=1

P (yi|x, ỹ, y<i; θ), (1)115

where θ is a set of model parameters.116

2.2 Existing Data-Synthesis Methods117

In this section, we outline several existing methods118

to create synthetic triplets by using parallel corpora.119
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Figure 2: The mt–pe edit-distance distribution of gold-
standard data (released by WMT (Chatterjee et al.,
2018)) vs. the mt–ref edit-distance distribution of
TRANS synthetic data.

Translation Approach (TRANS) An early 120

study (Negri et al., 2018) of creating synthetic APE 121

triplets by using parallel corpora, this method uses 122

an MT system to translate src of bitexts to the tar- 123

get language and obtain mt. The result is a set of 124

synthetic triplets in the form of ⟨src,mt, ref⟩. 125

The strength of this method is that its mt is cre- 126

ated by an MT system as in creating gold-standard 127

mt. However, this method has a key limitation that 128

ref is not guaranteed to be a product of minimal 129

correction on the mt. We observe a significant dis- 130

crepancy in the edit-distance distribution between 131

mt–ref and mt–pe (Figure 2). Thus, this method 132

leaves much room for improvement in the quality 133

and effect of the resulting synthetic triplets in that 134

they are likely to guide an APE models to give 135

unnecessarily excessive correction on mt in the 136

inference stage. 137

Random Noising Approach (RAND) This 138

method (Lee et al., 2020) creates synthetic mt by 139

applying editing operations (each editing operation 140

corresponds to a certain type of translation errors) 141

to ref . Specifically, this method randomly inserts, 142

deletes, or substitutes tokens in ref with regards 143

to the error-quantity distribution (i.e., the probabil- 144

ity of the occurrence of each operation) of gold- 145

standard mt. The result is a set of synthetic triplets 146

in the form of ⟨src, refnoise, ref⟩, where refnoise 147

serves as mt. In contrast to TRANS, the synthetic 148

mt created with this method have the advantage of 149

reflecting the error distribution of gold-standard mt. 150

However, the synthetic triplets could still signifi- 151

cantly differ from gold-standard triplets because 152

the noising procedure is unsystematic due to its 153

randomness. 154
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Transformer encoder

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑦! <MASK> 𝑦# <MASK> 𝑦%

Input Embedding

𝑦"# 𝑦$#

Output Embedding

Figure 3: The overall architecture of the MLM noising model. xi, ỹj and yk denote a token in src,mt, and ref ,
respectively.

Back-Translation Approach (BT)155

A recently proposed method (Lee et al., 2021) is156

to adapt back-translation (Sennrich et al., 2016)157

to APE to improve TRANS so that the resulting158

synthetic mt (“m̃t") can reduce the excessive mt–159

ref edit distance of the existing TRANS triplets.160

They suggest two such methods to produce m̃t:161

• forward generation (BT-FG): creating m̃t by162

partially correcting mt by using APE.163

• backward generation (BT-BG): reversing APE164

in the form of (src, pe) → mt and creating165

m̃t by partially noising ref with probable166

translation errors.167

Compared to TRANS, although this method suc-168

ceeds in reducing the edit distance in the overall169

distribution, the resulting BT synthetic data fails to170

improve the APE performance of trained models171

when it is used solely.172

3 Approach173

Considering that each one of TRANS and RAND174

has a limitation that the other overcomes, we aim175

to construct a new set of synthetic triplets that in-176

corporates the advantages of both the methods and177

solves their problems. Our MLM noising approach178

is to create new synthetic mt, the errors of which179

are likely to appear in gold-standard mt not only180

qualitatively but also quantitatively: the error quan-181

tity and types are determined with regards to the182

distribution of gold-standard data.183

In addition, we also explain the corpus inter-184

leaving approach, which is to combine the products185

of TRANS and our approach, to further improve the186

quality of our new synthetic data.187

3.1 MLM Noising 188

MLM Architecture 189

MLM is a denoising method that substitutes 190

<MASK> in the input sequence with appropriate to- 191

kens that are likely to be the original tokens, which 192

is equivalent to ‘text-infilling’, by using a Trans- 193

former (Vaswani et al., 2017) encoder. 194

The difference between the original work and 195

our approach is that our MLM noising model is 196

fed with refmask, which derives from ref through 197

replacement of certain tokens by <MASK>, and 198

performs text-infilling to predict probable mt to- 199

kens to be in the positions of <MASK>; for this 200

purpose, we substitute <MASK> in refmask with 201

the desired mt tokens by using MT outputs and 202

obtain refnoise. We expect that this text-infilling 203

will allow the MLM model to learn injecting mt 204

errors into ref . 205

In sum, the training data of our MLM model 206

have the form of ⟨src, refmask, refnoise⟩, of which 207

src (yet without masking) is also fed into the model 208

to provide contextual information (Figure 3), fol- 209

lowing the basic nature of APE (§1). 210

Training: MLM Training-Data Construction 211

To arrange ⟨src, refmask, refnoise⟩ for the model 212

training, we need to determine (1) what output 213

tokens correspond to <MASK>, (2) where to place 214

<MASK>, and (3) how many <MASK> should be. 215

To this end, we utilize word-to-word alignments1 216

between mt and ref , which are the byproducts of 217

the mt–ref edit-distance calculation process. By 218

examining the alignment of each ref token, we 219

can identify whether it is (1) a correct translation, 220

(2) a substitution error, (3) an insertion error, or 221

1We obtain these alignments by running tercom software:
https://github.com/jhclark/tercom.git

3

https://github.com/jhclark/tercom.git


Algorithm 1: Construction of MLM Training

Data
Input: D := {⟨x, ỹ,y⟩ni=1}

Dist := edit-distance distribution of gold data
A := {an

i=1} // mt-ref alignments
Output: DMLM = {⟨x,ymask,ynoise⟩ni=1}
DMLM ← {}
for i ∈ [1, n] do

ymask
i ← ∅

ynoise
i ← ∅

ei ∼ Dist
ẽi ← edit_distance(ỹi,yi)
aerr
i ← {(y, ỹ) | ∀ai, y ̸= ỹ }

if ẽi > ei then
num_mask← ⌈(Len(yi) ∗ ei)⌉
ãi ← random_choice(aerr

i , num_mask)
else

ãi ← aerr
i

for each ⟨y, ỹ⟩ ∈ ai do
if ⟨y, ỹ⟩ ∈ ãi then

ymask
i ← Append(ymask

i , ⟨MASK⟩)
ynoise
i ← Append(ynoise

i , ỹ)

else
ymask
i ← Append(ymask

i , y)
ynoise
i ← Append(ynoise

i , y)

DMLM ← DMLM ∪ {⟨xi,y
mask
i ,ynoise

i ⟩}

(4) a deletion error. For a given ref sequence, we222

place <MASK> in the positions of the tokens the223

alignments of which are identified as errors2 and224

take their aligned mt tokens as the desired output225

tokens.226

Next, we control the quantity of errors to be in227

refmask by following the error-quantity distribu-228

tion of gold-standard mt. We compare the edit229

distance of every ⟨mt, ref⟩ pair with that of sam-230

pled edit distance from the mt–pe edit-distance231

distribution of gold-standard data (Figure 2); if232

the edit distance of the given ⟨mt, ref⟩ sample is233

larger than the sampled value, we restrict the num-234

ber of <MASK> to the sampled value. We describe235

this MLM training-data construction process with236

Algorithm 1.237

Inference: APE Training-Data Construction238

Once the training has finished, we then make239

new synthetic APE triplets by using our trained240

MLM. We first mask tokens in a given ref se-241

quence with regards to the error-type statistics of242

gold-standard mt so that the resulting refmask sim-243

ulates error patterns appearing in gold-standard244

2We ignore alignments indicating deletion errors because
all deletion <MASK> are mapped onto a single output token.
We presume that this mapping will cause deletion-biased pre-
diction. Instead, we simulate deletion errors at the inference
time.

Algorithm 2: Construction of MLM Inference

Data
Input: D := {⟨x,y⟩ni=1}

µ := {µkeep, µsub, µins, µdel} s.t.
∑

µ = 1
Output: DMLM = {⟨x,ymask⟩ni=1}
DMLM ← {}
for i ∈ [1, n] do

ymask
i ← ∅

for each yj ∈ yi do
op ∼ Categorical(op | µ)
if op is keep then

ymask
i ← Append(ymask

i , yj)

else if op is substitution then
ymask
i ← Append(ymask

i , ⟨MASK⟩)
else if op is insertion then

ymask
i ← Append(ymask

i , yj)
ymask
i ← Append(ymask

i , ⟨MASK⟩)
else if op is deletion then

continue

DMLM ← DMLM ∪ {⟨xi,y
mask
i ⟩}

mt. We refer to a categorical distribution µ = 245

{µkeep, µsub, µins, µdel}3, where each term indicates 246

the probability of each mt token’s being a correct 247

translation, a substitution error, an insertion error, 248

and a deletion error, respectively. 249

After making refmask in this stochastic man- 250

ner according to the procedure described in Al- 251

gorithm 2, we provide our trained MLM model 252

with ⟨src, refmask⟩ and let it perform text-infilling 253

to predict refnoise. This refnoise is our new syn- 254

thetic mt; our new synthetic APE triplets are thus 255

⟨src, refnoise, ref⟩. 256

3.2 Corpus Interleaving 257

Although many triplets in TRANS have excessively 258

large mt–ref edit distances as mentioned above 259

(§2.2), the triplets whose mt–ref edit distance are 260

similar to the average mt–pe edit distance can be 261

regarded as a suitable training sample for APE (e.g., 262

the overlapping region in Figure 2); utilizing them 263

together with our new synthetic APE triplets would 264

be helpful for APE models eventually. 265

Thus, we suggest corpus interleaving, which is 266

to adopt the better triplet between TRANS’ and 267

ours, both of which share the same src and ref . In 268

this regard, we apply the 3-sigma rule (Pukelsheim, 269

1994) to make a choice between mt and refnoise 270

3We obtain the statistics through mt–pe edit-distance
calculation. For the calculation, we used tercom software:
https://github.com/jhclark/tercom.git
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for every bitext ⟨src, ref⟩, i.e.,271

mt =

{
mt if |edit(mt, ref)− µ| ≤ λσ

refnoise otherwise,
(2)272

where edit(·) denotes the edit distance; µ and σ273

are the mean and standard deviation of the mt–pe274

edit distances, respectively; λ ∈ [1, 3] is a hyperpa-275

rameter.276

4 Experiments277

4.1 Setup278

Evaluation Metric279

Following the WMT APE shared task (Chatterjee280

et al., 2018), we adopted TER (Snover et al., 2006)281

as our primary metric, and BLEU (Koehn et al.,282

2007) as the secondary metric. We conducted all283

evaluations case-sensitively.284

Datasets285

Our benchmark dataset is the dataset released for286

the WMT’18 APE shared task, which is a set287

of human-annotated English-to-German (EN–DE)288

APE triplets (i.e., src is in English while mt and289

pe are in German), consisting of 23K training data,290

1K development data, and three kinds of test data:291

Test16, Test17, and Test18, each of which contains292

2K data.293

In our experiments, TRANS refers to the dataset4294

released by Negri et al. (2018), which contains295

about 7M triplets. We used the TRANS triplets296

in both the training of our MLM noising model297

(we randomly extracted 2K held-out data from298

the whole data to use as development data) and299

the construction of our new synthetic APE triplets300

(§3.1). For a fair comparison with the existing301

methods (§2.2), we used TRANS’ bitexts also for302

RAND (note that BT5 has been already made from303

TRANS). All words in the datasets that we used304

were tokenized into subword by SentencePiece6.305

Model Configuration306

We implemented our MLM noising model by mod-307

ifying the RoBERTa (Liu et al., 2019) implementa-308

tion released by Huggingface7 (note that we trained309

4https://ict.fbk.eu/escape/
5https://github.com/wonkeelee/

APE-backtranslation.git
6https://github.com/google/

sentencepiece
7https://github.com/huggingface/

transformers

Transformer 
encoder

Transformer 
decoder

Cross Attention

Transformer 
decoder

Cross Attention

Output layer

𝑠𝑟𝑐 𝑝𝑒
(shifted right)

𝑚𝑡

Concat

Figure 4: A schema describing the architecture of the
concat-based APE model proposed by Shin et al. (2021).

Settings MLM APE

Optimizer
Adam

(ϵ = 10−9, β = (0.9, 0.998))

Batch size (# samples) 384

# layers 12 6

# heads 12 6

Hidden size 768 512

Feed-forward 3,072 2,048

Activation GeLU ReLU

Learning rates 2e-4 5e-4

Warmup steps 7,000 6,000

Decay function linear inverse sqrt.

Train steps 40K 10K

Train times 2.5 days 12 hours

GPUs A100 × 8ea A5000 × 4ea

# params 110M 85M

Table 1: The configurations of the MLM noising model
and the APE model used in our experiments.

our MLM model from scratch, not using a ‘pre- 310

trained’ RoBERTa model). We followed most of 311

the default hyperparameter configuration of Hug- 312

gingface’s RoBERTa implementation. 313

To evaluate the effect of synthetic APE train- 314

ing data, we used OpenNMT-py8 to implement the 315

“concat-based” APE model (Figure 4) proposed by 316

Shin et al. (2021), a basic Transformer-based APE 317

model containing relatively few parameters yet 318

showing a satisfactory performance. This model 319

follows the ‘Transformer-base’ (Vaswani et al., 320

2017) hyperparameter settings, and we adopted 321

the same settings. We report both model’s configu- 322

rations including their hyperparameters in Table 1. 323

8https://github.com/OpenNMT/OpenNMT-py
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Approaches
Test16 Test17 Test18 Test Avg.

TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑) TER(↓) BLEU(↑)

TRANS 16.87 73.95 17.30 73.08 17.80 72.41 17.32 73.15
RAND 17.23 73.59 17.61 72.69 17.81 72.38 17.55 72.88
BT-FG 17.26 73.56 17.56 72.78 17.89 72.14 17.57 72.82
BT-BG 17.61 73.04 17.60 72.49 18.01 71.89 17.74 72.47

MLM Noising 16.90▲†‡ 74.03▲†‡ 17.31▲‡ 72.90‡ 17.62‡ 72.43‡ 17.28▲†‡ 73.12▲†‡

Table 2: A fair comparison of the evaluation results of four APE models, each of which is trained on different
synthetic data. ∗,▲, †, ‡ indicate that our MLM noising approach’s result outperforms TRANS, RAND, BT-FG, and
BT-BG, respectively, with a statistical significance of p < 0.05. The best result in each column is highlighted in
bold.

Test Avg. Sample Ratio
TER(↓) BLEU(↑) MLM TRANS

λ = 0 (MLM Noising) 17.32 73.15 100.0% 0.0%
λ = 1 17.25 73.26 71.5% 28.5%
λ = 2 16.96∗∗ 73.75∗∗ 41.5% 58.5%
λ = 3 17.03∗∗ 73.48∗∗ 20.8% 79.2%
λ = ∞ (TRANS) 17.28 73.12 0.0% 100.0%

Table 3: The effect of corpus interleaving with varying λ.
∗∗ indicates the improvement is statistically significant
compared to both λ = 0 and λ = ∞ with p < 0.01.
The best result in each column is highlighted in bold.

4.2 Results324

We trained the APE model in the same experi-325

mental environment (including the hyperparameter,326

codebase, and training seed) but with different syn-327

thetic data: TRANS, RAND, BT-FG, BT-BG, and328

MLM noising. We evaluate these five trained mod-329

els on the test data to compare the effectiveness of330

each synthetic data (Table 2).331

We observe that using the synthetic data created332

with MLM noising results in significant improve-333

ments in APE performance compared to most of334

the other data-synthesis methods. However, the335

improvement over TRANS was not statistically sig-336

nificant in our experiments. As aforementioned337

(§3.2), we surmise that TRANS contained numbers338

of triplets that are as helpful for APE models as our339

synthetic triplets.340

To verify whether the effectiveness of MLM341

noising is further enhanced when corpus interleav-342

ing is applied, we also trained the APE model343

on the integration of the TRANS data and our344

MLM noising triplets by using corpus interleav-345

ing. Through experiments, we ascertain that corpus346

interleaving is helpful in enhancing APE perfor-347

mance and that this enhancing effect is statistically348

significant (Table 3). Also, we found that taking349

almost equal parts (λ = 2) from TRANS and our350

0 1 2 3 ∞16.8

17

17.2

17.4

17.6

17.8

λ

T
E
R

RAND

BT-fg

BT-bg

Figure 5: The effects of the corpus interleaving when
applied to other existing synthetic APE data. The λ that
records the best performance for each data is marked
with a color.

MLM noising data leads to the best APE perfor- 351

mance among other ratios; this finding supports our 352

speculation (§3.2) that each synthetic data has its 353

own advantages. 354

5 Analysis and Discussion 355

5.1 Effect of Corpus Interleaving 356

To examine the effect of corpus interleaving inde- 357

pendently, we conducted additional experiments 358

where we interleave the TRANS data with differ- 359

ent synthetic training data other than ours: RAND, 360

BT-FG, and BT-BG. 361

Considering the experimental results (Figure 5), 362

corpus interleaving appears to be effective in cre- 363

ating better training data, regardless of what data- 364

generating method is used as the counterpart of the 365

TRANS data. We found that all the instances of 366

corpus interleaving outperform using the TRANS 367

data solely (λ = ∞) and using the corresponding 368

synthetic data solely (λ = 0). We speculate that 369
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src How to choose the right trainee ?
ref Wie wählen Sie den richtigen Praktikanten ?

mt (TRANS) How bis choose the right Auszubildender ?
refnoise (MLM noising) wählen Sie den richtigen Praktikanten ?

Table 4: An example of refnoise, a new mt created with our proposed method, showing a better quality than the
corresponding mt (TRANS). The corresponding src, mt, and ref compose a triplet in the original TRANS dataset.
Boldface words in ref are overlapped with the other boldface words either in mt (TRANS) or in refnoise.

src What happens if I want to leave ?
ref Was geschieht , wenn ich wieder gehen will ?

mt (TRANS) Was passiert , wenn ich verlassen wollen ?
refnoise (MLM noising) Was passiert geschieht , wenn ich ich zu gehen wollen .

Table 5: An example of refnoise, a new mt created with our proposed method, showing a poorer quality than the
corresponding mt (TRANS). The corresponding src, mt, and ref compose a triplet in the original TRANS dataset.
Boldface words in ref are overlapped with the other boldface words either in mt (TRANS) or in refnoise.

this effect proceeds from the common feature of370

all the experimented synthetic data that they are371

built upon the TRANS data to further reduce the372

edit distance between mt and ref .373

We also found that corpus interleaving with374

RAND leads to a bigger improvement in APE per-375

formance than the others (except ours). The reason376

could be that refnoise of the RAND data reflects the377

error-quantity distribution of gold-standard mt as378

ours does although their noising procedure is ran-379

dom unlike our MLM noising approach. This find-380

ing can also be evidence that reflecting the error-381

quantity distribution of gold-standard mt is the382

crux of constructing good synthetic APE triplets.383

5.2 Case Analysis on Synthetic Data384

We provide two examples of how the relation be-385

tween mt and ref changes when our proposed386

method is applied. Whereas the mt sentence in387

the first example (Table 4) contains only two Ger-388

man words ‘bis’ (translated as ‘until’ or ‘to’) and389

‘Auszubildender’ (‘trainee’) and all the other words390

are still English words, the new mt sentence (trans-391

lated as ‘do you choose the right trainee?’) only392

omits one German word ‘Wie’ (‘How’).393

This first example implies that our proposed394

method can successfully supply improved APE395

triplets, mt of which has a similar amount of error396

as that in gold-standard mt sentences. Further-397

more, while the ref sentence cannot be a mini-398

mally post-edited sentence for the mt sentence due399

to the synonymity between ‘Auszubildender’ and400

‘Praktikanten’ (also ‘trainee’), it obviously is for401

the new mt sentence.402

The second example (Table 5) is the opposite 403

case, where our method fails to supply an improved 404

APE triplet. In this example, inserted words such as 405

‘passiert’ (‘happens’) and substituted words such 406

as ‘wollen’ (‘want to’) make the new mt sentence 407

as corrupted as the mt sentence. 408

This example implies that our MLM can per- 409

form implausible substitutions of masked tokens 410

when the number of errors in the mt sentence is 411

already moderate with regards to the gold-standard 412

statistics and thus the substitution of the remaining 413

masked tokens requires the learning of relatively 414

‘sophisticated’ substitution; for instance, our MLM 415

appears to have substituted a <MASK> for ‘wieder’ 416

(‘again’) by ‘zu’ (‘to’) to reflect the existence of 417

‘to’ in src, but it is a wrong substitution. 418

Nevertheless, because our new mt basically 419

takes a large part of ref , we can still expect that 420

the new mt may have the advantage of choosing 421

the given ref as its minimally post-edited result 422

while mt does not; in this example, the ref sen- 423

tence cannot be a minimally post-edited sentence 424

for the mt sentence due to the synonymity between 425

‘passiert’ and ‘geschiet’ (also ‘happens’). 426

6 Related Work 427

Outside the APE field, the field of quality estima- 428

tion (QE) shares the same training data as the APE 429

field, and thus training data shortage is a problem 430

for both fields. To mitigate the problem, Tuan et al. 431

(2021) propose a method to create synthetic train- 432

ing data for QE models by using an MLM. First, 433

they randomly select spans of words in a given 434

ref to delete, insert <MASK> tokens, or mask with 435
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<MASK> tokens. Then, their MLM performs text-436

infilling to produce a synthetic mt as a result.437

Although their approach appears to be based438

on the same intuition as ours, the two approaches439

differ in the following respects. First, they used440

an off-the-shelf multilingual BERT (Devlin et al.,441

2019) model in their experiments and do not ad-442

dress the MLM’s training. Second, their multilin-443

gual BERT does not learn cross-lingual representa-444

tions in the process of self-attention on the contrary445

to our MLM, which takes src and mt at once as446

its input. Lastly, because their MLM is trained447

on clean training data, it learns to predict a cor-448

rect substitute for each masked token, whereas our449

MLM learns to predict substitutes that are likely to450

reproduce MT errors.451

7 Conclusion452

In this paper, we introduce a new method to con-453

struct a synthetic APE dataset with parallel corpora.454

To this end, inspired by the text-infilling process455

performed by an MLM, we propose the MLM nois-456

ing approach, which is to let an MLM inject trans-457

lation errors into ref to obtain new synthetic mt.458

Our MLM applies text-infilling to learning the pre-459

diction of erroneous tokens that are likely to be460

outputs of an MT system while the error quantities461

to be injected are controlled using the statistics of462

gold-standard data.463

Because we find that the TRANS approach, an464

existing data-synthesis method that simply trans-465

lates src to the target language to obtain mt, still466

has distinctive advantages, we also propose corpus467

interleaving, which is to combine TRANS and ours468

for a further enhancement of the APE performance469

that our data produces.470

Through experiments, we found that our MLM471

noising method significantly outperforms other ex-472

isting data-synthesis methods in terms of the re-473

sulting APE performance. However, we also find474

that our approach may not have a significant effect475

when the number of translation errors already in-476

cluded in mt is not excessively big with regards to477

the gold-standard statistics because our new syn-478

thetic mt has a similar number of implausible mask479

substitutions in that case. We therefore expect480

that applying adversarial learning to our MLM (as481

ELECTRA (Clark et al., 2020) does) to discrim-482

inate whether the text-infilling result is plausible483

will be an way to further improve our method in484

the future.485
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