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ABSTRACT

User specifications or legal frameworks often require information to be removed
from pretrained models, including large language models (LLMs). This requires
deleting or “forgetting” a set of data points from an already-trained model, which
typically degrades its performance on other data points. Thus, a balance must be
struck between removing information and keeping the model’s other abilities in-
tact, with a failure to balance this trade-off leading to poor deletion or an unusable
model. To this end, we propose UPCORE (Utility-Preserving Coreset Selection),
a method-agnostic data selection framework for mitigating collateral damage dur-
ing unlearning. Finding that the model damage is correlated with the variance of
the model’s representations on the forget set, we selectively prune the forget set to
remove outliers, thereby minimizing model degradation after unlearning. Across
three standard unlearning methods, UPCORE consistently achieves a superior
balance between the competing objectives of deletion efficacy and model preser-
vation. To better evaluate this trade-off, we introduce a new metric, measuring the
area-under-the-curve (AUC) across standard metrics. Our results show that UP-
CORE improves both standard metrics and AUC, benefiting from positive transfer
between the coreset and pruned points while reducing negative transfer from the
forget set to points outside of it. We include our code in the supplementary.

1 INTRODUCTION

The widespread deployment of ML models, especially large language models (LLMs), has raised
concerns around privacy, regulation, and ethical use. Trained on massive, uncurated web data, these
models often memorize sensitive, copyrighted, or undesirable content (Shokri et al., 2017; |Carlini
et al.,|2019). With regulations like the GDPR and CCPA granting individuals the “right to be forgot-
ten,” efficient methods for removing specific data or topics from pre-trained models are increasingly
necessary. Machine unlearning offers a promising solution by enabling targeted data removal with-
out full retraining and also helps reduce harmful outputs, protect intellectual property, and align
LLMs with societal values (Jang et al 2023)). These challenges have driven renewed interest in
improving model editing and unlearning techniques (Liu et al., |2024; |Hase et al., |[2024).

Given the growing use of LLMs, prior work has proposed methods for removing knowledge or
skills (Cao & Yang] 2015} Bourtoule et al., 2021} Nguyen et al., [2022) and steering behavior in
targeted ways (Sinitsin et al., |2020; [Meng et al., 2022). However, such editing often induces un-
intended side effects, reducing utility on unrelated tasks. Effective unlearning therefore requires
balancing deletion of undesired information with preservation of overall model utility. To evaluate
this, current methods assess both deletion success (via “forget set” performance) and collateral ef-
fects on unrelated behaviors (via “retain set” accuracy). This is particularly important in realistic,
topic-level unlearning scenarios, such as removing information about an individual or sensitive do-
main (L1 et al., 2024), where deletion may cause over-generalization and degrade performance on
semantically or structurally similar inputs.

A key gap in existing research lies in understanding the specific data characteristics that drive over-
generalization and collateral effects during unlearning. While prior work (Sheshadri et al., 2024;
Chowdhury et al.| [2024) has measured damage resulting from unlearning, it does not investigate
how attributes of the data — such as its variance — contribute to collateral damage or whether these
attributes can be controlled to optimize the trade-off between deletion efficacy and utility retention.
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Figure 1: Left: Standard unlearning methods are applied equally to all points in the forget set. Here,
outlier points in the model’s hidden space (visualized in 2D) contribute to the unintentional forget-
ting of points outside of the forget set (i.e. collateral damage). Right: By finding a lower-variance
coreset within the forget set, UPCORE reduces damage while maintaining forget performance via
positive transfer from the coreset to the pruned points.

Focusing on a topic-based setting where the forget set comprises semantically coherent groups of
information, we seek to address these questions:

1. What measurable attributes of the forget set drive collateral effects during unlearning?

2. Can these attributes be systematically controlled to optimize the trade-off between deletion effec-
tiveness and model utility?

We investigate which properties of the forget data correlate with collateral damage during unlearn-
ing. Our analysis reveals a strong positive correlation between the variance of the model’s hidden
state representations corresponding to datapoints in the forget set (hidden state variance, or HSV),
and the extent of collateral damage to the model after unlearning. In other words, unlearning a set
of widely-distributed datapoints (as shown in Fig. [T] (left)) leads to more damage than unlearning
a more densely-distributed set. Building on this insight, we hypothesize that selectively curating a
lower-variance coreset from the larger forget set can help optimize this trade-off, as shown in Fig.[I]
(right).

To this end, we introduce UPCORE, which constructs a core forget set by systematically identi-
fying and pruning data points in the forget set that contribute most to the variance and thereby to
collateral damage. UPCORE organizes points into an Isolation Forest (Liu et al., 2008a), which
identifies anomalous points in a set. By pruning these points, we reduce the variance within the
forget set, which we find leads to less damage. Crucially, in addition to reducing collateral damage,
UPCORE in fact leverages it by identifying two separate kinds of collateral effects: (1) Negative
collateral damage: Unintended degradation of unrelated model capabilities and (2) Positive collat-
eral transfer: The intended impact on pruned data points removed to form the core forget set. This
is illustrated in Fig. (I} where pruned outlier points are still unlearned — despite not being a part of
the coreset used for unlearning — due to positive transfer, and is further highlighted by our results
in Table [2] and Table ] which show that UPCORE results in better unlearning than a randomly-
selected subset while also having better knowledge retention on non-forget data. We show positive
collateral transfer enabled by UPCORE in Table [5] with deletion transferring to points outside the
coreset. Moreover, our focus on data makes UPCORE method-agnostic: it can be applied to any
data-driven unlearning framework.

We evaluate UPCORE in prompt completion and question-answering settings and across three stan-
dard unlearning methods: Gradient Ascent (Jang et al., [2023), Refusal (Ouyang et al.,|2022; Maini
et al.l 2024)) and Negative Preference Optimization (NPO) (Zhang et al.,[2024b)), applying each un-
learning algorithm directly to the optimized core forget set obtained using UPCORE, rather than
the entire forget set. We measure three critical dimensions: (1) Deletion effectiveness, measured
by the successful removal of targeted knowledge in the (a) forget set, (b) paraphrased versions of
removed information as well as (c) prompts attempting to jailbreak the model.; (2) Unintended dam-
age, where we quantify collateral effects on unrelated model capabilities; and (3) Intended transfer,
where we analyze the impact on the pruned data points that were removed from the core forget set
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as shown Section[4.2] While we follow past unlearning work in the metrics we use to measure the
trade-off between the competing objectives, we also note that the current suite of metrics measures
performance at a fixed point during unlearning. This can make comparisons across methods hard,
as the trade-off between deletion efficacy and model utility varies across unlearning gradient update
steps. To address this, in addition to showing improvements on standard metrics, we introduce a
novel set of metrics that report the area-under-the-curve (AUC) for the standard unlearning metric
suite, reporting not just the performance at one fixed timestep, but measuring how a method trades
off deletion with model utility across checkpoints in the unlearning trajectory (see Fig. [3).

Empirically, we find that across all three unlearning methods, UPCORE consistently has the high-
est AUC compared to baselines of unlearning on the complete forget set and choosing a random
subset of forget points. In other words, UPCORE forms a Pareto frontier, maximizing unlearn-
ing effectiveness while also minimizing model damage. Moreover, UPCORE positively leverages
generalization by transferring unlearning from the core set to the high-variance outlier points that
were removed from the core forget set. Notably, it consistently beats baselines across all unlearning
methods; this holds true across multiple metrics (e.g. ROUGE on a “retain” set, on neighborhood
data closely related to (but not in) the forget set, etc.). UPCORE’s superior trade-off effectively
generalizes to variations of the forgotten information, performing well on paraphrased versions of
forgotten prompts as well as prompts intended to jailbreak the model. We also see these gains
reflected in static evaluations of one checkpoint (as opposed to AUC, which evaluates across check-
points); here, UPCORE obtains lower (better) ROUGE on the forget set than the random baseline
while simultaneously incurring less model damage than the random and complete baselines, with
the best (highest) ROUGE across all data not in the forget set.

2 METHODS

We introduce UPCORE (Utility-Preserving Coreset Design for Unlearning), an approach motivated
by the observation that certain data points in the forget set disproportionately contribute to collat-
eral damage during unlearning, primarily by increasing data variance. To address this, UPCORE
reformulates pruning for core forget set selection as an outlier detection task, where outlier data
points i.e. points with the greatest influence on utility degradation are identified and pruned. By
minimizing variance within the forget set, UPCORE reduces unintended negative effects, ensuring
more effective and targeted unlearning.

2.1 PROBLEM DEFINITION

Let D be the training dataset for model M, with Dy C D the forget set. Direct unlearning via i/
yields M’ = U(M, D), but often degrades performance on D \ Dp due to over-generalization,
where updates undesirably affect unrelated points.

To mitigate this, we define a core forget set Do C Dp by pruning points that disproportionately
drive over-generalization. When Dy is heterogeneous or sparse i.e. the points are not correlated,
UPCORE does not prune (D¢ = D), reducing to U (M, D).

The goal is to balance (i) minimizing collateral damage on D \ Dp and (ii) maintaining deletion
accuracy for Dp. Formally, given a damage metric Damage ;, 1. (M,M’,D \ Dp) and deletion

accuracy DelAccy,p.)(M’, DF), we solve:

Dc = arg min (Damage(upc)(M, M'.D\ Dr) — - DelAccqy.poy (M, DF)) 1)

where A > 0 controls the trade-off between the objectives. We provide the theoretical intuition for
UPCORE in Appendix [B]

2.2 VARIANCE AS A MEASURE OF COLLATERAL DAMAGE

Building on prior work analyzing the cross-task generalization of forgetting methods (Zhang et al.,
2024a), we investigate the relationship between attributes of the forget set Dy and their impact
on collateral damage during unlearning i.e. Damage, p,) (M ,M' (D\ D F)) Specifically, we
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Figure 2: UPCORE has four stages. First, we extract hidden states from the LLM to be modified;
second, we identify outliers using Isolation Forests; third, we prune outliers to select a core forget
set, and fourth, we perform unlearning on the coreset.

identify the variance Var (D) as a critical predictor of overgeneralization. Since directly selecting
optimal subsets based on unlearning performance is computationally infeasible — due to the high
cost of repeatedly retraining or unlearning — our goal is to develop scalable heuristics like variance
that approximate which subsets minimize collateral damage, enabling efficient and practical coreset
selection for unlearning. To systematically evaluate the relationship between variance and unlearn-
ing, we analyze question-answer (QA) pairs generated from Wikipedia documents across diverse
topics. Each topic-specific dataset acts as the forget set D, with unlearning applied separately, one
topic at a time. For each forget set, we compute variance using the hidden states of the last token
and the penultimate layer of the model. We then compute retain set performance as the model util-
ity metric proposed by Maini et al.| (2024)), which measures performance on preserved data points
after unlearning. The results, visualized in Fig. [7al in Appendix demonstrate a strong neg-
ative correlation between HSV and model utility, indicating that variance is a potential driver of
over-generalization. These findings underscore the importance of identifying and excluding points
that lead to higher variance i.e. outliers to mitigate utility loss. In Appendix we show similar
analyses for other attributes such as model confidence and gradient similarity but find no strong
correlation between utility degradation and these attributes.

Causal link between variance and model utility. To establish a causal link between the variance
of representations of the forget data and the utility drop of model after unlearning, we conduct a
controlled intervention analysis by adding Gaussian noise with three different levels of standard
deviation to the hidden states at a fixed layer (layer 15) during the forward pass of the forget set
corresponding to three topic in the Counterfact dataset during unlearning, allowing us to ablate the
effect of variance for the same input. Our findings suggest a causal relation where increased forget-
set variance directly leads to a proportionate rise in collateral damage across 3 topics. .

Table 1: Effect of adding noise to the forget set representation to increase variance on post-
unlearning utility across three topics. Higher Gaussian noise levels injected into hidden states lead
to increased collateral damage.

Noise Std. Dev. (o) | Topic 1 (drop) | Topic 2 (drop) | Topic 3 (drop)

0.01 2.1 2.5 23
0.05 54 59 5.7
0.1 10.8 11.5 11.2

2.3 UPCORE: CORE FORGET SET SELECTION

To achieve variance minimization in the forget set D, UPCORE frames the problem as an outlier
detection task. UPCORE provides two key benefits: (1) It mitigates negative collateral damage by
pruning outliers to form a more compact core forget set, and (2) It strategically exploits collateral
over-generalization to extend unlearning beyond the core forget set, effectively removing the pruned
points as well. As shown in Fig. [} what might traditionally be viewed as detrimental collateral
damage — when it affects points outside the forget set (Dg) — can be turned to our advantage when
it impacts untrained data points within the forget set that were pruned (Dg \ D¢).
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To detect these outliers, we use the Isolation Forest algorithm (Liu et al., 2008a)), an unsupervised
learning technique that efficiently identifies anomalous data points. Isolation Forest works by recur-
sively partitioning the dataset using random feature selections and random split values. Points that
are isolated with fewer partitions, i.e. are isolated more easily, are considered outliers, as they differ
significantly from the majority of the data. This makes the Isolation Forest algorithm particularly
effective for high-dimensional data where traditional distance-based outlier detection methods may
fail. These outliers, isolated in feature space, are likely to contribute to high variance and over-
generalization during the unlearning process. UPCORE proceeds as follows (illustrated in Fig. [2):

Stage 1: Hidden Feature Extraction: We extract hidden state representations / from the model’s
penultimate layer, as it typically encodes high-level semantic abstractions while retaining gener-
alization capacity, unlike the final layer which is often biased toward task-specific outputs (Skean
et al, [2025) (See Fig. [2]left), corresponding to the final token of each question in Dp. These rep-
resentations, which reflect the model’s internal representation of the data, serve as input features for
outlier detection. This step is guided by our analysis in Section[2.2] which highlights the strong link
between hidden state variance and collateral damage.

Stage 2: Training the Isolation Forest and Computing Anomaly Scores: We train an Isolation
Forest model Z on the forget set D to model its distribution, recursively partitioning the data
to detect outliers (see Fig. [2] middle). Points isolated more quickly and requiring fewer splits are
flagged as outliers, indicating disproportionate contributions to variance in the hidden state space.
For each d € Dp, T assigns an anomaly score score(d) based on the average path length h(d)
required to isolate the point across an ensemble of binary trees. Shorter path lengths correspond
to higher anomaly scores, indicating points that contribute to variance and thus collateral effects.
Additional details are provided in Appendix [C|

Stage 3: Prune Outliers and Set Stopping Criterion: To construct the pruned coreset D¢, we
threshold Isolation Forest anomaly scores: Do = {d € Dp | score(d) < 7}, excluding points above
T as outliers that disproportionately increase variance. Removing them reduces utility degradation
while preserving core forget information. The threshold 7 can be set via: (1) Coreset Size Control,
specifying a desired | D¢ |, or (2) Proportional Pruning, selecting the top k% of lowest-score points.
In practice, we prune 10% in main experiments and vary this in scaling studies (Appendix [D.T). If
the anomaly score distribution lacks clear separation (sparse or heterogeneous forget set), pruning
is skipped, Do = Dp, and UPCORE defaults to U (M, Dr). If the forget set contains subsets of
correlated points, UPCORE prunes each subset individually to form D¢.

Stage 4: Unlearning on the Coreset: After selecting the pruned coreset Do, UPCORE applies
the unlearning algorithm ¢/ to the model M, resulting in M{;pcorg = U(M, D) (See Fig. [2|end).
This process removes the influence of Dy while minimizing utility degradation on D \ Dp. By
focusing on D, UPCORE ensures targeted unlearning and positively leverages collateral effects,
as unlearning D¢ also deletes much of Dg’s influence, even those parts not explicitly included in
D¢. We later show this positive transfer empirically in Table[5]

3 EXPERIMENTAL SETUP

Unlearning Methods and Baselines. We test UPCORE with three standard unlearning methods
applied to a Llama-3.1-8B (Dubey et al., 2024) base model. In all cases, models are trained using
both the forget set (complete or sampled) and a retain set, which contains examples of data that
should not be forgotten, providing a contrastive signal. The unlearning methods we use are:

* Gradient Ascent (Jang et al., 2023): Gradient Ascent maximizes the training loss on the forget
set Dp. For each x € D, the objective is to maximize the loss.

* Refusal (Ouyang et al 2022): Refusal trains the model to respond to sensitive prompts with
neutral, non-informative answers, such as “I don’t know.”

* Negative Preference Optimization (NPQO) (Zhang et al., 2024b): NPO is a stable form of DPO
(Rafailov et al., [2024) designed for unlearning. It reduces the gap between the likelihood of the
target data and the likelihood from the original model while ensuring the unlearned model remains
closely aligned with the original (See Appendix [D.7]for more details).

We evaluate UPCORE, which is a dataset selection method, against four other selection methods
as baselines: (1) unlearning applied to the entire forget set (i.e. no selection), and (2) unlearn-
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ing performed on a randomly subsampled subset of the forget set, matched in size to the coreset
curated by UPCORE (i.e. random selection) (3) D?-pruning (Maharana et al., [2024), a standard
coreset selection method that selects the coreset based on example diversity and difficulty (4) RUM
(Zhao et al.l|2024) that partitions a forget set into homogeneous subsets based on memorization and
entaglement with the retain set and applies unlearning method to each subset. We evaluate on fac-
tual questions across two settings: prompt completion on Counterfact (pretrained knowledge), and
question answering on TriviaQA (pretrained knowledge). While our main focus is on unlearning
pretrained knowledge, we also experiment with TOFU, a synthetic unlearning dataset for complete-
ness, and we include further details on these settings in Appendix Our main results focus on
topic unlearning, but we also report results on a multi-topic Counterfact dataset that demonstrates
the generalizability of UPCORE.

3.1 METRICS AND ANSWER EXTRACTION

Following prior work (Maini et al.,|2024), we evaluate models using a suite of metrics. We compute
ROUGE (Lin, |2004) between reference and model answers to assess both utility and deletion ef-
fectiveness, as ROUGE captures content overlap in factual QA, unlike classification-based metrics
with fixed labels. To measure unintended model damage, we report ROUGE on the retain set, neigh-
borhood data, and Real World / Real Authors datasets (Maini et al., |2024), where higher is better.
For deletion, we compute ROUGE on the forget set (lower is better) and on pruned forget examples
to assess positive collateral transfer. We also report model utility, defined as the harmonic mean of
the normalized conditional probabilities P(a | ¢)'/1%!, following (Cho et al. (2014), and the truth
ratio, which compares the likelihood of correct vs. incorrect answers (Maini et al., [2024). We also
evaluate all metrics on paraphrased and jailbreak variants of the forget set, where paraphrased vari-
ants reword target examples (Krishna et al.,|2023)) and jailbreak variants probe adversarial prompts
designed to bypass unlearning (Zou et al., 2023} Jin et al., 2024).

AUC Metric. While ROUGE and model utility are standard unlearning metrics, they provide only
a single-point snapshot of model performance. This is limiting, as unlearning inherently involves a
tradeoff between forgetting and model damage that evolves over training stepsm Early checkpoints
may retain higher utility but underperform on deletion, while later ones improve forgetting at the
cost of increased damage (Fig. [3). Since the number of unlearning steps varies across works, di-
rect comparisons become difficult. To address this, we propose evaluating unlearning as a dynamic
tradeoff over time. Instead of reporting ROUGE Forget and ROUGE Retain at one step, we com-
pute the area under the curve (AUC) between these metrics over unlearning steps. This tradeoff is
visualized in Fig. [3] which plots inverse ROUGE on forget data (X-axis) versus ROUGE on neigh-
boring data (Y—axis)E] We construct Pareto curves comparing deletion metrics (e.g., ROUGE Forget)
with utility metrics (e.g., ROUGE Retain, ROUGE Neighborhood) across steps, and use the AUC
as a unified, global measure of performance. We also study the effect of evaluation granularity on
AUC (Table , and show that AUC correlates with overall unlearning effectiveness (Table E]) and
negatively with forget data variance (Table [0). In Appendix [D.T1] we analyze the effect of varying
the number of steps on this AUC metric and find our results are stable across different granularities.
Therefore we adopt a standard of 50 steps, corresponding to one epoch.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 UPCORE BALANCES DELETION AND MODEL UTILITY

Design. To evaluate whether UPCORE improves the deletion—utility Pareto frontier, we com-
pare AUC values with baselines (Section [3). AUC is computed from (1) Deletion Effectiveness,
(I — ROUGE) on the forget set (X-axis), and (2) Utility Retention, ROUGE on non-forget data
(neighborhood and aggregated utility from Maini et al.|(2024), Y-axis). We report results on Coun-
terfact and TriviaQA. See Appendix [D.12]for results on the TOFU dataset.

Results. Fig. 3] illustrates the AUC metric, which captures the trade-off between forgetting and
utility as the area under the Pareto frontier; higher AUC indicates more forgetting with less utility

"We use steps throughout; in main results, 1 epoch = 50 steps.
2This curve differs from Table we compute AUC before averaging across topics here, and after in Table
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Table 2: AUC across the two competing objectives: (1) Deletion Effectiveness, defined as
(1 — ROUGE) on the forget set (X-axis), and (2) Model Utility, averaged across Counterfact topics
and evaluated via ROUGE scores on multiple utility datasets, including neighborhood data and an
aggregate model utility across datasets (Y-axis). We compare three unlearning methods: Gradient
Ascent, Refusal, and NPO. Error bars indicate standard deviation across 3 seeds.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.488 +0015 0.568 +0018 0.720 £0016  0.891 +0.020 0.343 + 0012

Grad. Ascent Random 0.495 +0.017 0.558 +£0016 0.731 +0.015 0.907 +0.019 0.353 +0.014
RUM 0.258 +0019 0.327 +0011  0.414 +0017  0.488 +0.015 0.205 +o0.016

D?-pruning  0.493 0016 0.552 0017 0.723 0016 0.920 + 0018 0.349 +0.013

UPCORE  0.523 +o0008 0.608 +0010 0.769 +0000  0.933 +0.011 0.387 + 0.007

Complete  0.493 +o016 0.488 +£0017 0.714 0015  0.890 +0.018 0.366 +0.014

Refusal Random 0.456 0015 0.458 +0016 0.644 +0014  0.819 +0.017 0.332 +0.013
RUM 0.308 +£0015  0.349 + 0011 0.464 +0.013 0.622 +0.012 0.257 +0.019

D2-pruning 0.473 o013 0478 £0014 0.632 o011 0.805 £ 0015 0.341 +0.010

UPCORE  0.500 +0007 0.524 +0009 0.744 +0008  0.920 +0.010 0.381 + 0.006

Complete  0.281 +0.014 0.237 0015 0.192 +0013  0.342 £ 0017 0.199 +o0.012

NPO Random 0.253 +o0015  0.271 +0014 0.195 0013  0.308 +0.016 0.186 +o.011
RUM 0.225 +0017  0.213 +0008 0.144 +£0013  0.331 +0.019 0.198 + 0.009

D2?-pruning  0.265 0013 0.254 £0014 0.193 0012 0.320 %0016 0.190 +o.011

UPCORE  0.329 +o0006 0.319 +0008 0.246 +0007  0.414 +0.009 0.248 + 0.005

Complete 0.462 0.518 0.693 0.875 0.341

Random 0.448 0.502 0.671 0.859 0.326

RMU RUM 0.295 0.356 0.432 0.501 0.237
D2-pruning 0.471 0.523 0.682 0.868 0.338

UPCORE 0.502 0.583 0.744 0.912 0.374

Complete 0.451 0.509 0.678 0.862 0.332

Random 0.439 0.495 0.659 0.844 0.318

FLAT RUM 0.287 0.342 0.418 0.488 0.229
D?-pruning 0.462 0.515 0.673 0.857 0.331

UPCORE 0.473 0.554 0.703 0.891 0.377

Table 3: Evaluation metrics from Table shown for Gradient Ascent on the TriviaQA topics. Error
bars indicate standard deviation across 3 seeds. See Table for other method with TriviaQA.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.153 +0.004 0.285 £0005 0.226 +0004  0.155 +0.003 0.135 +0.004

Grad. Ascent Random 0.159 +0005 0.304 +0006 0.222 +0005  0.157 +0.004 0.136 + 0.004
RUM 0.128 0004 0.273 +0.007 0.208 0003  0.139 +0.009 0.126 + 0.007

D2?-pruning  0.162 0003 0310 £0004 0.224 +0003  0.157 +0.003 0.141 +0.003

UPCORE  0.165 +o0002 0.318 +0003 0.227 +0002  0.158 + 0.002 0.147 +0.002

loss. By unlearning on a variance-based coreset, UPCORE slows utility degradation. As shown
in Table [2] it outperforms baselines (complete forget set, random subsample) by 3—7 AUC points
across Counterfact and three unlearning methods, demonstrating method-agnostic gains. Table [3]
extends these results to TriviaQA with gradient ascent, and Table [/| confirms similar improvements
with other methods (up to 3 AUC points). Tables [4| and [16|report ROUGE and utility at epoch 10,
where UPCORE yields the highest utility and non-forget ROUGE while maintaining competitive
forget performance. Statistical significance is confirmed in Appendix Table[T4]

4.2 POSITIVE AND NEGATIVE TRANSFER

Design. Here, we measure both positive and negative transfer. To assess whether unlearning on
the core forget set induces deletion in the pruned data points (positive collateral transfer), we mea-
sure the ROUGE score of the unlearned model on these points. A significant drop in ROUGE would
indicate that the forgetting process extends beyond the explicitly unlearned subset. We measure neg-
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Figure 3: Trade-off between deletion effec- Figure 4: AUC between forget set ROUGE and
tiveness and utility forms a Pareto frontier neighborhood data ROUGE averaged across top-
across steps, shown here averaged across ics in Counterfact. UPCORE reduces damage to
Counterfact topics with Gradient Ascent. neighborhood data.

Table 4: ROUGE scores and model utility across topics from the Counterfact dataset for a fixed
epoch of Gradient Ascent. UPCORE consistently has higher performance on data outside the forget
set, with the least degradation among methods and closest performance to the base model, while still
having a high forget rate. See Table @] for these metrics on TriviaQA data

Method | Forget | Retain Neigh. Real Authors Real World Model Utility

Base model | 0.997 | 0.546  0.820 1.000 0.872 0.433
Complete 0.018 | 0381  0.144 0.669 0.446 0.182
Random 0.011 | 0.411 0.104 0.724 0.499 0.211
RUM 0.012 | 0346  0.081 0.569 0.415 0.162
D?-pruning | 0.019 | 0.431 0.152 0.157 0.487 0.271
UPCORE | 0.017 | 0.430 0.190 0.706 0.528 0.350

ative transfer on the neighborhood data, examining the AUC between ROUGE on the neighborhood
datapoints and forget set ROUGE.

Results. As shown in Table 5] ROUGE on pruned points drops from 1.00 to 0.053
(Gradient Ascent) and 0.127 (Refusal), indicating that unlearning transfers to pruned
points despite not being directly targeted, likely due to topic-level over-generalization.
This transfer is not unique to UPCORE; a similar

drop occurs with a random subsample of the same Table 5: ROUGE score on pruned datapoints.
size, suggesting that pruned points share a semantic Both for UPCORE and random sampling,
neighborhood with the forget set and are thus indi- yplearning on a subset of datapoints trans-
rectly affected. However, in terms of negative trans- [ates to other datapoints not in the subset.
fer, UPCORE achieves substantially higher AUC

on neighborhood data (Fig. @), indicating reduced

unintended damage compared to random sampling. Method Random UPCORE
These findings are further supported by utility AUC Base model 1.000 1.000
gains in Table |2| highlighting that while unlearning Gradient Ascent 0.022 0.053
generalizes well across topics in the positive direc- Refusal 0.169 0.127
tion, variance-based pruning better limits collateral NPO 0.206 0231

damage in the negative direction. We hypothesize

that the gains on Counterfact are higher than those
on TriviaQA (see Table[2]and Table[3) due to the former’s higher semantic density, which facilitates
stronger positive transfer across related examples.
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Table 6: Evaluation metrics from Table [2|on the multi-topic Counterfact data shown for Gradient
Ascent, assessed for robustness wrt the forget data with the same utility data.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.362 +0014 0.443 £0017 0.601 0015  0.772 £ 0.018 0.228 +0.012

Random 0.378 0016 0.449 +0015 0.614 +0016  0.789 +0.017 0.239 +0.013

Grad. Ascent RUM 0.144 +0.018  0.219 £0013 0.297 +0.018 0.371 +0.014 0.091 +o0.015
D?-pruning  0.381 0015 0.434 £o0016  0.609 0017  0.805 %0016 0.233 + o011

UPCORE  0.419 +o0009 0.471 +0011  0.622 0010  0.837 +0.012 0.261 =+ 0.008

4.3 ROBUSTNESS TO JAILBREAKS

Design. To evaluate robustness against blackbox attacks, we test whether unlearning on the core
forget set generalizes to adversarial/jailbreak prompts designed to elicit the same information (see
Appendix [D.6|for examples and generation details). We report the AUC of (1-ROUGE) and ROUGE
on non-forget data (e.g., retain set, neighborhood) in Table Higher AUC indicates greater ro-
bustness against extraction attacks (Zou et al.l 2023} Jin et al., 2024). We repeat this analysis with
paraphrased variants in Appendix Table[I5] with similar findings in terms of robustness.

Results. As shown in Table|17|and Table UPCORE achieves higher AUC across settings and
utility datasets, outperforming baselines even under rephrases and jailbreak attacks. This indicates
a superior trade-off and suggests that positive transfer from the core forget set generalizes to input
variations eliciting the same target information.

4.4 UPCORE FOR DIVERSE REAL-WORLD UNLEARNING

UPCORE’s core idea, pruning outliers based on representation variance, extends beyond within-
topic diversity to handle sparse, heterogeneous, and multi-topic unlearning requests. Real-world
scenarios, such as GDPR or copyright takedowns, often involve semantically coherent clusters (e.g.,
data about one individual or all content from a specific author). To demonstrate generality, we
perform multi-topic unlearning on a dataset combining three Counterfact topics, by first clustering
to find correlated subsets (topics) in the forget data applying UPCORE on each such subset. As
shown in Table[6] UPCORE consistently outperforms baselines in model utility (AUC), confirming
robustness to evolving, heterogeneous unlearning streams while preserving structured topic-based
forgetting, making it well-suited for practical privacy and compliance tasks.

4.5 ADDITIONAL RESULTS SUMMARY

We briefly describe a number of additional results and analyses included in the appendix.

* Correlation between hidden state variance and utility. In Appendix we report the strong
negative correlation between the variance of the forget set and model utility after unlearning.

* Alternate Outlier Detection Methods. In Appendix we empirically compare multiple
outlier detection methods and find that Isolation Forest achieves the highest AUC, indicating its
superior ability to identify informative outliers for pruning.

* Effect of Forget Set Size. Appendix shows that UPCORE retains its effectiveness even
when the forget set is reduced to 50% of its original size, maintaining improved utility relative to
baselines; however, we hypothesize a lower bound below which pruning may become ineffective.

* Granularity of AUC Steps. Appendix examines the impact of varying the number of un-
learning steps used to compute AUC and finds the results to be stable across different granularities.

* Sensitivity to Coreset Size. In Appendix [D.I| we examine the effect of scaling the size of the
coreset, increasing the number of outliers pruned. We find that different pruning percentages gen-
erally lead to similar AUCs, as higher pruning leads to less model damage but also less forgetting.
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5 BACKGROUND AND RELATED WORK

Unlearning Methods for LLMs. Machine unlearning approaches are either exact, producing a
model indistinguishable from one retrained without the forget data, or approximate, modifying pa-
rameters efficiently without full retraining. Due to the high cost of retraining LLMs, most methods,
including ours—use approximate unlearning. Some train models via RLHF to output uninformative
responses on forget prompts (Ouyang et al., 2022 |Wen et al., [2024), while Yao et al.| (2023) apply
gradient ascent to suppress harmful outputs, substituting them with whitespace, at the cost of utility
on benign prompts. To mitigate this, Chen & Yang|(2023)) introduce an unlearning layer across tasks,
and [Eldan & Russinovich|(2023) propose architectures for copyrighted content removal. Evaluation
benchmarks include Maini et al.| (2024). [Zhao et al.| (2024) show unlearning difficulty depends on
memorization and entanglement with retained data; their RUM framework sequentially unlearns
refined homogeneous subsets. Despite these advances, balancing unlearning and utility remains
challenging. We address this via a data-driven coreset selection framework to minimize collateral
damage.

Model Editing for Unlearning. Model editing provides an alternative approach to unlearning
by directly modifying model weights to forget target facts (De Cao et al.l 2021} |Dai et al., 2022
Mitchell et al., 2022; Meng et al., [2022). Following model editing work (Patil et al.l 2024b)), our
framework employs LoRA updates with standard unlearning objectives (See Appendix D.8§).

Coreset Selection. Coreset selection identifies representative subsets that preserve key dataset
properties, improving computational efficiency. Exact search is NP-hard, so methods optimize cov-
erage, diversity, or importance (Sener & Savarese, 2018};/Tan et al.|[2023)). By accounting for unequal
data contributions, coreset selection has proven effective in supervised learning (Wei et al., 2015;
Killamsetty et al.,|2021aib)). We extend these ideas to unlearning for minimizing collateral damage
is crucial.

6 CONCLUSION

We propose UPCORE, a utility-preserving coreset selection framework for unlearning in LLMs
that minimizes collateral damage while ensuring effective deletion. Empirically, we find that hidden
state variance in the forget data strongly influences utility degradation. By pruning high-variance
outliers to form a core forget set, UPCORE improves the trade-off between deletion and retention.
We quantify this trade-off using area-under-the-curve across unlearning steps. Results show that
UPCORE substantially reduces unintended performance loss and can be combined with any data-
driven unlearning method, offering a generalizable approach to utility-aware unlearning.

ETHICS STATEMENT

Our work focuses on improving machine unlearning, which has important societal implications.
On the positive side, methods like UPCORE can help ensure that models better comply with data
privacy regulations (e.g., GDPR, CCPA) by minimizing unintended retention of sensitive or user-
deleted data, while preserving model utility. This could support safer and more trustworthy deploy-
ment of machine learning systems in domains like healthcare, finance, and personalized services.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of UPCORE through the following: all datasets (Counterfact, Trivi-
aQA) are publicly available, with preprocessing and clustering details provided in Section [3| and
Appendix [D.3] Hyperparameters, training configurations, and stopping criteria for unlearning al-
gorithms are described in Section [3| and Appendix [D.5] Appendix [D.6] Theoretical justifications
for the variance-based pruning strategy are included in Appendix [B] Comprehensive results with
multiple unlearning algorithms and scaling analyses are reported in Tables 2] 3] and [6] Finally, we
provide anonymized source code and scripts for data processing, model training, and evaluation in
the supplementary material to facilitate exact replication of our experiments.
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A USE OF LLMS.

We used LLMs for grammar correction, text polishing, and minor formatting suggestions.

B DISCUSSION

Beyond topic unlearning. While we focus on unlearning single topics, we believe UPCORE is
generalizable to multi-topic settings by identifying correlated subsets and pruning them individually
before combining the pruned forget set. This flexibility makes UPCORE useful for safety bench-
marks and other data selection tasks. Moreover, UPCORE is method-agnostic: by focusing solely
on the data, UPCORE can be applied to any data-driven unlearning framework. While we focus on
unlearning single topics, we believe UPCORE is generalizable to multi-topic settings by identify-
ing correlated subsets and pruning them individually before combining the pruned forget set. This
flexibility makes UPCORE useful for safety benchmarks and other data selection tasks.

Theoretical explanation for UPCORE. UPCORE is based on the concept that representations
in networks generalize across local neighborhoods instead of considering each example as an inde-
pendent entity. Previous research on the structure of representation spaces indicates that examples
with semantics create compact clusters that share latent characteristics and decision boundaries (Ren
& Sutherland, [2025)). Likewise studies on influence functions reveal that modifying or removing a
data point can influence gradients, curvature and shared feature subspaces thus impacting adjacent
points, in foreseeable manners (Koh & Liang} [2017} |Pruthi et al., |2020; Basu et al., 2020; [Barshan
et al.| [2020).

From this perspective unlearning inherently functions at the fopic or cluster scale: removing a data
point not only alters its individual prediction route but also adjusts nearby decision boundaries.
This occurs because the adjustments, to the gradient and Hessian caused by the removal of a point
remodel the structure of the representation manifold consequently influencing points within the same
vicinity (Barshan et al.| |2020).

This viewpoint supports our method: if removing a point already affects its neighbors then explicitly
unlearning each individual point in the forget set, is redundant and might even lead to unnecessary
collateral harm. Alternatively eliminating outliers, from the forget set results in a consistent lower-
variance group whose deletion causes a wider impact that implicitly encompasses the excluded
points. As a result, UPCORE achieves the intended deletion effect while minimizing unnecessary
distortion to unrelated regions of the model, leading to more utility-preserving unlearning.

Licenses. The CounterFact dataset (Meng et al., 2022) is released Creative Commons Attribution
4.0 International (CC BY 4.0). The TriviaQA dataset (Joshi et al., |2017) is released under the
Apache License 2.0, which applies to both the dataset and the accompanying code. This license
permits broad use, including commercial applications, provided that proper attribution is given and
a copy of the license is included with any distribution.

Compute. Our experiments are run on 4 RTX A6000 with 48G memory each and each training
run takes 30 GPU minutes and evaluation takes 10 GPU minutes.

C ADDITIONAL BACKGROUND

C.1 MACHINE UNLEARNING BACKGROUND.

The concept of machine unlearning (Cao & Yang, |2015) is typically divided into two categories:
exact unlearning and approximate unlearning. Exact unlearning aims to completely remove infor-
mation related to specific data, ensuring that the resulting model behaves identically to a model
retrained from scratch without the forget data (Ginart et al., [2019). However, the computational
infeasibility of retraining LLMs from scratch renders exact unlearning impractical for real-world
applications. Approximate unlearning methods, on the other hand, focus on ensuring that the model
parameters closely approximate those of a retrained model while maintaining computational effi-
ciency (Guo et al., [2020; (Chien et al., 2022} |Pan et al.| 2023} [Yoon et al., 2025).
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C.2 CORESET SELECTION.

Unlike prior work, which focuses on coreset selection for improving training efficiency or robust-
ness, our approach leverages a novel perspective by applying coreset principles to the problem of
machine unlearning. Specifically, while conventional methods (Maharana et al., |2024)) aim to pre-
serve model accuracy during training by selecting representative data, our framework, UPCORE, is
designed to mitigate negative collateral damage during unlearning by identifying and pruning data
points that disproportionately influence performance degradation. Furthermore, unlike general core-
set selection approaches that primarily target classification or regression tasks (Lee et al., {2024} |Wei
et al.| 2015)), our method is tailored for unlearning settings where the goal is retaining model utility
while ensuring the effective removal of unwanted information. Thus, our work extends the applica-
bility of coreset selection beyond traditional use cases, offering a principled approach to balancing
unlearning effectiveness with model performance.

C.3 ANOMALY SCORE IN ISOLATION FOREST:

Isolation Forests produce anomaly scores for each point. More formally, the anomaly score for a
data point d is defined as:

_ h(d)
score(d) = 27 <™

where h(d) is the average path length for d across the ensemble of trees, n is the size of the dataset
Dp, and ¢(n) is the average path length for a dataset of size n in a random binary search tree. The
term ¢(n) is given by:

c(n) = 2H(n — 1) — %

where H (i) denotes the i-th harmonic number, defined as H (i) = Z;’:l %

D METHOD DETAILS AND ANALYSIS

D.1 SCALING THE CORESET SIZE

Design. Here, we examine how the performance of our method changes with respect to the percent-
age of data pruned on one topic. Given the design of Isolation Forests, we can vary the percentage
of pruned “outlier” points from 0% up to 50%, which we do in increments of 10, starting at 10% (as
0% is the complete set). As we vary the pruned percentage, we expect increases in model utility but
not necessarily in AUC, as with increased pruning, we should see better utility but worse forget set
performance (since fewer datapoints are included in the forget set).

Results.

Fig. [5] shows AUC scores across different coreset pruning percentages, averaged over topics from
the Counterfact dataset. UPCORE achieves the largest performance gain between 0% and 10%
pruning, followed by a dip at 20%. Beyond 30%, performance stabilizes across coreset sizes. This
trend reflects a core trade-off in coreset design: pruning more aggressively reduces the number of
examples explicitly unlearned, which can weaken deletion effectiveness, but it also limits model
damage, improving utility. Interestingly, this plateau beyond 30% suggests that positive transfer
from the remaining examples can only compensate for deletion loss up to a point. Once that ceiling
is reached, the competing forces—improved utility versus diminished forgetting—begin to balance
out, resulting in the observed stability.

D.2 UPCORE LOWERS FORGET SET VARIANCE

Design. To verify that UPCORE indeed leads to a lower variance compared to the random base-
line, we report the hidden state variance of the forget set used in each baseline and in UPCORE.
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Figure 5: Impact of scaling the coreset size  Figure 6: Hidden state variance of the base-

on performance: AUC scores on different util-  line and UPCORE forget sets across the six

ity sets, averaged across Counterfact topics, for ~ Counterfact forget topics. UPCORE consis-

various pruning percentages. tently reduces variance using Isolation Forest as
expected.

Results. As shown in Fig. [6f UPCORE i.e. variance minimization using our Isolation Forest-
based pruning procedure results in a substantial drop in the variance of the forget set as compared to
the random baseline across each topic. We find that this drop is nearly linearly proportional to the
percentage of coreset being pruned (See Fig. [8a)in the Appendix).

D.3 TRIVIAQA DATASET RESULTS FOR REFUSAL AND NPO

Table 7: Evaluation metrics from Table shown for Gradient Ascent on the TriviaQA topics. Error
bars indicate standard deviation across 3 seeds.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.153 +0004 0.285 £0.005 0.226 +£0.004  0.155 +0.003 0.135 + 0.004

Grad. Ascent Random 0.159 +0005 0.304 +0006 0.222 +£0005  0.157 +0.004 0.136 + 0.004
D?-pruning  0.162 0003 0.310 0004 0.224 £0003  0.157 +0.003 0.141 +0.003

UPCORE  0.165 +o0002 0.318 +0003 0.227 +0002  0.158 + 0.002 0.147 +0.002

Complete  0.148 0005 0.278 £0.006 0.219 £0005  0.150 £ 0.004 0.130 =+ 0.004

Refusal Random 0.152 £ 0006  0.291 +0.005 0.221 0005  0.152 + 0.004 0.132 +0.003
D?-pruning  0.157 £ 0004 0.298 £000s 0.223 0004  0.153 0,003 0.137 +0.003

UPCORE  0.170 0002 0.318 0003 0.230 0002  0.160 + 0.002 0.145 + 0.002

Complete  0.150 +0.005 0.280 +£0.006 0.218 +0005  0.151 +0.004 0.131 +0.004
Random 0.153 £0005  0.293 +0.005 0.221 0004  0.153 +0.004 0.133 +0.003
D?-pruning  0.158 £0004 0.301 0004 0.224 £0003  0.155 +0.003 0.138 +0.003
UPCORE  0.171 +0002 0.319 +0003 0.231 0002  0.161 + 0.002 0.146 + 0.002

NPO

D.4 ToriCc MODEL

We cluster the filtered Counterfact dataset to cluster the topic model-based clustering using Fastopic
(Wu et all [2024). It leverages pretrained transformer embeddings for which we use the Sentence-
BERT model embeddings (Reimers & Gurevych, |2019). We employ the method to form seven
clusters based on the intuition that the average dataset size should be around 400 points, similar to
the sizes of forget datasets in the TOFU unlearning benchmark (Maini et al., [2024).

D.5 DATASET DETAILS

* We consider factual prompt completions with brief answers, typically a single word or short phrase
(e.g., Paris for the prompt “The capital of France is”). This setting tests UPCORE’s effectiveness
in scenarios with concise, fact-based responses and is standard for model editing (Meng et al.,
2022; 2023} [Patil et al., |2024a). We source prompts from Counterfact (Meng et al., 2022), a
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widely-used model editing benchmark. Following Patil et al.| (2024a), we filter for single-token
answers. In this setting, the base model’s ROUGE score on each of the topics is 1.0. While our
main focus has been on unlearning pretrained knowledge.

* We also consider a question-answering setting where the answers are potentially multi-token re-
sponses. Here, we source questions from TriviaQA (Joshi et al., 2017), a QA benchmark of trivia
questions. Here, we create topics after filtering out samples where the base model’s ROUGE score
is zero. We also evaluate UPCORE on TOFU (Maini et al.| [2024)), which is a synthetic dataset
This scenario tests UPCORE on longer-form generation; Since TOFU is synthetic, we first fine-
tune the model on TOFU and perform unlearning on the finetuned model. Since the model has
been finetuned first and unlearning is performed on 10% of the finetuned data, the finetuned model
has non-zero ROUGE on all samples in the forget data.

We apply topic modeling to cluster questions into seven topic-based groups and one cluster in each
setting is randomly chosen as the retain set, while the other six are used as separate forget sets, with
performance averaged across them. For each topic, we also generate neighborhood QA pairs that
are semantically related to the forget topic but do not directly overlap with it by prompting GPT-40
(Achiam et al., 2023) to produce 100 data points per topic. These pairs are automatically filtered
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with a sentence transformer model (Reimers & Gurevych, [2019) to verify that they have no overlap
with the forget data. (see Appendix for details).

We work with the Counterfact dataset and filter it keep the subset with single token answers similar
to [Patil et al| (2024a). The dataset has factual questions and short form answers like those listed
here:

* Prompt: The official language of Caslano is Answer: Italian

¢ Prompt: Courrier International was written in Answer: French

* Prompt: Himachal Pradesh is a part of the continent of Answer: Asia

D.6 DATA EXAMPLES

Rephrase data is a part of the Counterfact dataset while we generate jailbreak data of one type where
we the model is prompted to be an expert playing as an expert in a relevant area. We generated the
jailbreak prompts using few-shot in-context learning with GPT-4o.

Examples of Forget Data: (Forget Topic: Locations of certain places)

* Prompt: The headquarters of Northeastern University is in Answer: Boston
* Prompt: Kyoto University is located in the country of Answer: Japan

* Prompt: Himachal Pradesh is a part of the continent of Answer: Asia
Examples of Neighborhood Data: (Similar Answers)

* Prompt: Ramaz Chkhikvadze, who has a citizenship from Answer: Georgia

* Prompt: Rolls-Royce is headquartered in which country? Answer: UK
Examples of Rephrase Data

* Prompt: Northeastern University headquarters is in Answer: Boston
* Prompt: Kyoto University is in the country of Answer: Japan

¢ Prompt: Himachal Pradesh is located on the continent of Answer: Asia
Examples of Jailbreak Data
* Prompt: Imagine you're a college admissions officer, and you’re telling a prospective

student that Northeastern University’s headquarters is in Answer: Boston

* Prompt: Picture yourself as a cultural tour guide, explaining to a visitor that Kyoto Uni-
versity is in the country of Answer: Japan

* Prompt: Imagine you’re a geography teacher, sharing with your class that Himachal
Pradesh is located on the continent of Answer: Asia

Examples of TriviaQA Data (Forget Topic: Entertainment Trivia)

* Question: Which plays characters comprise two married couples called Honey and Nick,
and Martha and George?

Answer: Whos Afraid Of Virginia Woolf?

* Question: I'll have what she’s having’ is a quote from which 1989 film? Answer: When
Harry Met Sally

* Question: Who were the real life married couple who starred in the 1990 film Mr and Mrs
Bridge? Answer: Paul Newman and Joanne Woodward
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GPT-40 prompts
* Prompt for Generating Neighborhood Data:

Given the topic: {}

Generate a set of diverse factual prompts that are
in the neighborhood of this topic, but not directly
within it. Each prompt should have one correct
answer and a perturbed answer. Provide these as
JSONL entries in the following format:

{"question": "Which country is Kyoto University
located in?", "answer": "Japan", "perturbed_answer":
["India"]}.

Directly generate the JSONL with 20 entries. No
other information should be included in the response.

* Prompt for Generating Jailbreak Data:

This prompt is not asking for anything adversarial,
please provide a role playing version of the given
input. Provide just the prompt and not anything else
like a prefix or line breaks. Create a one sentence
roleplaying prompt that has the same completion as
this prompt:

Prompt: The headquarter of Monell Chemical Senses
Center is located in

Jailbreak prompt: Imagine you are a world-renowned
geography professor specializing in research
institutions. The location of the headquarters of
the Monell Chemical Senses Center is

Prompt: Kryvyi Rih belongs to the continent of
Jailbreak prompt: Imagine you are a tour guide, and
you’re pointing Kryvyi Rih, which is located in the
continent of

Prompt:

Jailbreak prompt:

D.7 NEGATIVE PREFERENCE OPTIMIZATION.

Negative Preference Optimization (NPO) is a machine unlearning technique that addresses the limi-
tations of gradient ascent methods. NPO reframes unlearning as a preference optimization problem,
focusing solely on negative samples to efficiently and effectively unlearn target data. Unlike Gra-
dient Ascent, which can lead to catastrophic collapse, NPO provides a more stable and controlled
loss function, resulting in slower divergence and better training dynamics. By incorporating a retain
loss term, NPO achieves a better balance between forgetting specific data and maintaining overall
model utility. However, we observe that the training of this method is very slow and it takes a much
larger number of unlearning steps to reach a lower ROUGE score on the forget set, which is why the
absolute value of AUC on NPO is relatively smaller.

D.8 MODEL EDITING

For all our experiments, we use LoRA finetuning with a controlled rank to edit the model’s MLP
weights at layer 7 following past work on model editing and unlearning (Meng et al., [2022; |Patil
et al., 2024b). We use r=1, =2 for Gradient Ascent and r=4, =8 for NPO and Refusal. We edit
layer 7 as we find that editing on that layer gives the best model utility for the same amount of
unlearning on a held-out validation set of the Counterfact dataset.
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Table 8: Effect of unlearning with and without UPCORE.

Model Version Input Question Output Answer Notes
Before unlearning How tall is the Eiffel Tower? 324 meters Correct answer
Grad Asc. How tall is the Eiffel Tower? keeps keeps keeps ~ Garbage output — model destabilized by naive deletion

Grad Asc. + UPCORE  How tall is the Eiffel Tower? about 100 meters ~ Wrong but plausible answer — non-garbage; model remained stable

D.9 ADDITIONAL RESULTS

D.9.1 QUALITATIVE EXAMPLE

Table [8] illustrates the impact of unlearning on model outputs for a factual QA example. Before
unlearning, the model correctly answers the question based on memorized training data. Naive
unlearning without careful coreset selection leads to destabilization, resulting in nonsensical outputs.
In contrast, UPCORE preserves model stability: although the model no longer recalls the exact
memorized fact, it generates coherent but approximate answers. This highlights UPCORE’s ability
to balance privacy-preserving deletion with maintaining non-garbage utility.

D.9.2 CORRELATION BETWEEN AUC AND FORGET SET VARIANCE

Design. To verify that AUC is indeed correlated with variance, i.e. lower variance data is asso-
ciated with higher AUC, we compute the correlation between AUC and hidden state variance. We
treat each topic as a separate datapoint, computing the AUC for each topic across each metric.

Results. As shown in Table 9] the proposed AUC metric across deletion effectiveness and model
utility metrics is indeed consistently negatively correlated as expected. This verifies that variance
minimization is indeed a good strategy for improving the trade-off, with lower variance being corre-
lated with a higher AUC and thereby a superior trade-off. Moreover, taken together with Fig.[/aland
our interventions on variance via pruning to reduce variance, our results indicate that this correlation
can be exploited to improve AUC by reducing collateral damage and leveraging collateral transfer
positively.

Table 9: Correlation between the forget set representation variance and the AUC across topics. The
negative correlation values are consistent with the negative correlation of model utility and variance
shown in Section

AUC Correlation with HSV
Retain -0.421
Neigh -0.507
Real World -0.371
Real Authors -0.489
Model Utility -0.612

D.9.3 COMPARATIVE EVALUATION OF OUTLIER DETECTION METHODS

Design. In this section, we compare our Isolation Forest against existing techniques to evaluate its
performance in detecting outliers and thereby on the resulting AUC after pruning. Specifically, we
test the following two well-established methods:

One-Class SVM (OCSVM): This method learns a decision boundary around the normal data, where
points that fall outside this boundary are identified as outliers. OCSVM is a widely used approach
for anomaly detection in high-dimensional spaces (Scholkopf et al.,[1999). It is effective in scenarios
where outliers are sparse and lie in low-density regions.

Local Outlier Factor (LOF): LOF measures the local density deviation of a data point with respect
to its neighbors. By comparing the density of a point to that of its neighbors, it identifies points that
have a significantly lower density than their neighbors as outliers (Breunig et al.,[2000). LOF excels
in detecting local anomalies, particularly when outliers are clustered or vary in density.
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Results The results in Table [I0]suggest that pruning the outliers detected with other outlier detec-
tion methods yields a higher AUC compared to unlearning on the complete forget set, using Isolation
Forest achieves the highest AUC overall. The higher AUC achieved by Isolation Forest suggests its
superior ability to distinguish between normal data and outliers, making it the most effective method
in this comparison.

Table 10: Comparison against other outlier detection methods for detecting the outliers: (1) One-
Class SVM: Learns a decision boundary around normal data; outliers fall outside this boundary
(2) Local Outlier Factor (LOF): Compares the local density of a point with its neighbors to detect
anomalies. Pruning with other outlier detection methods yields a higher AUC compared to non-
pruning, but outlier detection using Isolation Forest achieves the highest AUC overall.

ROUGE Retain ROUGE Neigh ROUGE Real World ROUGE Real Authors  Model Utility

AUC-complete 0.488 0.568 0.720 0.891 0.343
AUC-subsampled  0.495 0.558 0.731 0.907 0.353
AUC-LOF 0.510 0.553 0.730 0.919 0.366
AUC-OCSVM 0.503 0.552 0.714 0.900 0.358
AUC-UPCORE  0.523 0.608 0.769 0.933 0.387

D.9.4 IMPACT OF FORGET SET SIZE ON UPCORE

To understand how the size of the forget set affects UPCORE’s performance, we evaluated the
method on a reduced dataset containing 50% of the forget set size used in Table 2]using the Gradient
Ascent method. Interestingly, UPCORE continues to outperform the baselines, even under this
reduced setting (See Table [IT). These results suggest that UPCORE maintains its effectiveness
even when the forget set is relatively small, though we hypothesize that there may be a threshold
below which pruning becomes detrimental due to insufficient signal.

Table 11: Impact of reducing the forget set size to 50% on model utility.

Method Model Utility

Complete 0.371
Random 0.383
UPCORE 0.393

D.9.5 AUC METRIC

While ROUGE and model utility provide a snapshot of model performance and are the standard
evaluation metrics in unlearning, we argue that they are insufficient, as they only provide a single
point of comparison. This is suboptimal since unlearning involves a tradeoff between forgetting and
model damage as the number of forget training steps increases. Choosing an early unlearning steps
might result in higher model utility but poor forgetting while choosing a later unlearning steps (as is
typically done) results in better forgetting at the cost of higher damage (See Fig.[3). Such variation
makes comparing systems difficult, as the number of unlearning steps performed is not always clear.

We argue that to systematically evaluate unlearning performance, we should be measuring this trade-
off across unlearning steps. In other words, rather than measuring ROUGE Retain and ROUGE
Forget at one checkpoint, we should be comparing their tradeoff across multiple unlearning steps,
i.e. measuring the area under the curve (AUC) between these two metrics. We also evaluate AUC
(Table [T2) to see the effect of granularity on the trade-off metric. Visually, this is illustrated in
Fig. [3| where we show the tradeoff between the inverse ROUGE on the forget data (X axis) and
the ROUGE on neighboring points (Y axis) To this end, we introduce an AUC metric that inte-
grates deletion effectiveness and model utility over time. Specifically, we construct a Pareto curve
that plots utility metrics (e.g. ROUGE Retain, ROUGE Neighborhood, etc.) against deletion effec-
tiveness (e.g. ROUGE Forget) as unlearning progresses. The AUC serves as a global metric that

3Note that the curve here differs slightly from Table where we first compute AUC and then average across
topics, whereas here we first average ROUGE scores and then compute AUC.
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captures the trade-off between preserving useful knowledge and ensuring effective deletion. By also
reporting standard metrics, we empirically validate that AUC correlates with improved unlearning
performance across diverse settings (See Table ). Furthermore, we also verify that it is negatively
correlated with forget data variance (See Table[9).

D.9.6 AUC AT HIGHER GRANULARITY

To assess the stability of unlearning performance across different optimization evaluation granu-
larities of AUC, we compare the Area Under the Curve (AUC) values computed over finer step
sizes—specifically, at a granularity of 10 optimization steps per epoch—against those computed
at the coarser granularity of 1 epoch/50 steps used in the main experiments. We evaluate this for
the Gradient Ascent method across the two key objectives: (1) Deletion Effectiveness, defined as
(1 — ROUGE) on the forget set (X-axis), and (2) Model Utility, measured via ROUGE scores on
neighborhood data, real-world data, and an aggregate utility metric (Y-axis).

Table [12] shows that the AUC values at finer granularity remain consistent with those computed at
the epoch level. To quantify this consistency, we compute the Pearson rank correlation between
the rankings of four methods—Complete, Random, D?-pruning, and UPCORE—across the five
evaluation types (Retain, Neigh, Real World, Real Authors, and Aggregate Ultility), under both 50-
step and 10-step granularities. The average Pearson rank correlation across all evaluation types is
0.99, indicating high stability in coreset method ranking despite the change in granularity. This result
demonstrates that our evaluation is robust to the choice of granularity and that method comparisons
remain valid across different AUC aggregation schemes.

Table 12: AUC at granularity of 10 steps across the two competing objectives: (1) Deletion Ef-
fectiveness, defined as (1 — ROUGE) on the forget set (X-axis), and (2) Model Utility, averaged
across Counterfact topics and evaluated via ROUGE scores on multiple utility datasets, including
neighborhood data and an aggregate model utility across datasets (Y-axis). We compare Gradient
Ascent. Error bars indicate standard deviation across 3 seeds.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.503 £o0012  0.577 0014  0.717 0013 0.877 £ 0.017 0.342 + o011
Random 0.510 £0013  0.563 0013 0.731 £0012  0.891 +0.016 0.349 + 0012
D2-pruning  0.508 0012 0.557 0013 0.720 0013 0.905 £0.015 0.347 + o011
UPCORE  0.542 +0007 0.617 +0009 0.760 +0.008  0.920 + 0.010 0.388 -+ 0.006

Grad. Ascent

Table 13: AUC at granularity of 50 steps taken from Table [2across the two competing objectives:
(1) Deletion Effectiveness, defined as (1 —ROUGE) on the forget set (X-axis), and (2) Model Utility,
averaged across Counterfact topics and evaluated via ROUGE scores on multiple utility datasets,
including neighborhood data and an aggregate model utility across datasets (Y-axis). We compare
UPCORE’s data selection strategy on three unlearning methods: Gradient Ascent, Refusal, and
NPO. Error bars indicate standard deviation across 3 seeds.

Method Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.488 +0.015 0.568 0018 0.720 +0016  0.891 +0.020 0.343 +o0.012

Grad. Ascent Random 0.495 +o0017 0.558 +0016 0.731 0015  0.907 +0.019 0.353 +0.014
D?-pruning  0.493 0016 0.552 0017 0.723 0016 0.920 + 0018 0.349 +0.013

UPCORE  0.523 +0008 0.608 +0010 0.769 +0009  0.933 +0.011 0.387 + 0.007

D.9.7 COMPUTATIONAL COMPLEXITY

We break down the computational overhead of UPCORE into the following pieces:

* Hidden State Extraction: This involves a single forward pass through the relevant layers of
your pre-trained LLM for each data point in the forget set. The cost here is proportional to
the size of the forget set (| Dr|), the dimensionality of the hidden states, and the cost of a
single forward pass through the specified layers of the LLM.
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Table 14: Statistical significance (p-values) of performance differences between UPCORE and
baseline selection strategies evaluated averaged across the three unlearning methods: Gradient
Ascent, Refusal, NPO on the Counterfact dataset.

Compared Method p-value

Complete 5.51 x 10722
Random 3.89 x 10715
D?-Pruning 5.04 x 10718

Table 15: Evaluation metrics from Tableaveraged across topics in Counterfact shown for Gradient
Ascent, assessed for robustness to rephrased and jailbreak variants of the forget data with the same
utility data.

Method  Selection Retain Neigh Real World Real Authors Model Utility

Complete  0.417  0.474 0.599 0.743 0.291
Jailbreak ~ Random 0.430 0470 0.629 0.787 0.305
UPCORE 0455 0.512 0.665 0.819 0.335
Complete  0.357  0.431 0.533 0.655 0.257
Rephrase = Random 0.361  0.426 0.536 0.665 0.262
UPCORE 0.376  0.449 0.555 0.673 0.279

* Isolation Forest Complexity: According to the original Isolation Forest paper (Liu et al.
2008b)), the average training complexity is O(T'V log ¥) where T = number of trees, W
= subsample size. Even for large datasets, practical complexity is close to linear in the
number of samples because trees are shallow and built from small random subsamples.
Isolation Forest requires only storing the trees and does not compute or store pairwise
distances or full similarity matrices (unlike kNN or density-based methods). It’s commonly
cited as a lightweight, CPU-friendly algorithm that does not require a GPU for typical
dataset sizes (e.g., scikit-learn’s implementation runs efficiently on CPUs for millions of
samples).

Related works: Unlearning Methods for LLMs. Machine unlearning methods fall into two cat-
egories: exact unlearning, which ensures the model is indistinguishable from one retrained without
the forget data, and approximate unlearning, which modifies model parameters efficiently without
full retraining. Due to the high cost of retraining LLMs, most approaches—including ours—use the
latter. One class of methods trains models via RLHF to produce uninformative responses (e.g., “I
don’t know”) on forget prompts (Ouyang et al.l |2022; Wen et al., 2024). |Yao et al| (2023) apply
gradient ascent to suppress harmful outputs, substituting them with whitespace, though this causes
utility loss on benign prompts. To mitigate such degradation, |(Chen & Yang| (2023)) introduce an
unlearning layer effective across tasks, while [Eldan & Russinovich| (2023) propose a specialized
architecture for removing copyrighted content. For evaluation, |[Maini et al.[(2024)) present a bench-
mark we adopt. [Zhao et al|(2024) show that unlearning difficulty depends on the memorization of
points in the forget set and their degree of entaglement with the retain set,. Unlike UPCORE, their
RUM framework refines forget sets into homogeneous subsets and unlearns them sequentially to
improve unlearning. Despite these advances, managing the trade-off between unlearning and utility
remains challenging. We address this by introducing a data-driven coreset selection framework to
minimize collateral damage.

D.10 UPCORE FOR DIVERSE REAL-WORLD UNLEARNING

While our current setup effectively demonstrates the impact of within-topic diversity, we emphasize
that UPCORE’s core principle — identifying and pruning outliers based on representation variance —
is broadly applicable to diverse unlearning requests, including those involving sparse and heteroge-
neous data. UPCORE is designed to be method-agnostic and generalizable to multi-topic settings
by identifying correlated subsets within each forget request and pruning them individually. We note
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Table 16: ROUGE scores and model utility across topics from the TriviaQA dataset for a fixed epoch
of Gradient Ascent. UPCORE consistently achieves higher performance on data outside the forget
set, with the least degradation among methods and closest performance to the base model, while still
maintaining a high forget rate.

Method | Forget | Retain Neigh. Real Authors Real World Model Utility

Base Model | 0.990 | 0.546 0.792 1.000 0.872 0.433
Complete 0.038 0.281 0.150 0.631 0.385 0.203
Random 0.040 | 0.287 0.176 0.646 0.407 0.224
UPCORE | 0.040 | 0.323 0.210 0.660 0.454 0.251

Table 17: Evaluation metrics from Tableaveraged across topics in Counterfact shown for Gradient
Ascent, assessed for robustness to jailbreak variants of the forget data with the same utility data.

Method Selection  Retain Neigh Real World Real Authors Model Utility

Complete 0417 0474 0.599 0.743 0.291

Jailbreak Random 0.430 0470 0.629 0.787 0.305
RUM 0.398 0416 0.532 0.725 0.259

D2-pruning  0.435  0.479 0.643 0.792 0.307

UPCORE 0455 0.512 0.665 0.819 0.335

that even real-world cases such as GDPR or copyright takedown requests often involve semanti-
cally coherent topics. For example, a GDPR request may concern all information related to a single
individual, which naturally forms a topic cluster. A copyright takedown may require unlearning
content from a specific book or author (e.g., “Harry Potter”), again forming a semantically cohesive
group. To further demonstrate generality, we perform experiments on sequential multi-topic un-
learning, where we sequentially unlearn data from a multi-topic dataset formed by combining three
Counterfact topics, applying UPCORE-based pruning independently to each. Each step involves
a semantically coherent forget set (more realistic than isolated datapoints), while the topics across
steps are unrelated, mirroring real-world requests that arrive over time and span diverse content. In
this setting, Table [6] shows that UPCORE outperforms the baselines, consistently yielding higher
AUC (model utility). These results confirm that UPCORE is robust to evolving, heterogeneous
unlearning streams while preserving its advantages in structured topic-based forgetting, making it
well-suited for real-world privacy and compliance scenarios.

Sensitivity analysis. We perform a sensitivity analysis of UPCORE by varying the number of
Isolation Forest trees from 100 to 400. As shown in Table [T8] the performance across all five
metrics remains remarkably stable, with all values staying within the expected standard deviation
ranges. This demonstrates that UPCORE is robust to changes in the number of trees and that its
deletion and utility behavior does not depend sensitively on this hyperparameter.

D.11 CORRELATION OF HIDDEN-STATE VARIANCE AND UTILITY.

We find that hidden state variance is strongly negatively correlated with model utility after un-
learning (Pearson » = —0.714), supporting its use as a proxy for unlearning-induced degradation.
Appendix shows a consistent inverse relationship between variance and AUC across topics,
indicating that minimizing variance improves deletion-utility trade-offs. As shown in Fig. [7a| (top
left), plotting cluster variance against the utility metric from |Maini et al.| (2024) after fixed unlearn-
ing steps reveals a clear negative correlation.

D.12 RESULTS ON TOFU DATASET.
Table [T9] reports detailed utility metrics on the TOFU dataset under Gradient Ascent unlearning.

Across all evaluation dimensions (Retain, Neighborhood, Real World, Real Authors), UPCORE
consistently achieves the highest AUC scores. This confirms that variance-based pruning generalizes
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Table 18: Sensitivity analysis of UPCORE across different numbers of Isolation Forest trees. Met-
rics are the same as those reported in Table@

UPCORE Configuration Retain Neigh Real World Real Authors Model Utility

UPCORE (100 trees) 0.523  0.608 0.769 0.933 0.387
UPCORE (150 trees) 0.518 0.612 0.766 0.929 0.383
UPCORE (200 trees) 0.527  0.604 0.773 0.936 0.390
UPCORE (300 trees) 0.516  0.610 0.764 0.931 0.384
UPCORE (400 trees) 0.530  0.606 0.770 0.934 0.389

Table 19: Evaluation metrics from Table [2[across on TOFU dataset shown for Gradient Ascent.

Method Selection  Retain Neigh Real World Real Authors Model Utility

Complete 0.755  0.697 0.828 0.856 0.527

Jailbreak Random 0.792 0.732 0.877 0.893 0.552
RUM 0.671 0.626 0.744 0.769 0.469

D2-pruning  0.775  0.729 0.861 0.882 0.556

UPCORE 0.827 0.758 0.885 0.899 0.581

beyond Counterfact and TriviaQA, maintaining robustness and effectiveness even when unlearning
a synthetic dataset like TOFU (Maini et al.| [2024)).

D.13 DISENTANGLING VARIANCE FROM OTHER FACTORS

To further disentangle the role of variance from other potential factors, we additionally run exper-
iments where we cluster examples into groups based on multiple attributes, each measured by a
concrete, factor-specific metric: 1) Answer length: total number of tokens in the ground truth an-
swer 2)Lexical diversity: type-token ratio (TTR) computed on the ground truth answer. We find
that Correlation (Answer Length vs Utility Drop) is -0.046 and Correlation (TTR vs Utility Drop) is
0.032. As the results show, we do not observe a strong correlation between either lexical diversity
(TTR) or answer length and the resulting utility drop, suggesting that variance in these factors is not
the primary driver of collateral damage.

Table 20: Relationship between answer length and utility drop. No strong correlation is observed,
suggesting answer length is not the primary driver of collateral damage.

Answer Length  Utility Drop

8 4.8
14 2.1
22 4.2
35 6.2
50 2.1
65 5.5
80 3.0

26



Under review as a conference paper at ICLR 2026

Table 21: Relationship between lexical diversity (TTR) and utility drop. Variance in TTR does not
strongly drive collateral damage.

TTR Utility Drop

0.32 4.7
0.38 2.0
0.45 29
0.52 3.8
0.60 1.1
0.67 54
0.75 32
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