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Abstract

Is it possible to build a general and automatic001
natural language generation (NLG) evaluation002
metric? Existing learned metrics either per-003
form unsatisfactorily or are restricted to tasks004
where large human rating data is already avail-005
able. We introduce SESCORE, a model-based006
metric that is highly correlated with human007
judgements without requiring human annota-008
tion, by utilizing a novel, iterative error synthe-009
sis and severity scoring pipeline. This pipeline010
applies a series of plausible errors to raw text011
and assigns severity labels by simulating hu-012
man judgements with entailment. We evaluate013
SESCORE against existing metrics by compar-014
ing how their scores correlate with human rat-015
ings. SESCORE outperforms all prior unsuper-016
vised metrics on multiple diverse NLG tasks in-017
cluding machine translation, image captioning,018
and WebNLG text generation. For WMT 20/21019
En-De and Zh-En, SESCORE improve the aver-020
age Kendall correlation with human judgement021
from 0.154 to 0.195. SESCORE even achieves022
comparable performance to the best supervised023
metric COMET, despite receiving no human-024
annotated training data.025

1 Introduction026

Text generation tasks such as translation and im-027

age captioning have seen considerable progress028

in the past few years (Chen et al., 2015; Birch,029

2021). However, precisely and automatically030

evaluating generated text quality remains a chal-031

lenge. Long-dominant n-gram-based evaluation032

techniques, such as BLEU (Papineni et al., 2002)033

and ROUGE (Lin, 2004), are sensitive to surface-034

level lexical and syntactic variations, and have been035

repeatedly reported to not well correlate to human036

judgements (Zhang* et al., 2020; Xu et al., 2021).037

Multiple learned metrics have been proposed to038

better approximate human judgements. These met-039

rics can be categorized into unsupervised and su-040

pervised methods based on whether human ratings041

are used. The former includes PRISM (Thomp- 042

son and Post, 2020), BERTScore (Zhang* et al., 043

2020), BARTScore (Yuan et al., 2021), etc. The 044

latter includes BLEURT (Sellam et al., 2020), 045

COMET (Rei et al., 2020) etc. 046

Unsupervised learned metrics are particularly 047

useful as task-specific human annotations of gener- 048

ated text can be expensive or impractical to gather 049

at scale. While these metrics are applicable to a va- 050

riety of NLG tasks (Zhang* et al., 2020; Yuan et al., 051

2021), they tend to target a narrow set of aspects 052

such as semantic coverage or faithfulness, and have 053

limited applicability to other aspects, such as flu- 054

ency and style, that matter to humans (Freitag et al., 055

2021a; Saxon et al., 2021). While supervised met- 056

rics can address different attributes by modeling 057

the conditional distribution of real human opinions, 058

training data for quality assessment is often task- 059

and domain-specific with limited generalizability. 060

We introduce SESCORE, a general technique 061

to produce nuanced reference-based metrics for 062

automatic text generation evaluation without us- 063

ing human-annotated reference-candidate text pairs. 064

Our method is motivated by the observation that 065

a diverse set of distinct error types can co-occur 066

in candidate texts, and that human evaluators do 067

not view all errors as equally problematic (Freitag 068

et al., 2021a). To this end, we develop a stratified 069

error synthesis procedure to construct (reference, 070

candidate, score) triples from raw text. The can- 071

didates contain non-overlapping, plausible simula- 072

tions of NLG model errors, iteratively applied to 073

the input text. At each iteration, a severity scoring 074

module isolates individual simulated errors, and as- 075

sesses the human-perceived degradation in quality 076

incurred. Our contributions are as follows: 077

• SESCORE, an approach to train automatic text 078

evaluation metrics without human ratings; 079

• A procedure to synthesize different types of 080

errors in text at varying severity levels; 081

• Experiments showing that SESCORE is effec- 082
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tive in a diverse set of NLG tasks including083

WMT 20/21, WebNLG, and image captioning,084

and outperforms all previous unsupervised085

learned metrics. It is even comparable to the086

best learned metric on WMT 20/21.087

2 Related Work088

Traditional n-gram matching based (Papineni et al.,089

2002; Banerjee and Lavie, 2005) and edit distance090

based approaches (Levenshtein, 1965; Snover et al.,091

2006) have proven to be limited in recognizing se-092

mantic similarity beyond the lexical level. Learned093

metrics (Zhang* et al., 2020; Sellam et al., 2020;094

Yuan et al., 2021) have been proposed to align bet-095

ter with human judgements. We categorize these096

metrics as either unsupervised or supervised with097

respect to learning from human-annotated scores.098

Unsupervised Metrics attempt to extract fea-099

tures from large pretrained models. Embedding-100

based metrics (e.g. BERTScore (Zhang* et al.,101

2020) and Moverscore (Zhao et al., 2019)) create102

soft-alignments between reference and hypothe-103

sis in the embedding space. However, they are104

refined in the semantic coverage. Text generation-105

based metrics (Yuan et al., 2021), use conditional106

probability of the generated sentence to evaluate107

faithfulness of the candidates. However, Freitag108

et al. (2021a) points out text generation evaluation109

can produce errors beyond semantic coverage or110

faithfulness (e.g. style and fluency errors), which111

results poor correlations to the human evaluations.112

Supervised Metrics attempt to learn through lim-113

ited human-labelled severity annotations. Rei et al.114

(2020) trained COMET on a small set of domain-115

specific human ratings; this model has limited ex-116

tensibility to teh general domain. BLEURT (Sellam117

et al., 2020) first pretrains on millions of synthetic118

data and then uses WMT testing data in fine-tuning119

the model. Unlike our fine-grained stratified error120

synthesis, the labels on the synthetic data are de-121

rived from prior metrics or other tasks, limiting the122

quality and precision of pretraining process.123

3 The SESCORE Approach124

Given a reference text xxx and a candidate yyy, a metric125

is expected to output a score s. Training such a met-126

ric model requires triples of reference-candidate-127

score’s. However, there are no large-scale human128

annotated triple data available in many tasks. We129
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Figure 1: Overview of the Quality Prediction Model.

consider a general setup where large raw text cor- 130

pus is available. 131

SESCORE is trained from a pretrained language 132

model (e.g. BERT) on synthetic triples generated 133

from raw text. It synthesizes candidate sentences yyy′ 134

to mimic plausible errors by transforming raw input 135

sentences xxx multiple times. At each step, it inserts, 136

deletes, or substitutes a random span of text. These 137

errors are non-overlapping. It assesses the severity 138

of the errors introduced in the transformation. This 139

allows us to pretrain quality prediction models on 140

corpora containing only raw text samples {x}, en- 141

abling the use of learned quality prediction models 142

in any text generation domain. 143

The process of generating yyy′ from xxx, stratified 144

error synthesis, is so called for its incremental 145

and multi-category nature; a stochastic perturbation 146

function Ges which randomly samples from a set of 147

potential errors is recursively applied on xxx (eq. (1)) 148

M times to produce a sequence of perturbed sen- 149

tences ZZZ = {zi}Mi=1 that interpolate between the 150

raw text xxx and the final synthetic sentence yyy′ = zM 151

(§ 3.2). 152

zi =

{
xxx, if i = 0

Ges(zi−1), 0< i ≤ M
(1) 153

The stratum sentence sequence Z is then used 154

to in the subsequent severity scoring step which 155

uses a pairwise severity scoring function Ses on 156

consecutive pairs and cumulatively yield training 157

labels s′ =
∑M

i=1 Ses(zi−1, zi) (§ 3.3). A concrete 158

example is illustrated in fig. 2. Finally, we train 159

SESCORE’s quality prediction model, fθ ( fig. 1) 160

using synthetic {⟨xxx,yyy′, s′⟩} triples (§ 3.4). 161

3.1 Background: Quality Measured by Errors 162

Our method is inspired by the multidimensional 163

quality metrics (MQM) (Mariana, 2014; Freitag 164
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He will not accept it because he will not like itRaw text (xraw)

He will not accept it because he hates the plan he will not like itStep1:Insertion:

He will accept it because he hates the plan he will not like itStep2:Deletion:

He will accept it because he hates the plan he will not fancy itStep3:Replace:

Severe, -5

Severe, -5

Minor, -1

Insert (Seq-to-Seq)

Delete

Severity
Measure

(Ses)

Ses

Ses

z0=x

Step4: Swap: will He accept it because he hates the plan he will not fancy it
Ses Minor, -1

z1

z1
z2

z2

z3

z3

y'=z4

Replace (MLM)

Swap

Figure 2: SESCORE: stratified error synthesis and severity scoring Pipeline. # indicates the start index of
each error in the previous sentence. Both MLM and Seq-to-seq models can be used to produce inserted or
replaced tokens. Each zi corresponds to a perturbed sentence. The final synthesized sentence y′ has the score
s′ =

∑4
i=1 Ses(zi−1, zi) = −12.

Category MQM Description Synthesis Procedure in SESCORE

Accuracy Addition Text includes information not present reference. insertion using MLM or seq2seq generation
Omission Text is missing content from the reference Delete a random span of tokens
Mistranslation Text does not accurately represent the reference Replace a random span using maksed or seq2seq generation

Fluency Punctuation Incorrect punctuation (for locale or style) Insertion & replacement using masked filling, and deletion
Spelling Incorrect spelling or capitalization Insertion, replacement, deletion, and Swap
Grammar Problems with grammar Insertion, replacement, deletion, and Swap

Table 1: Error Categories in MQM and our synthesis procedure. SESCORE generalize the imitate model output
errors beyond machine translation.

et al., 2021a). MQM is a human evaluation scheme165

for machine translation. It determines the quality166

of a translation text by manually labeling errors167

and their severity levels. Errors are categorized168

into multiple types such as accuracy and fluency.169

Each error type is associated with a severity level –170

a penalty of 5 for major error and 1 for minor error.171

In table 1, we use two major error categories in172

MQM framework: accuracy and fluency, to clas-173

sify and decide our perturbations in Ges. There174

are two main motivations to simulate those errors175

from the table: 1) they are two major error cate-176

gories in machine translations; 2) those errors are177

general and can be extensible to new domains. We178

use six techniques to simulate errors from the ta-179

ble 1: mask insertion/replacement with maksed lan-180

guage model (MLM)/seq-to-seq (seq-to-seq) lan-181

guage model, and N-gram word drop/swap.182

3.2 Stratified Error Synthesis183

Tuan et al. (2021) suggest that multiple errors could184

co-occur in one segment, so we construct each185

sentence with up to Mmax perturbations (= 5 in186

experiments). At each iteration, we randomly draw187

one perturbation Ges from the set of edit operations,188

E = {eins, edel, erepl, eswap} (insertion, deletion,189

replacement, and swap, respectively).190

Our technique is stratified so as to enable ac- 191

curate evaluation of the severity at each step, and 192

prevent subsequent errors from overwriting prior 193

ones. To achieve this, we propose a novel stratified 194

error synthesis algorithm. For an input sentence 195

xxx, with L tokens, we initialize an array q of length 196

L, with qj = L− j,∀1 ≤ j ≤ L. Values indicate 197

the number of tokens after the current token can be 198

modified with the perturbation function, Ges. Each 199

Ges will randomly select a start index j from 1 to L 200

to modify the text. We define an error synthesis ta- 201

ble to keep track of the number of candidate tokens 202

can be modified after index j. Ges will only be 203

accepted if qj is greater than the span length of the 204

perturbation. The implementation details of strati- 205

fied error synthesis algorithm regarding to each edit 206

operation is illustrated in Appendix A algorithm 1. 207

All perturbations are recursively applied to the raw 208

text xxx, shown in eq. (1). 209

Synthesize Addition Error by Insertion (eins) 210

Given a start index, we add an additional phrase 211

to the raw text in two ways: a) using a MLM (e.g. 212

BERT and RoBERTa), and b) using a seq-to-seq 213

language model (e.g. mBART). For the first ap- 214

proach, we insert a <mask> token at the given 215

position of a sentence. Then, we use an MLM to 216

fill the token based on its context. We use top-k 217
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sampling (k = 4), to randomly select the filling to-218

ken. Our primary aim is to introduce semantically219

close sentences with all three fluency errors. With220

the insertion of <mask>, we can further synthe-221

size Addition errors. For the second approach, we222

use a pre-trained seq-to-seq model (e.g. mBART)223

to generate a phrase given the context text, with224

variable length.225

Synthesize Omission Error by Deletion (edel)226

We delete a random span of tokens from a raw text227

sentence. The span is drawn uniformly within the228

token indices. The length of the span is drawn from229

a Poisson distribution (λd = 1.5). Our primary aim230

is to mimic Omission error. However, depending231

on the specific words that it drops, this technique232

can further create Mistranslation and all Fluency233

errors.234

Synthesize Phrasal Error by Replacement (erepl)235

Sometimes specific terms in a reference sentence236

are systematically misphrased in generated sam-237

ples. This is difficult to simulate. Instead, we use238

either an MLM or a seq-to-seq model to replace239

a segment of tokens in the original text. For the240

first approach, the replaced span is always a single241

token, which is first replaced with a <mask> token.242

We then use an MLM to fill the blank similar to the243

insertion operation. For the second approach, we244

use a denoising seq-to-seq model (e.g. mBART) to245

generate tokens for the mask tags. We randomly246

choose the starting index of the span and draw the247

span length from a Poisson distribution (λd = 1.5).248

We use a denoising seq-to-seq model like mBART249

to synthesize fluent sentences with Addition and250

Mistranslation errors.251

Synthesize Grammar and Other Errors by252

Swapping (eswap) We swap two random words253

within the span length λs in the sentence (λs = 4).254

Our primary aim is to generate grammatically in-255

correct sentences with mismanagement of word256

orders, such as subject verb disagreement. It fur-257

ther introduces Spelling and Punctuation errors.258

3.3 Assessing Severity Score259

Following Freitag et al. (2021a), we consider an260

error severe if it alters the core meaning of the261

sentence. Prior study has suggested that sentence262

entailment is strongly correlated to semantic simi-263

larities (Khobragade et al., 2019). To capture the264

change of semantic meaning, we define a bidirec-265

tional entailment relation such that, text a entails266

b and b entails a is equivalent to a is semantically 267

equivalent to b. Therefore, for a given perturbation 268

function Ges on the sentence zi−1, we measure a 269

bidirectional entailment likelihood of zi−1 and zi. 270

If after applying transformation on zi−1, zi remains 271

bidirectional entailed to zi−1, we can assume that 272

Ges does not severely alter the semantic meaning of 273

zi−1 and therefore it is a minor error. We define the 274

entailment likelihood, ρ(a, b), as the probability of 275

predicting a entails b. The math formulation is il- 276

lustrated in eq. (2). Setting the threshold γ to be 0.9 277

reaches the highest inter-rater agreement of severity 278

measures using our validation dataset. Following 279

Freitag et al. (2021a), we assign −5 to severe er- 280

ror and −1 to minor errors. Therefore, our range 281

of score is [−25, 0]. We evaluate severity at each 282

perturbation of the sentence and cumulatively yield 283

training label s′ for the final synthesized sentence 284

yyy′, s′ =
∑N

i=1 Ses(zi−1, zi). 285

Ses(zi−1, zi) ={
−1, if ρ(zi−1, zi) ≥ γ and ρ(zi, zi−1) ≥ γ

−5, otherwise
(2)

286

3.4 Quality Prediction Model 287

In fig. 1, we fed both raw textxxx (reference) and syn- 288

thetic error sentence yyy′ into a pre-trained language 289

model (e.g. BERT or RoBERTa). The resulting 290

word embeddings are average pooled to derive two 291

sentence embeddings. Then we use the approach 292

proposed by RUSE (Shimanaka et al., 2018) to ex- 293

tract the two features: 1) Element-wise synthesized 294

and reference sentence product. 2) Element-wise 295

synthesized and reference sentence difference. Fol- 296

lowing the COMET (Rei et al., 2020) implemen- 297

tation, the above features are concatenated into a 298

single vector and fed into a feed-forward neural 299

network regressor, fθ. 300

However, the key distinction between our model 301

and COMET is that we don’t use model source 302

input during training or inference. Therefore our 303

SESCORE can generalize to other text generation 304

tasks, without considering specific source data. The 305

detailed architecture choice can be found in § 4.1. 306

4 Experiments 307

We conduct experiments on three tasks: machine 308

translation, data-to-text and image captioning, to 309

verify the utility and generalizability of SESCORE. 310

Specifically, we compare SESCORE on WMT 2020 311
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and 2021 test sets in English-to-German (En-De)312

and Chinese-to-English (Zh-En) with MQM la-313

bels (Mariana, 2014; Freitag et al., 2021a), which314

consists of expert-labeled scores. For data-to-text,315

we test SESCORE on the WebNLG 2017 challenge316

(Gardent et al., 2017a). For image captioning, we317

test SESCORE on the COCO image captioning318

challenge 2015 (Chen et al., 2015). We use Freitag319

et al. (2021a) annotated TED dataset as our devel-320

opment set to select the hyper-parameters in Error321

Synthesis Models and SEScore Metric Model. We322

comprehensively analyze each component of our323

pipeline and their contributions to the final results.324

4.1 Pre-training setup325

Synthetic Error Data We use the WMT19 (Bar-326

rault et al., 2019) training News Complimentary327

dataset (Tiedemann, 2012) as the raw pretraining328

data. It contains News articles across 16 different329

languages. We randomly sampled 40K sentences330

for English and 10K for German, then generated331

error synthetic sentences from them. To adopt to332

the text domain of WebNLG and Image captioning,333

we generate 30k and 40k error synthetic sentences334

from the text portion of the WebNLG (Gardent335

et al., 2017b) and image captioning’s training data336

(Chen et al., 2015). We use those data to train337

two separate checkpoints for WebNLG and image338

captioning evaluations. We discuss the effects of339

cross-domain evaluation in Appendix D.1.340

Error Synthesis Models We use four pretrained341

language models in the error synthesis process.342

First, we use an mBART model (Liu et al., 2020)343

to generate a span of tokens for the <mask> posi-344

tions for both insertion and replacement operations.345

Second, we use an XLM-RoBERTa model (Con-346

neau et al., 2020) to predict a token for <mask>347

using MLM’s objective for both single token inser-348

tion and single token replacement. Finally, we use349

RoBERTa models fine-tuned on MNLI and XNLI350

as our entailment classification model for English351

and German respectively. These two models are352

used to determine the bidirectional relations of a353

synthetic sentence and a raw text to measure the354

severity of the synthetic text. We set the synthesis355

hyperparameters λe = 5, λd = 1.5, λr = 1.5, and356

λs = 4. We generate all synthesized dataset on one357

RTX A6000 GPUs. It costs 0.5 hours to generate358

10K sentences.359

SESCORE Metric Model. To ensure the fair360

comparison and fully demonstrate the power of361

our pretraining data, SESCORE uses the compara- 362

ble model size compared to the COMET (Rei et al., 363

2020). Specifically, we use XLM-RoBERTa Large 364

as the backbone for our German metric model and 365

RoBERTa Large for English metric model. We use 366

Adam optimizer (Kingma and Ba, 2017) and set 367

batch size, learning rate and dropout rate of 8, 3e-5 368

and 0.15 respectively. We use mean squared error 369

to train the metric model. We select the best check- 370

point based on the highest Kendall correlation on 371

the TED validation. We include detailed training 372

process and hyperparamters in the Appendix B.1. 373

4.2 Baseline Methods 374

For machine translation evaluation, we include 375

three WMT baseline methods and five best per- 376

formed learned metrics. They are (1) Ngram- and 377

distance-based metrics (BLEU (Papineni et al., 378

2002), ChrF (Popović, 2015) and TER (Snover 379

et al., 2006)); (2) learned metrics requiring human 380

rating data (COMET (Rei et al., 2020), BLEURT 381

(Sellam et al., 2020)); (3) learned metrics with- 382

out human rating data (PRISM (Thompson and 383

Post, 2020), BARTScore (Yuan et al., 2021) and 384

BERTScore (Zhang* et al., 2020)). For WebNLG 385

evaluation, we include the three baselines in prior 386

work (Gardent et al., 2017b): METEOR (Baner- 387

jee and Lavie, 2005), TER, BLEU, and two 388

learned metrics MoverScore (Zhao et al., 2019) 389

and BERTScore. For image captioning, we in- 390

clude five baseline models in the COCO image 391

captioning challenge 2015 (Chen et al., 2015): 392

BLEU, METEOR, ROGUE-L (Lin, 2004), CIDEr 393

(Vedantam et al., 2015) and CHrf. We further in- 394

clude BARTScore and BERTScore and one top- 395

performing task-specific learned metric, LEIC (Cui 396

et al., 2018). For all the learned metrics with vari- 397

ants, we choose their checkpoints based on their 398

paper recommendations. We discuss the details of 399

the baseline model setups in the Appendix C.1. 400

4.3 Evaluation Procedure 401

Machine Translation Task As WMT20’s stan- 402

dard practice (Mathur et al., 2020), we compute 403

the correlations of each evaluation metric to the 404

segment- and system- level human scores, on 405

WMT20 and WMT21, with MQM-based labels 406

(Freitag et al., 2021a). For the segment-level cor- 407

relation, we adopt the Kendall τ correlation from 408

WMT20 to evaluate the relative rankings between 409

segments of the different systems. For the correla- 410

tion of system-level scores, we average SESCORE 411
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Model Name WMT20 (En→De) WMT21 (En→De) WMT20 (Zh→En) WMT21 (Zh→En)

Kendall Pearson Kendall Pearson Kendall Pearson Kendall Pearson
W

ith
H

L
. BLEURT 0.229 0.476 0.052 0.383 0.218 0.531 0.078 0.423

COMET(DA) 0.283 0.633* 0.103 0.650* 0.256 0.628* 0.114 0.452

W
/o

H
um

an
L

ab
el

s TER -0.221 0.627 -0.171 -0.356 -0.238 -0.516 -0.177 -0.338
BLEU 0.112 0.322 0.010 0.358 0.120 0.562 0.030 0.330
ChrF 0.163 0.333 0.030 0.326 0.151 0.534 0.042 0.296

BARTScore - - - - 0.176 0.580 0.063 0.335
BERTScore 0.166 0.260 0.063 0.322 0.228 0.549 0.092 0.362

PRISM 0.208 0.219 0.068 0.198 0.240 0.505 0.101 0.352
SESCORE 0.273 0.706* 0.139 0.629* 0.261 0.684* 0.108 0.501

Table 2: Segment-level Kendall (τ ) and System-level Pearson correlation (|ρ|) on En-De and Zh-En for WMT2020
and WMT 2021 Testing sets with Expert-based MQM labels. * indicates the Pearson correlation has p values < 0.05.

for all reference-candidate pairs of each machine412

translation system and estimate the absolute Pear-413

son correlation |ρ| to the system-level human judge-414

ment scores.415

Data-to-Text Task Following the WebNLG chal-416

lenge (Gardent et al., 2017b), we use Kendall cor-417

relation to evaluate the segment-level correlation.418

Each generated output is annotated by three as-419

pects: semantics, grammar and fluency. Since our420

SESCORE is the overall score of accuracy and flu-421

ency, we average three aspects of human ratings422

into one overall score and evaluate segment-level423

Kendall correlation of the SESCORE to the overall424

human judgement score.425

Image Captioning Task Following Zhang* et al.426

(2020), we compute SESCORE for all reference-427

candidate pairs of each image captioning system428

and average all the scores for each system to gen-429

erate the system-level scores. We compute the430

system-level Pearson correlation with M3 system-431

level human judgement score in COCO image cap-432

tioning challenge (Chen et al., 2015). M3 human433

judgement measures the average correctness of the434

captions on a scale 1-5. The detailed task, data in-435

formation and evaluation procedures are included436

in the Appendix C.2.437

4.4 Results on Machine Translation438

In table 2, we show our evaluation results on En-De439

and Zh-En in both WMT20 and WMT21.440

English to German We first contrast SESCORE441

with three WMT baselines (BLEU, TER and Chrf).442

SESCORE outperforms them significantly in both443

system-level Pearson and segment-level Kendall444

correlations. SESCORE shows its superior perfor-445

mance over two recent unsupervised learned met-446

rics (Bertscore and PRISM) leading by an average 447

8% and 7% segment-level Kendall correlation in 448

two years’ testing sets. Compared to the supervised 449

models, SESCORE has around 4.4% improvement 450

in the Kendall correlations at WMT20 and 8.8% 451

at WMT21 against BLEURT. Most importantly, 452

SESCORE outperforms the SOTA supervised met- 453

ric, COMET, by 3.6% in Kendall for WMT21 and 454

7.3% in system-level Pearson correlation. 455

Chinese to English Similar to En-De, SESCORE 456

outperforms three WMT baseline models (BLEU, 457

TER and Chrf) by the great margin in both system- 458

level and segment-level correlations of two years’ 459

testing sets. Compared to three strong unsuper- 460

vised learned metrics, BERTScore, BARTScore 461

and PRISM, SESCORE can outperform them by 462

4.6% on average in Kendall correlation in WMT20 463

and average 2.3% in WMT21. Compared to the su- 464

pervised models, we have 4.3% improvement in the 465

Kendall correlations at WMT20 and 3% at WMT21 466

against BLEURT. This is significant as BLEURT 467

is previously trained as an English-oriented metric 468

with millions of synthetic data and 5 year’s human 469

rating data (WMT15-19). Moreover, SESCORE 470

outperfoms the SOTA supervised COMET model 471

for both segment-level and system-level correla- 472

tion in WMT20. The remaining gaps of Kendall 473

correlations to the COMET is within 1%. 474

Takeaways: Machine translation results in En- 475

De and Zh-En demonstrate SESCORE’s superior 476

performance to unsupervised metrics and competi- 477

tive performance against supervised SOTA metrics. 478

4.5 Results on WebNLG Challenge 479

table 3 shows our segment-level Kendall correla- 480

tion results for WebNLG Challenge. SESCORE 481

can outperform three baseline models (Meteor, 482
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TER and BLEU) significantly. When compar-483

ing to the learned metrics, SESCORE outperforms484

BARTScore and MoverScore significantly by lead-485

ing 8.2% and 3% improvements on Kendall corre-486

lations. Moreover, it improves the top-performing487

unsupervised metric, BERTScore, by 0.3%.488

4.6 Results on Image Captioning Challenge489

table 4 demonstrates our system-level Pearson cor-490

relation results for the COCO image captioning491

challenge. SESCORE outperforms all task-agnostic492

and task-specific baseline metrics. The correct-493

ness metric in image captioning creates a chal-494

lenge evaluation scenario, such that evaluating only495

on semantic coverage does not cover all model496

mistakes. Metrics including METEOR, BLEU,497

even BERTScore with pretrained word embeddings498

only yield weak or moderate correlations to the hu-499

man judgements. SESCORE further outperforms500

significantly to BERTScore with idf weights and501

BARTScore which covers faithfulness. Most im-502

portantly, SESCORE outperforms two task-specific503

metcis, LEIC (Cui et al., 2018) and CIDER (Vedan-504

tam et al., 2015). by 6.1% and 1.8% Pearson cor-505

relations. This is a significant result, as LEIC is506

a trained metric that takes image as additional in-507

puts, optimized on the COCO data distributions508

and CIDER is a consensus based evaluation purely509

used for image descriptions.510

Takeaways: Results in § 4.5 and § 4.6 verify our511

prior assumptions that despite our synthesized error512

types are originated for Machine Translation tasks,513

they are useful and applicable to multiple domains514

and tasks. As benefited from the reference-only515

evaluation setup, our pretrained evaluation metric516

can correlate well to the human judgements in var-517

ious text generation settings, e.g with or without518

requiring source data to be text.519

5 Quantitative Analysis520

To validate the proposed SESCORE training tech-521

nique, we analyze the effects of data quantity, the522

stratified components, and synthetic error types.523

We include the cross-domain evaluation in the Ap-524

pendix D.1. We include a detailed qualitative anal-525

ysis of SESCORE regarding to its robustness and526

limitations in Appendix E.527

5.1 Data Quantity Effects528

We use 10k, 20k, 40k and 120k synthetic error sam-529

ples to train SESCORE models and evaluate their530

WebNLG

Model Name Kendall

METEOR -0.388
TER -0.345

BLEU 0.289
BARTScore 0.317
MoverScore 0.369
BERTScore 0.396

SESCORE 0.399

Table 3: Segment-level
Kendall Correlation (τ ) on
WebNLG 2017.

COCO Image Captioning

Model Name Pearson

METEOR 0.349
CHrF 0.442

BERTScore 0.459
ROGUE-L 0.589

BLEU 0.605
BERTScore(Idf) 0.644

BARTScore 0.688
LEIC* 0.720

CIDER* 0.763

SESCORE 0.781

Table 4: System-level
Pearson Correlation (|ρ|) on
COCO Image captioning’s
M3 Metric. Metrics with *
are directly cited from Cui
et al. (2018). Only METEOR
and CHrF do not have p value
< 0.05.

Kendall correlations on WMT20. We observe that 531

the Kendall correlation reaches an optimal level at 532

40k synthetic sentences in Zh-En and 10k synthetic 533

sentences in En-De. This demonstrates the poten- 534

tial gap between synthetic and real error distribu- 535

tions. It also indicates that the optimal performance 536

can be achieved through error perturbations with 537

small amount of raw text (see Appendix fig. 4). 538

5.2 Effects of the Stratified Components 539

To study the effects of each component, we in- 540

clude the SESCORE w/o synthesized error 1 and 541

SESCORE with without severity measures 2. In 542

table 5, we demonstrate that SESCORE without 543

severity measures can still achieve the strong per- 544

formance improvements over the base language 545

model, leading average 11% and 5% in segment- 546

level Kendall correlation at En-De and Zh-En, re- 547

spectively. This result demonstrates that our in- 548

cremental injection of synthetic errors can achieve 549

high human correlations on the segment-level rank- 550

ings, providing the first layer of our stratified 551

process. However, without severity measures, 552

SESCORE can hardly determine system level rank- 553

ing, indicating by weak system-level correlations 554

in Zh-En. By adding the severity measures into our 555

stratified pipeline, we observe a large system-level 556

correlation improvements in both En-De and Zh- 557

1We mean-pooled the word embeddings from pretrained
models (Conneau et al., 2020; Liu et al., 2019) to generate
each sentence embedding and compute the cosine similarities
of the sentence embeddings for evaluation.

2we remove the severity scoring component in SESCORE
by assigning all errors to be minor, with score -1. The final
score will be within 0 to -5. We use this new score labeling to
pretrain a SESCORE without severity measures.
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WMT20 (En→De) WMT21 (En→De) WMT20 (Zh→En) WMT21 (Zh→En)

Stratified Components Kendall Pearson Kendall Pearson Kendall Pearson Kendall Pearson

SESCORE w/o synthesized error 0.129 0.204 0.004 0.457 0.180 0.569 0.044 0.364
SESCORE w/o severity measures 0.249 0.549 0.103 0.608* 0.234 -0.058 0.097 0.278

SESCORE 0.273 0.706* 0.139 0.629* 0.261 0.684* 0.108 0.501

Table 5: Abalation study on the stratified error synthesis on En-De and Zh-En for WMT2020 and WMT 2021
Testing sets with Expert-based MQM labels. * indicates the Pearson correlation has p values < 0.05.
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Figure 3: Effects of the error types: demonstrating the results achieved when Replace, Insert, Swap, or Delete is
separately applied. Dashed line (All ges) represents the aggregate performance when all four synthesis functions are
used together. The dotted line (0 ges) represents the baseline performance of SESCORE when none of the error
synthesis functions are applied.

En. The segment-level Kendall correlation can be558

further improved by average 3% in En-De and 2%559

in Zh-En. This study demonstrates the effective-560

ness and importance of our stratified components561

in both segment-level and system-level correlations562

to human judgements.563

5.3 Effects of the Error Types564

To understand each error type’s contribution to the565

final pretraining outcomes, we use each error syn-566

thesis function to generate separate synthesized567

data and use each data to train a SESCORE. We568

benchmark SESCORE’s performance with each er-569

ror synthesis function in both years’ language di-570

rections. fig. 3 demonstrates that individual error571

synthesis function contributes to the pretrained met-572

ric differently in different language directions.573

In fig. 3, from both En-De and Zh-En, we ob-574

serve that all four error synthesis functions are ef-575

fective as they bring up the base Kendall perfor-576

mance of at least 5% from En-De and at least 7%577

from Zh-En in both year’s testing sets. We observe578

that the Replace and Delete tasks are the two promi-579

nent error synthesis functions in both En-De and580

Zh-En. On the contrary, the insert operation has the581

relatively minor effects in both En-De and Zh-En.582

Our best assumption is that large pretrained lan-583

guage model tends to produce semantically close584

content when giving the full context of the sentence.585

Therefore, most of insert produced errors are rela- 586

tively minor and are not able to simulate Addition 587

error types under diverse severity levels. Lastly, we 588

observe that the swap operation has different ef- 589

fects in different language directions. From Zh-En, 590

the SESCORE trained solely on Swap errors can 591

achieve equal to or less than 1% Kendall correla- 592

tions compared to the SESCORE with four different 593

operations. However, in En-De, the swap function 594

only has moderate effects. 595

Takeaways: We demonstrate that all error syn- 596

thetic functions can improve Kendall correlations 597

to the human judgements. However, the effect of 598

each error synthetic functions is related to the ac- 599

tual error distributions in each task. Aggregating 600

all four error synthetic functions should be consid- 601

ered to achieve a general error distributions which 602

is robust to different domains or tasks. 603

6 Conclusion 604

To conclude, we introduced SEScore, a reference- 605

based metric for text generation evaluations. With- 606

out human labels, SEScore can outperform all un- 607

supervised evaluation metrics and achieve com- 608

petitive performance to the SOTA supervised ap- 609

proaches. We demonstrate that our stratified error 610

synthesis approach makes model aware of individ- 611

ual errors with different severity levels, achieving 612

high correlation to the human judgements. 613
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7 Ethics and Limitations614

Our qualitative analysis in Appendix E highlights615

three main limitations in the SESCORE framework.616

First, we observe that it is difficult for SESCORE617

to detect punctuation errors. As they are not rep-618

resented in the entailment data distributions. Sec-619

ond, SESCORE disagrees with human judgements620

when human annotations contain uncertainties (e.g.,621

high inter-rater disagreement on the severity of622

an error). Perhaps in these cases human opinions623

are too inherently subjective to model well in the624

first place. Regardless, SESCORE is not likely to625

produce rankings exactly matching human anno-626

tators when human rating difference is less than627

1. Lastly, SESCORE disagrees more heavily with628

human annotators on the quality of long generated629

text passages. We assumed that this is due to our630

limited sentence embedding space while individ-631

ual errors will be mitigated by the long sentence632

contexts. Most importantly, we observed that those633

three limitations are also commonly occurred in the634

three top-performing baseline metrics (BERTScore635

(Zhang* et al., 2020), PRISM (Thompson and Post,636

2020) and COMET (Rei et al., 2020)), motivating637

more future works to investigate on those issues.638

We demonstrate SESCORE’s superior performance639

over other baselines. However, SESCORE can not640

be used to replace human judgements. All code and641

synthesized data samples will be publicly released642

following deanonymization.643
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A Algorithm Details824

Algorithm 1: Stratified Error Synthesis
Input: Seed sentence set S = {x1, x2, ..., xn}, λe,

λd, λr , λs, editing model set M .
Output: Synthetic reference and error text D.

1 D = ∅;
2 for i = 1..n do
3 l = len(xi), ynew = xi, si = 0;
4 k ∼ Poisson(λe);
5 for j = 1..k do
6 yold = ynew;
7 edit ∼ Random({Ins,Del,Rep,Swap});
8 switch edit do
9 case Ins do

10 sampling h ∼ Uniform(0, l) s.t.
h does not overlap the previous
edited spans;

11 Randomly select a model from M
to generate a phrase f to insert at
position h of ynew;

12 case Del do
13 repeat
14 draw h ∼ Uniform(0, l);
15 draw ll ∼ Poisson(λd);
16 until the span from h to b+ ll − 1

does not overlap the previous
edited spans;

17 Remove a span of length ll at
position h from ynew;

18 case Rep do
19 repeat
20 draw h ∼ Uniform(0, l);
21 draw ll ∼ Poisson(λr);
22 until the span from h to b+ ll − 1

does not overlap the previous
edited spans;

23 Randomly select a model from the
model base M to generate a
phrase f ;

24 Replace the segment of ynew from
h to h+ ll − 1 with f ;

25 case Swap do
26 repeat
27 draw h ∼ Uniform(0, l);
28 draw ll ∼ Uniform(1..λs);
29 until the span from b to b+ ll − 1

does not overlap the previous
edited spans;

30 Swap the tokens in ynew at
positions h and h+ ll;

31 si+ = Ses(yold, ynew);

32 D ← D ∪ {(xi, ynew, si)};

B Implementation Details of the825

Pretraining Pipeline826

This section provides the implementation details827

for both error synthesis models and SEScore metric828

model.829

B.1 SEScore Metric Model 830

The feed-forward hidden dimensions are 2048 and 831

1024. We use tanh as our activation function. 832

The training process takes 1, 3, 2 and 1 epoches for 833

machine translation Zh-En, machine translation En- 834

De, WebNLG and image captioning, respectively. 835

C Experiments-Supplementary Material 836

C.1 Details about the Baseline Models 837

For all model variants, we choose each model based 838

on two criteria: their paper recommendations and 839

comparable model size to SEScore. 840

For BERTScore (Zhang* et al., 2020), we follow 841

its model recommendation by using roberta-large 842

for English texts and bert-base-multilingual-cased 843

for German texts. For all BERTScore in the paper, 844

we report their F1 scores. For BLEURT (Sellam 845

et al., 2020), we use BLEURT-Large (Max token 846

128, 24 layers and 1024 hidden units, comparable 847

size to SEScore) for English texts and BLEURT- 848

20-D12 for German texts. For COMET (Rei et al., 849

2020), we choose their best checkpoint wmt20- 850

comet-da (exactly the same model size to SEScore) 851

to evaluate its performance. We use bart-large-cnn 852

to evaluate BARTScore (Yuan et al., 2021)’s perfor- 853

mance. We NLTK (Bird et al., 2009) library to im- 854

plement BLEU (Papineni et al., 2002), METEOR 855

(Banerjee and Lavie, 2005), CHrF (Popović, 2015) 856

and ROUGE-L (Lin, 2004). We report LEIC (Cui 857

et al., 2018) and CIDEr (Vedantam et al., 2015)’s 858

performance through prior study (Cui et al., 2018). 859

C.2 Details about the Evaluation Procedures 860

and Test Data Information 861

Machine Translation Task We use WMT20 862

and WMT21 (Freitag et al., 2021b) ’s testing 863

sets (Newtest2020 and Newtest2021), with mqm- 864

based expert labels, as our main evaluation corpus. 865

WMT20 (Chinese→ English) contains 2000 seg- 866

ments across 155 documents and WMT (English→ 867

German) contains 1418 segments across 130 docu- 868

ments, respectively. WMT21 (Chinese→ English) 869

contains 1948 segments and WMT21 (English→ 870

German) contains 1002 segments, respectively. 871

There are two types of human judgement scores: 872

Segment-level and System-level scores. Segment- 873

level human judgement score assigns a single score 874

to each reference-candidate pair. System-level hu- 875

man judgement score assigns a single score to each 876

system based on all {reference, system output} 877

pairs. We follow the WMT20’s standard practice 878
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to evaluate metric performance using both system-879

level and segment-level correlation.880

For system-level evaluation, we average881

SEScore for all reference-candidate pairs of each882

machine translation system and estimate the ab-883

solute Pearson correlation |ρ| to the System-level884

human judgement scores. Freitag et al. (2021b)885

annotated top 10, 10, 17 and 15 top performing886

systems of En-De and Zh-En in Newtest2020 and887

En-De and Zh-En in Newtest2021, respectively.888

For segment-level evaluation, we adopt the889

Kendall τ correlation from WMT20 (Mathur et al.,890

2020) to evaluate the relative rankings between891

segments of the different systems (See Eqn 3). Fol-892

lowing the prior study’s suggestion (Freitag et al.,893

2021a), we use the absolute threshold between894

two segment scores to determine the relative rank-895

ings of both En-De and Zh-En. To prepare all896

the relative ranking pairs for Kendall correlation,897

we removed all the pairs which have the exactly898

same annotations and cleaned erroneous texts. In899

the end, we have 76,087 pairs from Zh-En and900

54405 pairs from En-De in Newtest2020 and 38758901

pairs from En-De and 52498 pairs from Zh-En in902

Newtest2021.903

The Kendall’s Tau-like formulation is defined904

as following:905

τ =
Concordant−Discordant

Concordant+Discordant
(3)906

where Concordant indicates the number of the907

correct predictions in the pairwise ranking and Dis-908

cordant indicates the number of the misrankings.909

Data-to-Text Task The WebNLG dataset (Gar-910

dent et al., 2017b) consists a set of data extracted911

from DBpedia and requires systems to map entities912

(e.g., buildings, cities, artiests) to text. We use 9913

submissions for WebNLG challenge. Each system914

generates 223 outputs. In total, we have 4,677 out-915

put sentences. Following the WebNLG challenge916

(Gardent et al., 2017b), we use Kendall τ corre-917

lation to evaluate the relative rankings between918

segments of the different systems. From combi-919

nations of rankings and data cleaning, we obtain920

7725 relative ranking pairs. Each generated output921

is evaluated by three aspects: semantics, grammar922

and fluency. Since our SEScore is the overall score923

of accuracy and fluency, we average three aspects924

of human ratings into one overall score and evaluate925

segment-level Kendall correlation of the SEScore926

to the overall human judgement score. The Kendall927

Task WebNLG (τ ) COCO (ρ)

Cross-domain Performance 0.396 -0.0428
In-domain Pretraining 0.399 0.781

Table 6: Abalation study on the cross-domain evaluation
at WebNLG and COCO image captioning Challenge.

τ ’s formulation is shown in Eqn 3. 928

Image Captioning Task COCO 2015 Caption- 929

ing Challenge (Chen et al., 2015) consists of the hu- 930

man judgements from the 11 submission entries 3. 931

Following the prior study (Cui et al., 2018; Zhang* 932

et al., 2020), we perform our experiments on the 933

COCO validation set, as we do not have access 934

to COCO test set where human judgements were 935

performed. Using the findings of the prior works 936

(Cui et al., 2018; Zhang* et al., 2020), we argue 937

that the human judgements on the validation set are 938

sufficiently close to the ones on the testing set. 939

D Quantitative Analysis 940

D.1 Effects of the Cross Domain Evaluation 941

As domain shifts have been repeatedly reported by 942

the previous studies (Sellam et al., 2020; Yuan et al., 943

2021), we conduct experiments to study SEScore 944

before and after domain adaptation in WebNLG 945

and image captioning. In Table 6, due to the close 946

data distribution and error types in WebNLG and 947

machine translation, we find that SEScore pre- 948

trained on machine translation error synthetic data 949

can achieve strong cross-domain performance in 950

WebNLG and competitive to in-domain pretrained 951

variant. However, when larger domain difference 952

presents between machine translation and image 953

captioning, domain adaptation plays a major role by 954

leading metric from no correlation of cross-domain 955

performance to high correlation to human judge- 956

ments. This finding suggests that our domain adap- 957

tation strategy is effective in adapting synthetic 958

error sentences into different domains cross sev- 959

eral NLG tasks. This technique can provide major 960

benefits in training a powerful learned metrics in 961

narrowed domain, e.g low resource language of 962

machine translation. 963
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D.2 Effects of the Data Quantity964

E Qualitative Analysis965

We study the outputs of three best performing base-966

line models (BERTScore, PRISM, COMET) and967

SEScore on WMT20 Chinese-to-English. Ideally,968

the rankings produced by the automatic evaluation969

metrics should be similar to the rankings assigned970

by the human score.971

E.1 Robustness Analysis972

Table 7 shows examples where SEScore disagree973

largely to the baseline models (BERTScore and974

PRISM) about the pairwise rankings. We ob-975

serve that SEScore is effective on distinguish-976

ing pairs, which are differed on only one mi-977

nor error, demonstrated at case No.1 in Table 7,978

BERTScore is extremely vulnerable in such cases,979

since BERTScore’s approach relies largely on the980

overall semantic coverages of the word embed-981

dings. Minor mistake, like inappropriate use of982

"subscribers" is hard to reflect to in its overall983

score. We observe the similar shortcomings in984

PRISM and COMET. We investigate the robust-985

ness of the word order for all automatic evalu-986

ation metrics (Case No.2). Similar to the previ-987

ous findings (Sai et al., 2021), BERTScore suffers988

greatly when word order is shuffled and fails to cap-989

ture the shifts in semantic meanings. All PRISM,990

COMET and SEScore are able to give the correct991

rankings. Case No.3 and No.4 demonstrate the met-992

rics’ capabilities in distinguishing the severe and993

minor errors. For example, in "Worse" sentence of994

case No.3, although "Chinese citizens are becom-995

ing more and more convenient to apply for visas996

3There are 15 submission entries in the COCO 2015 Cap-
tioning Challenge (Chen et al., 2015). However, 3 entries did
not submit their validation outputs and 2 systems have the
identical validation outputs. Therefore, we use the submis-
sions from the 11 entries

" shares a lot word coverage to the reference, it 997

completely alters the sentence meaning. Accord- 998

ing to the MQM-based human evaluation criteria 999

(Freitag et al., 2021a), this is a severe error and 1000

should be labeled as -5. However, due to their 1001

evaluation criteria, both PRISM and BERTScore 1002

are incapable in distinguishing such differences. 1003

In this analysis, we demonstrate qualitatively that 1004

SEScore’s superior performance over unsupervised 1005

top-performing metrics (BERTScore and PRISM) 1006

and comparative performance to the SOTA super- 1007

vised metric COMET. Moreover, SEScore demon- 1008

strates its better score alignments to the human 1009

judgements against other metrics. Its scores are 1010

directly interpretable under MQM expert-based hu- 1011

man evaluation framework (Freitag et al., 2021a). 1012

E.2 Limitations 1013

Table 8 shows examples where SEScore disagrees 1014

with human judgements about the pairwise rank- 1015

ings. We observe that SEScore find it difficult to 1016

detect punctuation errors. For example, SEScore 1017

fails to correctly rank No.1 where "Worse" exam- 1018

ple’s punctuation has higher severity error. Second, 1019

SEScore disagrees with human judgements when 1020

human labels contains uncertainties (Human anno- 1021

tators do not have the agreements on the severity 1022

measures), indicating by No.2 and No.3. With 1023

the close severity differences (<1 human rating 1024

difference), SEScore is not likely to produce rank- 1025

ings exactly matching human annotators. Lastly, 1026

for the long text generation with more than 100 1027

words (No.4), we observe that SEScore fails to 1028

produce correct rankings or align to the human 1029

judgements. We assumed that this is due to our 1030

limited sentence embedding space while individual 1031

errors will be mitigated by its long sentence con- 1032

texts. Moreover, we observed that those three limi- 1033

tations are also commonly occurred in the three top- 1034

performing baseline metrics (BERTScore, PRISM 1035

and COMET), motivating more future works to 1036

investigate on those issues. 1037
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