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Abstract

Large Language Models (LLMs) excel in han-
dling general knowledge tasks, yet they strug-
gle with user-specific personalization, such
as understanding individual emotions, writing
styles, and preferences. Personalized Large
Language Models (PLLMs) tackle these chal-
lenges by leveraging individual user data, such
as user profiles, historical dialogues, content,
and interactions, to deliver responses that are
contextually relevant and tailored to each user’s
specific needs. This is a highly valuable re-
search topic, as PLLMs can significantly en-
hance user satisfaction and have broad appli-
cations in conversational agents, recommen-
dation systems, emotion recognition, medical
assistants, and more. This survey reviews re-
cent advancements in PLLMs from three tech-
nical perspectives: prompting for personalized
context (input level), finetuning for personal-
ized adapters (model level), and alignment for
personalized preferences (objective level). To
provide deeper insights, we also discuss cur-
rent limitations and outline several promising
directions for future research. The papers are
organized in an anonymous Github Repo.

1 Introduction

In recent years, substantial progress has been
made in Large Language Models (LLMs) such as
GPT, PalLM, LLaMA, DeepSeek, and their vari-
ants (Zhao et al., 2023). These models have demon-
strated remarkable versatility, achieving state-of-
the-art performance across various natural lan-
guage processing (NLP) tasks, including question
answering, logical reasoning, and machine trans-
lation (Chang et al., 2024; Hu et al., 2024; Zhang
et al., 2024f,e; Zhu et al., 2024; Wang et al., 2023a,
2024a), with minimal task-specific adaptation.

The Necessity of Personalized LLMs (PLLMs)
While LLMs excel in general knowledge and multi-
domain reasoning, their lack of personalization cre-
ates challenges in situations where user-specific
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Figure 1: Illustration of PLLM techniques for generat-
ing personalized responses through three levels: prompt-
ing, adaptation, and alignment.

understanding is crucial. For instance, conversa-
tional agents need to adapt to a user’s preferred
tone and incorporate past interactions to deliver
relevant, personalized responses. As LLMs evolve,
integrating personalization capabilities has become
a promising direction for advancing human-AlI in-
teraction across diverse domains such as education,
healthcare, and finance (Hu et al., 2024; Zhang
et al., 2024f,e; Zhu et al., 2024; Wang et al., 2023a,
2024a). Despite its promise, personalizing LLMs
presents several challenges. These include effi-
ciently representing and integrating diverse user
data, addressing privacy concerns, managing long-
term user memories, etc (Salemi et al., 2023).
Moreover, achieving personalization often requires
balancing accuracy and efficiency while addressing
biases and maintaining fairness in the outputs.

Contributions Despite growing interest, the field
of PLLMs lacks a systematic review that consol-
idates recent advancements. This survey aims to
bridge the gap by systematically organizing exist-
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Figure 2: A taxonomy of PLLMs with representative examples.

ing research on PLLMs and offering insights into
their methodologies and future directions. The
contributions of this survey can be summarized as
follows: (1) A structured taxonomy: We propose
a comprehensive taxonomy, providing a technical
perspective on the existing approaches to building
PLLMs. (2) A comprehensive review: We system-
atically review state-of-the-art methods for PLLMs,
analyzing fine-grained differences among the meth-
ods. (3) Future directions: We highlight current
limitations, such as data privacy and bias, and out-
line promising avenues for future research, includ-
ing multimodal personalization, edge computing,
lifelong updating, trustworthiness, etc.

2 Preliminary

2.1 Large Language Models

Large Language Models (LLMs) generally refer to
models that utilize the Transformer architecture and
are equipped with billions of parameters trained on
trillions of text tokens. These models have demon-

strated substantial improvements in a myriad of
tasks related to natural language understanding and
generation, increasingly proving beneficial in as-
sisting human activities. In this work, we mainly
focus on autoregressive LLMs, which are based on
two main architectures: decoder-only models and
encoder-decoder models. Encoder-decoder models
such as Flan-T5 (Chung et al., 2022) and Chat-
GLM (Zeng et al., 2022) analyze input through the
encoder for semantic representations, making them
effective in language understanding in addition to
generation. Decoder-only LLMs focus on left-to-
right generation by predicting the next token in a
sequence, with numerous instances (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al., 2023;
Guo et al., 2025) under this paradigm achieving
breakthroughs in advanced capabilities.

However, these models are typically pre-trained
on general-purpose data and lack an understand-
ing of specific user information. As a result, they
are unable to generate responses tailored to a user’s



unique tastes and expectations, limiting their effec-
tiveness in personalized applications where user-
specific adaptation is critical.

2.2 Problem Statement

Personalized Large Language Models (PLLMs)
generate responses that align with the user’s style
and expectations, offering diverse answers to the
same query for different users (Clarke et al., 2024).
A PLLM is defined as an LLLM that generates re-
sponses conditioned not only on an input query ¢,
but also on a user u’s personalized data C,,. It aims
to predict the most probable response sequence
y given a query ¢ and the personalized context
Cu, such that: y = argmax, P(y | ¢,Cy). The
personalized data C,, may encapsulate information
about the user’s preferences, history, context, and
other user-specific attributes. These can include
profile/relationship, historical dialogues, historical
content, and predefined human preference (Fig-
ure 1). The goal of the PLLM is to utilize some
techniques to let the LLM-generated response y
align with the users’ preference and expectations 4.
More details are shown in Appendix A.

By incorporating personalized data, PLLMs en-
hance traditional LLMs, improving response gen-
eration, recommendation, and classification tasks.
Note that our survey differs significantly from role-
play related LLM personalization (Tseng et al.,
2024; Chen et al., 2024a; Zhang et al., 2024g).
While role-play focuses on mimicking characters
during conversations, PLLMs in this survey focus
on understanding users’ contexts and preferences
to meet their specific needs. Compared to (Zhang
et al., 2024g), which emphasizes broad categories,
our work provides a systematic analysis of tech-
niques to enhance PLLM efficiency and perfor-
mance, with a detailed technical classification.

2.3 Proposed Taxonomy

We propose a taxonomy (as illustrated in Figure 1
and Figure 2) from technical perspectives, cate-
gorizing the methods for Personalized Large Lan-
guage Models (PLLMs) into three major levels: (1)
Input level: Personalized Prompting focuses on
handling user-specific data outside the LLM and in-
jecting it into the model. (2) Model level: Person-
alized Adaptation emphasizes designing a frame-
work to efficiently fine-tune or adapt model pa-
rameters for personalization. (3) Objective Level:
Personalized Alignment aims to refine model be-
havior to align with user preferences effectively.

3 Personalized Prompting

Prompt engineering acts as a bridge for interaction
between users and LLMs. In this survey, prompt-
ing involves guiding an LLM to generate desired
outputs using various techniques, from traditional
text prompts to advanced methods like soft embed-
ding. Soft embedding can be extended not only
through input but also via cross-attention or by ad-
justing output logits, enabling more flexible and
context-sensitive responses. For each user u, the
framework can be expressed as

y= fum(@® ¢ (Cu)), (D

where, fipm is the LLM model that generates the
response; ¢ is a function that extracts relevant con-
text from the user’s personal context C,; & repre-
sents the combination operator that fuses the query
q and the relevant personalized context ¢(C,,), pro-
ducing enriched information for the LLM.

3.1 Profile-Augmented Prompting

Profile-augmented prompting (Figure 3(a)) explic-
itly utilize summarized user preferences and pro-
files in natural language to augment LLMs’ input
at the token level (¢ is the summarizer model).
Non-tuned Summarizer A frozen LLM can be
directly used as the summarizer to summarize user
profiles due to its strong language understanding
capabilities, i.e., ¢ (C,) = fLLm (Cy). For instance,
Cue-CoT (Wang et al., 2023b) employs chain-of-
thought prompting for personalized profile augmen-
tation, using LLMs to extract and summarize user
status (e.g., emotion, personality, and psychology)
from historical dialogues. PAG (Richardson et al.,
2023) leverages instruction-tuned LLMs to pre-
summarize user profiles based on historical con-
tent. The summaries are stored offline, enabling
efficient personalized response generation while
meeting runtime constraints. ONCE (Liu et al.,
2024c) prompts closed-source LLMs to summarize
topics and regions of interest from users’ browsing
history, enhancing personalized recommendations.
Tuned Summarizer Black-box LLMs are sen-
sitive to input noise, like off-topic summaries, and
struggle to extract relevant information. Thus, train-
ing the summarizer to adapt to user preferences
and style is essential. Matryoshka (Li et al., 2024a)
uses a white-box LLM to summarize user histo-
ries, similar to PAG, but fine-tunes the summarizer
instead of the generator LLM. RewriterSIRI (Li
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Figure 3: The illustration of personalized prompting approaches: a) Profile-Augmented, b) Retrieval-Augmented,

¢) Soft-Fused.

et al., 2024b) rewrites the query ¢ instead of con-
catenating summaries, optimized with supervised
and reinforcement learning.

CoS (He et al., 2024) is a special case that as-
sumes a brief user profile ¢ (C,,) and amplifies its
influence in LLM response generation by compar-
ing output probabilities with and without the pro-
file, adjusting personalization without fine-tuning.

3.2 Retrieval-Augmented Prompting

Retrieval-augmented prompting (Gao et al., 2023;
Fan et al., 2024; Qiu et al., 2024) excels at ex-
tracting the most relevant records from user data
to enhance PLLMs (See Figure 3(b)). Due to the
complexity and volume of user data, many meth-
ods use an additional memory for more effective
retrieval. Common retrievers including sparse (e.g.,
BM25 (Robertson et al., 1995)), and dense re-
trievers (e.g., Faiss (Johnson et al., 2019), Con-
triever (Izacard et al., 2021)). These methods ef-
fectively manage the increasing volume of user
data within the LLM’s context limit, improving
relevance and personalization by integrating key
evidence from the user’s personalized data.

3.2.1 Personalized Memory Construction

This part designs mechanisms for retaining and
updating memory to enable efficient retrieval of
relevant information.

Non-Parametric Memory This category main-
tains a token-based database, storing and retrieving
information in its original tokenized form without
using parameterized vector representations. For
example, MemPrompt (Madaan et al., 2022) and
TeachMe (Dalvi et al., 2022) maintain a dictionary-
based feedback memory (key-value pairs of mis-
takes and user feedback). MemPrompt focuses
on prompt-based improvements, whereas TeachMe
emphasizes continual learning via dynamic mem-
ory that adapts over time. MaLP (Zhang et al.,

2024a) further integrates multiple memory types,
leveraging working memory for immediate process-
ing, short-term memory (STM) for quick access,
and long-term memory (LTM) for key knowledge.

Parametric Memory Recent studies parame-
terize and project personalized user data into a
learnable space, with parametric memory filter-
ing out redundant context to reduce noise. For
instance, LD-Agent (Li et al., 2024c) maintains
memory with separate short-term and long-term
banks, encoding long-term events as parametric
vector representations refined by a tunable module
and retrieved via an embedding-based mechanism.
MemoRAG (Qian et al., 2024), in contrast, adopts a
different approach by utilizing a lightweight LLM
as memory to learn user-personalized data. Instead
of maintaining a vector database for retrieval, it
generates a series of tokens as a draft to further
guide the retriever, offering a more dynamic and
flexible method for retrieval augmentation.

3.2.2 Personalized Memory Retrieval

The key challenge in the personalized retriever de-
sign lies in selecting not only relevant but also
representative personalized data for downstream
tasks. LaMP (Salemi et al., 2023) investigates how
retrieved personalized information affects the re-
sponses of large language models (LLMs) through
two mechanisms: in-prompt augmentation (IPA)
and fusion-in-decoder (FiD). PEARL (Mysore et al.,
2023) and ROPG (Salemi et al., 2024) similarly
aim to enhance the retriever using personalized
generation-calibrated metrics, improving both the
personalization and text quality of retrieved docu-
ments. Meanwhile, HYDRA (Zhuang et al., 2024)
trains a reranker to prioritize the most relevant in-
formation additionally from top-retrieved historical
records for enhanced personalization.
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3.3 Soft-Fused Prompting

Soft prompting differs from profile-augmented
prompting by compressing personalized data into
soft embeddings, rather than summarizing it into
discrete tokens. These embeddings are generated
by a user feature encoder ¢.

In this survey, we generalize the concept of soft
prompting, showing that soft embeddings can be in-
tegrated (combination operator @) not only through
the input but also via cross-attention or by adjust-
ing output logits, allowing for more flexible and
context-sensitive responses (See Figure 3(c)).

Input Prefix Soft prompting, used as an input
prefix, focuses on the embedding level by concate-
nating the query embedding with the soft embed-
ding, and is commonly applied in recommendation
tasks. PPlug (Liu et al., 2024b) constructs a user-
specific embedding for each individual by mod-
eling their historical contexts using a lightweight
plug-in user embedder module. This embedding
is then attached to the task input. UEM (Dodda-
paneni et al., 2024) is a user embedding module
(transformer network) that generates a soft prompt
conditioned on the user’s personalized data. PER-
SOMA (Hebert et al., 2024) enhances UEM by em-
ploying resampling, selectively choosing a subset
of user interactions based on relevance and impor-
tance. REGEN (Sayana et al., 2024) combines item
embeddings from user-item interactions via col-
laborative filtering and item descriptions using a
soft prompt adapter to generate contextually per-
sonalized responses. PeaPOD (Ramos et al., 2024)
personalizes soft prompts by distilling user prefer-
ences into a limited set of learnable, dynamically
weighted prompts. Unlike previously mentioned
methods, which focus on directly embedding user
interactions or resampling relevant data, PeaPOD
adapts to user interests by weighting a shared set
of prompts.

Cross-Attention Cross-attention enables the
model to process and integrate multiple input
sources by allowing it to attend to personalized
data and the query. User-LLM (Ning et al., 2024)
uses an autoregressive user encoder to convert his-
torical interactions into embeddings through self-
supervised learning, which are then integrated via
cross-attention. The system employs joint training
to optimize both the retriever and generator for bet-
ter performance. RECAP (Liu et al., 2023) utilizes
a hierarchical transformer retriever designed for di-
alogue domains to fetch personalized information.
This information is integrated into response genera-
tion via a context-aware prefix encoder, improving
the model’s ability to generate personalized, con-
textually relevant responses.

Output Logits GSMN (Wu et al., 2021) retrieves
relevant information from personalized data, en-
codes it into soft embeddings, and uses them in
attention with the query vector. Afterward, the
resulting embeddings are concatenated with the
LLM-generated embeddings, modifying the final
logits to produce more personalized and contextu-
ally relevant responses.

3.4 Discussions

While prompting methods are efficient and adapt-
able, enabling dynamic personalization with min-
imal computational overhead, they fall short in
deeper personalization analysis and global knowl-
edge access due to their reliance on predefined
prompt structures (Appendix C).

4 Personalized Adaptation

PLLMs require balancing fine-tuning’s deep adapt-
ability with the efficiency of prompting. There-
fore, specialized methods need to be specifically
designed for PLLMs to address these challenges
utilizing parameter-efficient fine-tuning methods
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(PEFT), such as LoRA (Hu et al., 2021; Yang
et al., 2024), prefix-tuning (Li and Liang, 2021),
MeZo (Malladi et al., 2023), etc. (See Figure 4).

4.1 One PEFT All Users

This method trains on all users’ data using a shared
PEFT module, eliminating the need for separate
modules per user. The shared module’s architecture
can be further categorized.

Single PEFT PLoRA (Zhang et al., 2024d) and
LM-P (Wozniak et al., 2024) utilize LoRA for
PEFT of LLM, injecting personalized informa-
tion via user embeddings and user IDs, respec-
tively. PLoRA is further extended and supports
online training and prediction for cold-start sce-
narios. Userldentifier (Mireshghallah et al., 2021)
uses a static, non-trainable user identifier to condi-
tion the model on user-specific information, avoid-
ing the need for trainable user-specific parameters
and reducing training costs. Review-LLM (Peng
et al., 2024b) aggregates users’ historical behaviors
and ratings into prompts to guide sentiment and
leverages LoRA for efficient fine-tuning. However,
these methods rely on a single architecture with
fixed configurations (e.g., hidden size, insertion
layers), making them unable to store and activate
diverse information for personalization (Zhou et al.,
2024). To solve this problem, MiLP (Zhang et al.,
2024b) utilizes a Bayesian optimization strategy
to automatically identify the optimal configuration
for applying multiple LoRA modules, enabling ef-
ficient and flexible personalization.

Mixture of Experts (MoE) Several methods use
the LoRA module, but with a static configuration
for all users. This lack of parameter personalization
limits adaptability to user dynamics and preference
shifts, potentially resulting in suboptimal perfor-
mance (Cai et al., 2024). RecLoRA (Zhu et al.,
2024) addresses this limitation by maintaining a set
of parallel, independent LoRA weights and employ-
ing a soft routing method to aggregate meta-LoRA
weights, enabling more personalized and adaptive
results. Similarly, iLoRA (Kong et al., 2024) cre-

ates a diverse set of experts (LoRA) to capture
specific aspects of user preferences and generates
dynamic expert participation weights to adapt to
user-specific behaviors.

Shared PEFT methods rely on a centralized ap-
proach, where user-specific data is encoded into
a shared adapter by centralized LLMs. This lim-
its the model’s ability to provide deeply personal-
ized experiences tailored to individual users. Fur-
thermore, using a centralized model often requires
users to share personal data with service providers,
raising concerns about the storage, usage, and pro-
tection of this data.

4.2 One PEFT Per User

Equipping a user-specific PEFT module makes
LLM deployment more personalized while pre-
serving data privacy. However, the challenge lies
in ensuring efficient operation in resource-limited
environments, as users may lack sufficient local
resources to perform fine tuning.

No Collaboration There is no collaboration or
coordination between adapters or during the learn-
ing process for each use in this category. User-
Adapter (Zhong et al., 2021) personalizes models
through prefix-tuning, fine-tuning a unique prefix
vector for each user while keeping the underly-
ing transformer model shared and frozen. Pock-
etLLM (Peng et al., 2024a) utilizes a derivative-
free optimization approach, based on MeZo (Mal-
ladi et al., 2023), to fine-tune LLMs on memory-
constrained mobile devices. OPPU (Tan et al.,
2024b) equips each user with a LoRA module.

Collaborative Efforts The “one-PEFT-per-user”
paradigm without collaboration is computationally
and storage-intensive, particularly for large user
bases. Additionally, individually owned PEFTs
hinder community value, as personal models can-
not easily share knowledge or benefit from col-
laborative improvements. PER-PCS (Tan et al.,
2024a) enables efficient and collaborative PLLMs
by sharing a small fraction of PEFT parameters
across users. It first divides PEFT parameters into



reusable pieces with routing gates and stores them
in a shared pool. For each target user, pieces are au-
toregressively selected from other users, ensuring
scalability, efficiency, and personalized adaptation
without additional training.

Another efficient collaborative strategy is based
on the federated learning (FL) framework. For
example, (Wagner et al., 2024) introduces a FL
framework for on-device LLM fine-tuning, using
strategies to aggregate LoRA model parameters and
handle data heterogeneity efficiently, outperform-
ing purely local fine-tuning. FDLoRA (Qi et al.,
2024) introduces a personalized FL framework us-
ing dual LoRA modules to capture personalized
and global knowledge. It shares only global LoRA
parameters with a central server and combines them
via adaptive fusion, enhancing performance while
minimizing communication and computing costs.

There are other frameworks that can be explored,
such as HYDRA (Zhuang et al., 2024), which also
employs a base model to learn shared knowledge.
However, in contrast to federated learning, it as-
signs distinct heads to each individual user to ex-
tract personalized information.

4.3 Discussions

PEFT techniques reduce computational costs and
memory usage while maintaining high personal-
ization. It has the risk of overfitting with limited
or noisy data, which can hinder generalization for
new or diverse users (Appendix C).

5 Personalized Alignment

Alignment techniques (Bai et al., 2022; Rafailov
et al., 2024) typically optimize LLMs to match
the generic preferences of humans. However, in
reality, individuals may exhibit significant varia-
tions in their preferences for LLM responses across
different dimensions like language style, knowl-
edge depth, and values. Personalized alignment
seeks to further align with individual users’ unique
preferences beyond generic preferences. A signifi-
cant challenge in personalized alignment is creat-
ing high-quality user-specific preference datasets,
which are more complex than general alignment
datasets due to data sparsity. The second challenge
arises from the need to refine the canonical RLHF
framework (Ouyang et al., 2022) to handle the di-
versification of user preferences, which is essential
for integrating personalized preferences without
compromising efficiency and performance.

5.1 Data Construction

High-quality data construction is critical for learn-
ing PLLMs, primarily involving self-generated data
through interactions with the LLM. Wu et al.(Wu
et al., 2024c) constructs a dataset for aligning
LLMs with individual preferences by initially creat-
ing a diverse pool of 3,310 user personas, which are
expanded through iterative self-generation and fil-
tering. This method is similar to PLUM (Magister
et al., 2024) that both simulate dynamic interac-
tions through multi-turn conversation trees, allow-
ing LLMs to infer and adapt to user preferences.
To enable LLLMs to adapt to individual user pref-
erences without re-training, Lee et al. (Lee et al.,
2024) utilizes diverse system messages as meta-
instructions to guide the models’ behavior. To sup-
port this, the MULTIFACETED COLLECTION
dataset is created, comprising 197k system mes-
sages that represent a wide range of user values. To
facilitate real-time, privacy-preserving personaliza-
tion on edge devices while addressing data privacy,
limited storage, and minimal user disruption, Qin
et al. (Qin et al., 2024) introduces a self-supervised
method that efficiently selects and synthesizes es-
sential user data, improving model adaptation with
minimal user interaction.

Research efforts are also increasingly concen-
trating on developing datasets that assess models’
comprehension of personalized preferences. Kirk
et al. (Kirk et al., 2024) introduces PRISM Align-
ment Dataset that maps the sociodemographics and
preferences of 1,500 participants from 75 countries
to their feedback in live interactions with 21 LLMs,
focusing on subjective and multicultural perspec-
tives on controversial topics. PersonalLLM (Zollo
et al., 2024) introduces a novel personalized testdb,
which curates open-ended prompts and multiple
high-quality responses to simulate diverse latent
preferences among users. It generates simulated
user bases with varied preferences from pre-trained
reward models, addressing the challenge of data
sparsity in personalization.

5.2 Personalized Alignment Optimization

Personalized preference alignment is usually mod-
eled as a multi-objective reinforcement learning
(MORL) problem, where personalized preference
is determined as the user-specific combination of
multi-preference dimensions. Based on this, a
typical alignment paradigm involves using a per-
sonalized reward derived from multiple reward



models to guide during the training phase of pol-
icy LLMs, aiming for personalization (Figure 5).
MORLHF (Wu et al., 2023) separately trains re-
ward models for each dimension and retrains the
policy language models using proximal policy
optimization, guided by a linear combination of
these multiple reward models. This approach al-
lows for the reuse of the standard RLHF pipeline.
MODPO (Zhou et al., 2023) introduces a novel
RL-free algorithm extending Direct Preference Op-
timization (DPO) for managing multiple alignment
objectives. It integrates linear scalarization into the
reward modeling process, enabling the training of
LMs using a margin-based cross-entropy loss as
implicit collective reward functions.

Another strategy for MORL is to consider ad-
hoc combinations of multiple trained policy LLMs
during the decoding phase to achieve personaliza-
tion. Personalized Soups (Jang et al., 2023) and
Reward Soups (Rame et al., 2024) address the chal-
lenge of RL from personalized human feedback
by first training multiple policy models with dis-
tinct preferences independently and then merging
their parameters post-hoc during inference. Both
methods allow for dynamic weighting of the net-
works based on user preferences, enhancing model
alignment and reducing reward misspecification.
Also, the personalized fusion of policy LLMs can
be achieved not only through parameter merging
but also through model ensembling. MOD (Shi
et al., 2024) outputs the next token from a linear
combination of all base models, allowing for pre-
cise control over different objectives by combining
their predictions without the need for retraining.
The method demonstrates significant effectiveness
when compared to the parameter-merging baseline.
PAD (Chen et al., 2024b) leverages a personalized
reward modeling strategy to generate token-level
rewards that guide the decoding process, enabling
the dynamic adaptation of the base model’s predic-
tions to individual preferences.

There are some other emerging personalized
alignment studies beyond the “multi-objective”
paradigm. PPT (Lau et al.,, 2024) unlocks the
potential of in-context learning for scalable and
efficient personalization by generating two poten-
tial responses for each user prompt, asking the user
to rank them, and incorporating this feedback into
the model’s context to dyanmic adapt to individual
preferences over time. VPL (Poddar et al., 2024)
employs a variational inference framework to cap-

ture diverse human preferences via user-specific
latent variables. By inferring these latent distri-
butions from limited preference annotations, it en-
hances the accuracy and personalization of reward
modeling while improving data efficiency.

5.3 Discussions

Personalized alignment technologies model person-
alization as multi-objective reinforcement learning,
incorporating user preferences during training with
RLHEF or in decoding via parameter merging. They
often use a limited set of predefined preference di-
mensions, while real-world scenarios involve many
users with unknown preferences based solely on
interaction history (Appendix C).

6 Future Directions

Despite advances in Personalized Large Language
Models (PLLMs), significant challenges persist,
particularly in technical improvements. Cur-
rent methods effectively handle basic user pref-
erences but struggle with complex, multi-source
data, especially in multimodal contexts like im-
ages and audio. Efficiently updating models on
resource-constrained edge devices is also crucial.
Fine-tuning enhances personalization but can be
resource-intensive and difficult to scale. Develop-
ing small, personalized models through techniques
like quantization could address these issues.

Trustworthiness remains a critical concern, par-
ticularly regarding user privacy when generating
personalized responses. As LLMs are not typically
deployed locally, risks of privacy leakage arise. Fu-
ture research should focus on privacy-preserving
methods, such as federated learning and differen-
tial privacy, to protect user data effectively while
leveraging the model’s capabilities. Please check
Appendix D for more explanations.

7 Conclusions

This survey offers a comprehensive overview of
PLLMs, focusing on personalized responses to in-
dividual user data. It presents a taxonomy cate-
gorizing approaches into three key perspectives:
Personalized Prompting (Input Level), Personal-
ized Adaptation (Model Level), and Personalized
Alignment (Objective Level), with further subdivi-
sions. A detailed method summarization is shown
in Table 1. We highlight current limitations and
suggest future research directions, providing valu-
able insights to advance PLLM development.



8 Limitations

In this paper, we present a detailed survey of per-
sonalized large language models. However, the
fast-paced advancement of this field poses chal-
lenges in covering all research efforts, as new meth-
ods, datasets, and evaluation metrics constantly
emerge, necessitating ongoing updates to our tax-
onomy. Additionally, developing more effective
and universally accepted benchmarks for different
personalized tasks is an ongoing challenge.
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A Supplementary for Problem Statement

A.1 Input Description: Personalized Data

A detailed description, including examples, of the
classification of input data types is provided:

* Profile/Relationship: User profile, includ-
ing attributes (e.g., name, gender, occupation),
and relationships (e.g., friends, family mem-
bers), such as C,, = { A, 18, student,
friends:{B,C, D} ... }.

Historical Dialogues: Historical dialogues,
such as question-answer pairs that user
u interacts with the LLM (e.g., Cy

{(a0,a0), (q1,a1),-- ., (¢, a:)}), where each
@; 1s a query and a; is the answer.

Historical Content: Includes documents,
previous reviews, comments or feedback
from user w. For example, C,
{I like Avtar because. . .,...}.

Historical Interactions: Includes historical
interactions, preferences, ratings from user u.
For example, C,, = {The Lord

of the Rings : 5, Interstellar : 3. .. }.

Pre-defined Human Preference: Define a set
S = {dj }£_| containing of K preference di-
mensions such as “Helpfulness”. Choose vari-
ous combinations of these dimensions, form
individual preferences, and incorporate them
as the instruction. For example, a preference
prompt could be “Be harmless and helpful”.

A.2 Task Description

We divide personalized tasks from two perspec-
tives: one is from the viewpoint of downstream
tasks, and the other is from the classification of
problems addressed by PLLMs. Different types of
problems may require distinct technical approaches
tailored to their specific characteristics.

A.2.1 Downstream Task Perspective

A detailed description, including examples, of the
generated response y for downstream tasks.

* Generation: Generation tasks typically in-
volve y representing a sequence of strings,
such as generating answers for users based
on their personalized data C,, and questions
or generating content according to the user’s
writing style to assist their writing, and so
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forth (Salemi et al., 2023; Kumar et al., 2024,
Zhao et al., 2025a; Au et al., 2025).

* Recommendation: The major difference be-
tween recommendation and generation is that
recommendation requires suggesting specific
items based on the user’s historical interaction
data, and it can provide reasons and explana-
tions for the recommendations (Sayana et al.,
2024).

e (Classification: Classification tasks, includ-
ing sentiment classification, involve labeling
a particular entity (such as a movie, item, or
description) based on the user’s preferences
to assist the user in categorization or summa-
rization (Salemi et al., 2023; Au et al., 2025;
Zhao et al., 2025a).

A.2.2 Personalized Query Types

The types of problems are mainly categorized
based on the user’s query ¢. Different queries ¢
have different focal points regarding the expected
answers 9.

* Fact-based Queries (explicit): These queries
seek to retrieve or display specific factual in-
formation. Examples include questions like
"What time should I go out to play?" or re-
quests for "passport information" and similar
concrete factual details (Du et al., 2024; Wu
et al., 2025).

Personalized Associative Queries (explicit
/ implicit): Some implicitly associated fac-
tual information that summarizes the user’s
preferences is contained within the user’s per-
sonalized data C,. This type of query does
not explicitly express the factual personalized
information, but requires the LLM to general-
ize and answer related questions based on the
user’s implicit interests. For example, "Can
you recommend a good movie to watch this
weekend?" or "Can you recommend a restau-
rant that suits my taste?" (Zhao et al., 2025a;
Wu et al., 2025).

Style-related Queries (implicit): These
queries need LLM to focus on summarizing
the user’s preferences or style, such as their
writing style, preferred tone, or taste in tag-
ging movies. For example, "Help me write an



email in my writing style" or "Help me cate-
gorize the following movies" (Salemi et al.,
2023; Au et al., 2025; Zhao et al., 2025a).

B Evaluation Metrics

The evaluation metrics differ for different tasks.

B.1 Generation Task

Conventional Evaluation: BLEU, ROUGE-
1 (Lin, 2004), ROUGE-L and METEOR (Banerjee
and Lavie, 2005) to measure lexical overlap be-
tween the generated y and ground-truth ¢ responses.
These metrics provide surface-level comparisons
via n-gram matching and semantic alignment tech-
niques.

LLM-based Evaluation: The “LLM-as-a-
judge” framework (Gu et al., 2024) uses LLM to
automatically evaluate the quality and relevance of
generated text. By prompting LLMs to score or
compare outputs, it offers scalable, context-aware,
and semantically rich assessments with minimal hu-
man input. This approach surpasses traditional met-
rics in flexibility but faces challenges like model
bias and consistency. It represents a promising
method for automated, nuanced evaluation.

B.2 Recommendation Task

Item Recommendation: Traditional recommen-
dation tasks typically use (Hit Ratio) HR, Recall
and Discounted Cumulative Gain (NDCG) (Ning
et al., 2024; Ramos et al., 2024) as standard evalu-
ation metrics to measure the effectiveness of top-K
recommendation and preference ranking.

Conversational Recommendation: Conversa-
tional recommendation systems commonly use Re-
call and NDCG as evaluation metrics to measure
coverage and ranking quality, employing "LLMs-
as-a-judger” framework (Zhao et al., 2025b; Huang
et al., 2024; Sayana et al., 2024). Additionally, an
LLM-based user simulator—creating unique per-
sonas via zero-shot ChatGPT prompting and defin-
ing preferences using dataset attributes—is also
used to assess whether outputs align with user pref-
erences (Huang et al., 2024).

B.3 Classification Task

Multi-class Classification: In multi-class classi-
fication, where labels are categorical without in-
herent order, standard evaluation metrics such as
Accuracy and F1 score (Salemi et al., 2023) are
commonly employed to assess the model’s ability
to correctly predict class membership.

15

Ordinal Classification: For ordinal multi-class
classification, where labels possess a natural order
or ranking, performance metrics like Mean Abso-
lute Error (MAE) and Root Mean Squared Error
(RMSE) (Salemi et al., 2023) are preferred, as they
account for the magnitude of prediction errors rel-
ative to the true order, providing a more nuanced
evaluation of model quality.

C Supplementary for Discussions

Discussion for Prompting The three prompting
methods have distinct pros and cons:

* Profile-augmented prompting improves effi-
ciency by compressing historical data but risks
information loss and reduced personalization.

Retrieval-augmented prompting offers rich,
context-aware inputs and scales well for long-
term memory but can suffer from computa-
tional limits and irrelevant data retrieval.

Soft prompting efficiently embeds user-
specific info, capturing semantic nuances
without redundancy, but is limited to black-
box models and lacks explicit user preference
analysis.

Overall, prompting-based methods are efficient
and adaptable, and enable dynamic personaliza-
tion with minimal computational overhead. These
methods are more suitable for fact-based queries
(explicit) that need to answer factual information,
mentioned in Appendix A.2.2. However, they lack
deeper personalization analysis as they rely on pre-
defined prompt structures to inject user-specific
information and are limited in accessing global
knowledge due to the narrow scope of prompts,
which fail in tasks with style-related queries (im-
plicit).

Discussion for Adaptation Fine-tuning meth-
ods enable deep personalization by modifying a
large set of model parameters, and parameter-
efficient fine-tuning methods (e.g., prefix vectors or
adapters) reduce computational cost and memory
requirements while maintaining high personaliza-
tion levels. These methods improve task adaptation
by tailoring models to specific user needs, enhanc-
ing performance in tasks like sentiment analysis
and recommendations. They also offer flexibility,
allowing user-specific adjustments while leverag-
ing pre-trained knowledge. However, they still face



the risk of overfitting, particularly with limited or
noisy user data, which can impact generalization
and performance for new or diverse users.

Discussion for Alignment. Current mainstream
personalized alignment technologies mainly model
personalization as multi-objective reinforcement
learning problems, where personalized user pref-
erences are taken into account during the training
phase of policy LLMs via canonical RLHF, or the
decoding phase of policy LLM via parameter merg-
ing or model ensembling. Typically, these methods
are limited to a small number (e.g., three) of prede-
fined preference dimensions, represented through
textual user preference prompts. However, in real-
world scenarios, there could be a large number
of personalized users, and their preference vec-
tors may not be known, with only their interaction
history accessed. Consequently, developing more
realistic alignment benchmarks to effectively as-
sess these techniques is a critical area for future
research.

D Future Directions

Despite recent advances in PLLMSs, challenges and
opportunities remain. This section discusses key
limitations and promising future directions.

Complex User Data While current approaches
effectively handle basic user preferences, process-
ing complex, multi-source user data remains a sig-
nificant challenge. For example, methods that use
user relationships in graph-like structures are still
limited to retrieval augmentation (Du et al., 2024).
How to effectively leverage this complex user in-
formation to fine-tune LLM parameters remains
a significant challenge. Most methods focus on
text data, while personalized foundation models
for multimodal data (e.g., images, videos, audio)
remain underexplored, despite their significance
for real-world deployment and applications (Wu
et al., 2024b; Pi et al., 2024; Shen et al., 2024).

Edge Computing A key challenge in edge com-
puting is efficiently updating models on resource-
constrained devices (e.g., phones), where storage
and computational resources are limited. For exam-
ple, fine-tuning offers deeper personalization but
is resource-intensive and hard to scale, especially
in real-time applications. Balancing resources with
personalization needs is important. A potential so-
lution is to build personalized small models (Lu
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et al., 2024) for edge devices, using techniques like
quantization and distillation.

Edge-Cloud Collaboration The deployment of
PLLMs in real-world scenarios encounters signifi-
cant challenges in edge-cloud computing environ-
ments. Current collaborative approaches often lack
efficient synchronization between cloud and edge
devices, highlighting the need to balance local com-
putation and cloud processing (Tian et al., 2024).

Efficient Adaptation to Model Updates Updat-
ing fine-tuned PEFT parameters for each user when
base LLM parameters change poses a challenge due
to high user data volume and limited resources. Re-
training costs can be prohibitive. Future research
should focus on efficient methods for updating user-
specific parameters without complete retraining,
such as incremental learning and transfer learning.

Lifelong Updating Given the large variety of
user behaviors, a key challenge is preventing catas-
trophic forgetting while ensuring the efficient up-
date of long-term and short-term of memory. Fu-
ture research could explore continual learning (Wu
et al., 2024d) and knowledge editing (Wang et al.,
2024b; Zhang et al., 2024c¢) to facilitate dynamic
updates of user-specific information.

Trustworthiness Ensuring user privacy is cru-
cial, especially when summarized or retrieved data
is used to generate personalized responses. Since
LLMs cannot be deployed locally due to resource
limits, there is a risk of privacy leakage. Future re-
search could focus on privacy-preserving methods
like federated learning, secure computation, and
differential privacy to protect user data (Yao et al.,
2024; Liu et al., 2024a).



Method Personalized Data LLM (Generator) Retriever Prompting Fine-tuning Task

§3 Personalized Prompting

ChatGLM-6B, BELLE-LLAMA-7B-2M,

Cue-CoT (Wang et al., 2023b) Dialogues ChatGPT, Alpaca-7B, Vicuna-7B-v1.1 X Token X G
PAG (Richardson et al., 2023) Content ChatGPT-3.5, FlanT5, Vicuna-13B X Token X G.C
Matryoshka (Li et al., 2024a) Content gpt-40-mini, gpt-3.5-turbo X Token X G,C

RewriterSIR1 (Li et al., 2024b) Content PalLM2 X Token X G

CoS (He et al., 2024) User Profile GPT-3.5, Llama2-78-Chat, TOpp, X Token X G.C

Mistral-7B-Instruct

MemPrompt (Madaan et al., 2022) Content GPT3 v Token X G

TeachMe (Dalvi et al., 2022) Content GPT3 v Token X

MaLP (Zhang et al., 2024a) Dialogues GPT3.5, LLaMA-7B, LLaMA-13B v Token v (LoRA) G.C

LD-Agent (Li et al., 2024c) Dialogues ChatGLM, ChatGPT, BlenderBot 4 Token v G

MemoRAG (Qian et al., 2024) Dialogues Qwen2-7B-Instruct, Mistral-7B-Instruct v Token X G
IPA (Salemi et al., 2023) Content FlanT5-base v Token X G,C
FiD (Salemi et al., 2023) Content FlanT5-base v Token v G.C

MSP (Zhong et al., 2022) Dialogues DialoGPT v Token X G

AuthorPred (Li et al., 2023) Content T5-11B v Token v G,C

PEARL (Mysore et al., 2023) Content davinci-003, gpt-35-turbo v Token X G
ROPG (Salemi et al., 2024) Content FlanT5-XXL-11B v Token X G,C
HYDRA (Zhuang et al., 2024) Content gpt-3.5-turbo v Token (Adaptor) G,C

UEM (Doddapaneni et al., 2024) Interactions FlanT5-base, FlanT5-Large X Embedding v C

PERSOMA (Hebert et al., 2024) Interactions PalLM 2 X Embedding v (LoRA) G

REGEN (Sayana et al., 2024) Interactions PaLM2 X Embedding X G

PeaPOD (Ramos et al., 2024) Interactions T5-small X Embedding v G,R
PPlug (Liu et al., 2024b) Content FlanT5-XXL-11B X Embedding X G,C

User-LLM (Ning et al., 2024) Interactions PalLM-2 XXS X Embedding v G,R

RECAP (Liu et al., 2023) Dialogues DialoGPT v Embedding v G

GSMN (Wu et al., 2021) g::rfgﬁzle DialoGPT v Embedding v G

§4 Personalized Adaptation

PLoRA (Zhang et al., 2024d) User profile (ID) BERT, RoBERTa, Flan-T5 X X LoRA C

Userldentifier (Mireshghallah et al., 2021) ~ User profile RoBERTa-base X X - C

LM-P (Wozniak et al., 2024) User profile (ID) g;if;i;f ’ 5113?355 ggﬁi x X LoRA  G,C

Review-LLM (Peng et al., 2024b) Interactions GPT-3.5-turbo, GPT-40, Llama-3-8b X v LoRA G

MILP (Zhang et al., 2024b) g‘i’;fg“;es Eﬁ;&iﬁ%ﬁ?ﬁiﬁi’z-l - x x LoRA G

RecLoRA (Zhu et al., 2024) Interactions Vicuna-7B v v LoRA R

iLoRA (Kong et al., 2024) Interactions Llama2-7B X X LoRA R

UserAdapter (Zhong et al., 2021) Interactions RoBERTa-base X X Prefix-tuning R

PocketLLM (Peng et al., 2024a) Content RoBERTa-large, OPT-1.3B X X MeZo C
OPPU (Tan et al., 2024b) Content Llama-2-7B (0) (0) LoRA G,C
PER-PCS (Tan et al., 2024a) Content Llama-2-7B (0) (0) LoRA G,C

(Wagner et al., 2024) Content GPT2 X X LoRA C

FDLoRA (Qi et al., 2024) Content LLaMA2-7B X X LoRA C

§5 Personalized Alignment

(Wu et al., 2024c) Dialogues S[‘ﬁ:j;EizzgﬁftvLOLsMA 3-8B-Instruct, X X v G

PLUM (Magister et al., 2024) Dialogues LLaMA-3-8B-Instruct X X LoRA G

(Lee et al., 2024) User Profile Mistral-7B-v0.2 X X v G

MORLHF (Wu et al., 2023) Preference GPT2, T5-Large X X v G

MODPO (Zhou et al., 2023) Preference LLaMA-7B X X LoRA G

Personalized Soups (Jang et al., 2023) Preference Tulu-7B X X LoRA G

Reward Soups (Rame et al., 2024) Preference LLaMA-7B X X LoRA G

MOD (Shi et al., 2024) Preference LLaMA-2-7B X X v G

PAD (Chen et al., 2024b) Preference LLaMA-3-8B-Instruct, Mistral-7B-Instruct X X LoRA G

PPT (Lau et al., 2024) Preference Self-defined X X v G

VPL (Poddar et al., 2024) Preference GPT-2, LLaMA-2-7B X X LoRA G

Table 1: A systematic categorization of personalization strategies for PLLMs. Methods marked with = use the
LaMP benchmark. (o) means optional. The overview presents four data categories ( Historical Content, Dialogues,
Interactions, User profile, Pre-defined Human Preference) and three task types (Generation G , Classification C,
Recommendation R ), along with fine-tuning requirements for generator LLMs.
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