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Abstract

We study the interplay between local differential privacy (LDP) and robustness
to Huber corruption and possibly heavy-tailed rewards in the context of multi-
armed bandits (MABs). We consider two different practical settings: LDP-then-
Corruption (LTC) where each user’s locally private response might be further
corrupted during the data collection process, and Corruption-then-LDP (CTL)
where each user’s raw data may be corrupted such that the LDP mechanism will
only be applied to the corrupted data. To start with, we present the first tight
characterization of the mean estimation error in high probability under both LTC
and CTL settings. Leveraging this new result, we then present an almost tight
characterization (up to log factor) of the minimax regret in online MABs and
sub-optimality in offline MABs under both LTC and CTL settings, respectively.
Our theoretical results in both settings are also corroborated by a set of systematic
simulations. One key message in this paper is that LTC is a more difficult setting
that leads to a worse performance guarantee compared to the CTL setting (in
the minimax sense). Our sharp understanding of LTC and CTL also naturally
allows us to give the first tight performance bounds for the most practical setting
where corruption could happen both before and after the LDP mechanism. As
an important by-product, we also give the first correct and tight regret bound for
locally private and heavy-tailed online MABs, i.e., without Huber corruption, by
identifying a fundamental flaw in the state-of-the-art.

1 Introduction

The Multi-Armed Bandit (MAB) problem (Berry & Fristedt, 1985) offers a fundamental approach for
sequential decision-making under uncertainty based on only bandit feedback. Take online advertising
as an illustrative example, where the advertising platform (i.e., the central learner) sequentially and
adaptively displays ads (i.e., arm) based on users’ reward feedback (e.g., engagement score) so as to
maximize the cumulative rewards. In practice, several important factors have to be considered when
designing real-world MAB algorithms, as illustrated below using online advertising.

Privacy. The raw engagement score (which is calculated based on clicks, purchases, and time spent
viewing the ad, etc.) from a user’s device may lead to privacy leakage. For instance, when the ad is
about medicine on some rare or uncommon disease, a high engagement score might imply interest or
association with the uncommon disease. Such privacy leakage may lead to unintended personal and
social consequences as well as trust issues on the platform. One principled way to mitigate it is via
local differential privacy (LDP) (Kasiviswanathan et al., 2011; Duchi et al., 2018), i.e., each user’s
device locally adds a suitable amount of noise (depending on the privacy mechanism and budget) to
obfuscate the raw feedback before sending it out from the device (see the yellow region in Fig. 1).

Robustness. Another important factor in real-world scenarios is the robustness of MAB algorithms
under both possibly heavy-tailed feedback and adversary corruption.
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Figure 1: The interplay between privacy and robustness (heavy-tailed data and corruption).

Heavy-tailed feedback. The engagement score in our example could often be heavy-tailed, i.e.,
non-negligible probabilities of observing extremely high values. This might happen due to some
special events and seasons (e.g., Black Friday) or influencer interaction.

Adversary corruption. There could be malicious attacks on the engagement scores during the
collection of users’ feedback, e.g., with some probability, each score could be replaced by any
arbitrary value, i.e., Huber corruption (Huber, 1964). On the other hand, corruption can also happen
on each user’s side before transmission, e.g., one could manipulate or spoof interactions to skew
scores. Most practically, corruption can also happen both before and after the data transmission.

To tackle the above privacy and robustness issues in MABs, there has been a large related literature,
which, however, mainly investigates the two issues in an isolated way (see Appendix B for details).
Motivated by this, in this work, we are particularly interested in the following question:

Is there any interesting interplay between privacy and robustness in MABs?
Our contributions. We give an affirmative answer to the above question by unveiling a fundamental
interplay between privacy protection (in particular, local differential privacy (LDP)) and robustness
under Huber corruption and heavy-tailedness. Our main message is a separation result between
two MAB settings that differ in the order of privacy protection and corruption, i.e., LDP-then-
corruption (LTC) vs. Corruption-then-LDP (CTL). That is, under LTC, corruption happens after LDP
mechanism while under CTL, corruption happens before the LDP mechanism (see Fig. 1). To obtain
our separation result for the two settings, we take the following principled approach:

1. We first study the mean estimation problem – a cornerstone step in the analysis of stochastic MABs
– under both LTC and CTL settings. We give the first tight characterization of the estimation error
in high probability, in terms of privacy budget, corruption level, and heavy-tailedness. Specifically,
we first establish lower bounds on the minimax error rate in high probability and then propose a
unified optimal algorithm that achieves matching worst-case upper bounds for both settings. The
key observation here is that the mean estimation error under LTC is larger than that under CTL and
moreover the gap becomes larger as the privacy requirement becomes stronger. Further, our sharp
results on LTC and CTL also naturally enable us to give tight performance bounds for the most
practical setting, C-LDP-C, where corruption happens both before and after LDP, see (3) in Fig. 1.

2. Leveraging the above tight mean estimation results, we then study both online MABs and offline
MABs under both LTC and CTL. We present an almost tight characterization (up to log factor)
of the corresponding minimax performances (i.e., regret in online MABs and sub-optimality in
offline MABs) by deriving lower bounds and proposing almost optimal algorithms. As in mean
estimation, there is a separation between LTC and CTL, i.e., LTC is a more difficult setting that leads
to worse performance in the minimax sense, highlighting the interesting interplay between privacy
and robustness in MABs. All of these results also allow us to easily handle the C-LDP-C setting.

3. Along the way, several results could be of independent interest. First, our optimal locally private
and robust mean estimators can be applied to many other applications beyond MABs. Moreover, as
an important by-product, we identify a fundamental flaw in the regret upper bound of state-of-the-art
locally private online MABs with heavy tails (i.e., without corruption), and give the first correct one.

Related Work. We discuss the most relevant related work in the main body and relegate a detailed
discussion to Appendix B. LDP with bounded/sub-Gaussian reward is first introduced to MABs
in Ren et al. (2020) and later it was generalized to the heavy-tailed rewards (Tao et al., 2022). Robust
MABs under Huber corruption have been recently studied in Kapoor et al. (2019); Mukherjee et al.
(2021); Basu et al. (2022); Agrawal et al. (2023) while robust MABs concerning heavy-tailed reward
date back to Bubeck et al. (2013). However, these work only study privacy and robustness separately.
To the best of our knowledge, there are only two very recent work that consider privacy and robustness
in MABs simultaneously. In Wu et al. (2023), the authors consider the central DP model where the
raw non-private feedback received by the central learner can be first corrupted under Huber model.
This is in sharp contrast to our local DP model, which is not only stronger but allows us to study
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the order of corruption and privacy. In Charisopoulos et al. (2023), the authors study linear bandits
(which includes MAB as a special case) under LDP and then Huber corruption (i.e., LTC setting). As
will be discussed in Section 4, their regret bound is sub-optimal and worse than ours when reduced
to the MAB case. Note that we also study the CTL setting, which in turn allows us to study the
most practical setting C-LDP-C. Finally, our work is inspired by recent advances in (locally) private
and robust mean estimation (Li et al., 2022b; Cheu et al., 2021; Chhor & Sentenac, 2023). Our key
contributions are the first high-probability concentration bounds for both CTL and LTC settings.

2 Problem Setup

In this section, we formally introduce the three problems considered in this paper: mean estimation,
online and offline MABs, under the constraints of both LDP and robustness (including heavy tails
and Huber corruption). To start with, we introduce the privacy and corruption models.

Definition 1 (ε-LDP, Duchi et al. (2018)). For a privacy parameter ε ∈ [0, 1], the random variable X̃
is an ε-locally differentially private view of X via privacy channel/mechanism Q if

sup
S∈σ(X̃ ),x,x′∈X

Q(X̃ ∈ S | X = x)

Q(X̃ ∈ S | X = x′)
≤ eε,

where σ(X̃ ) denotes an appropriate σ-field on X̃ . In this case, we also say that the conditional
distribution (privacy channel) Q is an ε-LDP privacy mechanism. We write Qε as the set of all ε-LDP
mechanisms (channels).
Definition 2 (α-Huber corruption, Huber (1964)). Given a parameter α ∈ [0, 1/2) and a distribution
D on inliers, the output distribution under α-Huber model is O = (1−α)D+αE. That is, a sample
from O returns a sample from D with probability 1− α and otherwise returns a sample from some
(unconstrained and unknown) corruption distribution E. We write Cα(D) as the set of all possible
α-Huber corruptions (channels) of inlier distribution D.

With the two definitions in hand, we can introduce the two main settings in this paper: (i) LDP-then-
Corruption (LTC) vs. (ii) Corruption-then-LDP (CTL), as also illustrated in Fig. 1.
Definition 3 (LTC vs. CTL). We consider the following interplay between privacy and corruption.

(i) LDP-then-Corruption (LTC): Each user i ∈ [n] first generates an ε-LDP view of raw data Xi.
Then, the private data Yi from each device is independently corrupted by an α-Huber channel that
outputs Zi to the central analyzer/agent.

(ii) Corruption-then-LDP (CTL): Each user’s raw data Xi is first independently corrupted by an
α-Huber model. Then, the corrupted data Yi passes through an ε-LDP mechanism at each device that
outputs Zi to the central analyzer/agent.

Under both settings, we aim to design ε-LDP mechanisms for user devices and central analyzers that
ensure local privacy and robustness against α-Huber corruption and heavy-tailed data distributions.
The two settings also naturally enable us to study the most practical setting C-LDP-C.

Mean estimation. As in Duchi et al. (2018), given a real number k > 1, we consider the following
class of possibly heavy-tailed distributions

Pk := {distributions P such that EX∼P [X] ∈ [−1, 1] and EX∼P [|X|k] ≤ 1}. (1)

That is, k controls the tail behavior of the distribution with smaller k meaning heavier of the tails.
Given any distribution P ∈ Pk, our goal is to estimate its mean µ(P ) as accurately as possible. In
contrast to the standard case where the analyzer has access to i.i.d samples {Xi}ni=1 from P , the
analyzer in this paper now only observes samples {Zi}ni=1 that are both private and corrupted view of
{Xi}ni=1. Specifically, we are interested in the high probability error under our two different settings
(LTC vs. CTL), as formally defined below.
Definition 4 (Minimax mean estimation error rate). Given δ > 0 and sample size n > 0, the minimax
mean estimation error rate of the class Pk under ε-LDP and α-Huber corruption is defined as follows

ϕ∗
δ(k, ε, α, n) :=inf{ϕ > 0 | inf

Q∈Qε

inf
µ̂n

sup
P∈Pk

sup
C∈Cα(P )

P [|µ̂n − µ(P )| > ϕ] ≤ δ}, (2)
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where µ̂n is a measurable function of {Zi}ni=1, i.e., private and corrupted view of n i.i.d samples
{Xi}ni=1 from P ∈ Pk that pass through ε-LDP channel Q and α-Huber corruption channel C. We
write ϕ∗

δ,LTC(k, ε, α, n) and ϕ∗
δ,CTL(k, ε, α, n) for the settings of LTC and CTL.

Intuitively speaking, ϕ∗
δ represents the minimal error rate that any ε-LDP estimator can achieve with

high probability 1− δ for all distributions P ∈ Pk and all α-Huber corruption models, hence taking
inf over Q and µ̂n and sup over distribution and corruption. Thus, the goal in our mean estimation
problem is to design an optimal ε-LDP mechanism Q⋆ at each user’s side and an optimal analyzer
µ̂⋆
n at the central analyzer in order to attain the minimax mean estimate error rate in (2).

Online MABs. At each round t ∈ [T ], the central learner/analyzer chooses an action/arm at ∈ [K]
according to a policy π and receives a reward sample Xt that is drawn from some distribution Pat

with unknown mean r(at) := µ(Pat). Here, the policy is π = {πt}Tt=1 and πt+1 is a measurable
function of the data received by the end of round t, i.e., for each t ∈ [T ], Dt = {(a,X(a)(t))}a∈[K]

where X(a)(t) := {X(a)
1 , . . . , X

(a)
Na(t)

} and
∑

a∈K Na(t) = t. That is, for each round t, X(a)(t)

groups together all Na(t) rewards from each arm a ∈ [K] where Na(t) is the total number of times
that arm a has been pulled by time t. The goal in online MABs is to characterize the minimax clean
regret under our LTC and CTL settings defined below.
Definition 5 (Minimax clean regret). Let MAB(k) := {{Pa}a∈K | Pa ∈ Pk} be the class of
K-armed MAB instances with inlier distributions for each arm in Pk. Then, the minimax clean regret
is defined as

R∗(k, ε, α, T ) := inf
Q∈Qε

inf
π

sup
I∈MAB(k)

sup
C∈Cα(I)

E

[
T · r(a⋆)−

T∑
t=1

r(at)

]
, (3)

where at+1 is a measurable function (via π) of private and corrupted dataset {(a, Z(a)(t))}a∈[K].
Here, for any arm a ∈ [K] and t ∈ [T ], Z(a)(t) := {Z(a)

1 , . . . , Z
(a)
Na(t)

} is the private and corrupted
view of Na(t) samples of Pa that pass through ε-LDP channel Q and α-Huber corruption channel C.
We write R∗

LTC(k, ε, α, T ) and R∗
CTL(k, ε, α, T ) for the settings of LTC and CTL, respectively.

The goal in online MABs is to design an optimal ε-LDP mechanism Q⋆ and optimal learning policy
π⋆ so as to attain the minimax clean regret in (3).
Remark 1. As standard in the literature (Wu et al., 2023; Chen et al., 2022; Niss & Tewari, 2020),
r(·) in (3) is the mean of inlier distributions while the randomness in the expectation is generated by
both privacy and corruption.

Offline MABs. In the offline case, the analyzer cannot interact with users and instead, it is given a
batch pre-collected dataset D = {(ai, Xi)}Ni=1 sampled from some joint distribution of a behavior
policy π and reward distributions {Pa}a∈[K]. As in Rashidinejad et al. (2021), we assume a finite
concentrability coefficient β⋆ such that 1/π(a⋆) ≤ β⋆, where a⋆ is the optimal arm that has the
largest mean and β⋆ captures deviation between the behavior distribution π and the distribution
induced by the optimal policy. The goal here is to characterize the minimax sub-optimality under our
LTC and CTL settings defined below.
Definition 6 (Minimax sub-optimality). Let

MAB(β⋆, k) := {(π, {Pa}a∈K) |Pa ∈ Pk and 1/π(a⋆) ≤ β⋆}
be the class of K-armed MAB instances with distributions in Pk and concentrability coefficient β⋆.
Then, the minimax sub-optimality is defined as

SubOpt∗(β⋆, k, ε, α,N) := inf
Q∈Qε

inf
â

sup
I∈MAB(β⋆,k)

sup
C∈Cα(I)

E [|r(a⋆)− r(â)|] , (4)

where â is a measurable function of private and corrupted dataset {(a, Z(a))}a∈[K] and Z(a) :=

{Z(a)
1 , . . . , Z

(a)
Na

} is the private and corrupted view of Na samples of Pa that pass through ε-
LDP channel Q and α-Huber corruption channel C. We write SubOpt∗LTC(β

⋆, k, ε, α,N) and
SubOpt∗CTL(β

⋆, k, ε, α,N) for LTC and CTL, respectively.

We remark that we assume the batch data is collected by an ε-LDP mechanism that can be specified
by the learner. Note that as in the standard case, we do not control the behavior policy π other than a
finite β⋆. The goal here is to design an optimal ε-LDP mechanism Q⋆ (which protects local privacy
for any users offering batch data) and optimal offline learning algorithm â⋆.
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3 Mean Estimation

We start with our first problem – mean estimation under privacy and robustness constraints. Our main
result in this section is the following theorem that characterizes the minimax error rate (cf. Def. 4)
Theorem 1 (Mean Estimation). Given any fixed δ ∈ (0, 1/2)2, ε ∈ [0, 1], α ∈ [0, 1/2) and k > 1,
we have that for all large enough n,

ϕ∗
δ,LTC(k, ε, α, n) = Θ

(α
ε

)1−1/k

+

(
1

ε

√
log(1/δ)

n

)1−1/k
 ,

ϕ∗
δ,CTL(k, ε, α, n) = Θ

α1−1/k +

(
1

ε

√
log(1/δ)

n

)1−1/k
 .

Remark 2. To the best of our knowledge, this is the first high-probability concentration bound for
mean estimation under both LTC and CTL, which tightly captures the dependence on the corruption
level α, privacy budget ε and heavy-tail parameter k, simultaneously. It can be seen that for LTC
setting, there is an additional (1/ε)1−1/k factor, which implies that introducing LDP guarantee
first would make it more vulnerable to corruption/data manipulation attacks. Interestingly, for a
fixed ε, this additional vulnerability due to LDP decreases as the tail becomes heavier, which offers
additional insight into the interplay of privacy, heavy-tailedness, and robustness. Our LTC result also
complements the result in Cheu et al. (2021), which considers the bounded case (i.e., k = ∞) under
constant probability only rather than our high probability guarantee. On the other hand, for CTL, we
note that the impact of corruption and privacy is separable. Our high probability bound for CTL
complements the error bound in terms of mean-square error (MSE) only in Li et al. (2022b).

To establish Theorem 1, we first establish the following lower bounds, with full proof in Appendix E.
Proposition 1 (Lower Bounds). Given any fixed δ ∈ (0, 1/2), ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and n
large enough, for all ε-LDP mechanism Q and all estimator µ̂n, there exists a distribution P ∈ Pk

and α-Huber corruption channel C ∈ Cα(P ) such that with probability at least δ

(i) For LTC: |µ̂n − µ(P )| ≥ Ω

((
α
ε

)1−1/k
+ ( 1ε

√
log(1/δ)

n )1−1/k

)
,

(ii) For CTL: |µ̂n − µ(P )| ≥ Ω

(
α1−1/k + ( 1ε

√
log(1/δ)

n )1−1/k

)
,

where recall that µ̂n is a measurable function of {Zi}ni=1, i.e., private and corrupted view of i.i.d
samples {Xi}ni=1 from P ∈ Pk obtained from ε-LDP channel Q and α-Huber corruption channel C.

Proof sketch. We provide a summary of the key steps in the proof. Essentially, we divide the proof
into two parts. First, we consider the case without corruption and aim to establish the second term in
the bound. To this end, we will leverage tools from information theory in an novel way, e.g., maximal
coupling, strong data processing inequality of LDP, and Bretagnolle–Huber inequality between TV
and KL distance. Then, we turn to give the first term related to corruption. To this end, we will
leverage a folklore but important fact about Huber model. Roughly speaking, this fact says that
given two inlier distributions D1 and D2 that satisfy TV (D1, D2) ≤ O(α), then after α-Huber
channel, one cannot distinguish between D1 and D2. Another important fact is that ε-LDP channel is
a “contraction” channel in terms of TV distance, i.e., TV (M1,M2) ≤ O(ε)TV (P1, P2) where M1,
M2 are induced marginals of P1, P2 after any ε-LDP channel.

Key intuition behind the separation between LTC and CTL. Building upon the above proof, one
can immediately see that under the LTC setting, due to the “contraction” of LDP, one can choose two
distributions that have a larger mean difference by a factor of 1/ε, while still guaranteeing that after
α-Huber corruption, they are indistinguishable, hence explaining the key difference of 1/ε between
LTC and CTL. We also provide another understanding of the separation from the attack perspective
(see more details in Appendix A). The key idea here is that each single data attack in the LTC setting
will lead to an additional 1/ε factor compared to CTL setting. This is mainly because any ε-LDP
mechanism on binary data can be simulated by random response mechanism (Kairouz et al., 2015).

2We assume δ does not depends on n; otherwise, δ ∈ (δmin, 1/2) where δmin = e−cn for some c > 0.
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Algorithm 1 A Unified Algorithm

1: Procedure: ε-LDP mechanism Q
2: //Input: Ui, parameters: M, ε

3: //Output: private view Ũi

4: Truncate: Ūi = Ui1(|Ui| ≤ M)
5: Random rounding:

U ′
i =

{
M w.p. 1+Ūi/M

2

−M w.p. 1−Ūi/M
2

6: Random response:

Ũi =

{
eε+1
eε−1U

′
i w.p. eε

eε+1

− eε+1
eε−1U

′
i w.p. 1

eε+1

7: Return Ũi

8: Procedure: Analyzer A
9: //Input: {Zi}ni=1,

parameters: M, ε
10: //Output: estimator µ̂n

11: Return µ̂n = 1
n

∑n
i=1 Zi1(|Zi| ≤ M ·

eε+1
eε−1 )

We now turn to upper bounds, centering around the
following key question: Can we design a simple al-
gorithm that can achieve optimal errors for all LTC,
CTL, and even C-LDP-C in a unified way? We give
an affirmative answer via Algorithm 1. It consists of
a local randomizer at each user’s side and an analyzer
at the central side. The task of Q is to guarantee that
its output is an ε-LDP view of its input. To this end,
for each input Ui, it first truncates it into Ūi using
a properly chosen threshold M . Then, it converts
the real number to binary data via random rounding.
Next, it applies random response technique to gen-
erate the final output Ũi, i.e., with probability eε

eε+1 ,
outputs a number of the same sign (with additional
scaling for unbiasedness); otherwise flips the sign.
Upon receiving the final input {Zi}ni=1, the analyzer
A first simply filters out the data if it is out of the
bounded range and then returns the sample mean.

For LTC and CTL, the only difference in Algorithm 1
would be the truncation value M . The performance
bounds for both settings under Algorithm 1 are given
below. See Appendix F for proof.

Proposition 2 (Upper Bounds). Given any fixed δ ∈
(0, 1), ε ∈ [0, 1], α ∈ [0, 1/2) and k > 1, for any
distribution P ∈ Pk and any α-Huber channel C ∈ Cα, Algorithm 1 satisfies that the mechanism Q
is ε-LDP and each returned estimate µ̂n guarantees that with probability at least 1− δ

(i) For LTC: |µ̂n − µ(P )| ≤ O

((
α
ε

)1−1/k
+

(
1
ε

√
log(1/δ)

n

)1−1/k
)

,

(ii) For CTL: |µ̂n − µ(P )| ≤ O

(
α1−1/k +

(
1
ε

√
log(1/δ)

n

)1−1/k
)

,

where (i) holds for M=min

{(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and all n ≥ 3 log(1/δ)/α, if α > 0;

otherwise for all n and M =

(
ε
√
n√

log(1/δ)

)1/k

.(ii) holds for M = min

{(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and n ≥ 3 log(1/δ)/α, if α > 0; otherwise for n ≥ log(1/δ) and M =

(
ε
√
n√

log(1/δ)

)1/k

.

Corruption-LDP-Corruption (C-LDP-C). Our tight characterization of LTC and CTL immediately
helps us understand the C-LDP-C setting, where corruption happens both before and after LDP. In
particular, it is easy to see that the minimax lower bound for LTC would be a valid lower bound for
the more difficult C-LDP-C setting. It turns out that this lower bound is also tight since it is matched
by Algorithm 1 with the same parameter choice M as in the LTC setting, see Appendix G.

How to choose parameter M in practice. First, we note that for the bounded case (k = ∞),
M = 1 across all three settings, independent of other parameters. This implies that Algorithm 1 can
adaptively guarantee optimal minimax rates for LTC, CTL, and C-LDP-C without prior knowledge of
the specific setting and other parameter like α. Second, for certain applications, one may have prior
knowledge of the underlying setting (see Appendix C.3). In this case, one can have a performance
gain if it is under the CTL setting. Also, as mentioned above, we see that choosing the M as in LTC
can automatically help to handle the C-LDP-C setting. Finally, the dependence on ε in M is fine
since it is a known privacy parameter while the dependence on the unknown parameter α is a little
bit annoying. A quick practical fix is to use an estimated upper bound on α. In theory, the story of
whether one can remove it in our case is complicated, see the discussion in Appendix C.2.
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Remark 3 (Burn-in period). Under Algorithm 1, when α > 0, the concentration kicks in when
the sample size n is larger than a threshold. This type of burn-in period also exists in previous
concentration results under the Huber model, though in different contexts (e.g., non-private case
in Chen et al. (2022) or central model of DP in Wu et al. (2023)) or with different estimators (e.g.,
trimmed mean in Mukherjee et al. (2021)).
Remark 4 (Random response vs. Laplace mechanism). One may wonder if the standard Laplace
mechanism can be applied in replace of the random response for ε-LDP in Q. The answer depends on
the setting and the analyzer A. For CTL, one can still derive a similar optimal concentration bound as
in Proposition 2 by the concentration of Laplace noise. On the other hand, for LTC, simply replacing
random response with Laplace mechanism in Q will lead to an additional log(1/α) factor. This
aligns with the fact that truncation-based estimators even cannot achieve optimal mean estimation for
Gaussians under corruption (Diakonikolas & Kane, 2023). The above discussion indicates another
difference between LTC and CTL, i.e., the choice of ε-LDP mechanisms.
As two interesting applications of our mean estimation results, we will study both online MABs and
offline MABs in the next two sections, highlighting again the sharp differences between LTC and
CTL settings, in terms of regret and sub-optimality performance, respectively.

4 Online MABs

For online MABs, our main result is the following theorem that gives an almost tight characterization
(up to log factor) of its minimax clean regret (cf. Def. 5) for both LTC and CTL settings.
Theorem 2 (Online MABs). Given any ε ∈ [0, 1], α ∈ [0, 1/2) and k > 1, we have for all large
enough T ,

R∗
δ,LTC(k, ε, α, T ) = Θ̃

(
T ·
(α
ε

)1−1/k

+ T
k+1
2k

(
K

ε2

) k−1
2k

)
,

R∗
δ,CTL(k, ε, α, T ) = Θ̃

(
T · α1−1/k + T

k+1
2k

(
K

ε2

) k−1
2k

)
.

Remark 5. For both settings, due to corruption, the minimax clean regret (i.e., problem-independent
regret) has a linear dependence on T , as in previous works under Huber corruption (Wu et al., 2023;
Chen et al., 2022). The key here is to capture the tight factor in front of T , where the additional
1/ε factor in LTC again demonstrates the sharp difference between the two settings as in the mean
estimation problem. As before, one can obtain the same rate for C-LDP-C from the LTC setting.

To prove the above theorem, we start with the corresponding lower bounds (see App. H for proof).
Proposition 3 (Regret Lower bounds). Let ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and T be large enough.
Then, the minimax clean regrets satisfy the following results.

(i) LTC: R∗
LTC(k, ε, α, T ) ≥ Ω

(
T ·
(
α
ε

)1−1/k
+ T

k+1
2k

(
K
ε2

) k−1
2k

)
;

(ii) CTL: R∗
CTL(k, ε, α, T ) ≥ Ω

(
T · α1−1/k + T

k+1
2k

(
K
ε2

) k−1
2k

)
.

Comparisons to related work. We first remark that Tao et al. (2022) studied a similar case but
without corruption (i.e., α = 0) and established a lower bound on the order of Ω

((
K
ε2

)1−1/k
T 1/k

)
(for k ∈ (1, 2] when adapted to our setting), which is weaker concerning T compared to our lower
bound. In Tao et al. (2022), the authors also claimed to achieve their lower bound via some arm-
elimination algorithm, which now becomes ungrounded given our tighter lower bound. That is, since
for a large enough T , our lower bound is even larger than their upper bound for fixed ε, k and K
(e.g., T 3/4 vs.

√
T for k = 2, see further discussion in Appendix C.3). Another recent work Wu

et al. (2023) also studies online MABs with both privacy and Huber corruption but under the weaker
central model of DP. In particular, the true reward from each user may be first corrupted before being
observed by the central learner, who is then responsible for taking care of privacy guarantees. That is,
the central learner has access to users’ raw (corrupted) data rather than only a private view of data as
in our LDP case. Under this strictly weaker privacy model, Wu et al. (2023) establish the following
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lower bound on the minimax clean regret: Ω
(√

KT + (K/ε)
1− 1

k T
1
k + Tα1− 1

k

)
. Compared to our

CTL setting, one can see that our stronger LDP privacy incurs a larger privacy cost.

Algorithm 2 Online MABs under LTC and CTL

1: Input: private and robust mean estimator
µ̂n(k, ε, α, δ) in Algorithm 1, constant c

2: Initialize: For each a ∈ [K], µ̂a,s(t) is the
estimate µ̂s(k, ε, α, t

−4) based on the first s
observed values of Za,1, . . . , Za,s of the re-
wards for arm a;

3: for t ∈ [T ] do
4: if ∃a ∈ [K], Na(t) ≤ 6 log(t)/α then
5: at = a
6: else
7: Let γa(t) :=

(
1
ε

√
log(t4)
Na(t)

)1−1/k

8:

βa(t)=

{
c
(
α
ε

)1−1/k
+ cγa(t) LTC

cα1−1/k + cγa(t) CTL

9: Let UCBa(t) = µ̂a,Na(t)(t) + βa(t)
10: at = argmaxa∈[K] UCBa(t)
11: end if
12: end for

Now, let us turn to our proposed algorithm (i.e.,
Algorithm 2) for achieving matching regret up-
per bounds (up to log factor). Algorithm 2 is a
variant of upper confidence bound (UCB)-based
algorithm (cf. Auer et al. (2002)), which com-
putes the UCB index for each arm at each round
t ∈ [T ] and then selects the one with the highest
UCB, i.e., optimism in the face of uncertainty.
To construct a valid UCB, we resort to our mean
estimation results in the last section. In par-
ticular, we will need Algorithm 1 to compute
the private and robust sample mean µ̂a,Na(t)(t)
for each arm a ∈ [K] at each round t, where
Na(t) be the number of pulls of arm i by the
beginning of time t. Then, the bonus term (i.e.,
radius of the confidence bound) βa(t) comes
from the high probability mean estimation er-
ror established in Proposition 2. Note that due
to burn-in period of the concentration results,
Algorithm 2 has an additional exploration pe-
riod to guarantee that the number of arm pulls
is larger than a threshold (line 4). The following
proposition formally states the regret guarantees
of Algorithm 2 with the proof given in Appendix I.

Proposition 4 (Regret Upper Bounds). Let ε ∈ [0, 1], α ∈ (0, 1/2), k > 1 and T be large enough.
Then, for any 1/2 > ᾱ ≥ α, the expected clean regret of Algorithm 2 satisfies the following
guarantees.

(i) LTC: RLTC(k, ε, α, T ) ≤ O

(
T
(
ᾱ
ε

)1−1/k
+
(

K log T
ε2

) k−1
2k

T
k+1
2k + K log T

ᾱ

)
;

(ii) CTL: RCTL(k, ε, α, T ) ≤ O

(
T ᾱ1−1/k +

(
K log T

ε2

) k−1
2k

T
k+1
2k + K log T

ᾱ

)
.

Comparisons to related work. First, for α = 0, our result with a direct modification of the burn-in

period gives a regret bound that only has the term O

((
K log T

ε2

) k−1
2k

T
k+1
2k

)
. This is the first correct

regret bound for locally private heavy-tailed MABs, i.e., without corruption, fixing the aforementioned
issue in the state-of-the-art in Tao et al. (2022) (see more discussions in Appendix C.3). Second, it is
worth comparing our result to a recent similar result in Charisopoulos et al. (2023), where the authors
present regret for linear bandits under LTC setting. Their result is worse than ours when reduced to
MAB with bounded rewards, as the scaling with respect to α is

√
α in the first linear term rather than

our α. Another minor difference is that our algorithm is anytime while their algorithm is not.

Other extensions. Although we mainly focus on minimax regret (i.e., problem-independent bound)
in this paper, under some conditions of corruption level and the minimum mean gap, Algorithm 2 is
also able to offer some problem-dependent bounds (see Appendix I). In the case that the corruption
parameter α is very small but not equal to zero, one can tune the choice of ᾱ (hence truncation
threshold M ) to balance the first and third terms in the bound. Similar comments and observations
have been made in related work as in Chen et al. (2022); Wu et al. (2023).

5 Offline MABs

In this section, we study offline MABs as another application of our high probability mean estimation
results developed in Section 3. We establish both lower bounds and almost matching upper bounds
for locally private offline MABs with corruptions. To the best of our knowledge, this is the first result
on offline MABs with heavy-tailed rewards, even without privacy and corruption.

8



Proposition 5 (Sub-optimality Lower Bounds). Let ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and N be large
enough. Then, for β⋆ ≥ 2, the minimax expected sub-optimality satisfies the following results.

(i) LTC: SubOpt∗LTC(β
⋆, k, ε, α,N)≥Ω

((
α
ε

)1−1/k
+(1ε

√
β⋆

N

)1−1/k

);

(ii) CTL: SubOpt∗CTL(β
⋆, k, ε, α,N) ≥ Ω

(
α1−1/k + ( 1ε

√
β⋆

N

)1−1/k

);

Algorithm 3 Offline MABs under LTC and CTL

1: Input: Offline data D = {(a, Z(a))}a∈[K],
mean estimator µ̂n(k, ε, α, δ) in Algorithm 1,
positive constant c

2: Initialize: Na = |Z(a)| for all a ∈ [K], i.e.,
number of pulls for arm a in D

3: for a ∈ [K] do
4: if Na < 3 log(1/δ)/α then
5: Set the empirical mean reward r̂(a) = 0
6: Set the penalty b(a) = 1
7: else
8: r̂(a) = µ̂Na(k, ε, α, δ)

9: Define γ =

(
1
ε

√
log(2K/δ)

Na

)1−1/k

10: b(a) =

{
c
(
α
ε

)1−1/k
+ cγ for LTC

cα1−1/k + cγ for CTL
11: end if
12: end for
13: Return â = argmaxa∈[K] r̂(a)− b(a)

Now, let us turn to our proposed algorithm,
which is able to achieve a matching expected
sub-optimality (up to log factor) for both LTC
and CTL settings. Our algorithm is a simple
variant of the classic Lower Confidence Bound
(LCB)-based algorithm as in Rashidinejad et al.
(2021), i.e., pessimism in the offline setting. The
key difference compared to Rashidinejad et al.
(2021) is our new private and robust estima-
tor (line 8) and penalty term (line 10), which
come from our high probability mean estima-
tion error. Another modification is due to our
burn-in period of concentration result (line 4).
Putting all of these together, Algorithm 3 is able
to achieve the following guarantees on the ex-
pected sub-optimality, which almost matches the
lower bound in Proposition 5. See the App. K
and J for proofs of the upper and lower bounds.
Proposition 6 (Sub-optimality Upper Bounds).
Let ε ∈ [0, 1], α ∈ (0, 1/2), k > 1 and
δ = 1/N . Then, for all finite β⋆ ≥ 1 and
large enough N and Na⋆ ≥ 3 log(1/δ)/α, the
expected sub-optimality of Algorithm 3 satisfies

(i) LTC:SubOptLTC(β
⋆, k, ε, α,N)≤O

((
α
ε

)1−1/k
+

(
1
ε

√
β⋆ log(KN)

N

)1−1/k
)

;

(ii) CTL: SubOptCTL(β
⋆, k, ε, α,N) ≤ O

(
α1−1/k +

(
1
ε

√
β⋆ log(KN)

N

)1−1/k
)

.

For the case of α = 0, as before one can simply choose to use the mean estimate result for α = 0 as
shown in Proposition 2 and adjust the burn-in period accordingly. This will lead to a bound that only
has the second term in the above upper bounds. For β⋆ ≥ 2, one can observe that the upper bound
of Algorithm 3 almost matches the lower bounds in Proposition 5 for both LTC and CTL settings.
However, when β⋆ ∈ [1, 2) (i.e., good coverage case), it is known that the performance of LCB is
worse than imitation learning, i.e., simply returning the most frequently selected arm in the offline
dataset (when there is no privacy and corruption) (Rashidinejad et al., 2021). We leave it to future
work to give a tight characterization of the sub-optimality when β⋆ ∈ [1, 2). Moreover, the proof of
Proposition 6 also naturally gives us high-probability bounds without specifying δ = 1/N in the end.

6 Simulations
Beyond our theoretical results, we have also conducted a set of simulations for our three problems.
Our theoretical results capture the worst-case performance (i.e., minimax rates). Thus, for simulations,
we are particularly interested in the following two questions: (i) Can we simulate the worst-case
scenario and test the performance of our proposed algorithms? and (ii) How about their performance
in non-worst-case scenarios? We give detailed answers to both questions for all three problems in
Appendix A, which offers additional insights into the interplay between privacy and robustness.

7 Concluding Remarks

To conclude, we have demonstrated an interesting interplay between privacy and robustness in three
problems: mean estimation, online and offline MABs. The punchline across three problems is that
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corruption after any LDP mechanism becomes easier, i.e., the same amount of corruption leads
to a worse performance when compared to the case where Huber corruption happens before LDP
mechanisms. We also give the first set of results for the most practical C-LDP-C setting.

Some interesting future directions include (i) improving the sub-optimal result for linear bandit
in Charisopoulos et al. (2023) by following existing private linear bandits (Li et al., 2022a, 2024)
along with the assumption of bounded reward; (ii) generalizing it to other privacy models such
as shuffle DP (Chowdhury & Zhou, 2022c); (iii) studying the case where the heavy-tailedness is
characterized by the central moment rather than the raw moment currently considered in our paper;
(iv) extending the results to locally private and robust reinforcement learning by building upon
existing results such as Chowdhury & Zhou (2022a); Liao et al. (2023); Zhou (2022).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims (i.e., there exists a fundamental interplay between LDP and ro-
bustness under Huber corruption and heavy-tailedness) in abstract and introduction reflect
the contributions and scope of our paper. We also provide a list of our core contributions
directly in our introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: One limitation is the algorithm’s dependence on the unknown parameter α. A
practical fix suggested is to use an estimated upper bound on α, but the theoretical aspect of
completely removing this dependence is complex, see the discussion in Appendix C.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state all assumptions of our theoretical results under three problems:
mean estimation, online MABs, and offline MABs. For mean estimation, we offer a
tight characterization of high-probability mean estimation errors under both LTC and CTL
settings, with detailed proofs provided in Appendix E and Appendix F. Building on this,
the paper presents an almost tight (up to a log factor) characterization of the minimax
regret in online MABs (Appendix I, Appendix H) and the sub-optimality in offline MABs
(Appendix J, Appendix K).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a comprehensive discussion of the experiment details for each
problem and various types of corruption settings at the beginning of our simulation section
(Appendix A).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code with detailed instructions for the experiments discussed
in Appendix A.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Answer: [Yes]
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Answer: [Yes]

Justification: We present different metrics to assess the performance of our algorithms with
error bars. Mean estimation errors are shown under different corruption scenario (Fig. 2,
Fig. 3). Similarly, the online algorithm’s performance under various corruption scenarios is
displayed (Fig. 4, Fig. 6). Comparisons between our specific algorithm and other algorithms
under Online MABs are also provided (Fig. 5). Lastly, in offline MABs, the suboptimality
of our algorithm is illustrated (Fig. 7). For full information, please check Appendix A.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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8. Experiments Compute Resources
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the experiments?

Answer: [No]

Justification: Our experiments are designed primarily to support the theoretical results and
are relatively simple in their settings. They do not require high-performance hardware and
can be run on most standard computers.

Guidelines:

• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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didn’t make it into the paper).
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Answer: [Yes]

Justification: Our experiments are relatively simple in their settings, and no privacy informa-
tion is leaked through our code.
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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• We recognize that providing effective safeguards is challenging, and many papers do
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Answer: [NA]
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Answer: [NA]
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• Including this information in the supplemental material is fine, but if the main contribu-
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or other labor should be paid at least the minimum wage in the country of the data
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Simulations

In this section, we conduct numerical simulations to assess the performance of our algorithms in
three problems (i.e., mean estimation, online MABs and offline MABs), under both LTC and CTL
settings. Recall that our performance metrics for all three problems are minimax ones, which capture
the worst-case performance. As a result, we are particularly interested in the following two questions
in our simulations:

(i) Can we simulate the worst-case scenario and test the performance of our proposed algorithms?
(ii) How about their performance in non-worst-case scenarios?

Note that (i) essentially sheds further light on how to design the most powerful adversary Huber
corruption model, which in turn could explain the separation result between LTC and CTL from the
perspective of attacking. On the other hand, (ii) would help to illustrate our algorithms’ performance
in some mild/real-world non-adversary Huber corruption. For example, although the minimax regret
for online MABs has a linear term in the worst case, the actual performance under the non-adversary
corruption model can be sub-linear as we will show later.

A.1 Mean estimation

We start with the worst-case scenario for the mean estimation under a large sample size regime where
the minimax error rate is dominated by the corruption part, i.e., the separation result (α/ε)1−1/k under
LTC vs. α1−1/k under CTL. To this end, we need to design the most powerful adversary corruption
for both LTC and CTL. Here, we allow the (white-box) adversary to choose inlier distribution over
X and can adaptively choose Huber corruption distribution based on inlier distribution and the
knowledge of our algorithm, e.g., LDP mechanism Q in the LTC setting.

In particular, the adversary chooses the following inlier distribution:

P (X = 1/γ) =
1

2
γk, P (X = −1/γ) =

1

2
γk, P (X = 0) = 1− γk (5)

where γ = (α/ε)1/k under LTC and γ = (α)1/k under CTL. One can clearly see that E
[
|X|k

]
≤ 1

for all k > 1, hence P ∈ Pk for any k > 1 and α ≤ ε. Moreover, we have E [X] = 0.

Now, we first consider the following strong Huber corruption model.
Definition 7 (Strong Huber corruption for mean estimation). Let the inlier distribution over X be
given by (5). Under LTC: for each input Yi, with probability α, replace it with M · eε+1

eε−1 ; Under CTL:
for each input Xi, with probability α, replace it with M ;

Note that, the white-box adversary knows our algorithm and hence M . We are going to show that no
matter how large the sample size is, the mean error has to be large for both LTC and CTL under the
above strong Huber corruption.

Let us start with CTL and consider the sample size n to be large. Then, according to Algorithm 1,
M = (1/α)1/k = 1/γ, which leads to the fact that the mean of Y is now αM = α1−1/k (note
E [X] = 0). Then, our estimator will essentially at best return the mean of Y , hence leading to the
error of Ω(α1−1/k). For LTC, with the choice of γ and M , we also have M = 1/γ. By our design
of LDP mechanism Q in Algorithm 1, the mean of Y is still zero and hence after the corruption,
the mean of Z becomes α · M eε+1

eε−1 , which is the best outcome of our estimator, hence the error
of Ω((α/ε)1−1/k). Note that in both cases, the choice of corruption distribution needs care (i.e.,
adaptation to our algorithm), since otherwise, our estimator may still have an accurate estimate, as
some other outlier values can be simply filtered out by our algorithm. More importantly, an alternative
explanation of our separation result becomes evident: under LTC, the error is larger because the
adversary has the capability to select a corruption value that is magnified by a factor of 1/ε.

In our experiments, we choose k = 2 and consider various corruption level α ∈ {0, 0.02, 0.05}
and privacy budget ε ∈ {0.3, 0.5, 1}. For each set of parameters, we conduct 300 runs and plot the
average of the estimation error and corresponding confidence region. Fig. 2 illustrates our simulation
results under strong Huber corruption in Definition 7. A common pattern behind all the plots in
Fig. 2 is that due to strong corruption, the estimation error will only converge to a plateau and almost
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match the lower bounds. Specifically, from the two plots in column (a), we see that when α = 0
or ε = 1, the performance under LTC and CTL is close (i.e., no-separation), which aligns with our
theoretical results. In the two plots of column (b), we see that LTC has a larger error than CTL and
as ε decreases (i.e., stronger privacy), the difference becomes larger, which matches our theoretical
separation results. Finally, comparing the plots in column (c) with those in (b), we see that as the
corruption level increases, the performance becomes worse.

We also consider the following weak corruption model, which simply flips the sign of the data.

Definition 8 (Weak Huber corruption for mean estimation). Let the inlier distribution over X be
given by (5). Under LTC: for each input Yi, with probability α, replace it with −Yi; Under CTL: for
each input Xi, with probability α, replace it with −Xi;

Figure 2: Mean estimation error with strong Huber corruption in Definition 7 under LTC and CTL
settings.

Figure 3: Mean estimation error with weak Huber corruption in Definition 8 under LTC and CTL
settings
In Fig.3, we can see that under weak Huber corruption, the estimation error under our estimators
can indeed decrease as the sample size increases. This demonstrates that in some real-world mild
corruption scenarios, our estimators can yield promising performance.

A.2 Online MABs

A.2.1 Non-adversary Corruption

In this section, we first consider some classic heavy-tailed distributions under non-adversary corrup-
tion. The main purpose is to show that our proposed algorithm (i.e., Algorithm 2) can indeed achieve
sublinear regret under certain scenarios. Moreover, our simulations will also provide some insights
into our proof.
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Figure 4: Regret performance with weak Huber corruption in Definition 9 under LTC and CTL
settings.
Settings. As in previous works Tao et al. (2022); Wu et al. (2023), we consider Pareto distribution,
whose probability distribution is given by

f(x;xm, s) =

{
sxs

m

xs+1 , if x ≥ xm

0, otherwise

where s > 0 is the shape parameter and xm > 0 is the scale parameter. In our experiments, we
consider there are K = 10 arms, and for each arm i ∈ [K], the distribution is Pareto with xm = i and
s = 11. To ensure that each arm’s reward distribution is in Pk (i.e., EX∼P [|X|k] ≤ 1), we normalize

the reward by the k-th moment, which is sxk
m

s−k . Consequently, the mean of each arm is s−k

xk−1
m (s−1)

. We
consider k = 2, which along with our choices of s and xm, yields that arm 1 is the best arm with a
mean of 0.9 while arm 10 is the worst arm with a mean of 0.09. For the corruption, we consider the
following Huber model.
Definition 9 (Huber corruption for online/offline MABs). Let each arm’s inlier distribution be Pareto
with the parameters described above. Under LTC, for each private view of reward from each a ∈ [K],
with probability α, replace it with M · e

ε+1
eε−1 . Under CTL, for each raw reward from each arm a ∈ [K],

with probability α, replace it with M .
Remark 6. It is worth noting that even though the above corruption values are the same as in
Definition 7, it is not necessarily the worst-case as the inliers are now Pareto. That is, even after
corruption, the agent can possibly still distinguish between different arms. We also consider strong
corruption cases where after corruption, the agent cannot distinguish the distributions of two arms,
hence a linear regret, see Fig. 6 for details.

Fig. 4 illustrates the regret performance of our proposed algorithm (i.e., Algorithm 2) for online
MABs under LTC and CTL settings, with the specific corruption given by Definition 9. The two plots
in column (a) capture the LTC setting while the two plots in column (b) denote the CTL setting. In
both settings, we can see that for small corruption level α, our algorithm can achieve sublinear regret,
even though in the worst-case our minimax bounds are linear. In column (c), we also directly compare
the regret performance under LTC and CTL with different sets of parameters of α and ε. As expected,
the regret performance under LTC is worse than that under CTL, and as α increases or ε decreases,
the gap becomes larger. This demonstrates separation results in terms of actual performance rather
than only in terms of theoretical upper bounds. As a baseline, we also compare with one classic
robust MAB algorithm under heavy-tailed rewards proposed in Bubeck et al. (2013).

Fig. 5 compares our specific algorithms with the algorithm proposed in Tao et al. (2022), namely
LDPRSE, which is proposed for the setting of LDP and heavy-tailed rewards in online MABs. Hence,
our comparisons were made in the online MAB setting under weak corruption. The findings
are organized into two columns, demonstrating the impact of varying α (corruption) values on
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Figure 5: Comparison of Our Algorithms vs. LDPRSE in the online MAB setting under weak
corruption.
performance as ε (privacy) increases. These results highlight the advantages of our algorithms over
LDPRSE in situations where there exist additional corruptions.

Note that our purpose in this section is not to demonstrate the superior performance of our proposed
algorithm over all existing robust or/and private algorithms (given a large number of different existing
ones). Rather, one of the goals is to use simulations to highlight the separation between LTC and
CTL. Another important goal is to provide more insights into our proof of the regret upper bounds.
Specifically, in our proof of the LTC setting (similar in CTL setting), we will divide the set of all
sub-optimal arms G into two groups G1 and G2 where G2 = {a ∈ [K] \ a∗ : c

(
α
ε

)1−1/k ≥ 1
2∆a} for

some constant c. Then, we argue that if G2 is empty, then one can still derive the standard logarithmic
problem-dependent regret bound. This can also be somehow validated partially by our simulation
results. In particular, under our problem instances described above, when α = 0.02, ε = 0.1, and
c = 0.5, we have |G2| = 0 under LTC (i.e., no sub-optimal arms in G2). In this case, as illustrated in
the top plot of column (a) in Fig. 4, we can observe logarithmic order regret. This naturally extends
to the larger ε case, as illustrated in the bottom plot in column (a).

A.2.2 Strong Huber Corruption

As mentioned above, we also create a strong Huber corruption for online MABs, in this case, the
regret becomes linear which matches our minimax lower bound. In this scenario, our goal is to
create an adversary strong Huber corruption for online MABs, where the agent cannot distinguish the
distributions of two arms by utilizing the following probability distribution:

P (X = 1/γ) = γk, P (X = 0) = 1− γk

P ′(X = 1/γ) = γk/2, P ′(X = 0) = 1− γk/2

where γ adopts the form c1 · (α/ε)1/k under LTC and c1 · (α)1/k under CTL, with c1 configured as
0.1 to ensure γk ≤ 1 for an expansive α. As before, P, P ′ ∈ Pk for any k > 1 and µ(P ) = γk−1,
µ(P ) = γk−1/2. Let P and P ′ represent the distributions for arms 0 and 1 respectively. We define
the corruption distribution under CTL settings as:

Definition 10 (Strong Huber corruption under CTL Settings).

C(X = 1/γ) = γk/2, C(X = 0) = 1− γk/2

C ′(X = 1/γ) = γk/(2α), C ′(X = 0) = 1− γk/(2α)
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According to 2, it is apparent that the agent cannot differentiate between P and P ′ upon executing
the operation:

(1− α)P + αC = (1− α)P ′ + αC ′

This outcome emerges from the CTL’s inherent nature of initially introducing contamination, which
perseveres in maintaining indistinguishability, even post-transmission through the LDP channel and
the Huber model.

In the context of LTC settings, the distinctiveness arises from the fact that the distributions of P and
P ′ undergo alterations after passing through LDP, necessitating corresponding corruptions. Let R
and R′ be the post-LDP transformation distributions over variable Y, defined as:

R(Y = S) =
1

2
+

γk

2
· e

ε − 1

eε + 1
, R(Y = −S) =

1

2
− γk

2
· e

ε − 1

eε + 1

R′(Y = S) =
1

2
+

γk

4
· e

ε − 1

eε + 1
, R′(Y = −S) =

1

2
− γk

4
· e

ε − 1

eε + 1

where S = M · eε+1
eε−1 .

Additionally, we define the corruption distribution as:

Definition 11 (Strong Huber corruption under LTC Settings).

N(Y = S) =
γk

4
· e

ε − 1

eε + 1
, N(Y = −S) = 1− γk

4
· e

ε − 1

eε + 1

N ′(Y = S) =
γk

4
· e

ε − 1

eε + 1
· 1
α
, N ′(Y = −S) = 1− γk

4
· e

ε − 1

eε + 1
· 1
α

Now we also have (1 − α)R + αN = (1 − α)R′ + αN ′, indicating our continued inability to
distinguish between P and P ′ in the LTC setting.

Fig. 6 illustrates the regret performance of our proposed algorithm (i.e., Algorithm 2) for online MABs
under LTC and CTL settings, with the strong Huber corruption in Definition 10 and Definition 11.
A common pattern behind all the plots in Fig. 6 is that due to strong huber corruption, the agent
cannot distinguish the distributions of two arms, hence linear regret. Based on the analysis above, we
anticipate that the regret will scale linearly by a factor of c1 with respect to our minimax clean regret
and Fig. 6 aligned with our discussion. The two plots in column (a) capture the LTC setting while the
two plots in column (b) denote the CTL setting. As expected, the regret performance under LTC is
worse than that under CTL, highlighting separation results in terms of actual performance rather than
only in terms of theoretical upper bounds.

A.3 Offline MABs

In the offline case, the analyzer/agent is given a batch of pre-collected data with private and corrupted
view. In our experiments, we again consider the case that there are K = 10 arms and each arm’s raw
reward distribution is Pareto with the same parameters as in the online case. For corruption, we again
consider the one given by Definition 9.

One difference here is that we need to specify the behavior policy π that is used to collect the data.
To this end, we consider the following policy π in our simulation results: for each sample size N ,
we pulled the best arm (i.e., arm 1) N

3 times and each other arm i ̸= 1 uinformly, i.e., 2N
3(K−1) times.

That is, roughly speaking, we approximately have 1/π(a⋆) = 3, which aligns with our theoretical
assumption (i.e., the finite concentrability coefficient β⋆ ≥ 2 when our upper bounds are tight in
minimax sense).

Fig. 7 illustrates the suboptimality of our algorithm (i.e., Algorithm 3) under both LTC and CTL
settings. We can see that in both settings, the sub-optimality could approach zero under several
values of privacy parameters. This again highlights that under mild/non-adversary corruption, the
algorithm could yield reasonably good performance, rather than the pessimistic worst-case one. Also,
we observe that even in this non-adversary corruption case, suboptimality under LTC in general is
still worse than that under CTL. Finally, it is not surprising that for both LTC and CTL, as α increases
or ε decreases, sub-optimality will increase.
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Figure 6: Regret performance with strong Huber corruption in Definition 10 unde CTL settings and
Definition 11 under LTC settings.

Figure 7: Suboptimality performance with Huber corruption in Definition 9 under LTC and CTL
settings.
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B Additional Related Work

Private MABs. To offer mathematically rigorous privacy protection, LDP is first introduced to MABs
in Ren et al. (2020) where the authors establish private lower bounds on both problem-dependent and
problem-independent (minimax) regrets as well as several LDP mechanisms and learning algorithms
that achieve nearly-optimal performance. Later, it is generalized to the heavy-tailed setting in Tao
et al. (2022). LDP has also been considered in various other bandit settings (Chen et al., 2020; Zheng
et al., 2020; Zhou & Tan, 2021). In addition to LDP, other strictly weaker privacy models have also
been considered in MABs to achieve a better regret, such as central DP where users need to trust
the central learner (Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016; Sajed & Sheffet, 2019)
and distributed DP where users need to trust the intermediate third-party (Tenenbaum et al., 2021;
Chowdhury & Zhou, 2022b). In addition to the above online MABs, recent work (Qiao & Wang,
2022) also considers offline RL (hence MABs) under central DP with bounded rewards.

Robust MABs. Robust MABs under Huber corruption have been recently studied in Kapoor et al.
(2019); Mukherjee et al. (2021); Basu et al. (2022); Agrawal et al. (2024). Several other corruption
models have also been considered in MABs, such as budgeted-corruption model where the cumulative
difference between observed reward and true reward is bounded by some constant budget (Lykouris
et al., 2018; Gupta et al., 2019) and strong contamination model (Niss & Tewari, 2020; Altschuler
et al., 2019). Robust regret minimization in MABs under heavy-tailed rewards have also been studied,
e.g., Bubeck et al. (2013); Agrawal et al. (2021).

Private and Robust MABs. As mentioned above, the existing literature largely investigate privacy
and robustness in MABs separately. To the best of our knowledge, there are only two very recent
works that consider privacy and robustness in MABs simultaneously. In Wu et al. (2023), the authors
consider the central DP model where the raw non-private feedback received by the central learner
can be first corrupted under Huber model. This is in sharp contrast to our local DP model, which is
not only stronger but allows us to study the order of corruption and privacy. In Charisopoulos et al.
(2023), the authors study linear bandits (which includes MAB as a special case) under LDP and then
Huber corruption (i.e., LTC setting). As discussed in Section 4, their regret bound is sub-optimal and
worse than ours when reduced to the MAB case. Note that we also study the CTL setting, which in
turn highlights the interplay between privacy and corruption. Moreover, the results for both LTC and
CTL allow us to give the first results for the C-LDP-C setting.

Private and Robust Mean Estimation. Our work is inspired by recent advances in (locally) private
and robust mean estimation. In particular, for the CTL setting, the authors of Li et al. (2022b) give the
tight characterization in terms of mean-square-error (MSE). In contrast, we derive the high probability
concentration. For LTC, both Cheu et al. (2021); Chhor & Sentenac (2023) give constant-probability
concentration when the inlier distribution is bounded. Instead, we present the high-probability version
even for heavy-tailed inlier distribution, which requires new analysis and design of the estimators.
We would also like to point out some other related private and/or robust mean estimation results. For
instance, under central DP, Kamath et al. (2020) gives the first high probability mean concentration
for heavy-tailed distributions. For standard non-private mean estimation under heavy tails, we refer
readers to the nice survey by Lugosi & Mendelson (2019). For non-private mean estimation under
corruption in general high-dimension space, we refer readers to the nice book by Diakonikolas & Kane
(2023). We finally remark that there are recent exciting advances in understanding the connection
between robustness and privacy in mean estimation (e.g., robustness induces privacy Hopkins et al.
(2023); Asi et al. (2023) and vice versa Georgiev & Hopkins (2022)), which, however, mainly focus
on the central DP model.

C Discussions

C.1 Discussions on Practical Scenarios for LTC and CTL

In the introduction, we have motivated our paper using the example of online recommenda-
tion/advertising via MABs. Here we give two more concrete examples. The key difference between
LTC and CTL in practice is that LTC mainly models the situation where the data transmission is
vulnerable to manipulation while CTL models the situation where the data source is more vulnerable
to manipulation.
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CTL: Consider a healthcare recommendation system that suggests personalized health interventions
based on patient data. In this case, the data might first be corrupted (intentionally or unintentionally)
before being subjected to LDP mechanisms, such as when data is collected from various sources
with different levels of reliability or when users self-report their health information with errors or
falsifications. However, the data transmission is often well-controlled in this case and is not likely
vulnerable to manipulation due to strong federal regulations.

LTC: Consider a wireless IoT (Internet-of-Things) smart-home application where sensors are de-
ployed to monitor/control the temperature or other metrics in homes. These sensors often have
built-in checks to ensure that the data is collected correctly. However, after the LDP mechanism at
each sensor from each home, the data transmission process through wireless networks (channels) is
often more vulnerable to manipulation attacks, e.g., man-in-the-middle attacks, packet sniffing, or
spoofing.

In addition to the above two examples, we do believe that there are many other practical scenarios
that motivate our study of the interplay between LDP and Huber corruption.

Key implication of “LTC is harder": If our recommendation system requires LDP protection, then
the adversary can tailor its manipulation attack (corruption) based on the LDP mechanism (hence
ε) to amplify the error by the order of 1/ε. In other words, LDP protocols are highly vulnerable to
manipulation – poisoning the private messages can be far more destructive than poisoning the data
itself. As a result, it is important to keep our private protocol “secret" as the adversary needs to tailor
its attack according to the LDP protocol to create the worst-case scenario (strongest attack).

C.2 Robust Estimators without Knowing Corruption Parameter

Currently, whether it is possible to derive a tight error bound without knowing α is still unclear to us.
In particular, on the one hand, there are some positive results (Jain et al., 2022; Bhatt et al., 2022)
for some estimators. On the other hand, some work suggests some negative results regarding MAB
problems (Agrawal et al., 2024). Note that all Jain et al. (2022); Bhatt et al. (2022); Agrawal et al.
(2024) only consider corruption, i.e., no privacy protection. Thus, one interesting future work is to
settle down this problem, which is beyond the scope of our current paper.

C.3 Ungrounded Regret Upper Bound in State-of-the-Art

In Tao et al. (2022), the authors consider a simpler setting – locally private heavy-tailed online
MABs, i.e., without corruption. They claimed to achieve a regret upper bound on the order of

O
((

K
ε2

)1−1/k
T 1/k

)
. However, given our tighter lower bound Ω

(
T

k+1
2k

(
K
ε2

) k−1
2k

)
in Proposition 3,

their upper bound becomes ungrounded as it contradicts our lower bound for large T . In particular,
considering k = 2 (with only a bounded second moment), our lower bound gives a regret on the order
of Ω(T 3/4) while their upper bound is O(

√
T ).

Remark 7. In fact, our lower bound also gives another interesting interplay between privacy and
robustness (in particular, heavy-tailed rewards). Specifically, in the non-private case, as shown in
the Bubeck et al. (2013), one can still achieve Θ(

√
T ) regret when the reward distributions have only

bounded second moments. However, in the locally private case, our lower bound indicates that the
regret is at least Ω(T 3/4).

D Broader Impact Statement

This research presents novel insights into the interplay between local differential privacy and ro-
bustness in the context of Multi-Armed Bandits (MABs), with a focus on two distinct settings:
Local Differential Privacy then Corruption (LTC) and Corruption then Local Differential Privacy
(CTL). The findings have broad implications in various domains, particularly in online advertising
and recommendation systems, where privacy preservation and data integrity are paramount. By
enhancing the robustness of MAB algorithms against corruption and heavy-tailed feedback while
ensuring local privacy, our work can significantly contribute to the development of more secure
and reliable decision-making systems. We show that the mean estimation error under LTC is larger
than under CTL, emphasizing that LTC is a more challenging setting. This separation is critical for
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practical applications like healthcare recommendation systems (CTL) and wireless IoT smart-home
applications (LTC). Additionally, our algorithms can adaptively guarantee optimal minimax rates
across different settings without prior knowledge, which is crucial for real-world scenarios where the
specific setting may not be known in advance. However, the complexity and computational demands
of these advanced algorithms might limit their accessibility to smaller organizations, potentially
widening the gap between large and small entities. Moreover, while our approach reduces privacy
leakage and data manipulation risks, it does not completely eliminate them. This is particularly
important because adversaries can tailor their attacks based on the LDP mechanism to amplify errors.
Thus, ongoing efforts should focus on further improving these algorithms to address potential ethical
issues, including data bias and privacy concerns, and enhancing their accessibility and fairness.
Furthermore, deriving tight error bounds without knowing the corruption parameter α remains an
open challenge, suggesting the need for future research in this area.

E Proof of Proposition 1

Proof. We first focus on the LTC setting and divide the proof into two steps.

Step 1: Without corruption. By definition, it suffices to establish a lower bound on the concentration
even without corruption. That is, under LTC, Zi = Yi for all i ∈ [n]. This will give us the second
term in the bound.

Consider the following two distributions P and P ′. Let γ > 0, specified later and

P (X = 1/γ) = γk, P (X = 0) = 1− γk

P ′(X = 1/γ) = 1/2 · γk, P ′(X = 0) = 1− 1/2 · γk. (6)

It is easy to see that for both P, P ′, E
[
|X|k

]
≤ 1 for all k > 1, hence P, P ′ ∈ Pk for any k > 1.

Moreover, we have |µ(P )−µ(P ′)| = 1/2 ·γk−1 and TV (P, P ′) = 1/2 ·γk. For any ε-LDP channel
Q, let M and M ′ be the induced marginal distribution from P and P ′, respectively. That is, for
i ∈ [n], Yi ∼ M and Y ′

i ∼ M ′. Let Y[n] = {Yi}ni=1 and Y ′
[n] = {Y ′

i }ni=1, i.e., Y[n] ∼ M⊗n and
Y ′
[n] ∼ M ′⊗n.

The high-level idea behind our proof is as follows: Given any sample size n, if there exists at least
probability 2δ such that Y[n] = Y ′

[n], then one has to incur Ω(γk−1) estimation error with probability
δ. This naturally reminds us to think about maximal coupling, since it maximizes the probability that
Y[n] = Y ′

[n] and is also closely related to TV distance. In particular, we have the following textbook
facts.

Lemma 1. Let P1 and P2 be two distributions on X that share the same σ-algebra. There exists a
coupling ω∗(P1, P2), which is a distribution over X 2 such that

P(X1,X2)∼ω∗(P1,P2))(X1 ̸= X2) = TV(P1, P2)

∀S measurable,P(X1,X2)∼ω∗(P1,P2))(X1 ∈ S) = P1(X1 ∈ S)

∀S measurable,P(X1,X2)∼ω∗(P1,P2))(X2 ∈ S) = P2(X2 ∈ S).

This coupling is called maximal coupling.

Based on this fact, fix some n, if (Y[n], Y
′
[n]) is sampled from the maximal coupling ω∗(M⊗n,M ′⊗n),

then we know that there exists a probability p = 1−TV(M⊗n,M ′⊗n) such that Y[n] = Y ′
[n]. To lower

bound p, we need to upper bound the TV distance. To this end, we will leverage Bretagnolle–Huber
inequality and strong data processing inequality (i.e., Corollary 3 in Duchi et al. (2018)). In particular,
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we have

TV(M⊗n,M ′⊗n)
(a)

≤ 1− 1

2
exp

(
−KL

(
M⊗n

∥∥M ′⊗n
))

(b)
= 1− 1

2
exp

(
−4(eε − 1)2 · n · (TV (P, P ′))2

)
= 1− 1

2
exp

(
−4(eε − 1)2 · n · γ2k

)
(c)

≤ 1− 1

2
exp

(
−16ε2 · n · γ2k

)
,

where (a) holds by Bretagnolle–Huber inequality; (b) holds by Corollary 3 in Duchi et al. (2018); (c)

is true since eε − 1 ≤ 2ε for ε ∈ [0, 1]. Thus, let γ = c1

(√
log(1/δ)

ε
√
n

)1/k

for some constant c. Then,

for large enough n, γk−1 < 1 and TV(M⊗n,M ′⊗n) ≤ 1− 2δ, which implies that with probability

at least δ, the error is Ω(γk−1) = Ω

((√
log(1/δ)

ε
√
n

)1−1/k
)

.

Step 2: Corruption part. Recall that under α-Huber, for each private view Yi, it is independently
corrupted with probability α, and when it happens, Zi is sampled from an arbitrary noise distribution
N ; otherwise, Zi = Yi. To proceed, we will utilize the following useful fact.

Lemma 2 (Theorem 5.1 in Chen et al. (2018)). Let R1 and R2 be two distributions on X ; If for some
α ∈ [0, 1/2), we have that TV (R1, R2) ≤ α

1−α , then there exist two distributions N1 and N2 on the
same probability space such that

(1− α)R1 + αN1 = (1− α)R2 + αN2.

This result says that the Huber model with parameter α can corrupt two distributions that are
close in TV distance so that the outputs are essentially sampled from the same distribution, hence
indistinguishable.

Another fact we will leverage is that LDP mechanism is a “contraction” in that it will make the TV
distance closer.

Lemma 3 (Corollary 2.9 in Kairouz et al. (2014)). For any ε > 0, let Q be any ε-LDP mechanism.
Then, for any pair of distributions P1 and P2, the induced marginals M1 and M2 satisfy

TV (M1,M2) ≤
eε − 1

eε + 1
TV (P1, P2) .

The above fact indicates that for ε ∈ [0, 1], TV (M1,M2) ≤ O(ε)TV (P1, P2). With the above two
facts, it suffices for us to find two distributions P and P ′ for Xi with a “large” mean difference,
such that the induced marginal distributions for Yi is O(α). To this end, we again consider the two
distributions in (6) with a different choice of γ. Since TV (P, P ′) = 1/2 · γk, by Lemma 3, choosing
γ = c′ · (α/ε)1/k for some small constant c′ > 0 yields that TV (M,M ′) ≤ α ≤ α/(1 − α).
Hence, by Lemma 2, there exists Huber contamination such that it is impossible to distinguish the
final outputs. Hence, with a probability of at least 1/2, the error is Ω

(
γk−1

)
= Ω

(
(α/ε)1−1/k

)
.

We finally conclude that for any δ ∈ (0, 1/2), with probability at least δ, for all large enough n,
estimation error is Ω

(
γk−1

)
= Ω

(
(α/ε)1−1/k

)
. This finishes the proof for the LTC setting.

As for the CTL setting, the second term in the lower bound follows the same proof as in Step 1. The
key difference lies in Step 2, i.e., the first term in the bound. In particular, since the contamination is
before LDP, one can now only choose γ = c′α1/k, i.e., no “contraction” from LDP anymore. As a
result, the estimation error is Ω

(
γk−1

)
= Ω

(
α1−1/k

)
.

F Proof of Proposition 2

Proof. Let us start with the LTC setting. As for privacy, it builds on the privacy guarantee of random
response.
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Privacy. By definition, we need to show that for any two inputs x, x′ ∈ X and y ∈{
M eε+1

eε−1 ,−M eε+1
eε−1

}
P [Y = y|X = x]

P [Y = y|X = x′]
≤ eε.

Consider the case y = M eε+1
eε−1 and similar analysis applies to the other case. Let Px→M+ be the

probability that x is translated to M in our mechanism Q and Px→M− be the probability that x is
translated to −M in our mechanism Q. Similarly defines Px′→M+ and Px′→M− .

Thus, according to our Q in Algorithm 1) and let Pε :=
eε

eε+1 , we have

P [Y = y|X = x] = Px→M+Pε + Px→M−(1− Pε)

P [Y = y|X = x′] = Px′→M+Pε + Px′→M−(1− Pε)

As a result,

P [Y = y|X = x]

P [Y = y|X = x′]
=

Px→M+Pε + Px→M−(1− Pε)

Px′→M+Pε + Px′→M−(1− Pε)
≤ Pε

1− Pε
≤ eε.

Utility. For the utility part, we will divide the proof into four steps.

We draw the following informal diagram for an illustration of Algorithm 1.

Xi
Trunc.(M)−−−−−−→ X̄i

Random Rounding−−−−−−−−−→ X ′
i

Random Response−−−−−−−−−→ Yi
Corruption−−−−−→ Zi

Trunc.(M eε+1
eε−1 )−−−−−−−−−→ Z̄i

Sample Mean−−−−−−−→ µ̂n

Step 1: Bound the number of corrupted points.

By Chernoff bound for the binomial distribution, we have that for n ≥ 3 log(1/δ)/α

|B| ≤ 2αn, w.p. 1− δ,

where |B| denotes the total number of corrupted (“bad”) points. Let this event be E , and in the
following steps, we will condition on this event.

Step 2: Bound the distance |E [X ′
i]− E [Xi] |.

|E [Xi]− E [X ′
i] | ≤ |E [Xi]− E

[
X̄i

]
|+ |E

[
X̄i

]
− E [X ′

i] |
(a)
= |E [Xi]− E

[
X̄i

]
|+ 0

≤ E [|Xi|1(|Xi| ≥ M)]

(b)

≤ 1

Mk−1

where (a) holds by the property of random rounding. Recall that, for any X̄i ∈ [−M,M ], X ′
i = M

w.p. 1+X̄i/M
2 and X ′

i = −M w.p. 1−X̄i/M
2 . Thus, one can see E

[
X ′

i|X̄i

]
= X̄i, hence E

[
X̄i

]
=

E [X ′
i]; (b) holds by Hölder’s inequality and the fact k-th moment of Xi is upper bounded by one.

Step 3: Bound the distance |E [X ′
i]− µ̂n|.

|µ̂n − E [X ′
i] | = | 1

n

∑
i

Z̄i − E [X ′
i] |

= | 1
n

∑
i

Z̄i −
1

n

∑
i

Yi +
1

n

∑
i

Yi − E [X ′
i] |

(a)

≤ 2α ·M · e
ε + 1

eε − 1
+ | 1

n

∑
i

Yi − E [X ′
i] |

(b)

≤ 2α ·M · e
ε + 1

eε − 1
+O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ
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where (a) holds by triangle inequality, the event E in step 1, and the fact that Z̄i, Yi are both bounded;
(b) holds by Hoeffding inequality. Note that Yi =

eε+1
eε−1X

′
i w.p. eε

eε+1 and Yi = − eε+1
eε−1X

′
i w.p. 1

eε+1 .
That is, E [Yi] = E [X ′

i] and Yi = {M · eε+1
eε−1 ,−M · eε+1

eε−1}.

Step 4: Put the above two parts together.

For any ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(
1

Mk−1
+

αM

ε
+

M

ε

√
log(1/δ)

n

)
.

Thus, choosing M = min

{(
ε
α

)1/k
,

( √
nε√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

(α
ε

)1−1/k

+

(
1

ε

√
log(1/δ)

n

)1−1/k
 ,

which finishes the proof for the LTC setting.

Now, let us move to the CTL setting. For privacy, it follows from the same idea as in the LTC setting.

For utility, we will divide the proof into five steps and leverage the following informal diagram for an
illustration of Algorithm 1.

Xi
Corruption−−−−−→ Yi

Trunc.(M)−−−−−−→ Ȳi
Random Rounding−−−−−−−−−→ Y ′

i

Random Response−−−−−−−−−→ Zi
Sample Mean−−−−−−−→ µ̂n

Step 1: Bound the number of corrupted points.

By Chernoff bound for the binomial distribution, we have that for n ≥ 3 log(1/δ)/α

|B| ≤ 2αn, w.p. 1− δ,

where |B| denotes the total number of corrupted (“bad”) points. Let this event be E , and in the
following steps, we will condition on this event.

Step 2: Bound the distance |µ̂n − 1
n

∑
i E
[
Ȳi

]
|.

|µ̂n − 1

n

∑
i

E
[
Ȳi

]
|
(a)
= | 1

n

∑
i

Zi −
1

n

∑
i

E [Y ′
i ] |

(b)

≤ O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ,

where (a) holds by property of random rounding, i.e., E
[
Ȳi

]
= E [Y ′

i ]; (b) holds by property of
random response, i.e., E [Zi] = E [Y ′

i ] and Hoeffding inequality.

Step 3: Bound the distance | 1n
∑

i Ȳi − 1
n

∑
i E
[
Ȳi

]
|.

| 1
n

∑
i

Ȳi −
1

n

∑
i

E
[
Ȳi

]
| ≤ O

(
M ·

√
log(1/δ)

n

)
, w.p. 1− δ

where it simply follows from Hoeffding’s inequality.
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Step 4: Bound the distance | 1n
∑

i Ȳi − E [Xi] |.

| 1
n

∑
i∈[n]

Ȳi − E [Xi] |
(a)
= | 1

n

∑
i∈G

Ȳi − E [Xi] +
1

n

∑
i∈B

Ȳi|

(b)

≤ | 1
n

∑
i∈G

Ȳi − E [Xi] |+ 2αM

= | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi]−
1

n

∑
i∈[B]

Xi1(|Xi| ≤ M)|+ 2αM

≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi] |+ 4αM

≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi1(|Xi| ≤ M)] |

︸ ︷︷ ︸
T1

+ |E [Xi1(|Xi| ≤ M)]− E [Xi] |︸ ︷︷ ︸
T2

+4αM

where in (a), G represents all “good” indexes that are not corrupted and B represents all “bad” indexes
that are corrupted; (b) follows from the boundedness of Ȳi and the event E in step 1.

For T2, by Hölder’s inequality and the fact k-th moment of Xi is upper bounded by one, we have

T2 ≤ O

(
1

Mk−1

)
.

For T1, we consider two cases: (i) k ∈ (1, 2) and (ii) k ≥ 2 when applying Bernstein’s inequality.

For case (i), we note that E
[
X2

i 1(|Xi| ≤ M)
]
= E

[
|Xi|k|Xi|2−k1(|Xi| ≤ M)

] (a)
≤ E

[
|Xi|kM2−k

]
≤

M2−k, where (a) follows from k < 2. Thus, by Bernstein’s inequality, we have

T1 ≤ O

(√
M2−k log(1/δ)

n
+

M log(1/δ)

n

)
.

For case (ii), we note that E
[
X2

i 1(|Xi| ≤ M)
]
≤ E

[
X2

i

]
≤ 1. Thus, by Bernstein’s inequality, we

have

T1 ≤ O

(√
log(1/δ)

n
+

M log(1/δ)

n

)
.

Step 5: Put everything together. Case (i): for any k ∈ (1, 2), ε ∈ [0, 1], any δ ∈ (0, 1) and any
P ∈ Pk, we have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(√
M2−k log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)
+O(αM) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

( log(1/δ)

n

)1−1/k

+ α1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .
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Case (ii): for any k ≥ 2, ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least
1− δ,

|µ̂n − µ(P )| ≤ O

(√
log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)
+O(αM) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

√ log(1/δ)

n
+

(
log(1/δ)

n

)1−1/k

+ α1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .

Finally, combining the above two cases, we see that when n ≥ log(1/δ), for any k > 1, it suffices to

choose M = min

{(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and obtain that

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .

which finishes the proof for the CTL setting.

G Proof of the Upper Bound for the C-LDP-C Setting

After the proofs for the previous two settings, we can easily establish the upper bound for the C-LDP-
C setting. For completeness, we also provide a detailed proof. To elucidate the utility of our approach,
we will structure the proof into four distinct steps, building upon the derivation outlined previously.

Xi
Corruption−−−−−→ Yi

Trunc.(M)−−−−−−→ Ȳi
Random Rounding−−−−−−−−−→ Y ′

i

Random Response−−−−−−−−−→ Zi
Corruption−−−−−→ Z ′

i

Trunc.(M eε+1
eε−1 )−−−−−−−−−→ Z̄i

Sample Mean−−−−−−−→ µ̂n

Step 1: Bound the distance |E [Y ′
i ]− µ̂n|.

According to the analysis in the LTC setting, we can directly derive

|µ̂n − E[Y ′
i ]| =

∣∣∣∣∣ 1n∑
i

Z̄i − E[Y ′
i ]

∣∣∣∣∣
≤ 2α ·M · e

ε + 1

eε − 1
+O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ

Step 2: Bound the distance | 1n
∑

i Ȳi − 1
n

∑
i E
[
Ȳi

]
|.

| 1
n

∑
i

Ȳi −
1

n

∑
i

E
[
Ȳi

]
| ≤ O

(
M ·

√
log(1/δ)

n

)
, w.p. 1− δ

where it simply follows from Hoeffding’s inequality.

Step 3: Bound the distance | 1n
∑

i Ȳi − E [Xi] |.
From the analysis in the CTL setting, we once again derive

| 1
n

∑
i∈[n]

Ȳi − E [Xi] | ≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi1(|Xi| ≤ M)] |

︸ ︷︷ ︸
T1

+ |E [Xi1(|Xi| ≤ M)]− E [Xi] |︸ ︷︷ ︸
T2

+4αM
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Step 4: Put everything together.

Case (i): for any k ∈ (1, 2), ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at
least 1− δ,

|µ̂n − µ(P )| ≤ O

(√
M2−k log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)

+O(αM) +O(
αM

ε
) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

( log(1/δ)

n

)1−1/k

+ (
α

ε
)1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .

Case (ii): for any k ≥ 2, ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least
1− δ,

|µ̂n − µ(P )| ≤ O

(√
log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)

+O(αM) +O(
αM

ε
) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

√ log(1/δ)

n
+

(
log(1/δ)

n

)1−1/k

+ (
α

ε
)1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .

Finally, combining the above two cases, we see that when n ≥ log(1/δ), for any k > 1, it suffices to

choose M = min

{(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and obtain that

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .
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H Proof of Proposition 3

Proof. As in the section for mean estimation, we first focus on the LTC setting and divide the lower
bound proof into two steps.

Step 1: Without corruption. In this case, we aim to establish the second term in the lower bound.
We consider the first MAB instance I as follows. Let γ > 0 be determined later and

P1(X = 1/γ) = 1/2 · γk, P1(X = 0) = 1− 1/2 · γk

Pa(X = 1/γ) = 1/4 · γk, Pa(X = 0) = 1− 1/4 · γk. ∀a ̸= 1. (7)
Thus, one can see that I ∈ MAB(k) for a proper choice of γ and arm 1 is the optimal arm for instance
I . We let Ma be the induced marginal distribution of Pa via any ε-LDP channel and EI [·] denote
the expectation over PI , which is over the randomness in the marginal distributions {Ma}a∈[K] and
policy π.

Then, we construct a “coupled” instance I ′ of I as follows. Let i = argminj>1 EI [Nj(T )], i.e., the
arm between a2 and aK that has the minimum number of pulls under instance I . Define the second
instance I ′ that only differs in the distribution for arm i compared to instance I

Pi(X = 1/γ) = 3/4 · γk, Pi(X = 0) = 1− 3/4 · γk. (8)
Thus, I ′ ∈ MAB(k) and arm i is the optimal arm for instance I ′. By definition, we also have
EI [Ni(T )] ≤ T/(K − 1).

For any instance I and policy π, we let RT (π, I) be its corresponding expected regret. Then, by
standard argument and noting that the mean gap is ∆ := 1/4 · γk−1, we have

RT (π, I) +RT (π, I
′) ≥ T

2
·∆ · (PI [N1(T ) ≤ T/2] + PI′ [N1(T ) ≥ T/2])

(a)

≥ T∆

4
exp(−KL (PI∥PI′))

(b)
=

T∆

4
exp(−EI [Ni(T )] ·KL (Mi∥M ′

i))

(c)

≥ T∆

4
exp(−EI [Ni(T )] · 4(eε − 1)2 · (TV (Pi, P

′
i ))

2)

(d)

≥ T∆

4
exp

(
− T

K − 1
· 4(eε − 1)2 · (TV (Pi, P

′
i ))

2

)
(e)
=

T∆

4
exp

(
− T

K − 1
· 4(eε − 1)2 · γ

2k

4

)
where (a) holds by Bretagnolle–Huber inequality; (b) follows from chain rule of KL divergence; (c)
holds by Theorem 1 in Duchi et al. (2018); (d) is true since EI [Ni(T )] ≤ T/(K − 1); (e) holds by
definition of TV distance.

Thus, putting everything together and noting that for ε ∈ [0, 1], eε − 1 ≤ 2ε, yields that

RT (π, I) +RT (π, I
′) ≥ T∆

4
exp

(
−4

ε2Tγ2k

K − 1

)
.

Thus, suppose T ≥ K/ε2 and choosing γ = (K/(ε2T ))1/2k, one can check that all the required
conditions on γ are satisfied and we finally have that max{RT (π, I),RT (π, I

′)} ≥ Ω
(
Tγk−1

)
=

Ω

(
T

k+1
2k

(
K
ε2

) k−1
2k

)
.

Step 2: Corruption part. In this case, we aim to establish the first term in the lower bound.

This part basically shares the same argument as before for mean estimation. Note that the only
difference between I and I ′ is the distribution for arm i. Then, we apply the same argument as in the
proof of Proposition 1 to Pi and P ′

i . Hence, we have that there exists Huber corruptions so that one
cannot distinguish between Pi and P ′

i , and hence I and I ′. As a result, the total expected regret is
Ω
(
Tγk−1

)
= Ω(T (α/ε)1−1/k).

Finally, for the CTL setting, the first step is the same and second step only differs in that there is no
“contraction” effect as in the proof of Proposition 1.
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I Proof of Proposition 4

Proof. Let us start with the LTC case. We divide the set of all sub-optimal arms G into two groups
G1 and G2 := G \ G1, where G1 = {a ∈ [K] \ a∗ : c′

(
α
ε

)1−1/k
< 1

2∆a} for some universal constant

c′ chosen later. Hence, G2 = {a ∈ [K] \ a∗ : c′
(
α
ε

)1−1/k ≥ 1
2∆a}, which implies that the total

expected regret from suboptimal arms in G2 is upper bounded by O
(
T
(
α
ε

)1−1/k
)

. Thus, it remains
to bound the total expected regret of pulling suboptimal arms in G1. To this end, for each i ∈ G1, we
aim to show that

E [Ni(T )] ≤ O

(
log T

ε2(∆i)
2k

k−1

+
log T

α

)
. (9)

Let us first assume (9) holds and see how we can arrive at our claimed upper bound. By the definition
of expected regret, we have

R(k, ε, α, T ) =
∑
i∈G1

∆iE [Ni(T )] +
∑
i∈G2

∆iE [Ni(T )]

≤
∑
i∈G1

∆iE [Ni(T )] +O

(
T
(α
ε

)1−1/k
)
,

where inequality holds by the definition of G2. It remains to translate the first term into a problem-
independent one. To this end, we further divide the arms in G1 into two groups: one group consists of
all arms that satisfy ∆i < η for some constant η > 0 and another one contains all arms that satisfy
∆i ≥ η. Thus, by (9), we have

∑
i∈G1

∆iE [Ni(T )] ≤ ηT +O

(
K log T

ε2η
k+1
k−1

+
K log T

α

)
.

Choosing η =
(

K log T
ε2T

) k−1
2k

, yields that the total expected regret satisfies

R(k, ε, α, T ) ≤ O

((
K log T

ε2

) k−1
2k

T
k+1
2k +

K log T

α
+ T

(α
ε

)1−1/k
)
.

Finally, for very small α, one can replace it with its upper bound ᾱ to optimize the regret.

It remains to establish (9). First note that O(log T/α) basically follows from the burn-in period.
Thus, we only need to bound the total number of pulls after the burn-in period. We denote by N ′

i(t)
the total number of by time t after the burn-in period, i.e., it is equal to Ni(t) minus the total number
of burn-in plays of arm i. In the following, we will show that

E [N ′
i(T )] ≤ C1

log T

ε2(∆i)
2k

k−1

+ C2, (10)

for some constants C1 and C2.

To this end, for t that is after the burn-in period of arm i ∈ G1, if at = i, then one of the following
must be true:

UCBa⋆(t) ≤ µ(Pa⋆) (11)

µ̂i,Ni(t) > µ(Pi) + c
(α
ε

)1−1/k

+ c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

(12)

N ′
i(t) < C

log T

ε2(∆i)
2k

k−1

(13)
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This is because if all three are not true, then we have

UCBa⋆(t) > µ(Pa⋆)

= µ(Pi) + ∆i

(a)

≥ µ(Pi) +
1

2
∆i + c′

(α
ε

)1−1/k

(b)

≥ µ(Pi) + 2c

(
1

ε

√
log(t4)

N ′
i(t)

)1−1/k

+ c′
(α
ε

)1−1/k

(c)

≥ µ(Pi) + 2c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

+ c′
(α
ε

)1−1/k

(d)

≥ µ̂i,Ni(t) + c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

+ c
(α
ε

)1−1/k

= UCBi(t)

where (a) holds by the fact that i ∈ G1; (b) holds by choosing a large constant C in (13); (c) is true
since Ni(t) > N ′

i(t); (d) holds by the inverse direction of (12) and choosing c′ = 2c.

Let t′ be the time just after the burn-in period, then we have

E [N ′
i(T )] = E

∑
t≥t′

1(at = i)

 ≤ C
log T

ε2(∆i)
2k

k−1

+
∑
t≥t′

E [1(at = i and (13) is false)]

(a)

≤ C
log T

ε2(∆i)
2k

k−1

+
∑
t≥t′

E [1((11) is true or (12) is true)]

where (a) holds by the above claim, i.e., if at = i and (13) is false, then one of (11) and (12) must be
true. Then, by our mean concentration result and union bounds, we can upper bound the second term
above as

E [1((11) is true or (12) is true)] ≤ 2

t∑
s=1

1

t4
=

2

t3
.

Putting them together, we have established (10), hence the result. The proof for CTL setting is
essentially the same with the only difference in the definition of G1 and G2.

J Proof of Proposition 5

Proof. Without corruption. We consider two instances in MAB(β⋆, k). In particular, we consider
two-arm MABs I and I ′:

For I : µI
1 := µ(P I

1 ) = 1/2 · γk−1, µI
2 := µ(P I

2 ) = 1/4 · γk−1

For I ′ : µI′

1 := µ(P I
1 ) = 1/2 · γk−1, µI′

2 := µ(P I
2 ) = 3/4 · γk−1 (14)

These distributions can be constructed in the same way as in the proof of Proposition 3 (cf. (7)).
Moreover, for the behavior policy π, we have π(2) = 1/β⋆ and π(1) = 1− 1/β⋆. We now verify
that both (π, µI) and (π, µI′

) are in MAB(β⋆, k). By construction, each distribution is belonging
to Pk. It remains to verify that 1/π(a⋆) ≤ β⋆. For I ′, we have 1/π(2) = β⋆. And for I , we have
1/π(1) = 1/(1− 1/β⋆) ≤ β⋆ when β⋆ ≥ 2.

Now, we proceed to apply classic Le Cam’s method. Let loss/sub-optimality of any final chosen arm
â ∈ {1, 2} under I and I ′ be ℓ(â; I), ℓ(â; I ′). Then, by our construction, we have

ℓ(â; I) + ℓ(â; I ′) ≥ 1/4 · γk−1.
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Thus, by Le Cam’s method and Bretagnolle–Huber inequality, we have

SubOpt∗(β⋆, k, ε, α,N) ≥ γk−1

16
exp

(
−KL

(
M I

π

∥∥M I′

π

))
,

where KL
(
M I

π

∥∥M I′

π

)
is the private KL divergence between two MAB instances. By chain rule of

KL divergence and Theorem 1 in Duchi et al. (2018), we have

KL
(
M I

π

∥∥M I′

π

)
≤ N

β⋆
4(eε − 1)2

(
TV

(
P I
2 , P

I′

2

))2
.

Thus, noting that for ε ∈ [0, 1], eε − 1 ≤ 2ε and
(
TV

(
P I
2 , P

I′

2

))2
= γ2k

4 , we have that

SubOpt∗(β⋆, k, ε, α,N) ≥ γk−1

16
exp

(
−ε2Nγ2k

4β⋆

)
.

Finally, for a large enough N , choosing γ = (β⋆/(ε2N))1/2k, yields that

SubOpt∗(β⋆, k, ε, α,N) ≥ Ω

(1

ε

√
β⋆

N

)1−1/k
 .

Corruption part. By our construction (cf. (14) (7), (8)) we have that TV
(
P I
2 , P

I′

2

)
= γk

2 . Then,
a similar idea as in the proof of Proposition 1 applies here. That is, for the LTC setting, by the
contraction of LDP, we can set γk = Θ(αε ) so that TV

(
M I

2 ,M
I′

2

)
≤ α. Thus, one cannot

distinguish I and I ′ under α-Huber model. Thus, one has to incur a sub-optimality gap as Ω(γk) =(
α
ε

)1−1/k
. In contrast, due to no contraction by LDP first, one can only set γk = Θ(α), which leads

to the final result.

K Proof of Proposition 6

Proof. We will focus on the LTC case, since the CTL case is nearly the same with a minor change in
the confidence bound. Let E = E1 ∩ E2 where

E1 := {∀a ∈ [K], |r̂(a)− r(a)| ≤ b(a)}

E2 := {N(a⋆) ≥ 1

2
Nπ(a⋆)}.

Let us first assume that P [E ] ≥ 1 − 2δ and see how we can prove the final result. Then, we
will establish this high-probability event in the end. Hence, condition the event E and define
LCB(a) := r̂(a)− b(a), we have

r(a⋆)− r(â) = r(a⋆)− LCB(a⋆) + LCB(a⋆)− LCB(â) + LCB(â)− r(â)

≤ 2b(a⋆)

≤ 2c
(α
ε

)1−1/k

+ 2c

1

ε

√
log(2K/δ)

Na⋆

1−1/k

.

Then, by the definition of β⋆ and E , we can further lower bound Na⋆ by N
2β⋆ . Then, by the bounded

mean of each arm, and choosing δ = 1/N , we have the claimed expected sub-optimality result.

It remains to bound the probability of E . For E2, by standard Chernoff bound, we have P [E2] ≥ 1− δ
when N ≥ 8β⋆ log(1/δ). For E1, we have the following argument. For any arm a such that Na is
larger than the burn-in threshold, the concentration in E1 follows from our high-probability mean
estimation result. For all other arms, by construction and the condition that all arms have mean
between [−1, 1], we have

r̂(a)− b(a) = −1 ≤ r(a) ≤ r̂(a) + b(a) = 1,

which enables us to establish our claim P [E ] ≥ 1− 2δ.
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