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Abstract

What is the shortest path between two data points lying in a high-dimensional
space? While the answer is trivial in Euclidean geometry, it becomes significantly
more complex when the data lies on a curved manifold—requiring a Riemannian
metric to describe the space’s local curvature. Estimating such a metric, however,
remains a major challenge in high dimensions.
In this work, we propose a method for deriving Riemannian metrics directly
from pretrained Energy-Based Models (EBMs)—a class of generative models that
assign low energy to high-density regions. These metrics define spatially varying
distances, enabling the computation of geodesics—shortest paths that follow the
data manifold’s intrinsic geometry. We introduce two novel metrics derived from
EBMs and show that they produce geodesics that remain closer to the data manifold
and exhibit lower curvature distortion, as measured by alignment with ground-truth
trajectories. We evaluate our approach on increasingly complex datasets: synthetic
datasets with known data density, rotated character images with interpretable
geometry, and high-resolution natural images embedded in a pretrained VAE
latent space. Our results show that EBM-derived metrics consistently outperform
established baselines, especially in high-dimensional settings.
Our work is the first to derive Riemannian metrics from EBMs, enabling data-
aware geodesics and unlocking scalable, geometry-driven learning for generative
modeling and simulation.

1 Introduction

What is the shortest path between two data points in a high-dimensional space? In Euclidean geometry,
the answer is a straight line. But in modern machine learning, where data often lies on unknown
curved manifolds within a high-dimensional space, straight lines slice through regions without data
(see linear interp. in Fig. 1). Capturing the true geometry of data is therefore critical in fields
where distance-based analyses depend on underlying structure, such as vision [1–3], language [4, 5],
biology [6], and cognitive science [7, 8]. Riemannian geometry offers a principled way to navigate
these spaces by introducing a smoothly varying local metric, the Riemannian metric, which encodes
how space bends and stretches [9]. Within this framework, the shortest path between two points is no
longer a straight line, but a geodesic—a curve that follows the intrinsic curvature of the manifold.
Computing geodesics requires knowing the underlying Riemannian metric, but estimating such a
metric for complex, high-dimensional data remains a major challenge in machine learning.
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A promising strategy for deriving Riemannian metrics is to take a data-driven approach—learning
the metric directly from the data itself. This approach estimates the data density and turns it into
a Riemannian metric that contracts high-density regions and dilates low-density ones, aligning the
geometry with the data manifold [10] (see § 2 for more details). Existing methods, such as kernel-
based estimators [11], normalizing flows [12], and density-based constructions [13], have succeeded
in low-dimensional settings. However, their performance often degrades in high dimensions, where
sparse local sampling makes it hard to capture reliable geometric structure [14, 15]. Meanwhile,
recent advances in generative AI [16–18] have produced models capable of capturing complex data
distributions in high-dimensional spaces with remarkable accuracy. If these models can learn the
data distribution, can they also reveal its underlying geometry?

Figure 1: Geodesics visualization for the URC
dataset. Trajectories and samples are projected in
the PCA space for visualization.

.

In this article, we answer affirmatively by
proposing to derive Riemannian metrics from
pretrained Energy-Based Models (EBMs) [16,
19, 20]. EBMs are a flexible class of gen-
erative models that define an energy function
Eθ, parameterized by a neural network, as-
signing low energy to likely data points (i.e.,
pθ(x) ∝ exp(−Eθ(x))).We show that the en-
ergy landscape of an EBM encodes a rich geo-
metric structure and can be leveraged to derive
effective Riemannian metrics. Specifically, we
introduce two novel conformal Riemannian met-
rics—metrics that scale the identity by a pos-
itive scalar function: GEθ

proportional to the
energy itself, and G1/pθ

, proportional to the in-
verse unnormalized density. We evaluate both
against established alternatives (GRBF [13]
and GLAND [11]) across datasets of increasing
complexity—from toy distributions with known
geodesics (see § 4.2), to rotated character images
where the manifold structure is partially known
(see § 4.3), and finally to high-dimensional nat-
ural images where no ground truth geometry is
available (see § 4.4). Throughout this work, we
adopt the common choice of equipping the data space with a density-based Riemannian metric,
thereby defining the geometry of the manifold in terms of data concentration. We show that EBM-
based metrics yield geodesics that (i) remain closer to the data manifold and (ii) better reflect its
intrinsic curvature (see Fig. 1 for a visualization of the geodesics).

Overall, our contributions are summarized as follows:

• We propose a novel framework based on pretrained Energy-Based Models (EBMs) to derive
Riemannian metrics. In particular, we introduce two novel conformal metrics GEθ

and G1/pθ
,

based on the data log-likelihood and data density, respectively.
• We demonstrate that these EBM-derived metrics yield geodesics that remain closer to the data

manifold and better reflect its curvature.
• We show that the proposed EBM-based metrics scale more robustly than prior approaches.

By grounding Riemannian metrics in generative AI, we hope to initiate a new paradigm for under-
standing and navigating the hidden geometry of high-dimensional data spaces.

2 Related Work

The many facets of data geometry: A variety of approaches have been proposed to study the
geometry of data:

• Information Geometry: This historical approach is rooted in the work of Rao [21] and Amari
[22]. It connects statistics and differential geometry by interpreting the Fisher information [23]
as a Riemannian metric on the manifold of parameters of a statistical model. In contrast, our
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work derives Riemannian metrics directly from the data space using the energy or the likelihood
of an EBM.

• Data-Space induced metrics: Closer to our work, this approach estimates Riemannian metrics
directly from samples. The LAND metric [11] derives a local metric tensor from the empirical
covariance of nearby points. The RBF metric [13] defines a conformal metric using an RBF
network trained as a parametric KDE, learning centres, widths, and weights so its output forms
an unnormalised data density. Both serve as baselines in our study (see § 4.1) and have recently
been used for geodesic fitting via flow matching [24]. The (unpublished) work of Perone [25]
was also a key inspiration, proposing to build metrics from the score function of a generative
model—an idea also explored by Diepeveen et al. [26].

• Latent-Space induced metrics: Another line of work uses pullback geometry [27–32], mapping
the Euclidean metric from a network’s latent space to the data space—typically through the
Jacobian of a VAE encoder [33]. While our method operates in the latent space of a VAE
in high-dimensional settings, the metric is derived from the energy of the EBM and remains
independent of the VAE encoder.

• Generative modeling on a pre-defined manifold: Recent approaches such as flow-based mod-
els [34, 35] and Schrödinger bridges [36, 37] learn transport paths between distributions, some-
times defined over Riemannian manifolds [38–41]. These methods assume a known, fixed
manifold geometry (e.g., a hypersphere) and design generative models to operate within that
structure. In contrast, our approach starts from a generative model—an EBM—and derives the
Riemannian metric itself from the model, allowing the geometry to emerge from the data.

For a more detailed review of the related work (including topological data analysis, symmetries,
computer graphics, or metric learning), see Supp. A and [42, 14].

Energy-Based Models (EBMs): EBMs, trained via maximum likelihood [16] (see § 3.2), are
particularly well-suited for deriving Riemannian metrics. Their contrastive training, combined with
Langevin dynamics sampling, encourages learning a global energy landscape that assigns meaningful
values across the entire ambient space, including regions far from the data manifold. In contrast,
normalizing flows [43] are limited by their invertible architecture [44, 45] and tend to perform
poorly on out-of-distribution data [46], sometimes leaking probability mass outside the support [47].
EBMs trained with diffusion losses [48] or distilled from diffusion models [49] generate high-quality
samples, but their energy function depends on a time-indexed noise scale, limiting them to local rather
than global energy landscapes. This makes them unsuitable for defining a consistent Riemannian
metric. Prior work has used the global energy landscape of EBMs trained via maximum likelihood
for trajectory planning in robotics [50], though not in the context of geodesics.

3 Method

Notation: Scalars are denoted by plain lowercase (e.g., x), vectors by bold lowercase (e.g., x ∈ RD),
and matrices by bold uppercase (e.g., X). Let I be the identity matrix of RD×D. SD++ is the set of
symmetric D×D positive definite matrices. LetM be a Riemannian manifold, with tangent space at
x ∈M denoted TM

x . Herein, we assume thatM is embedded in a D-dimensional Euclidian space
(M⊂ RD).

3.1 A primer on Riemannian geometry

A Riemannian manifold (M,G) is a smooth manifoldM (i.e., a set locally homeomorphic to RD)
equipped with a Riemannian metric G :M→ SD++. G defines a smoothly changing inner product
on the tangent space TM

x at each point x ∈ M : ⟨u,v⟩x = u⊤G(x)v, with u,v ∈ TM
x [9]. The

length of a curve γ : [0, 1] →M linking two points x0 = γ(0) and x1 = γ(1) (x0, x1 ∈ M), is
measured as:

L(γ) =

∫ 1

0

√
⟨γ̇(t), γ̇(t)⟩γ(t)dt. (1)

In Eq. 1, γ̇(t) denotes the velocity vector of the curve γ(t), which lies in the tangent space at that
point (i.e., γ̇(t) ∈ TM

γ(t)). The minimizer of Eq. 1 is called a geodesic; it represents the (locally)
shortest path between x0 and x1. In this work, we minimize the kinetic energy functional instead of
the length (see Eq. 2). Although both functionals yield the same geodesics up to a parametrization,

3



minimizing the kinetic energy functional results in a constant Riemannian speed parametrization2.
This property simplifies optimization and improves numerical stability [9, 13].

γ⋆(t) = argmin
γ

E [γ] s.t. E [γ] = 1

2

∫ 1

0

⟨γ̇(t), γ̇(t)⟩γ(t) dt. (2)

In the Euclidean case (M = RD, G(x) = I), E is equivalent to the kinetic energy of a unit-mass
particle moving along γ(t), hence the name kinetic energy functional.

To avoid the computational cost of solving Eq. 2 for each new pair (x0,x1) at inference time, we
follow [24] and approximate the geodesic with a neural interpolant φη (with parameters η).

xt,η = (1−t)x0 + tx1 + 2t(1−t)φη(x0,x1, t). (3)

This parameterization satisfies the boundary conditions (x0,η=x0, x1,η=x1). In Eq. 3, φη serves as
a nonlinear correction to the linear path, allowing the learned path to bend toward the data manifold.
We train a single interpolant network φη over batches of random endpoint pairs so it can approximate
geodesics between arbitrary points (see Algo. 1). Intuitively, our geodesic interpolant begins with a
straight line between the endpoints and uses a neural network to compute a smooth curvature relative
to this baseline—bending the path toward regions of higher data density, much like pulling a string
taut over a curved surface that reflects the geometry of the data. Unlike Kapusniak et al. [24], who use
full autodifferentiation to compute ẋt,η , we opt for finite difference instead. We found this approach
more stable and accurate when using a fine-time discretization.

Algorithm 1: Training geodesic interpolant
Input: Endpoints pairs: ({x0}, {x1}), Interp. net.: φη ,

Metric: G, Time steps: T
dt= 1

T−1 , t=[0:1:dt]
while training do

x0 ∼ {x0} and x1 ∼ {x1} ## sample batch of pairs
xt,η = (1− t)x0 + tx1 + 2t(1− t)φη(x0,x1, t)

ẋt,η =
xt+1,η − xt,η

dt
## finite difference

L(η) = Ex0,x1

[
1

2

1∑
t=0

[
ẋ⊤
t,ηG(xt,η)ẋt,η

]
dt
]

Update η using gradient ∇ηL

Although Algo. 1 approximates
geodesics for a given metric G, the
trajectories may initially deviate from
the data manifold—especially early
in training, when they are initialized
as straight lines in the ambient space.
However, if (i) the eigenvalues of G
are large when off-manifold and (ii)
small when on-manifold, then the
interpolated points xt are progres-
sively drawn toward the manifold
during optimization [24, 13]. In
other words, an effective G should
penalize off-manifold directions and
encourage paths through high-density
paths, steering the geodesics along true data geometry. This insight suggests that defining the
metric as a decreasing function of the data probability (e.g., G(x) ∝ p(x)−1 · I) can effectively
steer trajectories toward high-density regions. In practice, however, the true data distribution is
unknown and only observed through samples. In this work, we use an EBM to approximate the data
distribution.

3.2 Energy-Based Models

Let pM be the true data distribution supported on the manifoldM, such that
∫
x∈M pM(x)dx = 1. In

practice, we do not have access to pM directly, but only to a finite set of samples D = {xi}Ni=1drawn
from it. These samples define the empirical distribution pD, which we use to train our models.

Energy-Based Models (EBMs) provide a flexible framework for modeling complex, unnormal-
ized probability distributions—making them particularly well-suited for data concentrated on low-
dimensional manifolds. Here we define the energy function Eθ(x) ∈ R, parameterized with a neural
network with weights θ. This energy induces a probability distribution of the form:

pθ(x) =
exp

(
− Eθ(x)

)
Z(θ)

where Z(θ) =

∫
exp

(
− Eθ(x)

)
dx. (4)

2With length fixed, the strictly convex energy E = 1
2

∫ 1

0
v(t)2dt attains its minimum—by Jensen’s inequal-

ity—only when the speed v(t) is constant.
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Our goal is to train the EBM so that pθ approximates the data distribution pM. To do so, we minimize
the negative log-likelihood w.r.t to the empirical distribution: LML(θ) = Ex ∼pD [− log pθ(x)].
Although the partition function Z(θ) is intractable, previous works have shown that the gradient of
this objective can be estimated without computing Z(θ) explicitly [51, 52] (see Supp. B.1 for the
demonstration), a loss known as contrastive divergence:

∇θLML ≈ Ex+∼pD [Eθ(x
+)]− Ex−∼pθ [Eθ(x

−)] (5)

where x+ are data samples and x− are samples drawn from the model distribution pθ using Langevin
dynamics. We adopt the training procedure of [16], which is known to scale well (see Supp. B for the
full pseudo-code). From this point on, we refer to Eθ as a pre-trained energy function.

EBM can be hard to train in high-dimensional pixel space, especially because of the sampling
procedure [53–55]. For complex tasks, we follow standard practice and operate in the latent space of
a pretrained VAE [56], where all baselines are evaluated for fairness. To improve the EBM training
training stability, we regularize the contrastive divergence loss with a denoising term, which preserves
the global structure of the energy landscape while enhancing convergence—a technique we find both
effective and broadly applicable.

3.3 EBM-derived Riemannian Metrics

Here, we describe the EBM-derived metrics GEθ
, G1/pθ

. For details on the baseline Riemannian
metrics GLAND,GRBF, see § 4.1. To ensure a fair comparison —and following standard practice in
the field [42, 57, 58]— all metrics are cast using a shared parametric form:

G(x) =

{
αh(x) + β for GEθ

,

(αh(x) + β)
−1 for G1/pθ

,GLAND,GRBF,

where h(x) is a metric-specific, positive-definite function (either scalar, diagonal, or matrix), and
α, β are calibration constants. These constants are chosen so that the metric scale to I on the data
manifold and to 103 · I in low-density regions3. This allows fair comparison across metric choices
without introducing significant sensitivity to hyperparameter tuning. Further details about the metric
calibration procedure are provided in Supp. C.1. Importantly, all EBM-derived metrics are conformal,
they take the form λ(x)I, where λ is a scalar function. In other words, they scale the identity matrix
uniformly in all directions, resulting in isotropic metrics:

• GEθ
defines a Riemannian metric by directly scaling the raw energy of a pretrained EBM. This is

the simplest —yet surprisingly effective—formulation we consider:

GEθ
(x) = (α ∗ Eθ(x) + β) · I. (6)

Intuitively, high-energy (low-density) regions receive a larger metric, penalizing movement away
from the data. Note that Eθ is an affine rescaling of the negative log-likelihood − log pD.
• G1/pθ

leverages the inverse of an unnormalized probability estimate:

G1/pθ (x) = (α ∗ exp(−Eθ(x)) + β)−1 · I. (7)

Compared to GEθ
, this metric applies an inverse to a decreasing exponential, forming a strong

barrier against low-density regions. It stays small near the data manifold but rises sharply elsewhere,
acting as a repulsive force. Its key advantages are: (i) a clear probabilistic interpretation via the
unnormalized density, and (ii) direct comparability to GLAND and GRBF as they share the same
inverse form.

In the next section, we introduce the baseline Riemannian metrics used for comparison. We also
empirically evaluate their behavior across datasets of increasing complexity, focusing on how they
capture the underlying manifold and shape geodesic paths.

4 Experiments

4.1 Baseline Riemannian Metrics

GRBF [13, 24] and GLAND [11] are established metrics from the Riemannian geometry literature:
3Note that this multiplicative factor amounts to a change of unit, to ensure reasonable scaling of the lengths,

but the induced geodesics are only determined by the ratio α/β.
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• GLAND, also known as the LAND metric [11], is a nonparametric Riemannian metric that adapts
to the local geometry of the dataset. Around each point x, it estimates a Gaussian distribution by
weighting all data points {xi}Ni=1 according to their distance to x:

GLAND(x) = (α diag(h(x)) + βI)−1 s.t h(j)(x) =
N∑
i=1

(x
(j)
i −x

(j))2 exp

(
− ||x−xi||2

2σ2

)
(8)

Here, h(j)(x) measures the local variance along dimension j, weighted by a Gaussian kernel with
bandwidth σ. GLAND is the only diagonal (i.e., non-conformal) metric we consider, allowing it to
model local anisotropy. While flexible and model-free, LAND has practical drawbacks: it requires
the full dataset at inference, is sensitive to the choice of σ, and can behave non-smoothly near sharp
neighborhood transitions (see Supp. C.2 for examples).
• GRBF is a conformal Riemannian metric in which h is a weighted sum of Radial Basis Functions

(RBFs) centered on K cluster centroids {x̂k}Kk=1 computed via K-means [13]:

GRBF(x) = (α · h(x) + β)−1 · I, h(x) =

K∑
k=1

wk exp

(
−1

2
· λk∥x− x̂k∥2

)
.

The weights wk are trained so that h(x) ≈ 1 on the data manifold, and λk is set from inter-cluster
distances (see Supp. C.3). This yields a smooth, efficient approximation of the data geometry and
scales better than LAND [24]. However, it may miss fine-grained structure, especially in regions of
complex or uneven density. Like other methods based on Euclidean distance (and K-means), it
suffers from the curse of dimensionality. Its accuracy depends on K, λk, and centroid placement
(illustrated in Supp. C.3).

The scaling constants (α, β) are introduced to ensure consistent dynamic range across metrics and have
minimal impact on convergence or geodesic quality; the number of discretization steps (T = 100) is
chosen as a trade-off between efficiency and accuracy, consistent with prior work. We evaluate G1/pθ

,
GEθ

, GRBF, and GLAND on three datasets of increasing complexity. Circular Mixture of Gaussians
offers full control and ground-truth geodesics. The rotated characters dataset is higher-dimensional
but still allows quantitative evaluation. Animal Faces is made of higher-dimensional images but with
no ground truth. This progression tests metric performance as data complexity grows. The code to
reproduce all our experiments is available at https://github.com/VictorBoutin/RiemannEBM.

4.2 Circular Mixture of Gaussians

We consider two toy datasets built using a mixture of Gaussians arranged along a semicircle. In the
first, called Uniform Circular Gaussians (UCG), the Gaussian components have equal weights (see
Fig. 2a). In the second, Weighted Circular Gaussians (WCG), the weights are non-uniform, with
higher density near the center of the arc, as reflected by the contour intensity shown in Fig. 2c. For
both datasets, we have access to the closed-form probability distribution of the data, denoted pM
(see Supp. D.1 for details of pM). We first train an Energy-Based Model (EBM) on each dataset to
derive the metrics GEθ

and G1/pθ
(see Supp. D.2 for training details). Then, we apply Algo. 1 to

both datasets using all Riemannian metrics described above. Additionally, we include two baseline
Riemannian metrics derived directly from the true distribution pM:

GEM(x) = −α ∗ log pM(x)I+ β and G1/pM(x) = (α ∗ pM(x) + β)−1 · I (9)

Eq. 9 uses calibration constants α and β, computed as in other metrics. Some geodesics obtained for
the 6 different metrics are shown in Fig. 2a and Fig. 2c for the UCG and WCG datasets, respectively.
We refer the reader to Supp. D for details on network architectures and hyperparameters.

To evaluate geodesic quality, we use two evaluation metrics. The first is the accumulated probability
along the geodesic path, pM(γ⋆) =

∑T
t=1 pM(xt,η⋆). It measures how closely the trajectory

aligns with the data manifold — the higher the better. The second is the RMSE to a baseline
geodesic computed using the true distribution pM, matched by metric type (e.g., GEθ

vs. GEM).
All quantitative results are averaged over 1, 000 geodesics with distinct endpoints (See Fig. 2b
and d). GEθ

achieves the highest accumulated probability, indicating closest alignment with the data
manifold, while G1/pθ

yields the lowest RMSE to its baseline—best approximating the ground-truth
geodesic. Both EBM-based metrics consistently outperform other methods across evaluation criteria.

To test how different metrics behave when the density varies along the data manifold, we switch
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Metric pM(γ⋆)
(↑)

RMSE
(↓)

GEM 0.79 -
G1/pM 0.77 -
GEθ

0.78 0.12
G1/pθ

0.73 0.10
GLAND 0.60 0.38
GRBF 0.61 0.39

Metric pM(γ⋆)
(↑)

RMSE
(↓)

GEM 0.67 -
G1/pM 0.73 -
GEθ

0.67 0.18
G1/pθ

0.67 0.14
GLAND 0.65 0.34
GRBF 0.47 2.2

a) Geodesics on UCG b) Geodesics evaluation on UCG

c) Geodesics on WCG d) Geodesics evaluation on WCG

Figure 2: Geodesics on UCG and WCG datasets. (a, c): Some geodesics obtained on UCG (a) and
WCG (c), for 6 different Riemannian metrics. The contour plots represent the energy landscape given
by − log pM. (b, d) Quantitative evaluation of geodesics on UCG (b) and WCG (d). We report (i)
the accumulated probability along the geodesic (the higher the better) and ii) RMSE between each
geodesic and its corresponding baseline (i.e., GEM for GEθ

, and G1/pM for G1/pθ
, GLAND and

GRBF). See Supp. D.3 for the 2-σ error.

Figure 3: Step size along geodesics in
the WCG dataset. Log-based metrics
(GEθ

and GEM) produce sharper vari-
ations, reflecting stronger sensitivity to
density curvature.

from the uniformly populated UCG semicircle to the
Weighted Circular Gaussian (WCG), whose samples clus-
ter near the arc’s centre. As shown in Fig. 3, log-based met-
rics (GEθ

, GEM ) accentuate the manifold curvature more
than 1/p-based ones (G1/pθ

, GRBF, GLAND, G1/pM),
producing larger steps in high-density regions. This is
because − log p diverges as p→ 0, amplifying distortions
and speed variations.

4.3 Rotated Characters

We use an image dataset of seven rotated, non-symmetric
characters in two variants: Uniform Rotated Characters
(URC), with evenly distributed angles, and Biased Ro-
tated Characters (BRC), concentrated near 0◦. In this sub-
section, all computations are done in the 64-dimensional
latent space of a regularized autoencoder trained with a
triplet loss, ensuring that small angular differences yield
short latent distances. This setup provides a unique middle
ground: although the underlying Riemannian metric is
unknown, we can treat the smooth in-plane rotation between two instances of the same character as a
proxy for the ground-truth geodesic. Thanks to the triplet loss, the latent space is structured so that
nearby points correspond to slight rotations of the same character, making the shortest path between
two orientations a meaningful approximation of the true geodesic in the task-relevant transformation
space. Separate EBMs and interpolant networks are trained for each dataset variant. Full experimental
details (datasets, architectures, and hyperparameters) are provided in Supp. E.
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Metric D-RMSE
(↓)

γ⋆-RMSE
(↓)

linear
interp. 2.96 3.52

GEθ
0.11 0.40

G1/pθ
0.14 0.44

GLAND 0.66 2.39
GRBF 0.36 0.86

a) b)

Figure 4: Geodesics on the URC dataset. (a) Geodesics computed with different Riemannian metrics,
projected into pixel space for visualization. GRBF and GLAND often deviate from the intended
path, sometimes drifting toward other characters (e.g., the letter F). (b) Quantitative evaluation using
two metrics: (i) D-RMSE, which measures proximity to the dataset manifold, and (ii) γ-RMSE,
which measures the deviation from an ideal smooth rotation. See Supp. E.6 for the 2-σ error.

In Fig. 4a, we visualize geodesics computed on the URC dataset, projected back into

Figure 5: Step size along geodesics in
the WCG dataset. Log-based metric
(GEθ

) produces sharper variations, re-
flecting stronger sensitivity to density
curvature.

pixel space (see Supp. E.5 for additional results on both
URC and BRC). EBM-based metrics (GEθ

and G1/pθ
)

yield smooth rotations that preserve character identity,
while GRBF and especially GLAND often deviate from
the intended trajectory. To illustrate these failures, Fig. 1
shows all geodesics projected into PCA space for a case in-
volving the letter F. While GEθ

and G1/pθ
remain on the

manifold of rotated F instances, linear interpolation cuts
through low-density regions, and GRBF and GLAND

drift toward other character classes. To quantify this, we
use two metrics: D-RMSE, which measures the average
distance from each geodesic point to its nearest neighbor
in the dataset—lower values indicate better adherence to
the data manifold; and γ-RMSE, which evaluates how
closely the geodesic follows an ideal smooth rotation be-
tween endpoints. All results are averaged over 1, 000
geodesics with random endpoint orientations. As shown
in Fig. 4b, EBM-based metrics consistently outperform
others; GRBF performs reasonably well, while GLAND

shows large deviations on both metrics. Overall, these results suggest that EBM-based metrics scale
more effectively to high-dimensional data than alternative approaches.

As in the previous section, we examine how different metrics influence a geodesic’s ability to follow
the manifold’s curvature. We focus on the BRC dataset, where orientations are biased toward 0°,
creating sharper curvature near that region. To assess this, we decode the orientation at each time
step along geodesics connecting fixed endpoints. As shown in Fig. 5, geodesics under GEθ

rotate
significantly faster near 0° than those under G1/pθ

and GRBF, reflecting stronger sensitivity to
density variations.

At first glance, it may seem counterintuitive that trajectories following the geodesics move faster in
high-density regions. However, this is consistent with minimizing the kinetic energy E in Eq.2, which
enforces constant Riemannian speed (i.e., the quantity ||γ̇(t)||γ(t) is preserved along the trajectory)
but not a constant Euclidean speed (i.e., ||γ̇(t)|| is not constant). Since EBM-derived metrics assign
lower Riemannian cost in high-density regions, maintaining constant Riemannian speed requires
moving faster in Euclidean terms through these regions. The faster rotation near 0°, observed in
Fig.5 and Fig. 3, thus reflects the lower Riemannian cost of traveling through high-density regions.
These results confirm and extend our previous findings: metrics based on energy (i.e., proportional to
− log p) more effectively capture the curvature of the data manifold.
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4.4 Animal Faces

We now evaluate our method on the Animal Faces High Quality (AFHQ) dataset [59], using the latent
space of the pretrained Stable Diffusion v1 VAE [18] (latent dimension: 4× 16× 16). An EBM is
trained to model the distribution of latent codes, and Algo. 1 is used to compute geodesics between a
cat and a dog representation. We compare the resulting paths to two baselines: (i) linear interpolation
and (ii) spherical interpolation (slerp) [60], which is known to better preserve the structure of VAE
latent spaces under Gaussian priors (see Supp. F.6). Full experimental details are in Supp. F.

Fig. 6 illustrates geodesics computed in the latent space of a pretrained VAE and projected back into
image space (see F.5 for additional samples as well as samples for GLAND and linear interpolation).
Qualitatively, we observe that geodesics computed with the G1/pθ

metric best adhere to the data
manifold. The GEθ

metric also shows noticeable improvements over the other metrics. Despite
extensive tuning, GRBF and GLAND produce trajectories only slightly better than linear interpola-
tion—suggesting these parametric metrics struggle to scale in high dimensions, consistent with prior
findings [11, 13].

Figure 6: Geodesics on the AFHQ dataset. Each block shows an interpolated trajectory between
two animal images (cats and dogs), projected back into image space for visualization. We compare
geodesics computed with two EBM-based metrics (G1/pθ

, GEθ
), a parametric RBF-based metric

(GRBF), and spherical interpolation (slerp). Results using GLAND, linear interpolation, and
additional examples are provided in Supp. F.5.

Metric FID (↓)
Linear interp. 42.47
Slerp interp. 32.67

GEθ
20.79

G1/pθ
16.47

GLAND 39.17
GRBF 37.98

Table 1: FID along geodesics for differ-
ent Riemannian metrics. FID is com-
puted at each trajectory point to assess
on-manifold alignment. See Supp. F.4
for the 2-σ error.

To quantitatively assess geodesic quality, we report FID
scores [61] in Table 1, computed over 50, 000 trajectories
that interpolate from randomly chosen cat images to ran-
domly chosen dog images. The results are consistent with
qualitative observations: G1/pθ

and GEθ
yield the low-

est FIDs, followed by the model-free slerp baseline, then
GRBF, GLAND, and linear interpolation. Note that the
FID measures how aligned individual samples are with the
training distribution—on-manifold alignment—but does
not assess whether the full trajectory respects the true man-
ifold curvature. Unfortunately, AFHQ lacks ground-truth
geometry for such evaluation.

5 Conclusion

In this work, we use pretrained Energy-Based Models (EBMs) to derive conformal Riemannian
metrics, GEθ

and G1/pθ
, and we compare them to established alternatives (GLAND [11] and
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GRBF [13]). On both synthetic and high-dimensional data, EBM-derived metrics yield geodesics
that stay closer to the data manifold and better capture its curvature—especially with GEθ

.

We focus on conformal metrics, which scale the identity by a scalar field to encode density. While
more complex, non-conformal and anisotropic metrics (e.g., the Stein metric [25]) are accessible
from the EBM score, we found that conformal metrics offer comparable performance with simpler
interpretation and reduced computational cost, justifying our focus in this work. Future work may
explore these extensions with regularization or structural priors to ensure smoothness and scalability
(See Supp.G for a discussion of limitations and Supp.H for broader impact). To keep computational
cost manageable, we train the EBM in the latent space of a pretrained autoencoder and compute
geodesics using finite-difference optimization, two design choices that substantially reduce complexity
and memory use without compromising performance.

Although this article is primarily methodological, it points to promising applications. One example
is the mental rotation task, in which humans mentally rotate objects to match a target [62]. In
such experiments, reaction times tend to decrease with training [63], suggesting that repeated
exposure sharpens internal representations around training examples. These refined representations
may concentrate in high-density regions, where mental transformations occur more quickly. As
shown in Fig. 3 and 5, our geodesics naturally accelerate in such high-density regions, echoing
these psychophysical findings. Modeling mental simulation as geodesics on Riemannian manifolds
shaped by a generative model offers a principled computational framework to understand human
cognition. It provides a way to formalize and test the hypothesis that the human cognition relies on
generative models to support flexible inference [64–68]. Our approach is also particularly relevant for
neuroscience, where datasets are high-dimensional, often sparsely sampled, and where understanding
the geometry of neural population activity is central to scientific insight. In such settings, high-fidelity
geodesics are essential for capturing the true structure of neural trajectories—approximations may
distort the manifold and lead to misinterpretation of brain dynamics. While training EBMs is costly,
the benefits in terms of interpretability and geometric accuracy make this approach compelling for
applications where precision is critical.

As machine learning models are increasingly used to capture complex data distributions, understand-
ing the geometry of their latent spaces becomes essential. Our work contributes to this effort by
showing that geometry can serve as a useful tool for building models that better reflect data structure,
align with human perception, and shed light on cognitive processes.
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A Extended related work

Several tools have been developed to study the geometrical properties of distributions. We survey
some prominent approaches below.

Information geometry, initiated by the seminal works of [21, 22], was the first to apply ideas
from differential geometry to the field of statistics. Unlike our present work, the goal was not to
understand the geometry of the data x, but rather to understand the geometry of a smooth manifold
θ ∈ Θ of parameters of an estimator pθ. In particular, starting from the Taylor expansion of reverse
Kullback-Leibler [69] divergence to pθ, in the neighborhood of pθ itself, with θ′ = θ + ϵ, we get

DKL(pθ′∥pθ) ≈ DKL(pθ∥pθ)︸ ︷︷ ︸
=0

+∇1DKL(pθ∥pθ)︸ ︷︷ ︸
=0

ϵ+ ϵT∇2
1DKL(pθ∥pθ)ϵ. (10)

One can show that, since θ′ = θ is the global minimum of this function, the first-order term vanishes
and the second-order term ∇2

1DKL(pθ∥pθ) must be a positive definite form - i.e an inner product.
This quantity, called Fisher information [23], gives Θ the structure of a Riemannian manifold. The
Riemannian gradient associated with this manifold yields a second-order optimization method coined
natural gradient descent [70], that has been proved helpful in deep learning [71]. Our method inherits
some spirit of this approach, since we define a local inner product as a function of the density, to give
a Riemannian structure to the data manifold. However, we focus on the geometry of the data x, not
the geometry of the model’s parameters θ.

Riemannian structure of data manifolds has already been proposed in the past. For example, the
seminal LAND metric [11] is a non-conformal metric built from the samples, with the intent of
generalizing multivariate normal distributions to manifolds. The RBF metric [13] is a conformal
metric, derived from a kernel density estimator, with some learnable coefficients. More recently,
Kapusniak et al. [24] proposed to use those metrics and learn a flow matching algorithm to fit
geodesics in the data manifold. The Jacobian of a generative model also defines a metric [33]. The
(unpublished) work of Perone [25] has been inspirational for our contribution. They use the Stein
score function to build the metric, an approach also chosen by [26] - although restricted to unimodal
densities.

Pullback geometry of latent manifolds is an active research area. [72] studies the manifold
of representations of a given network, while [30] builds a generative autoencoder to represent
the manifold. Shortest paths are computed with fixed-point methods [31], or using a discrete
graph [32]. While we may rely on the latent space of a VAE for some challenging tasks, studying
latent representations of a neural network is beyond the scope of our work.

On-manifold generative models can be found in the literature. For example, we can mention flow
and bridge matching approaches [34, 35], which learn a flow between a source and a target distribution,
including on Riemannian manifolds [38, 39]. In particular, the Schrödinger bridge [36, 37] focuses
on an optimization problem involving paths in the space of probability distributions, and was also
generalized to non-Euclidean geometries [40, 41]. These works differ significantly from ours: they
assume the Riemannian manifold to be given, not chosen, and they build a generative model on top
of it. To the contrary, given a special class of generative models to represent the data, we choose the
metric to build the manifold.

Topological data analysis [73, 74] studies the topological properties of the data manifold. This
field aims to estimate some topological invariants such as the Euler characteristic [75] and persistent
Betti numbers [76] (which are the number of connected components, number of closed loops, etc.)
from a finite sample. It relies on tools such as persistent homology [77–79] to design algorithms.
This approach typically focuses on the global properties: it assumes that the data accumulate on a
well-defined manifold, from which these high-level features must be computed. To the contrary, our
approach focuses on the local structure defined by the metric, while the global structure is inherited
from the induced geodesics. Furthermore, we consider the whole ambient space for our manifold,
tweaking only the metric to account for low-density regions.

Symmetries and geometry in representations have gathered considerable attention from the deep
learning community, warranting no fewer than 3 workshops at Neurips alone 4. Symmetries are

4https://www.neurreps.org
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operations under which a structure is left invariant, or equivariant. In particular, some neural
architectures are leveraged to reflect priors about the underlying symmetries of the data [80–84].
In other cases, symmetries are discovered and learned from observations [85–87]. Unlike these
approaches, we do not seek symmetries in data, and we make minimal assumptions about the model;
we are mainly interested in the density to build the structure.

Non-Euclidean 2D and 3D manifolds are first-class citizens in computer graphics. The works
of [88, 89] define a way to find shortest paths over such manifolds. However, this requires solving
the Eikonal equation, which is prohibitively expensive in high dimensions or restricted to Euclidean
geometries [90]. Geodesics can be learned, but this is restricted to low dimensions [89]. These setups
are beyond the scope of our work, as we focus on higher-dimensional and sparsely populated spaces,
and no discrete meshes can be built from samples.

Metric learning (or distance learning) is another field whose purpose is to learn a distance function
between samples, typically in a weakly-supervised manner with contrastive losses [91–93]. Often,
these distances cannot be realized as a geodesic distance and are intended for a specific task, like
classification or retrieval.

B Energy-Based Model

B.1 Derivation of the Gradient of the EBM Log-Likelihood

The demonstration below is adapted from [52] to fit our notation. Even though this mathematical
derivation is not crucial for a good understanding of our work, we include it to make sure our article
is self-contained and complete.

We consider an Energy-Based Model (EBM) defining a probability distribution via the Boltzmann
form:

pθ(x) =
exp(−Eθ(x))

Z(θ)
with Z(θ) =

∫
exp(−Eθ(x)) dx.

Our goal is to minimize the negative log-likelihood with respect to the empirical data distribution pD:
LML(θ) = Ex∼pD [− log pθ(x)].

We first expand the log-probability:
− log pθ(x) = Eθ(x) + logZ(θ).

Taking the gradient with respect to θ:
∇θLML = Ex∼pD [∇θEθ(x) +∇θ logZ(θ)] .

The derivative of the log-partition function could be simplified:

∇θ logZ(θ) =
1

Z(θ)
∇θZ(θ)

=
1

Z(θ)
∇θ

∫
exp(−Eθ(x)) dx

= − 1

Z(θ)

∫
exp(−Eθ(x))∇θEθ(x) dx

= −
∫
pθ(x)∇θEθ(x) dx

= −Ex∼pθ [∇θEθ(x)] .

Substituting this back into the gradient of the loss:
∇θLML = Ex∼pD [∇θEθ(x)]− Ex∼pθ [∇θEθ(x)] .

In practice, we denote the x+ the "positive" samples from the empirical data distribution pD, and x−

the "negative" samples from the model:
∇θLML ≈ Ex+∼pD

[
∇θEθ(x+)

]
− Ex−∼pθ

[
∇θEθ(x−)

]
.
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B.2 EBM training algorithm

To train our Energy-Based Models (EBMs), we follow the approach of [16]. Algo. 2 details the
general training procedure:

Algorithm 2: Training Energy-Based Model using Langevin Dynamics
Input: Training dataset :D, learning rate η, Replay Buffer B, Langevin step size α, noise scale σ,

number of Langevin steps L
while Training do

x+ ∼ D sample from the dataset
x0 ∼ B # sample from a replay buffer with probability 95%
## Refine negative samples using Langevin dynamics
for t← 1 to L do

xt+1 ← xt − α∇xtEθ(x
t) + ω with ω ∼ N (0, σ)

x− = xL.detach()
∇θLML ≈ EBatch

[
∇θEθ(x+

i )−∇θEθ(x
−
i )

]
## Compute the ML loss

LREG(θ) = EBatch
[
∇θEθ(x+

i )
2 +∇θEθ(x−

i )
2
]

## Compute Regularization loss
θ ← θ − η∇θLML − η∇θLREG## update parameters with gradient descent
B ← B ∪ x+

In all experiments, we use L = 100 Langevin steps with step size α = 1 and noise scale σ = 10−2.
The energy function is optimized using the Adam optimizer [94] with a learning rate of η = 10−4. In
addition to the maximum likelihood (ML) loss, we include a regularization term that encourages the
energy values to remain close to zero, a technique shown to be effective in prior work [16].

We observed that training can be unstable, particularly for high-dimensional datasets. We attribute this
instability to the lack of gradient supervision: the loss is not backpropagated through the Langevin
dynamics to reduce memory usage. To mitigate this, we introduce a small Denoising Score Matching
(DSM) loss—only for the AFHQ dataset—which provides weak supervision of the energy gradient.
This additional regularization loss is similar to the DSM loss in [95]. We found this trick to strongly
improve stability without degrading the performance.

The energy network architecture is adapted to the complexity of each dataset. Full details are provided
in Appendix D.2, E.3, and F.2. Following Li et al. [95], we design the output layer of the energy
function to take a quadratic form.

B.3 Other training procedure in literature

EBM can also be trained by minimizing the so-called Stein discrepancy [96], Denoising Score
Matching [97], Sliced Score Matching [98], Noise Contrastive Estimation [99]. A related objective
to contrastive divergence is energy discrepancy [100]. We refer the reader [20], for a complete review
of the different methods to train EBMs.

19



C Riemannian Metrics

C.1 Calibration

We normalize each metric using calibration coefficients α and β, with two goals: (i) ensuring that the
Riemannian metric averages to the identity matrix I on the manifold, and (ii) aligning the overall
scale of all metrics to allow fair comparisons. Here are more details on the calibration procedure:

First, we randomly sample data pairs (x0,x1) from the dataset D (it corresponds to the geodesics
endpoints) and generate linear interpolations between them using:

xt = (1− t)x0 + tx1 (11)

Second, we define two sets of samples: SM, which contains the endpoints x0 and x1 lying on the
data manifold, and SM̄, which contains the midpoints at t = 1

2 . These sets are then used to estimate
the calibration coefficients α and β:

G(x) = αh(x) + β s.t

α =
gmax − gmin

1
|SM̄|

∑
x∈SM̄

h(x)− 1
|SM|

∑
x∈SM

h(x)

β = gmin − α · 1
|SM|

∑
x∈SM

h(x)

G(x) = (αh(x) + β)−1 s.t


α =

1/gmax − 1/gmin
1

|SM̄|
∑

x∈SM̄
h(x)− 1

|SM|
∑

x∈SM
h(x)

β =
1

gmin
− α · 1

|SM|
∑

x∈SM
h(x)

This calibration strategy adjusts the metric based on both on-manifold and off-manifold regions. It
ensures that all metrics operate within a comparable dynamic range and promotes a useful geometric
prior: lower metric values near the data manifold and higher values farther away. As a result,
geodesics are encouraged to stay close to high-density areas, aligning the geometry with the data
distribution.

C.2 LAND metric

Figure 7: Effect of the bandwidth σ on the geodesics obtained with the LAND metric. Here we
have explored five σ values (σ ∈ {0.1, 0.25, 0.5, 1, 5}). We observed that σ has a major impact on
the shape of the geodesics.

We remind the land metric formula (see Eq. 8):

GLAND(x) = (α diag(h(x)) + βI)−1 s.t h(j)(x) =
N∑
i=1

(x
(j)
i −x

(j))2 exp

(
− ||x−xi||2

2σ2

)
(12)
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This metric is highly sensitive to the choice of the σ parameter, which controls the "locality" of the
metric. A small σ results in a very local metric that is strongly influenced by nearby points, while
a large σ smooths the metric by averaging over a wider region. This directly affects the trade-off
between how closely geodesics follow the data manifold and how smooth or stable they are. In
practice, we observe that σ has a major impact on the shape of the geodesics, as shown in Fig.7,
confirming earlier findings by[11]. To illustrate this, we plot geodesics for five different values of σ
(σ ∈ {0.1, 0.25, 0.5, 1, 5}) and find that they closely follow the data manifold only within a narrow
range, particularly around σ = 0.5.

C.3 RBF metric

We first remind the RBF formula :

GRBF(x) = (α · h(x) + β)−1 · I, h(x) =

K∑
k=1

wk exp
(
−0.5 · λk∥x− x̂k∥2

)
.

In the equation, the {x̂}Ki=1 are centroids evaluated using a K-Means algorithm. Following [13], the
bandwidth (λk) using the inter-distance to prototype (see Eq. 13):

λk =
1

2

(
κ

2K

K∑
k=1

||x− x̂k||
)−2

(13)

The bandwidth, λk, controls the spatial extent of each radial basis function. In Eq. 13, κ is a tunable
hyperparameter controlling how concentrated or spread out the RBFs are. Intuitively, a larger κ results
in narrower kernels (stronger locality) while a smaller one yields wider coverage. This trade-off is
explored via hyperparameter search. The weights wk modulate the relative contribution of each RBF
to the resulting scalar field. These weights are optimized to ensure that h(x) remains close to 1 on
the training data, using the following loss:

L(w) =

N∑
n=1

||1− h(xi)||2 (14)

This encourages the RBF combination to approximate a constant value (here, 1) across the data
distribution, ensuring consistency and stability of the field on the manifold.

In Fig. 8, we evaluate how the number of centroids K affects the shape of the geodesics. The results
show that geodesics are highly sensitive to this parameter. When K is too small, the geodesics fail to
follow the data manifold accurately. Conversely, when K is too large, the trajectories become overly
sinuous—passing through many centroids that are not necessarily aligned with the true manifold.

Figure 8: Effect of the number of centroids K on the geodesics obtained with the RBF metric
(K ∈ {10, 50, 100}). We observed that K has a major impact on the shape of the geodesics.
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D Experimental details on the Circular Mixture of Gaussian datasets

D.1 Datasets

To design our toy datasets, we have used a mixture of K (2D) Gaussians. Specifically, K = 200 in all
our datasets. The resulting probability distribution is therefore:

p(x) =

K∑
k=1

πkN (x | µk, I), (15)

where N (x | µk, I) denotes a 2D isotropic Gaussian centered at µk. Here, I is the identity matrix of
size 2× 2. In both datasets, the centers of the Gaussians are uniformly positioned along a semi-circle
or Radius R (here R = 8). Specifically, the centers are given by:

µk = R ·
[
cos (θk)
sin (θk)

]
with θk =

k

K
· π, k = 0, . . . ,K − 1. (16)

The only difference between the Uniform Circular Gaussian (UCG) dataset and the Weighted Circular
Gaussian dataset (WCG) is the weighting coefficient {πk}Kk=1

Figure 9: Profile of the Gaussians weights πk

Uniform Circular Gaussian dataset. Here
all the weights are similar and equal to 1/K.
As a result, the energy landscape forms a semi-
circular basin with constant depth (see contour
plot of Fig. 2a for an illustration of the energy
landscape).

Weighted Circular Gaussian dataset. In this
setting, the mixture weights vary, concentrat-
ing the distribution toward the center of the arc.
The weights are symmetric with respect to the
horizontal axis, producing an energy landscape
with a semi-circular shape and slopes symmetric
around the arc’s midpoint (see the contour plot
in Fig.2c). Fig.9 shows the weights πk as a func-
tion of orientation, with all weights summing to
1. This setup generates a curved, non-uniform
density with higher mass near the center of cur-
vature (i.e., at 90 degrees), allowing us to intro-
duce a controlled curvature in the data manifold
and assess how well different metrics capture it.

D.2 Neural networks architectures and Hyperparameters on the Circular Mixture of
Gaussian Dataset

Here, we describe the architecture of the energy function (see Table 2), the interpolant network
(see Table 3), and the hyperparameters used for the GLAND and GRBF metrics. Note that the
architectures and settings are the same for both the UCG and WCG datasets.

Energy-Based Model Table 2 summarizes the architecture used for the energy function of the
EBM. The output is designed to follow a quadratic form, similar to the approach in [95], which we
found improves performance across all datasets. To assess whether the EBM successfully learns the
target distribution, we visualize the learned energy landscapes for both the UCG and WCG datasets
(see Fig. 10a and Fig. 10b, respectively). For reference, we also include the ground-truth energy
landscapes of the target distributions (see Fig. 10c and Fig. 10d for UCG and WCG, respectively).
We observe that the EBM accurately captures the overall shape of the energy landscape for both
distributions. However, in the WCG dataset, the true energy spans a broader range than the EBM’s
learned energy. This discrepancy is partially corrected by the normalization procedure described in
Appendix C.1.
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a) Eθ on the UCG dataset b) Eθ on the WCG dataset

c) − log pM on the UCG dataset d) − log pM on the WCG dataset

Figure 10: Energy Landscape on the UCG and WCG datasets. (a, b) shows the energy landscape
learned by the EBMs on the UCG and WCG datasets, respectively. (c, d) shows the true energy
landscape (i.e., − log pM) on the UCG and WCG datasets, respectively.

Interpolant Network Table 3 summarizes the architecture used for the interpolant network (i.e.,
φt,η in Algo. 1 and Eq. 3). For all datasets, we use an autoencoder-like architecture for the interpolant,
following a similar approach to [24].

Nb. Layers Layer type

1 Linear (2, 32)
SiLU

4 Linear (32, 32)
SiLU

1 Linear (32, 32)

1

Three output heads:
Linear (32, 1) for f1
Linear (32, 1) for f2
Linear (32, 1) for f3

output f1(x) · f2(x) + f3(x
2)

Table 2: MLP architecture of the energy function
on both UCG and WCG datasets.

NB. Layers Layer type

1 Linear (3, 32)
SiLU

1 Linear (32, 64)
SiLU

1 Linear (64, 64)
SiLU

1 Linear (64, 32)
SiLU

1 Linear (32, 3)
Table 3: MLP architecture of the interpolant net-
work φt,ηfor WCG dataset.

LAND metric We performed a hyperparameter search to tune the σ parameter. We found that
σ = 1 yielded the best performance. Parameters are similar for both UCG and WCG.

RBF metric We conducted a hyperparameter search to tune both the number of centroids K and
the scaling factor κ. The best results were obtained with K = 30 and κ = 1. Parameters are similar
for both UCG and WCG.
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D.3 Quantitative evaluation with error bars

In Fig. 11, we report the same quantitative results as in Fig. 2, now including 2-σ error bars. The
standard deviation σ is computed over evaluation metrics, each averaged on a different set of randomly
sampled trajectories (five sets in total).

Metric pM(γ⋆)
(↑)

RMSE
(↓)

GEM 0.79± 0.02 -
G1/pM 0.77± 0.04 -
GEθ

0.78± 0.03 0.12± 0.02
G1/pθ

0.73± 0.01 0.10± 0.03
GLAND 0.60± 0.07 0.38± 0.05
GRBF 0.61± 0.06 0.39± 0.1

Metric pM(γ⋆)
(↑)

RMSE
(↓)

GEM 0.67± 0.05 -
G1/pM 0.73± 0.07 -
GEθ

0.67± 0.06 0.18± 0.07
G1/pθ

0.67± 0.09 0.14± 0.06
GLAND 0.65± 0.11 0.34± 0.05
GRBF 0.47± 0.14 2.2± 0.1

a) Geodesics evaluation on UCG b) Geodesics evaluation on WCG

Figure 11: Quantitative evaluation of the geodesics on the UCG and WCG datasets. We report
(i) the accumulated probability along the geodesic (the higher the better) and ii) RMSE between each
geodesic and its corresponding baseline (the lower the better). Values after the ± sign indicate the
2-σ error.
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E Experimental details on the Rotated Character Dataset

E.1 Datasets

The Rotated Character Datasets consist of 7 printed characters (5, G, F, P, J, 7, 2), represented as
black-and-white images of size 32× 32. These characters were selected for two main reasons: (i)
they are commonly used in psychophysics experiments [63], and (ii) they are asymmetric and visually
distinct, which helps avoid ambiguities in the resulting geodesic trajectories. Fig. 12 shows all
characters in their unrotated form.

Figure 12: Original (non-rotated) samples from the Rotated Character Dataset

Figure 13: Distribution of orientation for the
BRC dataset

The only difference between the Uniform Ro-
tated Character (URC) and Biased Rotated Char-
acter (BRC) datasets lies in the distribution of
character orientations.

Uniform Rotated Character (URC) In this
setting, character orientations are sampled uni-
formly across the full range of [−179◦, 180◦],
using a one-degree step. This ensures that
each possible orientation within this interval is
equally likely. Importantly, the distribution is
consistent across all characters, meaning that
each character appears with the same uniform
spread of rotations.

Biased Rotated Character (BRC) Here, ori-
entations follow a truncated Gaussian distribu-
tion centered at 0◦, designed to mimic natural
rotation statistics (see Fig. 13). Unlike the Mix-
ture of Gaussian datasets, we do not have access
to a closed-form expression for the underlying
distribution pM, but we do control its empirical form. This setup introduces a controlled curvature in
the data manifold, allowing us to assess how well different metrics adhere to it.

E.2 Architecture and algorithm of the Triplet Loss autoencoder

Algorithm 3: Autoencoder with Triplet regularization
Input: Dataset D = {(xi, θi)}, Encoder Eϕ, Decoder Dψ

while training do
Sample bath of triplet B=(xa,xp,xn) from D

# Same character; θp close to θa, θn farther
za = Eϕ(xa), zp = Eϕ(xp), zn = Eϕ(xn)
Lrec = ∥Dψ(za)− xa∥2
∆θp = |θa − θp|, ∆θn = |θa − θn|

LT = EB

(
(∥za − zp∥−α∆θp)2+(∥za−zn∥−α∆θn)2

)
Ltotal = Lrec + λ · LT
Update (ϕ, ψ) using gradient ∇Ltotal

We computed geodesics in
the latent space of an au-
toencoder trained with a
Triplet Loss [101]. This
approach is motivated by
the fact that image space
is inherently non-Euclidean,
making it poorly suited
for defining meaningful dis-
tances. In contrast, the la-
tent space of our autoen-
coder is explicitly regular-
ized so that Euclidean dis-
tances correspond to differ-
ences in orientation. By
treating the latent space as the ambient space for geodesic computation, we align with the assumption
that the data manifold is embedded in an Euclidian Manifold. The training procedure is described in
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Algo. 3, and the encoder and decoder architectures—based on the Regularized Autoencoder (RAE)
framework [102]—are detailed in Table 4 and Table 5, respectively.

We trained the model using the Adam optimizer [94] with a learning rate of 1× 10−4 and a batch size
of 128. In Algorithm 3, we set α = 1 and λ = 0.1. For the architecture, the number of input features
(i.e., the number of channels in the first convolutional layer) was set to F = 128. In Table 4 and
Table 5, the notation "Conv2D(nc, nf , 3, 1)" refers to a convolutional layer with nc input channels,
nf output channels, a kernel size of 3, and padding of 1. Similarly, "ConvTr2D" denotes a transposed
convolution. The RAE blocks are modules introduced in [102], referred to here as RaeBlockDown
and RaeBlockUp, and are used for efficient downsampling and upsampling, respectively.

Nb. Layers Layer Type
1 Conv2d (1, F , 3, 1)

1 RaeBlockDown (F , 2F )
ReLU

1 Conv2d (2F , 2F , 3, 1)

1 RaeBlockDown (2F , 4F )
ReLU

1 Conv2d (4F , 4F , 3, 1)
ReLU

1 Linear (4F ∗ 8 ∗ 8,z)
Table 4: Encoder architecture of the autoencoder.
F is the number of features (F = 128), and z is
the size of the latent space (z = 64).

Nb. Layers Layer Type

1 ConvTr2d (z, 4F , 8, 0)
ReLU

1 Conv2d (4F , 4F , 3, 1)

1 RaeBlockUp (4F , 2F )
ReLU

1 Conv2d (2F , 2F , 3, 1)

1 RaeBlockUp (2F , F )
ReLU

1 Conv2d (F , F , 3, 1)

1 Conv2d (F , 1, 4, 1)
Tanh

Table 5: Decoder architecture of the autoencoder.
F is the number of features (F = 128), and z is
the size of the latent space (z = 64).

E.3 Architecture of the energy function and the interpolant network on the Rotated
Character Dataset

The architecture of the energy function used in the EBM is shown in Table 6, and the architecture of
the interpolant network is provided in Table 7. These architectures are used for both the URC and
BRC datasets. The EBM was trained using the procedure described in Algorithm 2, and Fig.14 shows
samples generated by the EBM at the end of training. All EBM training hyperparameters match those
described in SectionB.2. For both the EBM and interpolant training, we use a batch size of 128. The
interpolant network is optimized with Adam, using a learning rate of 1× 10−4.

Nb. Layers Layer Type

1 Linear (64, 128)
SiLU

1 Linear (128, 512)
SiLU

6 Linear (512, 512)
SiLU

1 Linear (512, 64)

1

Three output heads:
Linear (64, 1) for f1
Linear (64, 1) for f2
Linear (64, 1) for f3

Output f1(x) · f2(x) + f3(x
2)

Table 6: Archiecture of the EBM energy function
on both URC and BRC datasets

Nb. Layers Layer Type

1 Linear (64*3, 128)
SiLU

1 Linear (128, 128)
SiLU

1 Linear 128, 128)
SiLU

1 Linear 128, 128)
SiLU

1 Linear 128, 128)
SiLU

1 Linear 128, 64)
SiLU

Table 7: Architecture of the interpolant network
used on the URC and BRC dataset.

E.4 Hyperparameters of the LAND and RBF metric

LAND metric We performed a hyperparameter search to tune the σ parameter. We found that
σ = 0.4 yielded the best performance. Parameters are similar for both the URC and BRC datasets.
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Figure 14: Samples from the EBM train on URC. These samples are generated by applying
Langevin dynamics to the energy function learned by the EBM.

RBF metric We conducted a hyperparameter search to tune both the number of centroids K and
the scaling factor κ. The best results were obtained with K = 300 and κ = 0.75. Parameters are
similar for both the URC and BRC datasets.

E.5 Additional geodesics

URC dataset: In Fig. 15 we show additional geodesics on the URC dataset.

a) GEθ
b) GRBF

c) G1/pθ
d) GLAND

e) Linear interpolation

Figure 15: Geodesics on the URC dataset. Geodesics are computed using four different metrics: a)
GEθ

, b) GRBF, c) G1/pθ
, d) GLAND. For comparison, a simple linear interpolation is shown in e).

The trajectory are computed in the latent space of the autoencoder and projected into pixel space for
visualization. Each trajectory is subsampled at 20 time steps for clarity.
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BRC dataset: In Fig. 16 we show additional geodesics on the BRC dataset.

a) GEθ
b) GRBF

c) G1/pθ
d) GLAND

e) Linear interpolation

Figure 16: Geodesics on the BRC dataset. Geodesics are computed using four different metrics: a)
GEθ

, b) GRBF, c) G1/pθ
, d) GLAND. For comparison, a simple linear interpolation is shown in e).

The trajectory are computed in the latent space of the autoencoder and projected into pixel space for
visualization. Each trajectory is subsampled at 20 time steps for clarity.

E.6 Quantitative evaluation with error bars

In Table. 8, we report the same quantitative results as in Fig. 4, now including 2-σ error bars. The
standard deviation σ is computed over evaluation metrics, each averaged on a different set of randomly
sampled trajectories (five sets in total).

Metric D-RMSE
(↓)

γ⋆-RMSE
(↓)

linear
interp. 2.96± 0.42 3.52± 0.21

GEθ
0.11± 0.01 0.40± 0.03

G1/pθ
0.14± 0.02 0.44± 0.07

GLAND 0.66± 0.12 2.39± 0.51
GRBF 0.36± 0.06 0.86± 0.17

Table 8: Quantitative evaluation on the URC dataset with the 2σ error. Quantitative evaluation
using two metrics: (i) D-RMSE, which measures proximity to the dataset manifold, and (ii) γ-RMSE,
which measures the deviation from an ideal smooth rotation. Values after the ± sign indicate the 2-σ
error.

28



F Experimental details on the Rotated Character Dataset

F.1 Dataset

In this section, we conduct experiments on the Animal Faces High-Quality (AFHQ) dataset introduced
by [59]. The full dataset contains 15,000 images across three categories: cats, dogs, and wild
animals. For our experiments, we restrict the dataset to the cat and dog classes only, each comprising
approximately 5,000 images. This choice avoids introducing curvature in the data manifold that
could arise from the relatively small number of samples in the wild animal category. All images are
cropped, aligned, and have a resolution of 512×512 pixels. AFHQ is widely used for image-to-image
translation and style transfer, and its diversity in pose, breed, and appearance makes it well-suited for
smooth interpolation tasks. See Fig. 17 for example images from the AFHQ dataset.

Figure 17: Samples from the AFHQ dataset [59]

For the experiments in this section, we compute geodesics in the latent space of a pretrained Variational
Autoencoder (VAE). Specifically, we use the VAE from Stable Diffusion V1 [18]. The latent
representations have a spatial size of 4× 16× 16.

F.2 Architecture of the energy function and the interpolant network on the AFHQ dataset

Energy Function: The architecture used for the energy function is detailed in Table 9. We set
the number of input channels to nc = 4, matching the dimensionality of the latent representation,
and use F = 256 feature channels in the first convolutional layer. The network follows a simple
sequence of downsampling convolutional layers, which we found to yield more stable training than
ResNet-style architectures. The EBM is trained using Algorithm 2, with the same hyperparameters as
in Section B.2. To further improve training stability, we add a denoising score matching regularization
term and use a cosine learning rate scheduler.

Nb. Layers Layer Type

1 Conv2d (nc, F , 3, 1, 1)
SiLU

1 Conv2d (F , F , 3, 1, 1)
SiLU

1 Conv2d (F , 2F , 4, 2, 1)
SiLU

1 Conv2d (2F , 2F , 3, 1, 1)
SiLU

1 Conv2d (2F , 4F , 4, 2, 1)
SiLU

1 Conv2d (4F , 4F , 3, 1, 1)
SiLU

1 Conv2d (4F , 8F , 4, 2, 1)
SiLU

1 Conv2d (8F , 1, 2, 1, 0): for f1
1 Conv2d (8F , 1, 2, 1, 0): for f2
1 Conv2d (8F , 1, 2, 1, 0): for f3

Output f1(x) · f2(x) + f3(x
2)

Table 9: Architecture of the energy function. F denotes the base number of feature channels, and
nc is the number of input channels. The final energy is computed using three parallel output heads.
The notation Conv2d(nc, nf , k, s, p) refers to a 2D convolutional layer with nc input channels, nf
output channels, a kernel size of k, stride s, and padding p.
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In Fig. 18, we show randomly selected samples generated by the EBM after training. The Fréchet
Inception Distance (FID) of the model is measured to be 9.89.

Figure 18: Samples from the EBM trained on the AFHQ dataset. These samples are generated by
applying Langevin dynamics to the energy function learned by the EBM.

Interpolant Network: We use the U-Net architecture from [103], following the same hyperparam-
eter settings.

F.3 Hyperparameters of the LAND and RBF metric

LAND metric We performed a hyperparameter search to tune the σ parameter. We found that
σ = 10 yielded the best performance.

RBF metric We conducted a hyperparameter search to tune both the number of centroids K and
the scaling factor κ. The best results were obtained with K = 1000 and κ = 3.

F.4 FIDs with error bars

In Table. 10, we include 2-σ error bars. The standard deviation σ is computed over different sets of
randomly sampled trajectories (five sets in total).

Metric FID (↓)
Linear interp. 42.47± 3.17
Slerp interp. 32.67± 2.33

GEθ
20.79± 2.17

G1/pθ
16.47± 1.04

GLAND 39.17± 3.63
GRBF 37.98± 2.46

Table 10: FID along geodesics for different Riemannian metrics. FID is computed at each
trajectory point to assess on-manifold alignment. Values after the ± sign indicate the 2-σ error.
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F.5 Additional geodesics on AFHQ

Riemanian metric: G1/pθ

Figure 19: Geodesics on the AFHQ dataset using G1/pθ
. Each row shows a geodesic in latent

space between a randomly sampled cat image (start point) and a dog image (end point). Columns
correspond to time steps along each geodesic, from left (start) to right (end). Images are obtained by
decoding the latent representations back into pixel space.

31



Riemanian metric: GEθ

Figure 20: Geodesics on the AFHQ dataset using GEθ
. Each row shows a geodesic in latent

space between a randomly sampled cat image (start point) and a dog image (end point). Columns
correspond to time steps along each geodesic, from left (start) to right (end). Images are obtained by
decoding the latent representations back into pixel space.
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Riemanian metric: GRBF

Figure 21: Geodesics on the AFHQ dataset using GRBF. Each row shows a geodesic in latent
space between a randomly sampled cat image (start point) and a dog image (end point). Columns
correspond to time steps along each geodesic, from left (start) to right (end). Images are obtained by
decoding the latent representations back into pixel space.
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Riemanian metric: GLAND

Figure 22: Geodesics on the AFHQ dataset using GLAND. Each row shows a geodesic in latent
space between a randomly sampled cat image (start point) and a dog image (end point). Columns
correspond to time steps along each geodesic, from left (start) to right (end). Images are obtained by
decoding the latent representations back into pixel space.
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Linear interpolation

Figure 23: Linear interpolation on the AFHQ dataset. Each row shows an interpolation in latent
space between a randomly sampled cat image (start point) and a dog image (end point). Columns
correspond to time steps along each interpolation, from left (start) to right (end). Images are obtained
by decoding the latent representations back into pixel space.
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Slerp interpolation

Figure 24: Spherical interpolation (Slerp) on the AFHQ dataset. Each row shows an interpolation
in latent space between a randomly sampled cat image (start point) and a dog image (end point).
Columns correspond to time steps along each interpolation, from left (start) to right (end). Images
are obtained by decoding the latent representations back into pixel space.
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F.6 About the Spherical interpolation

Given two points x0,x1 ∈ RD lying on the unit hypersphere (i.e., ∥x0∥ = ∥x1∥ = 1), the spherical
interpolation between them is defined as:

slerp(t;x0,x1) =
sin((1− t)θ)

sin θ
x0 +

sin(tθ)

sin θ
x1, t ∈ [0, 1],

where θ is the angle between x0 and x1, given by:

θ = arccos

(
⟨x0,x1⟩
∥x0∥ ∥x1∥

)
.

In practice, when interpolating latent codes from a Variational Autoencoder (VAE), the latent vectors
x0 and x1 are typically drawn from a standard normal prior and do not lie on the unit sphere. To
apply slerp, we first normalize the vectors:

x̃0 =
x0

∥x0∥
, x̃1 =

x1

∥x1∥
,

and compute θ as:
θ = arccos (⟨x̃0, x̃1⟩) .

Figure 25: Distribution of ||x||2 on the AFHQ
dataset

This interpolation method, introduced by [60],
has proven particularly effective for interpolat-
ing in the latent space of VAEs. The intuition be-
hind its success is that it implicitly assumes the
data manifold lies on a hypersphere. While this
may seem restrictive, the assumption is reason-
able in practice. In a VAE, each latent coordinate
xi is drawn from a standard Normal distribution:
xi ∼ N (0, 1) (1 < i < D). As a result, the

squared norm, ||x||2 =

D∑
i=1

x2i follows a chi-

squared distribution with D degree of freedom.
This distribution is known to concentrate tightly
around D, effectively placing most latent codes
near the surface of a hypersphere. To validate
this empirically, we visualize the distribution of
||x||2 for all latent codes of the AFHQ dataset
(see Fig. 25). We observe that this distribution
is concentrated on D—D = 1024 for VAE with
latent space of size 4× 16× 16.

To conclude, slerp interpolation is well-suited
for VAE latent spaces because it aligns with their
underlying geometric structure.
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F.7 Physical interpretation

We refer the reader to [104] or [105] for a detailed background on differential geometry.

Geodesic equation. Assume that the manifoldM is the ambient D-dimensional Euclidean space

(M = RD). We equipped the manifoldM with a conformal Riemannian metric G(x) =
1

p(x)
· I,

with p the probability density of the data, and I the identity matrix of RD×D. Let γ(t) be a geodesic
(i.e. γ : [0, 1] → RD). We denote the instantaneous speed of the geodesic at time t, γ̇(t), and its
acceleration γ̈(t). Said otherwise, γ̇(t) and γ̈(t) denote ∂γ

∂t (t) and ∂2γ
∂t2 (t) respectively.

The geodesic equation is the 2nd-order ODE written as:

γ̈k(t) +
∑
i,j

Γki,j(γ(t)) · γ̇i(t) · γ̇j(t) = 0 (17)

In Eq.17, γ̈k(t) and γ̇k(t) denotes the k-th coordinate of γ̈(t) and γ̇(t), respectively (here 1 <
k < D). Γki,j are the Christoffel symbols, they are derived from the Riemannian metric and encode
how it bends and curves the space. Γki,j tells how much the change in direction in the i-th and j-th
coordinate causes acceleration in the k-th coordinate (1 < i, j, k < D). Said differently, i, j refer to
the coordinate direction along which the particule is moving, and k refers to the coordinate direction
where the motion causes effect (i.e. curvature induces acceleration).

Christoffel symbols for conformal metric. The Christoffel symbols for a conform metric G(x) =
λ(x) · I (with λ a scalar function):

Γkij(x) =
1

2λ(x)
(δj,k ∂iλ(x) + δi,k ∂jλ(x)− δij ∂kλ(x)) (18)

In Eq. 18, ∂iλ(x) =
∂λ(x)

∂xi
(i.e. the partial derivative of λ(x) with respect to the i-th coordinate),

and δj,k is the Kronecker symbol ( δj,k = 1 if j = k and δj,k = 0 otherwise). If one plugs Eq. 18 in
the right hand side of Eq. 17:∑
i,j

Γkij
(
γ(t)

)
γ̇i(t) γ̇j(t) =

1

2λ
(
γ(t)

) · [∑
i

∂iλ
(
γ(t)

)
γ̇i(t) γ̇k(t)

+
∑
j

∂jλ
(
γ(t)

)
γ̇k(t) γ̇j(t)

−
∑
i

∂kλ
(
γ(t)

)
γ̇i(t)2

]

=
1

2λ
(
γ(t)

) · [2γ̇k(t)〈∇λ(γ(t)), γ̇(t)〉− ∂kλ(γ(t)) ∥γ̇(t)∥2], (19)

where ⟨·, ·⟩ and ∥ · ∥ are the usual Euclidean inner product and norms, respectively.

So Eq. 17, becomes :

γ̈k(t) = − γ̇k(t)

λ
(
γ(t)

)〈∇λ(γ(t)), γ̇(t)〉+ 1

2λ
(
γ(t)

)∂kλ(γ(t)) ∥γ̇(t)∥2 (20)

Pulling everything together. If one plugs our definition of the Riemannian metric (i.e. λ
(
γ(t)

)
=

1

p
(
γ(t)

) , and therefore
∇λ

(
γ(t)

)
λ
(
γ(t)

) = −∇log p
(
γ(t)

)
), Eq. 20 becomes:

γ̈(t) = ⟨∇γ log p(γ(t)), γ̇(t)⟩ · γ̇(t) −
1

2
∥γ̇(t)∥2 · ∇γ log p(γ(t)) (21)

Eq. 21 is similar in form to Newton’s second law. The acceleration of a particle (of unit mass)
is governed by a velocity-dependent force built from the Stein Score (i.e. ∇γ log p(γ(t))). More
speficically:
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• ⟨∇ log p(γ(t)), γ̇(t)⟩ · γ̇(t) describes a "force" aligned with the particle velocity direction.
This term acts like an anisotropic drag or propulsion term: i) it speeds up the particle when
it goes toward a high-density region and ii) it slows down the particle going the other way.

• − 1
2∥γ̇(t)∥

2 · ∇ log p(γ(t)) is a force in the direction of the stein score (pointing toward
low density regions). It behaves like a repulsive force, pushing the particle toward areas
with low probability. The faster the particle moves, the stronger the force.

The “force” seems to depend on the velocity γ̇(t), which is typical of inertial forces (i.e, forces that
depend on a given frame). This is an artifact from the affine parametrization of the geodesic, which
ensures constant speed along the trajectory.

Newtonian formalism. Note that the variable t in previous equations is the geometrical “time”.
This variable t stems from the affine parametrization (e.g. see Eq. 3) and is not related to the physical
time. To make Eq. 21 compatible with the "physical" time, denoted s, one can consider the following
change of variable:

∂s

∂t
(t) = p(γ(t)) or equivalently

∂t

∂s
(s) =

1

p(γ(t(s)))
(22)

This change of variable implies that when moving through space according to arc-length s, the
geometric time t runs more slowly in low-density regions and faster in high-density ones. This change
of variable is particularly handy to interpret Eq. 21 as Newtonian motion. Let’s therefore consider
the following reparametrization: γ

(
t(s)

)
= x(s), where x is the new trajectory parametrized by the

physical time s. So:

γ̇(t) =
∂

∂t
γ(t) =

∂

∂t
x(s(t)) =

∂x

∂s
· ∂s
∂t

= ẋ(s) · p(x(s)) (23)

γ̈(t) =
∂

∂t
(ẋ(s) · p(x(s))) =

(
∂

∂s
(ẋ(s) · p(x(s)))

)
· ∂s
∂t

=

(
ẍ(s) · p(x(s)) + ⟨∇p(x(s)), ẋ(s)⟩ · ẋ(s)

)
· p(x(s))

= p(x)2ẍ+ p(x) ⟨∇p(x), ẋ⟩ ẋ (24)

Now plugging Eq. 24 and Eq. 23 in Eq. 21:

p(x)2ẍ+ p(x) ⟨∇p(x), ẋ⟩ ẋ

= ⟨∇ log p(x), γ̇(t)⟩ · γ̇(t)− 1

2
∥γ̇(t)∥2 · ∇ log p(x)

= ⟨∇ log p(x), p(x)ẋ⟩ · (p(x)ẋ)− 1

2
∥p(x)ẋ∥2 · ∇ log p(x)

= p(x)2 ⟨∇ log p(x), ẋ⟩ ẋ− 1

2
p(x)2∥ẋ∥2 · ∇ log p(x)

⇒ ẍ = −1

2
∥ẋ∥2∇ log p(x)︸ ︷︷ ︸

Stein score

.

This equation can be interpreted through Newton’s second law: it describes the motion of a particle
x following a geodesic in the Riemanannian manifold

(
M, 1

p(x)

)
, where p(x) denotes the data

density. The particle experiences a force − 1
2∥ẋ∥

2∇ log p(x), pushing away from regions of high
probability. The term ||x||2 modulates the forces magnitude and plays a role analogous to momentum,
strengthening the pull when the particle moves quickly. While this is not a literal physical system—
here the particle is a data point, and has no mass, it provides a useful analogy for understanding the
dynamics of trajectories shaped by data geometry.

39



G Limitations

While our approach provides a promising framework for deriving Riemannian metrics from EBMs,
several limitations should be acknowledged:

• First, we restrict our study to conformal metrics, which uniformly scale the identity matrix
and thus cannot capture directional (anisotropic) structure in the data manifold. While
this simplifies optimization, it limits expressivity in settings where geometry varies across
directions—something more expressive, score-based metrics may help resolve.

• Second, our method relies on pretrained EBMs that assign meaningful energy values across
the entire space. Training such models is challenging in high-dimensional settings due to the
computational cost of sampling (e.g., Langevin dynamics), and performance can degrade if
the energy landscape is poorly shaped or overfitted.

• Third, although we demonstrate improvements over strong baselines, our evaluation of
geodesic quality remains largely indirect—relying on alignment with proxy measures (e.g.,
density, rotation smoothness, FID). In complex datasets like natural images, the absence of
ground-truth geometry makes rigorous evaluation difficult.

• Fourth, our approach assumes that the data distribution is adequately captured by the EBM,
yet in practice, misestimation of density—especially in underrepresented regions—may
distort the metric and lead to suboptimal paths.

• Finally, while we demonstrate promising results on several datasets, our experiments are
constrained to pretrained generative models and fixed feature spaces (e.g., VAE latents), and
generalizing to end-to-end learnable architectures remains unexplored.

Future work may address these limitations by developing scalable score-based metrics, improving
EBM training stability, integrating richer evaluation protocols, and extending the framework to
broader model classes and learning settings.

H Broader Impact

This work advances our understanding of data geometry by connecting generative modeling and
Riemannian geometry, with potential implications across machine learning, neuroscience, and
cognitive science. By enabling principled geodesic computation in high-dimensional spaces, our
approach could support safer interpolation in generative models, improve motion planning in robotics,
or inform models of human cognition. However, care should be taken when applying such methods
to sensitive domains, as learned energy landscapes may inherit biases present in training data.

I Computational ressources

All experiments were conducted on NVIDIA RTX 3090 GPUs (32 GB memory). Training on the
toy dataset was fast, with both the EBM and interpolant completing in a few minutes. For the
Rotated Characters dataset, EBM training took 8 GPU hours and the interpolant 30 minutes. On the
AFHQ dataset, training required 6 GPU days for the EBM and 24 GPU hours for the interpolant.
Including extensive hyperparameter searches and trial-and-error development, the total compute
usage amounted to approximately 123,000 GPU hours.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that EBM-derived metrics stay closer to the data mani-
fold and better capture the geometry of the data compared to alternative metrics. In all
experimental settings this claim is verified (see Fig. 2, Fig. 4, Table 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have briefly discussed limitations in the conclusion section of the main
article. But we have included an addtional a full section in the supplementary information
(see Supp. G) to expand those limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: This paper does not present new theoretical results, but it builds on and
leverages existing theoretical insights from prior work.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Due to space constraints, we could not include all experimental details in the
main paper. However, the supplementary material provides a thorough description of each
experiment, including neural network architectures, all hyperparameters, additional samples,
and the pseudo-codes for the main algorithms we used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets we used are open access. In addition, upon acceptance we will
release the github code to reproduce all the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
In the supplementary materials (see Supp. D, Supp. E and Supp. F), we have extensively
reported experimental details about the datasets, the type of optimizers we used, and the
hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We reported the 2σ error bar for all quantitative metrics on the Supplementary
information (see Supp. D.3, Supp. F and Supp. F.4).
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of computing workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included a section describing the computational resources we use for
all experiments in the supplementary information (see Supp. I).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All the research conducted in this article conforms to the Neurips Code of
Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We have discussed the broader impact of our research in Supp. H
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We don’t think our work poses a significant risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In terms of datasets, we use the Mixture of Gaussians (not under license), the
AFHQ dataset (under CC BY 4.0 Licence), and the rotated letter (based and sklearn letters).
In addition, we use the interpolant training algorithms, and the contrastive divergence to
train EBMS. All the creators of these assets have been credited by citing the corresponding
articles.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: Our only new asset is the code used to run all experiments, which will
be released publicly under the MIT license upon acceptance. All other assets are fully
documented in this article.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No human experiments or crowdsourcing are involved in this article.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] .
Justification: No human experiments or crowdsourcing are involved in this article.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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